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0556-2813/2015/92(3)/034914(21) 034914-1 ©2015 American Physical Society



A. ADARE et al. PHYSICAL REVIEW C 92, 034914 (2015)

A. A. Vinogradov,35 M. Virius,15 V. Vrba,15,28 E. Vznuzdaev,57 X. R. Wang,52,59 D. Watanabe,23 K. Watanabe,68

Y. Watanabe,58,59 Y. S. Watanabe,12,33 F. Wei,29,52 R. Wei,64 J. Wessels,46 A. S. White,45 S. N. White,7 D. Winter,14 J. P. Wood,1

C. L. Woody,7 R. M. Wright,1 M. Wysocki,13,54 B. Xia,53 W. Xie,59 L. Xue,22 S. Yalcin,65 Y. L. Yamaguchi,12,65 K. Yamaura,23

R. Yang,26 A. Yanovich,25 J. Ying,22 S. Yokkaichi,58,59 J. H. Yoo,34 I. Yoon,63 Z. You,56 G. R. Young,54 I. Younus,38,51 H. Yu,56

I. E. Yushmanov,35 W. A. Zajc,14 A. Zelenski,6 C. Zhang,54 S. Zhou,11 L. Zolin,31 and L. Zou8

(PHENIX Collaboration)
1Abilene Christian University, Abilene, Texas 79699, USA

2Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA
3Department of Physics, Banaras Hindu University, Varanasi 221005, India

4Bhabha Atomic Research Centre, Bombay 400 085, India
5Baruch College, City University of New York, New York, New York 10010, USA

6Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
7Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

8University of California-Riverside, Riverside, California 92521, USA
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19Ewha Womans University, Seoul 120-750, Korea

20Florida Institute of Technology, Melbourne, Florida 32901, USA
21Florida State University, Tallahassee, Florida 32306, USA

22Georgia State University, Atlanta, Georgia 30303, USA
23Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan

24Department of Physics and Astronomy, Howard University, Washington, DC 20059, USA
25IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino 142281, Russia

26University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
27Institute for Nuclear Research of the Russian Academy of Sciences, prospekt 60-letiya Oktyabrya 7a, Moscow 117312, Russia

28Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8, Czech Republic
29Iowa State University, Ames, Iowa 50011, USA

30Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Naka-gun,
Ibaraki-ken 319-1195, Japan

31Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia
32Helsinki Institute of Physics and University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
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We present a systematic study of charged-pion and kaon interferometry in Au + Au collisions at
√

sNN =
200 GeV. The kaon mean source radii are found to be larger than pion radii in the outward and longitudinal
directions for the same transverse mass; this difference increases for more central collisions. The azimuthal-angle
dependence of the radii was measured with respect to the second-order event plane and similar oscillations of the
source radii were found for pions and kaons. Hydrodynamic models qualitatively describe the similar oscillations
of the mean source radii for pions and kaons, but they do not fully describe the transverse-mass dependence of
the oscillations.

DOI: 10.1103/PhysRevC.92.034914 PACS number(s): 25.75.Dw

I. INTRODUCTION

Measurements of the quark-gluon plasma (QGP) produced
in nucleus-nucleus collisions at the Relativistic Heavy Ion
Collider (RHIC) [1–4] and the Large Hadron Collider (LHC)
[5–7] showed that the QGP exhibits rapid hydrodynamic
expansion, followed by hadronization, which results in the
emission of many particles. The time of last scattering among
hadrons is referred to as kinetic freeze-out. To understand
the dynamics and properties of the QGP, it is important to
understand the full system evolution and how it is constrained
by the measurements of the space-time distribution at kinetic
freeze-out.

The quantum statistical interferometry of identical parti-
cles, also known as Hanbury-Brown–Twiss (HBT) interferom-
etry or femtoscopy, is a powerful tool to measure the spatial

*Deceased.
†PHENIX Cospokesperson: morrison@bnl.gov
‡PHENIX Cospokesperson: jamie.nagle@colorado.edu

and temporal scales of systems created in nucleus-nucleus
collisions [8,9]. This technique was first developed to measure
the angular diameter of stars through intensity interferometry
of radio waves [10]. It has also been applied to nuclear
and particle physics [11]. In nucleus-nucleus collisions, the
interferometry using emitted hadrons measures the spatial
extent of the particle-emitting source at the time of kinetic
freeze-out.

Despite the successful description of various observables
at RHIC by the hydrodynamic models [1,2], there was
significant discrepancy between HBT data and theoretical
models [2,12]. Recent theoretical development has improved
the agreement by including realistic physics conditions such
as a stiffer equation of state and a viscosity of the created
matter [13].

Charged pions are often used for the interferometry
analysis because of their abundant production, but recently
acquired large data sets by RHIC and LHC experiments
allow study of the particle-species dependence [14–16]. Kaon
interferometry is of particular interest because the contribution
from resonance decays is reduced compared to that seen

034914-3
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with pions [17,18], thereby providing a more direct view
of the particle-emitting source. PHENIX at RHIC published
an analysis of one-dimensional source imaging for charged
kaons [14]. STAR at RHIC has recently published three-
dimensional source imaging [15], where charged kaons lack
the non-Gaussian tail in the source function observed in
the pion sample. This result may be caused by the reduced
contribution from long-lived resonances, as well as a different
time dependence owing to a shorter rescattering phase. Further
systematic studies using different particle species are needed
to better constrain the space-time evolution and freeze-out
distributions of the created medium.

The HBT measurement is also sensitive to the initial spatial
anisotropy and the subsequent evolution of the created matter.
Owing to the strong collective expansion, one might expect
the eccentricity of the source shape in the initial state to
be reduced at freeze-out and possibly to be reversed if the
collective expansion is stronger in the direction of the reaction
plane or if the expansion time is sufficiently long. To probe the
spatial source anisotropy at freeze-out, HBT measurements
with respect to the event planes have been performed using
two-pion correlation [19–22]. Large oscillations of the pion
source radii relative to the second-order event plane were
observed, which indicates that the pion source at freeze-out
is elongated in the direction perpendicular to the event plane
even after the collective expansion.

In this paper, we present azimuthal-integrated and
azimuthal-dependent source radii for charged pions and
kaons in Au + Au collisions at

√
sNN = 200 GeV. Results are

compared with the hydrodynamic models for both particle
species.

II. EXPERIMENT

The PHENIX experiment [23] is designed to measure
particles produced in nucleus-nucleus collisions with good
momentum resolution, including photons, electrons, muons,
and hadrons, to study properties of the QGP. The PHENIX
detectors are composed of magnet systems and detectors for
particle tracking and identification, event timing, plus vertex
position and centrality determination. The particle tracking and
identification detectors are arranged into central and forward
(muon) arms. Figure 1 shows the layout of the PHENIX
detector during the 2007 running period.

Global detectors characterize the global event characteris-
tics in heavy-ion collisions. The beam-beam counters (BBCs)
[24] measure the collision time and the position of the collision
vertex along the beam axis, as well as the collision centrality.
The BBC comprises two identical sets of counters located
±144 cm from the nominal collision point and surrounds the
beam pipe covering the pseudorapidity range of 3.0 < |η| <
3.9. Each BBC has 64 modules of Čerenkov radiators and mea-
sures the number of charged particles in its acceptance. The
zero-degree calorimeters are located 18 m from the nominal
collision point and measure the energy of spectator neutrons.
The reaction-plane detector (RXNP) [25] was installed prior
to the 2007 RHIC run to measure the event-plane angle in
heavy-ion collisions. The RXNP comprises two sets of 24
scintillators on both the north and the south sides and is located
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FIG. 1. (Color online) The layout of PHENIX detectors in the
2007 run configuration. The top figure shows the central arm detectors
viewed along the beam axis. The bottom figure shows the side view
of the global detectors and muon arm detectors.

±39 cm from the vertex position. The scintillators are arranged
around the beam pipe in two concentric rings of 12 segments
in the azimuthal direction. The outer and inner rings cover
pseudorapidity ranges of 1.0 < |η| < 1.5 and 1.5 < |η| < 2.8,
respectively.

The PHENIX central arms comprise two sets of detectors
located on the west and east sides of the beam axis. Each
arm covers 90◦ in azimuth and a pseudorapidity range of
|η| < 0.35. Track and momentum reconstructions of charged
particles were performed with the drift chambers (DCs) and
pad chambers (PCs). The DCs are located at a radial distance
of 2.02 to 2.46 m from the beam axis in the west and east
arms, covering 2 m length along the beam axis. The PCs
are multiwire proportional chambers in each of the central
arms and are located at radial distances of 2.5 m (PC1) and
4.9 m (PC3). The tracks and momenta were reconstructed by
combining the hit information in the DC and PC1, providing
a momentum resolution of δp/p ≈ 1.3% ⊕ 1.2% × p GeV/c

[26]. Global-track reconstruction was performed by associat-
ing these tracks with hits in the outer detectors, such as PC3
and the lead-scintillator (PbSc) electromagnetic calorimeters,
as shown in Fig. 1. Particle identification is provided by the
PbSc [27], which is a sampling calorimeter with a timing
resolution of about 500 ps [26] located at a radial distance of
5.1 m from the beam axis.
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III. DATA ANALYSIS

The
√

sNN = 200-GeV Au + Au collision data were col-
lected by PHENIX during the 2007 running period. A total
of 4.2 × 109 events were used for this analysis, where the
minimum bias trigger with at least two hits in each BBC was
required. This trigger measures 92 ± 3% of the total inelastic
cross section [28]. Additional off-line requirements of one
zero-degree-calorimeter hit on each side and a collision vertex
position of less than ±30 cm were applied.

A. Track selection

Charged tracks with good quality were selected based
on the track information from the DC and PC1. To reduce
the background owing to the random association of hits and
reconstructed tracks, track residuals were required to be less
than 2σ in the φ − z plane at the PC3 and PbSc for pions.
For kaons, this cut was relaxed to 2.5σ to increase statistics.
The fraction of the random background is ∼4.6% after the
2σ cuts and ∼5.3% after the 2.5σ cuts at pT = 0.5 GeV/c in
the 0%–10% most central collisions. The effect of the track
quality cuts was included in the systematic uncertainty.

B. Particle identification

Particle identification was performed by combining time-
of-flight data from the PbSc in the west arm, the reconstructed
momentum, and flight path length from the collision vertex
to the hit position at the PbSc wall. The squared mass of the
particles is given by the formula

m2 = p2

c2

[(
ct

L

)2

− 1

]
, (1)

where p is the momentum, t is the time of flight, L is the
flight path length, and c is the speed of light. Pions and kaons
were selected from a 2σ window around their peaks in the
squared mass distribution. Additional requirements, i.e., to be
away from the mass peak of other particles, were applied to
reduce contamination. The π/K separation was achieved up to
a momentum of ∼1 GeV/c. Contamination in the pion samples
from kaons is below 1% for p ≈ 1 GeV/c and contamination
in the kaon samples from pions (protons) is below 4% (1%)
for p ≈ 1 GeV/c.

C. Construction of the correlation function

In this section, a bold character denotes four-dimensional
vector and an arrow denotes three-dimensional vector.

The experimental correlation function defined as

C2(q) = A(q)

B(q)
(2)

was measured as a function of the pair momentum difference
q = p1 − p2, where A and B are constructed from identical
particle pairs from the same event and a mixed event, respec-
tively. The mixed events are taken from similar event central-
ities and vertex positions. In the case of azimuthal-dependent
analysis, the mixed events are also required to have similar
values for the second-order event plane defined in Sec. III D.

Particle pairs with similar momenta and spatially close
to each other are affected by incorrect track reconstruction
and detector inefficiencies. These effects were removed by
applying pair selection cuts at the DC and PbSc following our
previous analysis [14,22]. In addition, pairs that are associated
with hits on the same tower of the PbSc were removed.

The particle pairs were analyzed with the Bertsch-Pratt
parametrization [29,30] as functions of the pair momentum
difference q and mean pair momentum �k, where �k = ( �p1 +
�p2)/2. The �k is projected into its longitudinal component kz

and transverse component �kT. The q is projected into the lon-
gitudinal (ql), outward (qo), and sidewards (qs) components,
where ql denotes the beam direction, qo is perpendicular to �kT ,
and qs is perpendicular to both ql and qo. In this frame, the
energy (temporal) component of the four-dimensional vector
is taken in the outward component by performing the analysis
in the longitudinal comoving system, where kz = 0.

The C2(q) function is divided into two components based
on the core-halo picture in which the λ parameter controls the
relative strength of the core and the halo,

C2(q) = Ccore
2 + Chalo

2

= λ[1 + G(q)]Fc(q) + (1 − λ), (3)

G(qs,qo,ql) = e−R2
s q2

s −R2
oq2

o −R2
l q2

l −2R2
osqsqo . (4)

The Fc(q) is the Coulomb correction factor evaluated by the
Coulomb wave function [31,32], where q is the scalar quantity
of q. The central core contributes to the quantum statistical
interference. The halo includes the decay of long-lived
particles for which the quantum statistical interference occurs
in a q range that is too small to be resolved experimentally and
for which the Coulomb interaction is negligible. The core is
assumed to be a Gaussian source as given by Eq. (4).

The HBT radii denoted by Rs, Ro, and Rl represent the
spatial extent of the emission region in each direction, but
Ro and to a lesser extent Rl and Ros include a contribution
from the emission duration. All radii are sensitive to position-
momentum correlations. The Ros term arises in the case
of azimuthal-dependent analysis owing to asymmetries in
the emission region [9], while it vanishes in the azimuthal-
integrated analysis.

The HBT radii were measured as a function of kT and
presented as a function of the transverse mass mT = (k2

T +
m2)1/2 to study particle-species dependence, where m is the
particle mass.

D. Event-plane dependence

The second-order event-plane angle (�2) was determined
using the RXNP detector based on the azimuthal anisotropy
of emitted particles in momentum space,

�2 = 1

2
tan−1

(
Qy

Qx

)
, (5)

Qx =
∑

wi cos(2φi), (6)

Qy =
∑

wi sin(2φi), (7)
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where φi is the azimuthal angle of each segment i in the RXNP
and wi is the weight which reflects the particle multiplicity in
that segment. Corrections for detector acceptance as detailed
in Ref. [33] were applied.

Owing to the finite number of particles within the RXNP
acceptance, the observed event plane �2 is smeared around
the true event plane 	. This smearing effect is typically
accounted for by the resolution. The event-plane resolution
defined as Res{�2} = 〈cos[2(�2 − 	)]〉 was estimated by the
two-subevent method [34] using the event-plane correlation
between the RXNP at forward and backward angles. The
Res{�2} has a maximum of 0.75 in midcentral events [26].

The finite event-plane resolution reduces the oscillation
amplitude of HBT radii relative to the event plane. To
take this effect into account, a model-independent correction
suggested in Ref. [35] was applied. The pair distribution
measured at a certain azimuthal angle φ relative to the
reconstructed event plane, N (q,φ − �2), is smeared by the
finite event-plane resolution and finite width of angular
bins 
. The Fourier coefficients for the true and measured
N (q,φ − �2), Nα,n(q,φ − �2), can be associated with the
relation

N exp
α,n (q,φ − �2)

= N true
α,n (q,φ − 	)

sin(n
/2)

n
/2
〈cos[n(�2 − 	)]〉, (8)

where α denotes sine and cosine terms of the Fourier coeffi-
cients (α = s,c) and n denotes the order of the coefficient. The
above equation is analogous to the correction for the elliptic
flow (v2). Based on Eq. (9), the A(q) and B(q) functions can
be unfolded by using the equation

N (q,φj ) = Nexp(q,φj ) + 2
nbin/2∑

n=m,2m,···
ζn,m(
)

× [
N exp

c,n (q) cos(nφj ) + N exp
s,n (q) sin(nφj )

]
, (9)

where nbin is the number of azimuthal angular bins, and m is
the order of the event plane, and φj denotes the center of the
j th angular bin which corresponds to the azimuthal angle of
the pair with respect to the event plane. N

exp
c,n (q), N

exp
s,n (q), and

ζn,m(
) are given by

N exp
c,n (q) = 〈Nexp(q,φ − �2) cos[n(φ − �2)]〉,

=
∑

j

Nexp(q,φj ) cos(nφj )/nbin, (10)

N exp
s,n (q) = 〈Nexp(q,φ − �2) sin[n(φ − �2)]〉,

=
∑

j

Nexp(q,φj ) sin(nφj )/nbin, (11)

ζn,m(
) = n
/2

sin(n
/2)
〈
cos

[
n
(
�obs

m − 	
)]〉 − 1. (12)

The details of Eqs. (9)–(12) can be found in Ref. [35].

E. Systematic uncertainties

Systematic uncertainties were estimated by variations of
track quality cuts at PC3 and PbSc, pair selection cuts,

TABLE I. Typical systematic uncertainties of HBT parameters for
positive pion pairs in 0%–10% centrality and 0.6 < kT < 0.7 GeV/c.

Systematic source λ Rs Ro Rl

(%) (%) (%)

Track quality 1.8 0.3 0.5 3.1
Pair selection 4.3 1.0 4.6 3.7
Particle ID 0.4 0.3 1.3 0.0
Coulomb 0.4 0.1 0.3 0.1
Total 4.7 1.1 4.8 4.8

and particle identification (PID) cuts. Also, the effect of the
Coulomb correction was studied by varying the input source
size in the calculation of Fc(q) in Eq. (3). Typical systematic
uncertainties of the measured radii for charged pions and kaons
are listed in Tables I and II.

In the azimuthal-dependent analysis, the variations when
using different event planes from forward, backward, and
both combined RXNPs were also incorporated. The systematic
uncertainties of the oscillation amplitudes of HBT radii were
dominated by the event-plane determination, which were 16%,
on average, in the final eccentricity defined by the oscillation
of R2

s and the same fraction of the uncertainty was assumed
for pions and kaons.

The effect of momentum resolution was studied employing
the same method as previous analyses [36,37]. The momentum
was smeared according to the known momentum resolution
and the correlation function was reconstructed using the
smeared A(q) and B(q) functions. By taking the ratio of the
smeared and unsmeared correlation function, the correction
factor was obtained. The correction on the momentum resolu-
tion was performed by multiplying the correction factor to the
measured correlation function. The correction did not affect
Rs and Rl, but slightly increased λ (<10%) and Ro (<6%).

IV. RESULTS AND DISCUSSION

A. Azimuthal-integrated analysis

Figures 2(a)–2(c) show an example of correlation functions
of pion pairs and kaon pairs in 0%–10% centrality in a kT bin
with fit lines given by Eq. (3), where the momentum correction
is not applied. The kT range is selected to have similar mT

for pions and kaons. The three-dimensional A(q) and B(q)
functions are projected in each q direction. In the projection,
the other q are restricted to be less than 40 MeV/c [e.g., when

TABLE II. Typical systematic uncertainties of HBT parameters
for charge-combined kaon pairs in 0%–10% centrality and 0.3 <

kT < 0.68 GeV/c.

Systematic source λ Rs Ro Rl

(%) (%) (%)

Track quality 5.1 2.2 1.9 2.2
Pair selection 9.0 1.5 0.1 1.9
Particle ID 6.1 0.3 4.5 0.1
Coulomb 4.6 0.3 1.1 0.2
Total 12.9 2.7 5.0 2.9
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FIG. 2. (Color online) Correlation functions of negative pions and charged kaons for 0%–10% centrality (a)–(c), where positive and
negative kaons are combined. Open boxes show the systematic uncertainties. Solid and dashed lines show the fit functions and the extracted
radii values are shown in the figure.

making C2(qs), the projection ranges of qo and ql should be
qo < 40 MeV and ql < 40 MeV]. The 1D correlation functions
shown in Fig. 2 are obtained by taking the ratio of the projected
A(q) and B(q) functions. The extracted HBT radii with the

statistical uncertainties are also shown in each panel. The width
of the enhancement at the low q region in the correlation
function is proportional to the inverse of the HBT radius. The
width of the correlation function is comparable between pions
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FIG. 3. (Color online) Extracted HBT parameters of charged pions and kaons as a function of mT for the centralities indicated, where open
boxes show the systematic uncertainties. Results of charged pions from STAR [37] are compared. Calculations from the hydrokinetic model
(HKM) [38] and viscous-hydrodynamic model (Bozek) [39] are also shown.
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FIG. 4. (Color online) Ratio of Ro and Rs for charged pions and kaons as a function of mT . Calculations from the hydrokinetic model
(HKM) [38] and viscous-hydrodynamic model (Bozek) [39] are also shown.

and kaons in the sidewards direction, but narrower for kaons
in the outward and longitudinal directions, indicating a larger
radius in those directions than for pions with a similar mean
mT . We note that the data points at lower q bins fluctuate
owing to lower statistics. The effect of the fluctuation on the
radii was studied by varying the fit range and it was found to
be within a few percent for both pions and kaons.

Figure 3 shows the extracted HBT parameters of charged
pions and kaons for four centrality classes as a function of
mT . Results for charged pions in the low-mT region from
STAR [37] are also plotted. The source parameters from the
two experiments are in good agreement, but the λ parameters
are 20% lower at low mT . The value of λ is sensitive to the
combinatorial background level, which may differ between
PHENIX and STAR. Positive and negative pions are quite
consistent. The presented data are also consistent with our
previous results [12,14].

The decrease of HBT radii with mT is often attributed to
the position-momentum correlation induced by collective flow.
The slope of the mT dependence becomes steeper for more
central collisions, which is consistent with an expectation of a
stronger radial flow [9]. Rs shows approximate mT scaling
between pions and kaons, as predicted by the Buda-Lund
model [40], which is based on the analytic approach of the
perfect fluid hydrodynamics. However, Ro and Rl of kaons
show larger values than those of pions as noted already
in Fig. 2, where the mT scaling is broken. The difference
increases with centrality going from peripheral to central

collisions. The similar difference between pions and kaons
for Rl was reported by STAR [15].

The results are compared with the HKM [38,41]. The
HKM incorporates realistic conditions such as the Glauber
initial condition, crossover transition, fluid hydrodynamics,
microscopic transport, and resonance decays, but does not
explicitly include the viscous correction. It is reported that
the model calculations with the initial condition of the color
glass condensate are very similar to those with the Glauber
initial condition [41]. As shown in Fig. 3, the HKM [38]
describes well the overall trend of HBT radii for pions and
kaons in all centrality bins; however, it overestimates Ro of
pions in more central collisions and underestimates Rs and
Rl of pions in peripheral collisions. The HKM also describes
the difference of pions and kaons in the longitudinal direction,
which can be understood by strong transverse flow [42], but the
difference in the outward direction cannot be explained well.
The data for pions in most central collisions are also compared
with (3 + 1)-D viscous hydrodynamic model [39] calculations
which employ a Glauber initial condition and η/s = 0.08 (also
see Sec. IV B 3 for details). The model follows the general
trends in the data.

The ratio of Ro and Rs, which is sensitive to the emission
duration of particles, is also plotted as a function of mT in
Fig. 4. Results for both species do not show any significant
centrality dependence, but the values for kaons are larger than
those for pions at all mT and centralities, a possible indication
of longer emission duration time for kaons than for pions.
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FIG. 5. (Color online) HBT radii of charged pions and kaons as a function of kT , where open boxes show the systematic uncertainties.
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FIG. 6. (Color online) Comparison of HBT radii between pos-
itive and negative kaons pairs in central and peripheral collisions,
where open boxes show the systematic uncertainties.

The HKM reproduces the data for kaons well, but not for
pions.

The mT scaling of HBT radii was inspired by the hydrody-
namic expansion [43]. This is based on the idea that the kinetic
freeze-out of hadrons occurs at the same time and the hadrons
with similar velocities are emitted from the same homogeneity
region. In other words, the homogeneity length depends on the
particle mass under the presence of radial flow. In Fig. 5, both
pion and kaon HBT radii for central and peripheral events
are plotted as functions of kT . Unlike the case of the mT

dependence shown in Fig. 3, both radii seem to be scaled
better for kT in all q directions as predicted in Ref. [42]. This

model includes many different effects such as the hadronic
cascade and resonance decays in addition to radial flow.

We have also checked charge-dependent kaon HBT radii in
Fig. 6. There was no significant difference between positive
and negative kaons, as we expected. If nucleons are dominant
in the particle-emitting source and the net baryon density is
not small, the measured radii might be different between K+
and K− (and also pions) because of smaller cross section of
K+ − N than K− − N [44]. However, this is not observed.

B. Azimuthal-dependent analysis

1. Results

We have measured the azimuthal angle dependence of HBT
radii with respect to �2 for both charged pions and kaons.
Figures 7(a)–7(c) show the correlation functions of charged
kaons in the 20%–60% centrality bin in the in-plane (|φ −
�2| < π/16) and out-of-plane (|φ − �2 − π/2| < π/16) di-
rections without correction for the event-plane resolution. The
correlation functions in Fig. 7 are calculated in the same way
as Fig. 2, i.e., when making the one-dimensional C2 along
the q of interest, the other q are limited to be less than
50 MeV/c. To make a comparison of the C2 width between
in-plane and out-of-plane directions, the C2 in the positive
and negative q are averaged because they are symmetric over
q = 0 within the statistical uncertainties. The extracted radii
without the correction are also shown in the figure. A difference
of the width in the correlation function between these (in and
out-of-plane) directions can be seen in the sidewards [Fig. 7(a)]
direction. Figure 8 shows the extracted HBT radii of charged
kaons as a function of azimuthal pair angle φ with respect to
�2 for two centrality bins where 〈kT 〉 is ∼0.77 GeV/c. We
first fix λ in Eq. (3) by taking the average for λ obtained in all
azimuthal bins, then we fit in individual azimuthal bins again
with fixed λ parameter as detailed in Ref. [37]. This treatment
is based on the assumption that λ has no azimuthal angle
dependence, and the data fluctuate but do not depend on the
azimuthal angle beyond the systematic uncertainty. The cosine
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FIG. 7. (Color online) Correlation functions of charged kaons in 20%–60% centrality (a)–(c), where positive and negative kaons are
combined. The correlation functions along qs and qo directions are averaged out between positive and negative q. Lines show the fit functions
and the extracted radii values are shown in the figure.
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FIG. 8. (Color online) Squared HBT radii of charged kaon pairs
as a function of azimuthal pair angle φ with respect to �2 for two
centrality bins, where kT is integrated over 0.3–1.5 GeV/c. The open
symbols at φ − �2 = π are the same data as that at φ − �2 = 0.
Open boxes show systematic uncertainties and the solid lines are the
fitting functions given by Eq. (13).

oscillations of R2
s and R2

o [Figs. 8(a) and 8(b)] and the sine
oscillation of R2

os [Fig. 8(d)] can be clearly seen. Nonzero Ros

at (φ − �2) = 1
4π, 3

4π implies that the direction of the particle
emission is tilted relative to the main axis of the emission

region. The oscillation of R2
s seems to be larger than for R2

o in
20%–60% centrality bin.

We have also measured the charged-pion HBT radii with
respect to �2 for the same centrality bins as kaons with six kT

(mT ) bins, as shown in Fig. 9. The averages of R2
s , R2

o, and
R2

l decrease with kT , as seen in Fig. 3. The R2
s and R2

o have
similar but opposite oscillations in all kT bins. For 20%–60%
centrality, both transverse radii show finite oscillation even
in the lowest kT bin, which indicates that the pion emission
happens from an elliptical source. For 0%–20% centrality, the
R2

s has a weak azimuthal angle dependence, while the R2
o has

a larger oscillation than the R2
s . It could be consistent with R2

o
being more influenced by the anisotropic flow, as discussed
in our previous publication [22]. The oscillations of R2

os
decrease with kT and Rl displays a negligible azimuthal angle
dependence, which qualitatively agree with hydrodynamic
calculations [35,45].

The data shown in Figs. 8 and 9 are fitted with the functions
below to extract the oscillation strength [46],

R2
μ(
φ) = R2

μ,0 + 2R2
μ,2 cos(2
φ) (μ = s,o,l),

(13)
R2

μ(
φ) = 2R2
μ,2 sin(2
φ) (μ = os),

where R2
μ,2 are the second-order Fourier coefficient and 
φ =

φ − �2. Detailed discussion on the oscillation amplitudes is
presented in Sec. IV B 3.

2. Blast-wave model fit

In this section, we perform blast-wave (BW) model fits
to our results to extract features at the kinetic freeze-out
and study their particle species dependence. The BW model
[47] is based on a hydrodynamical model parametrized by
the freeze-out conditions, such as the freeze-out temperature

] 2
 [f

m
2 μ

R

10

20

30

(a)

GeV/cTk
0.2-0.3 0.3-0.4
0.4-0.5 0.5-0.6
0.6-0.8 0.8-1.5

=sμ

 [rad] 
2

Ψ - φ
0 1 2 3

] 2
 [f

m
2 μ

R

0

10

20

(e)

PHENIX Au+Au 200 GeV
-π-π++π+π

(b) =oμ

 [rad] 
2

Ψ - φ
0 1 2 3

(f)

(c) =lμ

 [rad] 
2

Ψ - φ
0 1 2 3

(g)

2−

0

2

(d)

0-20%

=osμ

 [rad] 
2

Ψ - φ
0 1 2 3 

2−

0

2

(h)

20-60%

FIG. 9. (Color online) Squared HBT radii of charged-pion pairs as a function of azimuthal pair angle φ with respect to �2 for six kT bins
and two centrality bins [(a)–(d) for 0%–20% and (e)–(h) for 20%–60%], where open symbols at φ − �2 = π are the same data as those at
φ − �2 = 0. Open boxes show systematic uncertainties and solid lines show the fit functions by Eq. (13).
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FIG. 10. (Color online) The BW model fits (Fit A) to the pT spectra (a), elliptic flow of π , K , p (d), and HBT radii of π (b),(c),(e),(f). The
solid lines show the fit functions.

(Tf ) and the transverse flow rapidity (ρ0). This model is
further expanded in Ref. [35] to describe the elliptic flow
and azimuthal angle dependence of HBT radii by introducing
additional parameters: second-order modulation in transverse
flow rapidity (ρ2), the transverse source size (Rx , Ry), the
freeze-out time (τ0), and the emission duration (
τ ). Once the
above seven parameters are fixed, the pT spectra, elliptic flow,
and HBT radii can be calculated within the model.

Each freeze-out parameter has a different sensitivity to each
experimental observable [35]. For example, the ρ2 and the ratio
of Rx and Ry are less sensitive to pT spectra, but more sensitive
to the elliptic flow and the azimuthal angle dependence of
HBT radii. To effectively constrain those parameters, a fit to
pT spectra was first performed to determine Tf and ρ0, then
the other parameters were determined by simultaneous fit to
the elliptic flow and azimuthal-dependent HBT radii. For the
source size parameters, the Rx and Ry/Rx are actually used as
the fitting parameters.

The BW model assumes that the freeze-out for all hadron
species takes place at the same time, but the actual situation
may be more complicated. To investigate how the extracted
freeze-out parameters vary by particle species of HBT radii,
the following fits were tested:

(A) fit for pT spectra and v2 of π , K , p along with HBT
radii of π ;

(B) fit for pT spectra and v2 of π , K , p along with HBT
radii of K .

In the case of Fit B, both azimuthal-dependent and
azimuthal-integrated HBT radii of charged kaons were in-
cluded in the fit.

Figure 10 shows the results of Fit A for the pT spectra
[Fig. 10(a)] and elliptic flow [Fig. 10(d)] of π , K , and p, and
pion HBT radii [Figs. 10(b), 10(c), 10(e), 10(f)] in 20%–60%
centrality. The solid lines show the BW fitting functions and

TABLE III. Summary of extracted parameters in the BW model fit for two fitting conditions (see the text for details). The Tf and ρ0

parameters were obtained by fits to pT spectra, and the other parameters were obtained by a simultaneous fit to v2 and the HBT radii. The
values in parentheses represent the systematic uncertainties derived by varying the model fit conditions.

Fit Centrality Tf ρ0 ρ2 Rx Ry/Rx τ 
τ χ 2/NDF χ 2/NDF χ 2/NDF
(MeV) (fm) (fm/c) (fm/c) (spectra) (v2) (HBT)

A 0%–20% 104 0.995 0.047 11.28 1.092 8.22 2.06 143.4/27 = 5.3 25.2/21 = 1.2 2526.7/96 = 26.3
(5) (0.055) (0.005) (0.23) (0.003) (0.23) (0.18)

A 20%–60% 113 0.905 0.074 8.25 1.171 6.1 1.56 206.5/27 = 7.6 46.4/21 = 2.2 1998.3/96 = 20.8
(8) (0.059) (0.012) (0.29) (0.003) (0.31) (0.12)

B 0%–20% 104 0.995 0.042 10.19 1.102 8.48 2.73 143.4/27 = 5.3 11.0/21 = 0.5 116.9/28 = 4.2
(5) (0.055) (0.004) (0.46) (0.004) (0.81) (0.58)

B 20%–60% 113 0.905 0.067 7.44 1.182 4.95 2.86 206.5/27 = 7.6 39.4/21 = 1.9 95.7/28 = 3.4
(8) (0.059) (0.01) (0.55) (0.008) (0.91) (0.52)
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FIG. 11. (Color online) The zeroth-order Fourier coefficient of
HBT radii of charged pions as a function of mT and BW model
calculations for both pions (dashed line) and kaons (solid line), where
the BW model parameters shown in Fit A of Table III were used.

the dashed lines in panels (a) and (d) represent the extended
fitting function beyond their actual fit ranges. Only three kT

bins for HBT radii are shown here, but all six kT bins shown
in Fig. 9 were simultaneously used in the fit. Here the data of
pT spectra are taken from Ref. [48] and the data of v2 from
Ref. [49]. The pT spectra and v2 are well described at low pT ,
and the overall trend of the HBT radii is also reproduced by
the BW model.

The results from the fits are summarized in Table III. The
systematic uncertainties of the BW model fit were estimated
by varying the fit conditions: the fit range, a surface diffuseness
to control the density profile [35], and the relative weighting
factor between different particle species. The systematic un-
certainties of data were taken into account in the calculation of

χ2. Our results from Fit A are in good agreement with those in
previous studies [37,50]. The results of Fit B shows slightly
different values, i.e., smaller Rx and larger 
τ . The smaller
source (Rx) might be intuitively understood as owing to kaons
freezing out earlier than pions, but it is not significant in the
parameter τ . The 
τ obtained by the Fit B using the kaon
HBT result shows relatively larger values than the results
by Fit A, which is consistent with the result from Ro/Rs as
shown in Fig. 4.

Also, the mT dependence of the pion and kaon HBT radii
has been calculated using the parameters obtained from Fit A,
as shown with lines in Fig. 11. For a comparison, the zeroth-
order Fourier coefficients (Rμ,0) for pions which correspond
to the HBT radii obtained in the azimuthal-integrated analysis
are plotted as solid symbols. The kaon HBT radii from the
azimuthal-integrated analysis are also compared in the figure.
The BW model shows the π/K difference in the sidewards
and outward directions, but not in the longitudinal direction,
unlike the experimental data.

3. Oscillation amplitudes with hydrodynamic models

The BW model [35] suggests that the source eccentricity
at freeze-out is given by εfinal = 2R2

s,2/R
2
s,0 = −2R2

o,2/R
2
s,0 =

2R2
os,2/R

2
s,0 [see Eq. (13)] in the absence of position-

momentum correlation, i.e., radial flow. In the presence of
radial flow, the above relation would be smeared because the
HBT radius does not reflect the whole source size, but the εfinal

from R2
s,2 could still be a good estimator in the limit of kT = 0.

The HBT radii of both pions and kaon averaged over the
azimuthal direction are well described by the hydrodynamic
models including the BW model, as shown so far. In this
section, the oscillation amplitudes are also compared with
the hydrodynamic models. The oscillation amplitudes were
extracted by using Eq. (13). The systematic uncertainties were
estimated by performing the fitting with Eq. (13) for the
data of various systematic sources described in Sec. III E. In
Figs. 12 and 13, the oscillation amplitudes with four different
combinations of HBT radii are plotted in the form of a final
eccentricity, 2R2

μ,2/R
2
ν,0, where μ and ν denote o,s,os. The

R2
μ,2 is a fitting parameter in Eq. (13) that can take a negative
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FIG. 12. (Color online) Oscillation amplitudes relative to the average for four different combinations of the azimuthal-dependent HBT radii
as a function of mT for charged pions and kaons. Open boxes show systematic uncertainties. Calculations from the BW model with parameters
of Fit A shown in Table III are shown for comparison.
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FIG. 13. (Color online) Oscillation amplitudes relative to the average for four different combinations of the azimuthal-dependent HBT
radii as a function of mT for charged pions. Open boxes show systematic uncertainties. Calculations from the 3 + 1-D viscous-hydrodynamic
model [39] are shown for comparison.

value, which represents a different phase of the cosine function
and shown in Figs. 12(b), 12(c), 13(b), and 13(c).

Figure 12(a) shows the oscillation amplitude of R2
s relative

to the average, which is most sensitive to the final source
eccentricity. The value of 2R2

s,2/R
2
s,0 increases with mT ,

which would reflect mT -dependent ellipticity of the emission
region. The other combinations of |2R2

μ,2/R
2
ν,2| show similar

mT dependence, but less dependence especially in 0%–20%
centrality. It should be noted that the Ro and Ros contain
the particle emission duration in addition to the geometrical
information, and they are also dominated by the anisotropy in
the expansion velocity.

The data are compared with the BW calculation using
the Fit A parameters in Fig. 12. The dependency on mT of
the oscillation amplitudes is not described well, although the
mT dependence of the mean radii is reproduced well. The
large χ2 of HBT in Fit A in Table III is mainly caused by
such a discrepancy. The calculations from the event-by-event
3 + 1-D viscous-hydrodynamic model [39] with a Glauber
initial condition and shear viscosity η/s = 0.08 (and also
nonzero bulk viscosity) are compared to the same data in
Fig. 13. The model employs the equation of state with a
crossover transition, but does not include a hadron cascade.
The model quantitatively agrees with the data of Rs and Ros

but overestimates Ro in 20%–60%, although the trend (not the
magnitude) of dependency on mT is reproduced in contrast
with the BW model.

When data points of kaons are compared to those of pions
in the 0%–20% centrality sample, they mostly agree within
the systematic uncertainties, but in the 20%–60% sample the
2R2

s,2/R
2
s,0 (2R2

o,2/R
2
o,0) of kaons is slightly larger (smaller)

than that of pions. More precise measurement is needed to
confirm the difference.

V. SUMMARY AND CONCLUSION

We have presented results from the PHENIX experiment
on charged-pion and kaon femtoscopy measurements in
Au + Au collisions at

√
sNN = 200 GeV. In the azimuthal-

integrated analysis, we have measured the HBT radii of both
species with fine mT and centrality bins. mT scaling holds well
for Rs, but there are visible differences for Ro and Rl between

charged pions and kaons at the same mT , and the differences
become larger in more central collisions. mT scaling breaks
for those radii, but kT scaling works well for all radii. It is
observed that the ratio Ro/Rs of kaons is larger than that
of pions, which may imply different emission durations. The
HKM was compared with our data. It reproduces most aspects
of the data of both charged pions and kaons, but it fails to
accurately describe the difference in Ro.

In the azimuthal-dependent analysis, a first measurement
of the HBT radii of charged kaons with respect to the second-
order event plane has been performed and compared with pion
measurements with finer mT bins. Oscillation with respect to
the event plane of kaon HBT radii has been clearly observed
and is similar to that of pions. The data were compared with
the BW model and the 3 + 1-D viscous-hydrodynamic model.
The BW model provides a good description of the overall trend
of the pT spectra, the elliptic flow, and the mean HBT radii,
but fails to describe the details of femtoscopy measurements,
such as the mT -dependent oscillation amplitude of the source
radii. While the 3 + 1-D viscous-hydrodynamic model does
qualitatively reproduce the data, it overestimates the oscillation
of Ro. We note that the viscous hydrodynamic model also
reproduces well the other observables such as the pT spectra
and elliptic flow [51].

Both the HKM and the viscous-hydrodynamic model
surprisingly describe all aspects of the femtoscopic data, even
though these models lack the shear viscosity of plasma and
the microscopic transport phase. Including these effects may
improve the description of the measured Ro/Rs and R2

o,2.
More precise measurements and systematic model comparison
for both azimuthal-dependent and azimuthal-integrated HBT
measurements are needed. The particle-species dependence,
in addition to the differential femtoscopy measurements
may, help to elucidate the expansion dynamics of heavy-ion
collisions.

ACKNOWLEDGMENTS

We thank the staff of the Collider-Accelerator and Physics
Departments at Brookhaven National Laboratory and the staff
of the other PHENIX participating institutions for their vital
contributions. We acknowledge support from the Office of

034914-13



A. ADARE et al. PHYSICAL REVIEW C 92, 034914 (2015)

Nuclear Physics in the Office of Science of the Department
of Energy, the National Science Foundation, Abilene Chris-
tian University Research Council, Research Foundation of
SUNY, and the Dean of the College of Arts and Sciences,
Vanderbilt University (USA); Ministry of Education, Culture,
Sports, Science, and Technology and the Japan Society for
the Promotion of Science (Japan); Conselho Nacional de
Desenvolvimento Cientı́fico e Tecnológico and Fundação
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APPENDIX A: BLAST-WAVE MODEL

An emission function in the BW parametrization for bosons
[35] is given by

S(r,φs,τ,η) = mT cosh(η − y)�(r,φs)e
−(τ−τ0)2/(2
τ 2)

×
∞∑

n=1

enα cos(φb−φp)e−nβ cosh(η−y), (A1)

where mT is the transverse mass, y is rapidity, φp is azimuthal
angle of particle momentum, and α and β are defined as

α = pT

T
sinh ρ(r,φs), (A2)

β = mT

T
cosh ρ(r,φs). (A3)

The transverse rapidity ρ(r,φs) is defined as

ρ(r,φs) = [ρ0 + ρ2 cos(2φb)]r̃ ,

r̃ =
√

(x/Rx)2 + (y/Ry)2, (A4)

where x and y are space coordinates of particles, φs is
azimuthal angle of the spatial positions, and φb is a boost
direction. It is assumed that particles are boosted to the
direction perpendicular to the elliptical subshell of the particle-

emitting source, which satisfies the relation

tan(φs) = (Ry/Rx)2 tan(φb). (A5)

The distribution of the source elements �(r̃) is given by

�(r̃) = 1/(1 + e(r̃−1)/a), (A6)

where a denotes a surface diffuseness and a = 0 gives a box
profile and a = 0.3 gives approximately a Gaussian profile.
Observables, such as spectra, v2, and HBT radii, are obtained
by performing the integral of the emission function Eq. (A1)
over phase space weighted with certain quantity B:∫

d4x,S(x,K)B(x,K) =
∫ 2π

0
dφs

∫ ∞

0
rdr

∫ ∞

−∞
dη

∫ ∞

−∞
× τdτS(r,φs,τ,η)B(x,K).

(A7)

Azimuthally integrated pT spectra can be obtained by
integrating over φp and τ in Eq. (A8) setting B(x,K)=1. If
we assume Boltzmann distribution for all particles, only the
first term in the summation in Eq. (A1) is used. Also, in case
of analyzing particles in midrapidity region, Eq. (A1) can be
simplified by setting y = 0. Then Eq. (A8) can be rewritten as

dN

pT dpT

=
√

2πτ0
τ

∫ 2π

0
dφp

∫ 2π

0
dφs

∫ ∞

0
rdr

∫ ∞

−∞
dη

×mT cosh(η)�(r,φs)e
α cos(φb−φp)e−β cosh(η)

= 2
√

2π τ0
τ

∫ 2π

0
dφp

∫ 2π

0
dφs

∫ ∞

0
rdr

×mT �(r,φs) eα cos(φb−φp)K1(β), (A8)

where Kn(β) is the modified Bessel function of the second
kind, which is defined as

Kn(z) = 1

2

∫ ∞

−∞
dt cosh(nt)e−z cosh(t). (A9)

Here we replace φb − φp as φ′, and the range of the integral
over φ′ is from φb to φb − 2π . Then the range can be replaced
from 0 to 2π because the integrand is the periodic function
with 2π . Finally, Eq. (A8) is rewritten as

dN

pT dpT

= 2(2π )3/2τ0
τmT

×
∫ 2π

0
dφs

∫ ∞

0
rdr �(r,φs) I0(α)K1(β),

(A10)

where In is the modified Bessel function of the first kind given
by

In(z) = 1

2π

∫ 2π

0
dt cos(nt)e−z cos(t). (A11)

The elliptic flow v2 is calculated as

v2(pT ,m) =
∫

dφp

∫
d4x cos(2φp)S(x,K)∫

dφp

∫
d4x S(x,K)

. (A12)

The denominator is the same expression with Eq. (A10).
The numerator can be calculated by a similar way to derive
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the pT spectra,

∫
dφp

∫
d4x cos(2φp)S(x,K)

= 2
√

2π τ0
τ

∫ 2π

0
dφp

∫ 2π

0
dφs

×
∫ ∞

0
rdrmT �(r,φs) cos(2φp)eα cos(φb−φp)K1(β)

= 2
√

2π τ0
τ

∫ 2π

0
dφp

×
∫ ∞

0
rdrmT �(r,φs)K1(β) cos(2φb)

×
∫ 2π

0
dφ′ cos(2φ′)eα cos(φ′)

= 2(2π )3/2 τ0
τmT

∫ 2π

0
dφp

×
∫ ∞

0
rdr�(r,φs)K1(β) cos(2φb)I2(α). (A13)

Finally, the elliptic flow can be expressed as

v2(pT ,m) =
∫ 2π

0 dφp

∫ ∞
0 rdr�(r,φs)K1(β) cos(2φb)I2(α)∫ 2π

0 dφs

∫ ∞
0 rdr�(r,φs) I0(α)K1(β)

.

(A14)

The HBT radii are related to space-time variance as [35]

R2
s = 1

2 (〈x̃2〉 + 〈ỹ2〉) − 1
2 (〈x̃2〉 − 〈ỹ2〉) cos(2φp)

−〈x̃ỹ〉 sin(2φp), (A15)

R2
o = 1

2 (〈x̃2〉 + 〈ỹ2〉) + 1
2 (〈x̃2〉 − 〈ỹ2〉) cos(2φp)

+〈x̃ỹ〉 sin(2φp) − 2βT (〈t̃ x̃〉 cos φp + 〈t̃ ỹ〉 sin φp)

+β2
T 〈t̃2〉, (A16)

R2
os = 〈x̃ỹ〉 cos(2φp) − 1

2 (〈x̃2〉 − 〈ỹ2〉) sin(2φp)

+βT (〈t̃ x̃〉 sin φp − 〈t̃ ỹ〉 cos φp), (A17)

R2
l = 〈z̃2〉 − 2βl〈t̃ z̃〉 + β2

l 〈t̃2〉 = 〈z̃2〉, (A18)

where

〈f (x)〉 =
∫

d4xf (x)S(x,K)∫
d4xS(x,K)

, (A19)

x̃μ = xμ − 〈xμ〉, (A20)

and βl vanishes in the longitudinally comoving system frame
and the terms including t and z depend on the proper time
τ and emission duration of particles 
τ . As shown in above
equations, Rs depends on only the spatial extent of the source
and azimuthal angle φp, while Ro and Ros are also sensitive to
τ and 
τ , as well as the spatial extent.

APPENDIX B: DATA TABLES

The extracted HBT radii and the oscillation amplitudes
for charged pion and kaons in Au + Au collisions at

√
sNN =

200 GeV are summarized in Tables IV–XI.

TABLE IV. HBT parameters of positive pion pairs, shown as value ± statistical uncertainty (absolute value) ± systematic uncertainty (%),
for the centrality bins shown in Fig. 3.

Centrality 〈mT 〉 λ Rs Ro Rl

(GeV/c) (fm) (fm) (fm)

0%–10% 0.3 0.292 ± 0.003 ± 11.1 5.11 ± 0.03 ± 0.5 5.55 ± 0.04 ± 2.9 6.3 ± 0.04 ± 2.3
0.36 0.358 ± 0.004 ± 8.7 4.76 ± 0.03 ± 0.6 5.22 ± 0.03 ± 3 5.41 ± 0.04 ± 2.8
0.41 0.392 ± 0.004 ± 6.1 4.52 ± 0.03 ± 0.8 4.91 ± 0.03 ± 2.8 4.8 ± 0.04 ± 3.7
0.47 0.402 ± 0.005 ± 11 4.28 ± 0.03 ± 1.3 4.51 ± 0.03 ± 4.7 4.31 ± 0.03 ± 5.2
0.53 0.45 ± 0.006 ± 7.3 4.17 ± 0.03 ± 0.7 4.21 ± 0.04 ± 4.2 4.08 ± 0.04 ± 4.2
0.59 0.454 ± 0.007 ± 5.9 3.98 ± 0.03 ± 1.4 3.97 ± 0.04 ± 5.7 3.8 ± 0.04 ± 3.2
0.66 0.458 ± 0.007 ± 4.7 3.77 ± 0.03 ± 1.1 3.62 ± 0.04 ± 4.8 3.45 ± 0.04 ± 4.8
0.79 0.462 ± 0.008 ± 6.1 3.47 ± 0.03 ± 1.2 3.27 ± 0.04 ± 4.9 3.01 ± 0.04 ± 5.2
0.96 0.447 ± 0.016 ± 12 3.16 ± 0.06 ± 3.1 2.91 ± 0.07 ± 10.9 2.49 ± 0.06 ± 6.1
1.16 0.448 ± 0.034 ± 18.5 2.93 ± 0.11 ± 8.3 2.4 ± 0.12 ± 14.4 2.13 ± 0.11 ± 9.4

10%–20% 0.3 0.313 ± 0.003 ± 9 4.63 ± 0.03 ± 0.6 5.01 ± 0.03 ± 2.4 5.77 ± 0.04 ± 1.9
0.36 0.379 ± 0.004 ± 7.2 4.3 ± 0.03 ± 0.5 4.74 ± 0.03 ± 2.6 4.95 ± 0.04 ± 2.8
0.41 0.41 ± 0.004 ± 7.3 4.1 ± 0.03 ± 1.3 4.41 ± 0.03 ± 3.1 4.44 ± 0.03 ± 3.5
0.47 0.441 ± 0.005 ± 7.5 3.94 ± 0.03 ± 1 4.12 ± 0.03 ± 3.6 4.07 ± 0.03 ± 4.2
0.53 0.487 ± 0.006 ± 6.6 3.83 ± 0.03 ± 0.8 3.88 ± 0.03 ± 2.9 3.83 ± 0.03 ± 3.7
0.59 0.501 ± 0.008 ± 5.5 3.67 ± 0.03 ± 0.9 3.68 ± 0.04 ± 3.7 3.56 ± 0.04 ± 2.3
0.66 0.501 ± 0.008 ± 4.2 3.5 ± 0.03 ± 1.5 3.38 ± 0.03 ± 3.7 3.24 ± 0.03 ± 3.5
0.79 0.501 ± 0.008 ± 4.3 3.21 ± 0.03 ± 0.9 2.99 ± 0.03 ± 4.9 2.78 ± 0.03 ± 3.1
0.96 0.515 ± 0.016 ± 8.2 2.94 ± 0.05 ± 1.4 2.78 ± 0.06 ± 4.1 2.34 ± 0.05 ± 6.3
1.16 0.52 ± 0.035 ± 11.2 2.76 ± 0.1 ± 9 2.23 ± 0.1 ± 2.8 2.09 ± 0.1 ± 9.7
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TABLE IV. (Continued.)

Centrality 〈mT 〉 λ Rs Ro Rl

(GeV/c) (fm) (fm) (fm)

20%–40% 0.3 0.339 ± 0.003 ± 7.2 4.09 ± 0.02 ± 0.6 4.34 ± 0.02 ± 2.5 5.01 ± 0.03 ± 1.5
0.36 0.401 ± 0.003 ± 5.8 3.81 ± 0.02 ± 0.9 4.09 ± 0.02 ± 2 4.35 ± 0.03 ± 2.1
0.41 0.433 ± 0.004 ± 5.4 3.63 ± 0.02 ± 0.7 3.87 ± 0.02 ± 2.3 3.88 ± 0.03 ± 2.2
0.47 0.46 ± 0.005 ± 6.9 3.5 ± 0.02 ± 0.9 3.59 ± 0.02 ± 3.2 3.55 ± 0.03 ± 3.7
0.53 0.493 ± 0.005 ± 5.8 3.39 ± 0.02 ± 0.8 3.38 ± 0.02 ± 2.9 3.3 ± 0.03 ± 3
0.59 0.519 ± 0.007 ± 3.7 3.26 ± 0.02 ± 0.3 3.2 ± 0.03 ± 2.7 3.11 ± 0.03 ± 2.1
0.66 0.505 ± 0.006 ± 3.2 3.07 ± 0.02 ± 0.4 2.91 ± 0.02 ± 2.7 2.77 ± 0.03 ± 1.9
0.79 0.532 ± 0.007 ± 3.5 2.89 ± 0.02 ± 1.1 2.66 ± 0.02 ± 3.7 2.45 ± 0.02 ± 3.1
0.96 0.54 ± 0.014 ± 7.7 2.63 ± 0.04 ± 4.3 2.34 ± 0.04 ± 3.5 2.07 ± 0.04 ± 3.2
1.16 0.554 ± 0.027 ± 4.3 2.35 ± 0.08 ± 2.9 2.09 ± 0.08 ± 5.5 1.76 ± 0.07 ± 5.6

40%–70% 0.3 0.363 ± 0.004 ± 5.8 3.27 ± 0.02 ± 0.9 3.39 ± 0.03 ± 2.6 3.94 ± 0.03 ± 1.1
0.36 0.426 ± 0.005 ± 2.8 3.05 ± 0.03 ± 0.6 3.29 ± 0.03 ± 1.7 3.42 ± 0.03 ± 1.1
0.41 0.455 ± 0.006 ± 4.2 2.92 ± 0.03 ± 0.7 3.16 ± 0.03 ± 3 3.09 ± 0.03 ± 1.5
0.47 0.493 ± 0.007 ± 3.6 2.87 ± 0.03 ± 1.2 2.94 ± 0.03 ± 1.7 2.89 ± 0.03 ± 2.1
0.53 0.509 ± 0.008 ± 3.9 2.73 ± 0.03 ± 0.9 2.81 ± 0.03 ± 1.8 2.63 ± 0.03 ± 2
0.59 0.54 ± 0.01 ± 3.4 2.7 ± 0.03 ± 1.2 2.67 ± 0.04 ± 1.7 2.46 ± 0.04 ± 1.6
0.66 0.569 ± 0.01 ± 1.2 2.61 ± 0.03 ± 2.1 2.48 ± 0.03 ± 1.9 2.31 ± 0.03 ± 1
0.79 0.551 ± 0.01 ± 4.6 2.36 ± 0.03 ± 1.6 2.1 ± 0.03 ± 2.1 1.93 ± 0.03 ± 2.1
0.96 0.619 ± 0.024 ± 5.7 2.35 ± 0.06 ± 1 1.99 ± 0.06 ± 4.4 1.82 ± 0.06 ± 1.6
1.16 0.592 ± 0.041 ± 3.8 2.02 ± 0.13 ± 2.8 1.64 ± 0.13 ± 11.1 1.45 ± 0.11 ± 3.5

TABLE V. HBT parameters of negative pion pairs, shown as value ± statistical uncertainty (absolute value) ± systematic uncertainty (%),
for the centrality bins shown in Fig. 3.

Centrality 〈mT 〉 λ Rs Ro Rl

(GeV/c) (fm) (fm) (fm)

0%–10% 0.3 0.275 ± 0.003 ± 10.5 5.11 ± 0.03 ± 0.6 5.49 ± 0.04 ± 3 6.28 ± 0.05 ± 2.9
0.36 0.353 ± 0.004 ± 7.3 4.74 ± 0.03 ± 0.7 5.25 ± 0.04 ± 2.1 5.44 ± 0.05 ± 3.4
0.41 0.387 ± 0.005 ± 7.9 4.5 ± 0.03 ± 0.4 4.91 ± 0.04 ± 3.6 4.82 ± 0.04 ± 3.9
0.47 0.399 ± 0.005 ± 9.1 4.31 ± 0.03 ± 0.9 4.38 ± 0.04 ± 4.3 4.29 ± 0.04 ± 5.4
0.53 0.444 ± 0.007 ± 4.7 4.17 ± 0.03 ± 1.2 4.19 ± 0.04 ± 3.6 4.11 ± 0.04 ± 3
0.59 0.45 ± 0.008 ± 7.4 3.95 ± 0.04 ± 1.2 3.91 ± 0.04 ± 5.7 3.82 ± 0.04 ± 3.8
0.66 0.451 ± 0.008 ± 7.3 3.77 ± 0.03 ± 0.2 3.61 ± 0.04 ± 5.3 3.47 ± 0.04 ± 3.3
0.79 0.442 ± 0.008 ± 6.2 3.49 ± 0.03 ± 1 3.16 ± 0.04 ± 6 2.96 ± 0.04 ± 5.5
0.96 0.437 ± 0.017 ± 5 3.22 ± 0.07 ± 2.4 2.78 ± 0.07 ± 4.5 2.46 ± 0.06 ± 6.9
1.15 0.526 ± 0.046 ± 13.3 3.1 ± 0.13 ± 3.1 2.27 ± 0.13 ± 8.1 2.43 ± 0.13 ± 11.1

10%–20% 0.3 0.295 ± 0.003 ± 9.4 4.63 ± 0.03 ± 0.4 4.93 ± 0.04 ± 3.4 5.74 ± 0.04 ± 2.3
0.36 0.363 ± 0.004 ± 6.4 4.3 ± 0.03 ± 0.3 4.71 ± 0.04 ± 3.1 4.88 ± 0.04 ± 2.6
0.41 0.404 ± 0.005 ± 6.9 4.13 ± 0.03 ± 0.5 4.42 ± 0.04 ± 2.8 4.46 ± 0.04 ± 3.6
0.47 0.443 ± 0.006 ± 7.2 3.95 ± 0.03 ± 1 4.13 ± 0.03 ± 2.9 4.05 ± 0.04 ± 4.1
0.53 0.462 ± 0.007 ± 5.9 3.8 ± 0.03 ± 0.2 3.91 ± 0.04 ± 3.4 3.77 ± 0.04 ± 2.8
0.59 0.492 ± 0.008 ± 4.1 3.68 ± 0.03 ± 0.4 3.64 ± 0.04 ± 3.7 3.53 ± 0.04 ± 3.5
0.66 0.48 ± 0.008 ± 4.7 3.47 ± 0.03 ± 1.2 3.33 ± 0.03 ± 4.3 3.15 ± 0.03 ± 3.8
0.79 0.497 ± 0.009 ± 5.1 3.25 ± 0.03 ± 0.5 3.01 ± 0.03 ± 4 2.75 ± 0.03 ± 3.7
0.96 0.482 ± 0.016 ± 3.6 2.89 ± 0.05 ± 1.2 2.68 ± 0.06 ± 4.5 2.27 ± 0.05 ± 5.2
1.15 0.579 ± 0.043 ± 16.5 2.67 ± 0.12 ± 8.6 2.29 ± 0.11 ± 5.7 2.11 ± 0.1 ± 6.7

20%–40% 0.3 0.32 ± 0.003 ± 6.8 4.11 ± 0.02 ± 0.5 4.28 ± 0.03 ± 2.3 5.05 ± 0.03 ± 2
0.36 0.385 ± 0.004 ± 7.3 3.83 ± 0.03 ± 1.4 4.03 ± 0.03 ± 2.8 4.32 ± 0.03 ± 2.1
0.41 0.429 ± 0.005 ± 5 3.65 ± 0.02 ± 0.5 3.89 ± 0.03 ± 1.3 3.93 ± 0.03 ± 2.5
0.47 0.458 ± 0.005 ± 6.6 3.5 ± 0.02 ± 0.5 3.59 ± 0.03 ± 3.1 3.54 ± 0.03 ± 3.5
0.53 0.487 ± 0.006 ± 4.5 3.4 ± 0.03 ± 0.7 3.38 ± 0.03 ± 1.8 3.32 ± 0.03 ± 2.7
0.59 0.509 ± 0.007 ± 3.5 3.26 ± 0.03 ± 0.9 3.18 ± 0.03 ± 2.7 3.1 ± 0.03 ± 2.9
0.66 0.521 ± 0.007 ± 2.5 3.11 ± 0.02 ± 0.6 2.96 ± 0.03 ± 2.6 2.86 ± 0.03 ± 2.2
0.79 0.521 ± 0.007 ± 4.8 2.87 ± 0.02 ± 0.7 2.62 ± 0.03 ± 3 2.4 ± 0.02 ± 3
0.96 0.536 ± 0.015 ± 2.2 2.66 ± 0.04 ± 1.1 2.31 ± 0.04 ± 3 2.05 ± 0.04 ± 3.3
1.16 0.565 ± 0.034 ± 8.6 2.45 ± 0.1 ± 3.4 1.97 ± 0.09 ± 1.7 1.81 ± 0.09 ± 3.3
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TABLE V. (Continued.)

Centrality 〈mT 〉 λ Rs Ro Rl

(GeV/c) (fm) (fm) (fm)

40%–70% 0.3 0.344 ± 0.004 ± 5.2 3.25 ± 0.03 ± 0.9 3.31 ± 0.03 ± 1.5 3.96 ± 0.04 ± 0.7
0.36 0.409 ± 0.006 ± 4.3 3.05 ± 0.03 ± 0.9 3.27 ± 0.03 ± 1.9 3.41 ± 0.04 ± 1.8
0.41 0.452 ± 0.007 ± 3.1 2.92 ± 0.03 ± 1 3.15 ± 0.03 ± 2.3 3.1 ± 0.04 ± 1.3
0.47 0.489 ± 0.008 ± 4.8 2.83 ± 0.03 ± 1.4 2.95 ± 0.03 ± 2.6 2.86 ± 0.04 ± 1.8
0.53 0.528 ± 0.009 ± 2.5 2.8 ± 0.03 ± 1.1 2.77 ± 0.03 ± 2 2.67 ± 0.04 ± 2.2
0.59 0.539 ± 0.011 ± 2.9 2.65 ± 0.04 ± 2.3 2.62 ± 0.04 ± 3.2 2.47 ± 0.04 ± 1.3
0.66 0.532 ± 0.01 ± 4.6 2.5 ± 0.03 ± 2 2.4 ± 0.03 ± 2.6 2.25 ± 0.03 ± 3.7
0.79 0.565 ± 0.012 ± 3.5 2.41 ± 0.03 ± 1.4 2.19 ± 0.04 ± 1.7 1.99 ± 0.03 ± 2.5
0.96 0.582 ± 0.023 ± 7.7 2.26 ± 0.07 ± 2.2 1.91 ± 0.07 ± 3.9 1.7 ± 0.06 ± 3.5
1.15 0.641 ± 0.063 ± 3.5 2.18 ± 0.17 ± 9 1.72 ± 0.14 ± 10.9 1.67 ± 0.15 ± 17.3

TABLE VI. HBT parameters of charge-combined kaon pairs, shown as value ± statistical uncertainty (absolute value) ± systematic
uncertainty (%), for the centrality bins shown in Fig. 3.

Centrality 〈mT 〉 λ Rs Ro Rl

(GeV/c) (fm) (fm) (fm)

0%–10% 0.76 0.507 ± 0.044 ± 12.9 3.8 ± 0.15 ± 2.7 4.07 ± 0.15 ± 5 4.09 ± 0.17 ± 2.9
0.91 0.46 ± 0.043 ± 12.7 3.32 ± 0.13 ± 4.9 3.49 ± 0.15 ± 5.3 3.25 ± 0.17 ± 4.1
1.1 0.404 ± 0.043 ± 4.3 2.86 ± 0.14 ± 3.4 3.1 ± 0.18 ± 5.4 2.36 ± 0.15 ± 7.7

10%–20% 0.76 0.539 ± 0.044 ± 11.3 3.37 ± 0.13 ± 2.6 3.56 ± 0.13 ± 4 3.55 ± 0.16 ± 4.5
0.91 0.515 ± 0.044 ± 15.3 3.03 ± 0.12 ± 2.7 3.2 ± 0.13 ± 1.2 2.98 ± 0.14 ± 12.5
1.1 0.457 ± 0.052 ± 14.7 2.75 ± 0.14 ± 1.5 2.48 ± 0.14 ± 2.6 2.34 ± 0.17 ± 10.8

20%–40% 0.76 0.64 ± 0.044 ± 11.4 3.18 ± 0.11 ± 2 3.28 ± 0.1 ± 4 3.15 ± 0.12 ± 4.7
0.91 0.489 ± 0.034 ± 7.6 2.69 ± 0.1 ± 2.8 2.73 ± 0.1 ± 3 2.29 ± 0.11 ± 3.8
1.09 0.501 ± 0.046 ± 13.9 2.56 ± 0.13 ± 3.8 2.31 ± 0.12 ± 3.2 2.05 ± 0.13 ± 7.4

40%–70% 0.76 0.624 ± 0.062 ± 5.1 2.73 ± 0.16 ± 5.3 2.67 ± 0.16 ± 2.5 2.35 ± 0.15 ± 8.3
0.91 0.565 ± 0.065 ± 14.6 2.33 ± 0.17 ± 9.8 2.44 ± 0.16 ± 5.5 1.97 ± 0.17 ± 15.4
1.09 0.575 ± 0.068 ± 19.5 2.08 ± 0.17 ± 5.8 2.03 ± 0.19 ± 5.3 1.54 ± 0.16 ± 8

TABLE VII. Ro/Rs of positive and negative pion pairs plus charge-combined kaon pairs, shown as value ± statistical uncertainty (absolute
value) ± systematic uncertainty (%), for the centrality bins shown in Fig. 4.

Meson 〈mT 〉 Ro/Rs

pair (GeV/c) 0%–10% 10%–20% 20%–40% 40%–70%

π+π+ 0.3 1.09 ± 0.01 ± 3.3 1.08 ± 0.01 ± 2.3 1.06 ± 0.01 ± 2.1 1.04 ± 0.01 ± 1.9
0.36 1.10 ± 0.01 ± 3.5 1.10 ± 0.01 ± 3.0 1.07 ± 0.01 ± 1.6 1.08 ± 0.01 ± 1.7
0.41 1.09 ± 0.01 ± 3.5 1.08 ± 0.01 ± 3.0 1.07 ± 0.01 ± 2.1 1.08 ± 0.01 ± 2.4
0.47 1.05 ± 0.01 ± 4.3 1.04 ± 0.01 ± 3.6 1.03 ± 0.01 ± 2.5 1.03 ± 0.01 ± 0.9
0.53 1.01 ± 0.01 ± 3.8 1.01 ± 0.01 ± 2.3 1.00 ± 0.01 ± 2.2 1.03 ± 0.02 ± 1.1
0.59 1.00 ± 0.01 ± 5.6 1.00 ± 0.01 ± 3.7 0.98 ± 0.01 ± 2.6 0.99 ± 0.02 ± 1.4
0.66 0.96 ± 0.01 ± 5.6 0.96 ± 0.01 ± 4.7 0.95 ± 0.01 ± 2.9 0.95 ± 0.02 ± 3.2
0.79 0.94 ± 0.01 ± 5.4 0.93 ± 0.01 ± 5.5 0.92 ± 0.01 ± 4.7 0.89 ± 0.02 ± 1.5
0.96 0.92 ± 0.03 ± 10.7 0.94 ± 0.03 ± 5.0 0.89 ± 0.02 ± 4.5 0.85 ± 0.03 ± 3.7
1.16 0.82 ± 0.05 ± 7.8 0.81 ± 0.05 ± 11.9 0.89 ± 0.04 ± 2.9 0.81 ± 0.08 ± 10.5

π−π− 0.3 1.07 ± 0.01 ± 3.3 1.07 ± 0.01 ± 3.2 1.04 ± 0.01 ± 2.1 1.02 ± 0.01 ± 1.5
0.36 1.11 ± 0.01 ± 2.5 1.10 ± 0.01 ± 3.2 1.05 ± 0.01 ± 1.9 1.07 ± 0.02 ± 2.4
0.41 1.09 ± 0.01 ± 3.9 1.07 ± 0.01 ± 3.1 1.07 ± 0.01 ± 1.2 1.08 ± 0.02 ± 1.6
0.47 1.02 ± 0.01 ± 4.3 1.04 ± 0.01 ± 3.2 1.03 ± 0.01 ± 2.7 1.04 ± 0.02 ± 2.1
0.53 1.01 ± 0.01 ± 4.3 1.03 ± 0.01 ± 3.4 0.99 ± 0.01 ± 1.3 0.99 ± 0.02 ± 1.6
0.59 0.99 ± 0.01 ± 5.4 0.99 ± 0.01 ± 3.9 0.98 ± 0.01 ± 3.0 0.99 ± 0.02 ± 4.4
0.66 0.96 ± 0.01 ± 5.5 0.96 ± 0.01 ± 4.9 0.95 ± 0.01 ± 3.2 0.96 ± 0.02 ± 1.9
0.79 0.91 ± 0.01 ± 6.7 0.92 ± 0.01 ± 4.3 0.91 ± 0.01 ± 2.9 0.91 ± 0.02 ± 2.0
0.96 0.86 ± 0.03 ± 5.0 0.93 ± 0.03 ± 4.3 0.87 ± 0.02 ± 3.8 0.85 ± 0.04 ± 3.3
1.15 0.73 ± 0.05 ± 8.7 0.86 ± 0.06 ± 7.6 0.8 ± 0.05 ± 4.8 0.79 ± 0.09 ± 6.7

K+K+ + K−K− 0.76 1.07 ± 0.06 ± 5.3 1.06 ± 0.06 ± 4.5 1.03 ± 0.05 ± 5.3 0.98 ± 0.08 ± 7.1
0.91 1.05 ± 0.06 ± 8.9 1.06 ± 0.06 ± 2.9 1.01 ± 0.05 ± 3.6 1.05 ± 0.10 ± 6.1
1.1 1.08 ± 0.08 ± 5.2 0.90 ± 0.07 ± 3.8 0.90 ± 0.07 ± 3.1 0.98 ± 0.12 ± 2.3
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TABLE VIII. Azimuthal angle dependence of HBT radii of charged pions, shown as value ± statistical uncertainty (absolute value) ±
systematic uncertainty (%), for the 0%–20% and 20%–60% centrality bins.

Centrality kT φ − �2 R2
s R2

o R2
l R2

os

(GeV/c) (rad) (fm2) (fm2) (fm2) (fm2)

0%–20% 0.2–0.3 0 23.68 ± 0.27 ± 0.56 25.25 ± 0.34 ± 1.54 34.72 ± 0.48 ± 1.97 0.21 ± 0.2 ± 0.11
π/4 22.88 ± 0.27 ± 0.56 27.33 ± 0.37 ± 1.79 35.05 ± 0.49 ± 1.63 2.53 ± 0.21 ± 0.25
π/2 22.46 ± 0.27 ± 0.56 30.65 ± 0.42 ± 1.8 35.34 ± 0.51 ± 0.98 0.26 ± 0.23 ± 0.27
3π/4 23.4 ± 0.28 ± 0.51 28.06 ± 0.39 ± 1.31 35.46 ± 0.51 ± 1.41 −2.01 ± 0.22 ± 0.24

0.3–0.4 0 20.5 ± 0.2 ± 0.67 21.87 ± 0.24 ± 1.38 24.44 ± 0.29 ± 1.64 0.22 ± 0.14 ± 0.13
π/4 19.82 ± 0.21 ± 0.4 24.09 ± 0.27 ± 1.2 24.03 ± 0.3 ± 1.52 2.38 ± 0.15 ± 0.26
π/2 18.38 ± 0.2 ± 0.67 26.93 ± 0.31 ± 2.02 24.28 ± 0.31 ± 1.38 0.59 ± 0.16 ± 0.34
3π/4 19.16 ± 0.2 ± 0.35 23.96 ± 0.27 ± 1.78 24.35 ± 0.3 ± 1.3 −2.01 ± 0.15 ± 0.31

0.4–0.5 0 17.36 ± 0.18 ± 0.5 16.61 ± 0.2 ± 1.15 16.81 ± 0.21 ± 1.31 0.06 ± 0.12 ± 0.2
π/4 17.01 ± 0.19 ± 0.42 18.58 ± 0.23 ± 1.41 17.42 ± 0.23 ± 1.59 2.11 ± 0.13 ± 0.18
π/2 15.76 ± 0.19 ± 0.32 20.46 ± 0.27 ± 1.55 17.73 ± 0.25 ± 1.16 0.31 ± 0.14 ± 0.19
3π/4 16.55 ± 0.19 ± 0.23 18.51 ± 0.23 ± 1.25 17.26 ± 0.23 ± 1.29 −1.79 ± 0.13 ± 0.17

0.5–0.6 0 15.78 ± 0.19 ± 0.45 13.22 ± 0.19 ± 1.05 13.85 ± 0.21 ± 0.68 0.1 ± 0.12 ± 0.25
π/4 15.32 ± 0.2 ± 0.42 15.34 ± 0.23 ± 1.42 14.25 ± 0.23 ± 0.88 1.82 ± 0.13 ± 0.28
π/2 13.75 ± 0.2 ± 0.39 17.22 ± 0.28 ± 1.31 14.18 ± 0.25 ± 0.74 0.16 ± 0.14 ± 0.25
3π/4 14.84 ± 0.19 ± 0.43 14.32 ± 0.22 ± 1.4 13.85 ± 0.22 ± 0.72 −1.36 ± 0.12 ± 0.24

0.6–0.8 0 13.87 ± 0.18 ± 0.4 10.11 ± 0.16 ± 1.04 9.81 ± 0.16 ± 0.49 0.04 ± 0.1 ± 0.1
π/4 12.33 ± 0.17 ± 0.35 11.16 ± 0.18 ± 0.94 9.88 ± 0.17 ± 1.06 1.44 ± 0.11 ± 0.26
π/2 11.28 ± 0.17 ± 0.2 12.01 ± 0.21 ± 1.26 10.51 ± 0.19 ± 1.24 0.18 ± 0.11 ± 0.2
3π/4 12.35 ± 0.17 ± 0.28 10.59 ± 0.18 ± 0.78 9.99 ± 0.17 ± 0.61 −1.23 ± 0.1 ± 0.17

0.8–1.5 0 11.04 ± 0.24 ± 0.36 6.85 ± 0.19 ± 0.88 6.37 ± 0.17 ± 0.74 −0.07 ± 0.12 ± 0.19
π/4 9.83 ± 0.23 ± 0.31 7.57 ± 0.23 ± 0.68 6.05 ± 0.18 ± 0.73 1.19 ± 0.13 ± 0.15
π/2 7.92 ± 0.21 ± 0.52 8.61 ± 0.28 ± 0.74 5.64 ± 0.19 ± 0.44 0.06 ± 0.13 ± 0.23
3π/4 9.74 ± 0.25 ± 0.37 7.04 ± 0.21 ± 0.78 6.2 ± 0.18 ± 0.48 −1.28 ± 0.13 ± 0.18

20%–60% 0.2–0.3 0 16.24 ± 0.19 ± 0.29 14.53 ± 0.21 ± 0.84 22.44 ± 0.32 ± 0.97 0.27 ± 0.13 ± 0.25
π/4 15.18 ± 0.19 ± 0.28 16.97 ± 0.24 ± 0.85 22.64 ± 0.33 ± 0.7 2.3 ± 0.14 ± 0.3
π/2 12.81 ± 0.17 ± 0.24 18.97 ± 0.28 ± 0.88 21.85 ± 0.34 ± 0.76 0.3 ± 0.14 ± 0.34
3π/4 14.79 ± 0.18 ± 0.33 16.34 ± 0.24 ± 0.95 22.47 ± 0.33 ± 0.52 −1.8 ± 0.13 ± 0.35

0.3–0.4 0 13.98 ± 0.15 ± 0.27 12.92 ± 0.14 ± 0.62 15.9 ± 0.2 ± 0.59 0.09 ± 0.09 ± 0.15
π/4 13.15 ± 0.15 ± 0.22 15.38 ± 0.18 ± 0.79 15.77 ± 0.21 ± 0.46 2.82 ± 0.1 ± 0.12
π/2 11.04 ± 0.13 ± 0.26 17.49 ± 0.22 ± 0.74 15.11 ± 0.21 ± 0.52 0.31 ± 0.11 ± 0.15
3π/4 12.56 ± 0.14 ± 0.18 15.03 ± 0.17 ± 0.74 15.19 ± 0.2 ± 0.63 −2.4 ± 0.1 ± 0.16

0.4–0.5 0 12.58 ± 0.14 ± 0.17 10.22 ± 0.12 ± 0.58 11.31 ± 0.15 ± 0.45 0.17 ± 0.08 ± 0.18
π/4 11.55 ± 0.14 ± 0.22 12.12 ± 0.15 ± 0.64 11.31 ± 0.16 ± 0.51 2.49 ± 0.09 ± 0.14
π/2 9.32 ± 0.13 ± 0.28 14.99 ± 0.21 ± 0.82 11.39 ± 0.18 ± 0.63 0.17 ± 0.1 ± 0.13

3π/4 11.05 ± 0.13 ± 0.26 12.25 ± 0.16 ± 0.58 11.72 ± 0.17 ± 0.59 −2.04 ± 0.09 ± 0.19
0.5–0.6 0 11.28 ± 0.14 ± 0.17 8.22 ± 0.12 ± 0.47 9.08 ± 0.14 ± 0.29 0.09 ± 0.09 ± 0.1

π/4 10.15 ± 0.14 ± 0.29 9.83 ± 0.15 ± 0.48 9.38 ± 0.16 ± 0.39 2.21 ± 0.09 ± 0.18
π/2 8.12 ± 0.14 ± 0.27 12.04 ± 0.21 ± 0.56 8.96 ± 0.18 ± 0.49 −0.03 ± 0.1 ± 0.16
3π/4 10.09 ± 0.14 ± 0.24 10.2 ± 0.16 ± 0.64 9.07 ± 0.16 ± 0.41 −2.05 ± 0.09 ± 0.13

0.6–0.8 0 9.57 ± 0.12 ± 0.21 6.08 ± 0.09 ± 0.4 6.53 ± 0.1 ± 0.31 0 ± 0.06 ± 0.06
π/4 8.55 ± 0.13 ± 0.12 7.68 ± 0.13 ± 0.41 6.46 ± 0.12 ± 0.25 1.82 ± 0.07 ± 0.12
π/2 6.71 ± 0.12 ± 0.31 9.47 ± 0.18 ± 0.47 6.61 ± 0.14 ± 0.27 0.16 ± 0.08 ± 0.14
3π/4 8.62 ± 0.13 ± 0.26 7.56 ± 0.13 ± 0.45 6.57 ± 0.12 ± 0.44 −1.82 ± 0.07 ± 0.16

0.8–1.5 0 7.81 ± 0.16 ± 0.27 4.2 ± 0.1 ± 0.29 4 ± 0.1 ± 0.2 0 ± 0.07 ± 0.1
π/4 7.18 ± 0.18 ± 0.33 5.06 ± 0.15 ± 0.27 4.3 ± 0.13 ± 0.24 1.47 ± 0.09 ± 0.12
π/2 4.74 ± 0.16 ± 0.22 6.72 ± 0.26 ± 0.68 3.84 ± 0.15 ± 0.65 0.34 ± 0.1 ± 0.2
3π/4 6.58 ± 0.17 ± 0.36 5.36 ± 0.16 ± 0.25 3.94 ± 0.12 ± 0.45 −1.32 ± 0.09 ± 0.09
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TABLE IX. Azimuthal angle dependence of HBT radii of charged kaons, shown as value ± statistical uncertainty (absolute value) ±
systematic uncertainty (%), for the centrality bins shown in Fig. 8.

Centrality φ − �2 R2
s R2

o R2
l R2

os

(rad) (fm2) (fm2) (fm2) (fm2)

0%–20% 0 11.86 ± 0.68 ± 0.42 10.77 ± 0.79 ± 1.14 10.43 ± 0.72 ± 1.34 1.22 ± 0.58 ± 0.77
π/4 10.02 ± 0.57 ± 1.04 11.89 ± 0.82 ± 1.22 8.74 ± 0.61 ± 1.70 2.43 ± 0.52 ± 0.65
π/2 7.98 ± 0.47 ± 0.92 13.29 ± 0.97 ± 1.96 9.25 ± 0.64 ± 1.47 −1.31 ± 0.52 ± 0.42

3π/4 10.67 ± 0.61 ± 0.66 12.45 ± 0.90 ± 0.86 9.44 ± 0.65 ± 1.09 −2.15 ± 0.61 ± −0.69
20%–60% 0 10 ± 0.58 ± 0.69 7.49 ± 0.54 ± 0.69 5.71 ± 0.40 ± 0.6 0.28 ± 0.44 ± 0.22

π/4 7.52 ± 0.46 ± 0.56 8.03 ± 0.58 ± 0.69 6.07 ± 0.43 ± 0.71 2.05 ± 0.40 ± 0.29
π/2 4.69 ± 0.31 ± 0.68 8.56 ± 0.59 ± 0.99 5.61 ± 0.42 ± 0.81 0.41 ± 0.34 ± 0.25
3π/4 8.03 ± 0.49 ± 0.65 8.51 ± 0.62 ± 0.77 5.27 ± 0.40 ± 0.83 −1.52 ± 0.43 ± −0.24

TABLE X. Oscillation amplitudes relative to the event plane for charged pions, shown as value ± statistical uncertainty (absolute value) ±
systematic uncertainty (%), for the 0%–20% and 20%–60% centrality bins.

Centrality mT R2
s R2

o R2
l R2

os

(GeV/c) (fm2) (fm2) (fm2) (fm2)

0%–20% 0.30 0.026 ± 0.007 ± 0.015 0.095 ± 0.008 ± 0.024 0.114 ± 0.010 ± 0.029 0.099 ± 0.007 ± 0.009
0.38 0.054 ± 0.006 ± 0.032 0.101 ± 0.007 ± 0.018 0.125 ± 0.008 ± 0.025 0.113 ± 0.005 ± 0.013
0.47 0.046 ± 0.007 ± 0.018 0.104 ± 0.008 ± 0.025 0.116 ± 0.008 ± 0.030 0.117 ± 0.006 ± 0.010
0.57 0.065 ± 0.008 ± 0.027 0.125 ± 0.009 ± 0.020 0.126 ± 0.009 ± 0.024 0.107 ± 0.006 ± 0.016
0.70 0.106 ± 0.008 ± 0.015 0.082 ± 0.010 ± 0.032 0.072 ± 0.009 ± 0.028 0.107 ± 0.006 ± 0.016
0.93 0.160 ± 0.014 ± 0.040 0.098 ± 0.019 ± 0.040 0.077 ± 0.015 ± 0.022 0.129 ± 0.010 ± 0.013

20%–60% 0.30 0.114 ± 0.007 ± 0.009 0.131 ± 0.009 ± 0.024 0.149 ± 0.010 ± 0.027 0.140 ± 0.007 ± 0.022
0.38 0.113 ± 0.007 ± 0.019 0.150 ± 0.007 ± 0.015 0.181 ± 0.008 ± 0.020 0.207 ± 0.006 ± 0.010
0.47 0.144 ± 0.007 ± 0.017 0.180 ± 0.008 ± 0.015 0.201 ± 0.009 ± 0.019 0.205 ± 0.006 ± 0.012
0.57 0.155 ± 0.008 ± 0.022 0.185 ± 0.010 ± 0.011 0.189 ± 0.010 ± 0.011 0.216 ± 0.007 ± 0.014
0.70 0.165 ± 0.009 ± 0.029 0.212 ± 0.010 ± 0.021 0.196 ± 0.010 ± 0.018 0.220 ± 0.007 ± 0.017
0.93 0.226 ± 0.015 ± 0.026 0.211 ± 0.019 ± 0.027 0.172 ± 0.016 ± 0.021 0.216 ± 0.010 ± 0.012

TABLE XI. Oscillation amplitudes relative to the event plane for charged kaons, ± systematic uncertainty (%) for the 0%–20% and
20%–60% centrality bins shown in Fig. 12.

Centrality mT R2
s R2

o R2
l R2

os

(GeV/c) (fm2) (fm2) (fm2) (fm2)

0%–20% 0.91 0.193 ± 0.034 ± 0.078 0.106 ± 0.044 ± 0.033 0.128 ± 0.052 ± 0.044 0.227 ± 0.040 ± 0.067
20%–60% 0.91 0.360 ± 0.035 ± 0.080 0.070 ± 0.042 ± 0.035 0.076 ± 0.045 ± 0.038 0.238 ± 0.040 ± 0.030
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[39] P. Boźek, Azimuthally sensitive femtoscopy in event-by-event
hydrodynamics, Phys. Rev. C 89, 044904 (2014).
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