One-dimensional pion, kaon, and proton femtoscopy in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

(ALICE Collaboration) Adam, J.; ...; Antičić, Tome; ...; Erhardt, Filip; ...; Gotovac, Sven; ...; Mudnić, Eugen; ...; ...

Source / Izvornik: Physical Review C - Nuclear Physics, 2015, 92

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.1103/PhysRevC.92.054908

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:268200

Rights / Prava: Attribution 3.0 Unported

Download date / Datum preuzimanja: 2021-05-15

Repository / Repozitorij:
Repository of Faculty of Science - University of Zagreb
One-dimensional pion, kaon, and proton femtoscopy in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

J. Adam et al.* (ALICE Collaboration)

(Received 30 July 2015; published 19 November 2015)

The size of the particle emission region in high-energy collisions can be deduced using the femtoscopic correlations of particle pairs at low relative momentum. Such correlations arise due to quantum statistics and Coulomb and strong final state interactions. In this paper, results are presented from femtoscopic analyses of $\pi^+\pi^-$, K^+K^-, $K_S^0\bar{K}_S^0$, pp, and $\bar{p}p$ correlations from Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV by the ALICE experiment at the LHC. One-dimensional radii of the system are extracted from correlation functions in terms of the invariant momentum difference of the pair. The comparison of the measured radii with the predictions from a hydrokinetic model is discussed. The pion and kaon source radii display a monotonic decrease with increasing average pair transverse mass m_T, which is consistent with hydrodynamic model predictions for central collisions. The kaon and proton source sizes can be reasonably described by approximate m_T scaling.

DOI: 10.1103/PhysRevC.92.054908

PACS number(s): 25.75.Dw, 24.10.Nz, 25.75.Ag

I. INTRODUCTION

Two-particle correlations at low relative momenta (commonly referred to as femtoscopy), which are sensitive to quantum statistics (in the case of identical particles) as well as strong and Coulomb final-state interactions (FSIs), are used to extract the space-time characteristics of the particle-emitting sources created in heavy-ion collisions [1–3]. The source radii extracted from these correlations describe the system at kinetic freeze-out, i.e., the last stage of particle interactions. Pion femtoscopy, which is the most common femtoscopic analysis, has shown signatures of hydrodynamic flow in heavy-ion collisions, manifesting as a decrease in the source radii with increasing transverse mass $m_T = \sqrt{k_T^2 + m^2}$ [4,5], where $k_T = (p_{T,1} + p_{T,2})/2$ is the average transverse momentum of the pair. This behavior can be interpreted as one of the signatures of the formation of deconfined quark matter in these collisions [6]. However, a necessary condition for collective behavior is for all particles created in the collision, not just pions, to experience hydrodynamic flow. Thus, femtoscopic studies with particles other than pions are also needed. It was shown that the hydrodynamic picture of nuclear collisions for the particular case of small transverse flow leads to the same m_T behavior of the longitudinal radii (R_{long}) for pions and kaons [7]. This common m_T scaling for π and K is an indication that the thermal freeze-out occurs simultaneously for π and K and that these two particle species are subject to the same Lorentz boost. Previous kaon femtoscopic studies carried out in Pb-Pb collisions at the SPS by the NA44, NA49, and CERES Collaborations [8–10] reported the decrease of R_{long} with m_T as $\sim m_T^{-0.5}$ as a consequence of the boost-invariant longitudinal flow. Subsequent studies carried out in Au-Au collisions at RHIC [11–13] have shown the same level in the m_T dependencies for π and K radii, consistent with a common freeze-out hypersurface. Like the SPS analysis, no exact universal m_T scaling for the three-dimensional (3D) radii was observed at RHIC. In the case of the one-dimensional correlation radius R_{inv}, only approximate scaling with m_T is expected as an additional confirmation of hydrodynamic expansion [4]. In fact, R_{inv} source sizes as a function of m_T for different particle types (π, K, p...) follow the common curve with an accuracy of $\sim 10\%$.

The motivation for comparing femtoscopic analyses with different particle species is not limited to studying m_T dependence. The kaon analyses also offer a cleaner signal compared to pions, as they are less affected by resonance decays, while the proton analysis provides a possibility for checking if baryons are included in the collective motion. Studying charged and neutral kaon correlations together provides a convenient experimental consistency check, since they require different detection techniques (charged tracks vs decay vertex reconstruction) and call for different final-state interaction fitting parametrizations (Coulomb dominated vs strong interaction dominated), yet they are predicted to exhibit the same femtoscopic parameters [14]. In addition to the charged kaon analyses at the SPS and RHIC, neutral kaon correlations were studied in Au-Au collisions at RHIC [15], and ALICE has performed analyses on both charged and neutral kaons in pp collisions [16,17]. Recent pion femtoscopic results were obtained at RHIC [18] and the LHC [5,19–21], and proton femtoscopy has also been previously studied at RHIC [22].

This paper presents the results of femtoscopic studies of $\pi^+\pi^-$, K^+K^-, $K_S^0\bar{K}_S^0$, pp, and $\bar{p}p$ correlations from Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV by the ALICE experiment at the LHC. The femtoscopic radii and λ parameters (the latter describe the decrease of the femtoscopic correlations due to, e.g., long-lived resonances; see Secs. III A and IV) are extracted from one-dimensional correlation functions in terms of the invariant momentum difference for a range of collision centralities and m_T values. A hydrokinetic model [14] is used to compare the kaon experimental results with hydrodynamic predictions.
The organization of the paper is as follows. In Sec. II, we describe the data selection criteria. In Sec. III, the details of the correlation functions and the fitting process are discussed. The results of the analysis are shown in Sec. IV, and a summary is provided in Sec. V.

II. DATA ANALYSIS

The dataset analyzed in this paper is from Pb-Pb collisions at √sNN = 2.76 TeV at the LHC measured by the ALICE detector [23]. About 8 million events from 2010 and about 40 million events from 2011 were used (2010 data were analyzed in the pion and K0S analyses only). Events were classified according to their centrality determined using the measured amplitudes in the V0 detectors [24]. Charged particle tracking is generally performed using the time projection chamber (TPC) [25] and the inner tracking system (ITS) [23]. The ITS allows for high spatial resolution in determining the primary (collision) vertex. In the pion, charged kaon, and proton analyses, the determination of the momenta of the tracks was performed using tracks reconstructed with the TPC only and constrained to the primary vertex. Primary tracks were selected based on the distance of closest approach (DCA) to the primary vertex. Additional track selections based on the quality of the track reconstruction fit and the number of detected “hit” points in the TPC were used. Also, all primary pairs sharing more than 5% of TPC clusters were rejected. In the neutral kaon analysis, the secondary daughter tracks used global (TPC and ITS) track reconstruction and did not use any cuts based on track reconstruction quality or number of used or shared TPC clusters. The secondary vertex finder used to locate the neutral kaon decays employed the “on-the-fly” reconstruction method [26], which recalculates the daughter track momenta during the original tracking process under the assumption that the tracks came from a decay vertex instead of the primary vertex.

Particle identification (PID) for reconstructed tracks was carried out using both the TPC and the time-of-flight (TOF) detector [27] in the pseudorapidity range |η| < 0.8. For TPC PID, a parametrized Bethe-Bloch formula was used to calculate the specific energy loss (dE/dx) in the detector expected for a particle with a given mass and momentum. For PID with TOF, the particle mass was used to calculate the expected time-of-flight as a function of track length and momentum. For each PID method, a value Na was assigned to each track denoting the number of standard deviations between the measured track information and the calculations mentioned above. Different cut values of Na were chosen based on detector performance for the various particle types and track momentum (see Table I for specific values used in each analysis) [28].

The analysis details specific to each particle species used in this study are discussed separately below.

A. Pion selection

The main single-particle selection criteria used in the pion analysis are summarized in Table I. Pion identification was performed using the TPC only. An overall purity of the pion candidate sample was estimated using TPC dE/dx distributions of the data and was found to be above 95%. The main source of contamination comes from e+ in the region where the dE/dx curves for pions and electrons intersect.

Femtoscopic correlation functions of identical particles are sensitive to the two-track reconstruction efficiency because the correlated particle pairs (i.e., those with small relative momentum) generally have close trajectories. The main two-track issues are splitting (two tracks reconstructed from one particle) and merging (one track reconstructed from two particles), which are generally avoided using a track separation cut. For pions, pairs were required to have a separation of |Δη| > 0.016 or √Δη2 + Δφ2 > 0.045 measured at the radial distance 1.2 m. Here, η is the pseudorapidity, and φ is the azimuthal coordinate taking into account track bending due to the magnetic field.

B. Charged kaon selection

The main single-particle selection criteria used in the charged kaon analysis are listed in Table I. K± identification
was performed using the TPC (for all momenta) and TOF (for $p > 0.5$ GeV/c) detectors. Figure 1(a) shows the momentum dependence of the single kaon purity, defined as the fraction of accepted kaon tracks that correspond to true kaon particles. The purity values were obtained from TPC dE/dx distributions of the data and by studying HIJING [29] simulations using GEANT3 [30] to model particle transport through the detector. The purity values were obtained from TPC (dE/dx) distributions of the data and by studying HIJING [29] simulations using GEANT3 [30] to model particle transport through the detector. Like the pions, the dominant contamination for charged kaons is from using the same daughter track. If two kaons shared a pair of tracks was below 5 cm, the kaon pair was not used. Another cut was used to prevent two reconstructed kaons from sharing a daughter track, one of them was cut using a procedure which compared the two K_0^0 candidates and kept the candidate whose reconstructed parameters best matched those expected of a true K_0^0 particle in two of three categories: (smaller K_0^0 DCA to primary vertex, smaller daughter-daughter DCA, and K_0^0 mass closer to the PDG value [31]). This procedure was shown, using HIJING+GEANT3 simulations, to have a success rate of about 95% in selecting a true K_0^0 particle over a fake one. More details about $K_0^0K_0^0$ analysis can be found in Refs. [16,32].

D. Proton selection

The single-particle cuts used in the proton analysis are summarized in Table I. The proton analysis used tracks with $0.7 < p_T < 4.0$ GeV/c. The lower p_T cut is used to suppress protons coming from weak decays and interactions with the detector material. Particle identification for p and \bar{p} was performed using both TPC (for all momenta) and TOF (for $p > 0.8$ GeV/c). The proton purity was estimated using HIJING+GEANT3 simulations and was found to be greater than 95%. The used DCA criteria do not fully discriminate between primary protons and protons from weak decays. This may lead to a significant contamination from protons from...

![ALICE Pb-Pb $\sqrt{s_{\text{NN}}} = 2.76$ TeV](image)

FIG. 1. (Color online) Single K^\pm purity (a) and K^\pm pair purity (b) for different centralities. In (b) the k_t values for different centrality intervals are slightly offset for clarity.
\(\lambda \) particles. The effect of this contamination is discussed in Sec. III D.

Regarding two-track selection criteria, pairs were required to have a separation of \(|\Delta \eta| > 0.01\) or \(|\Delta \phi| > 0.045\) measured at the radial distance 1.2 m.

III. CONSTRUCTION OF THE CORRELATION FUNCTIONS AND FITTING PROCEDURES

The experimental two-particle correlation function is defined as \(C(q) = A(q)/B(q) \), where \(A(q) \) is the measured distribution of same-event pair momentum difference, \(q = p_1 - p_2 \), and \(B(q) \) is the reference distribution of pairs from mixed events. The pairs in the denominator distribution \(B(q) \) are constructed by taking a particle from one event and pairing it with a particle from another event with a similar centrality and primary vertex position along the beam direction. Each event is mixed with five (ten) others for the \(K_0^* \) and primary vertex position along the beam direction. Each is paired with a particle from another event with a similar centrality using the quantum statistics ("QS") and "QS Coulomb" factors calculated according to Refs. [19,37] as

\[
K(q) = C(QS + Coulomb)/C(QS),
\]

where \(C(QS) \) and \(C(QS + Coulomb) \) are the theoretical correlation functions calculated with THERMINATOR 2 [40] using the quantum statistics ("QS") and "QS+Coulomb" weights (i.e., squared wave function), respectively [41]. The effect of the strong interaction is neglected here, since for like-sign pions, the contribution is small for the expected source sizes [41]. Figure 3 shows an example \(\pi^+\pi^+ \) correlation function with the corresponding line of best fit. More details about the pion analysis may be found in Ref. [42].

A. Pions

Pion correlation functions were fitted using the Bowler-Sinyukov formula [36,37]:

\[
C(q) = N \left[1 - \lambda + \lambda K(q) \left[1 + \exp \left(-R_{\text{inv}}^2 q^2 \right) \right] \right],
\]

where \(N \) is the normalization factor. The \(\lambda \) parameter (also used in the other analyses) can be affected by long-lived resonances, coherent sources [19,38,39], and non-Gaussian features of the particle-emission distribution. \(K(q) \) is a symmetrized \(K \) factor calculated according to Refs. [19,37] as

\[
K(q) = C(QS + Coulomb)/C(QS),
\]

where \(C(QS) \) and \(C(QS + Coulomb) \) are the theoretical correlation functions calculated with THERMINATOR 2 [40] using the quantum statistics ("QS") and "QS+Coulomb" weights (i.e., squared wave function), respectively [41]. The effect of the strong interaction is neglected here, since for like-sign pions, the contribution is small for the expected source sizes [41]. Figure 3 shows an example \(\pi^+\pi^+ \) correlation function with the corresponding line of best fit. More details about the pion analysis may be found in Ref. [42].

B. Charged kaons

Figure 4 shows an example \(K^\pm K^\mp \) correlation function with the corresponding line of best fit. A purity correction was applied to the correlation function according to

\[
C_{\text{corrected}} = (C_{\text{raw}} - 1 + P)/P,
\]

where the pair purity \(P \) is taken from Fig. 1. \(K^\pm K^\mp \) correlation functions were fitted using the Bowler-Sinyukov formula of Eq. (3); the procedure is essentially the same as for pions. There are no available experimental data for \(K^\pm K^\mp \) strong FSI. The influence of the strong interaction to the correlation function was estimated with the \(s \)-wave scattering length calculated within the fully dynamical lattice QCD [43]. The systematic uncertainty assigned to this effect was determined to be 4%.

FIG. 3. (Color online) Example correlation function with fit for \(\pi^+\pi^+ \) for centrality 5–10% and \(\langle k_T^2 \rangle = 0.35 \) GeV/c. Statistical uncertainties are shown as thin lines.
C. Neutral kaons

Figure 5 shows an example \(K_S^0 K_S^0\) correlation function with the corresponding line of best fit. \(K_S^0 K_S^0\) correlation functions were fitted with a parametrization which includes Bose-Einstein statistics as well as strong final-state interactions (FSIs) [15,35],

\[
C(q) = [1 - \lambda + \lambda C'(q)](a + bq), \tag{6}
\]

where

\[
C'(q) = 1 + e^{-q^2 R^2} + C_{\text{strong FSI}}(q, R), \tag{7}
\]

\[
C_{\text{strong FSI}}(q, R) = \frac{1}{2} \left[\left(\frac{f(q)}{R} \right)^2 + \frac{4 \text{Re} f(q)}{\sqrt{\pi} R} F_1(q R) - \frac{2 \text{Im} f(q)}{R} F_2(q R) \right], \tag{8}
\]

and

\[
F_1(z) = \int_0^z dz' \frac{e^{z' - z^2}}{z}; \quad F_2(z) = \frac{1 - e^{-z^2}}{z}. \tag{9}
\]

\(f(q)\) is the s-wave scattering amplitude for the \(K^0 \overline{K}^0\) system; we neglect the scattering for \(K^0 \overline{K}^0\) and \(\overline{K}^0 K^0\) due to small scattering lengths \(\approx 0.1\) fm [15]. The factor of 1/2 in Eq. (8) is due to the fact that half of the \(K_S^0 K_S^0\) pairs come from \(K^0 \overline{K}^0\). The strong FSI have a significant effect on the \(K^0 \overline{K}^0\) contribution to the \(K_S^0 K_S^0\) correlation function due to the near-threshold resonances, \(f_0(980)\) and \(a_0(980)\). For the scattering amplitude, only s-wave contributions were taken into account; the higher-order corrections were small and therefore neglected [44]. The scattering amplitude \(f(q)\) is calculated using a two-channel parametrization which accounts for the elastic transition \(K^0 \overline{K}^0 \rightarrow K^0 \overline{K}^0\) and the inelastic transition \(K^+ K^- \rightarrow K^0 \overline{K}^0\) (see Ref. [15] for more detailed expressions describing the fit function). Equation (6) also includes an additional factor to account for nonfemtoscopic background correlations at large \(q\), with \(a\) and \(b\) being free parameters in the fit.

D. Protons

Figure 6 shows an example \(p\overline{p}\) correlation function with the corresponding line of best fit. The femtoscopic correlations of pp and \(p\overline{p}\) pairs are due to a combination of Fermi-Dirac statistics, Coulomb, and strong FSIs. A distinct maximum is seen at \(q \approx 40\) MeV/c [35]; this enhancement is due to the strong interaction, as both quantum statistics and Coulomb interaction present a negative correlation. Due to the fact that feeddown from weak decays cannot be neglected in high-energy heavy-ion collisions, the effects of residual correlations related to the p\(\Lambda\) system are taken into account. The proton daughter of a \(\Lambda\) decay has similar momentum to the

FIG. 4. (Color online) Example correlation function with fit for \(K^0 K^0\) for centrality 0–10% and \(k_T = 0.35\) GeV/c. Systematic uncertainties (boxes) are shown; statistical uncertainties are within the data markers. The main sources of systematic uncertainty are the momentum resolution correction and PID selection.

FIG. 5. (Color online) Example correlation function with fit for \(K_S^0 K_S^0\) for centrality 0–10% and \(k_T = 0.48\) GeV/c. Statistical (thin lines) and systematic (boxes) uncertainties are shown. The main source of systematic uncertainty is the variation of single-particle cuts.

FIG. 6. (Color online) Example correlation function with fit for \(p\overline{p}\) for centrality 0–10% and \(k_T = 1.0\) GeV/c. Statistical (thin lines) and systematic (boxes) uncertainties are shown. The main source of systematic uncertainty is the variation of two-track cuts.
A itself and may survive the experimental selection for primary protons. Thus, it may contribute to the measured correlations by forming a pair with a primary proton. As can be seen in Fig. 6, attempting to fit the measured correlation functions with the theoretical pp (\(\bar{p}p\)) functions alone was unsuccessful due to the additional positive correlation observed in the range \(60 < q < 160 \text{ MeV}/c\). Thus, a method of simultaneous fitting of pp (\(\bar{p}p\)) and p\(\Lambda\) (\(\bar{p}\Lambda\)) correlations was applied. Contributions from heavier baryon-baryon pairs are not taken into account since the original correlation between the parent particles is not known due to unknown interaction parameters, for example for the \(\Lambda\Delta\) pair. Moreover such residual correlations are more smeared compared with p\(\Lambda\) because of larger decay momentum. In addition, the fraction of baryons heavier than \(\Lambda\) decaying to protons is smaller than the fraction of \(\Lambda\)’s. Finally, comparing with baryon-antibaryon pairs analyzed in Ref. [45], the width of the correlation for baryon-baryon pairs is much smaller, and therefore the effect is much more smeared due to decay kinematics.

The experimental correlation function of pp and \(\bar{p}p\) systems were fitted with [45]

\[
C_{\text{meas}}(q_{pp}) = 1 + \lambda_{pp}\{C_{pp}(q_{pp}; R) - 1\} + \lambda_{p\Lambda}\{C_{p\Lambda}(q_{pp}; R) - 1\},
\]

where \(\lambda_{pp}\) is the fraction of correlated pp pairs where both particles are primary, and \(\lambda_{p\Lambda}\) is the fraction of correlated pp pairs where one particle is primary and the other is a daughter of \(\Lambda\) decay. The theoretical proton-proton correlation function was calculated as

\[
C(q_{pp}) = \frac{1}{4} \left[\int \frac{S(r^*)}{S(r^*)} \left| \frac{\Psi^{S}_{qpp}(r^*)}{\Psi^{S}_{qpp}(r^*)} + \Psi^{S}_{qpp}(r^*) \right|^2 \right] + \frac{3}{4} \left[\int \frac{S(r^*)}{S(r^*)} \left| \frac{\Psi^{T}_{qpp}(r^*)}{\Psi^{T}_{qpp}(r^*)} - \Psi^{T}_{qpp}(r^*) \right|^2 \right].
\]

This formulation takes into account the necessary (anti)symmetrization of the wave function for a pp pair in the singlet (triplet) spin state with a corresponding weight of \(1/4\) (3/4). The pp pair wave function may be written as [44]

\[
\Psi_{-q_{pp}}(r^*) = e^{i\delta_c} \sqrt{A_c(\eta)} \left[e^{-iq_{pp} r^*/2} F(-i\eta,1,i\xi) + f_c(q_{pp}) \right],
\]

where \(\delta_c = \arg \Gamma(1 + i\eta)\) is the Coulomb s-wave phase shift, \(A_c(\eta) = 2\pi \eta (e^{2\pi \eta} - 1)^{-1}\) is the Gamow factor (also referred to as the Coulomb penetration factor), \(\eta = \left(\frac{2\sqrt{q_{pp}}}{a}\right)^{-1}, a = (\mu z^2 \epsilon^2)^{-1}\) is the two-particle Bohr radius taking into account the sign of the interaction (\(a = 57.6 \text{ fm for pp pair}\), \(F\) is the confluent hypergeometric function, \(\xi = \frac{1}{2} q_{pp} r^* (1 + \cos \theta^*), \theta^*\) is the angle between \(q_{pp}\) and \(r^*\), \(G\) is the combination of the regular and singular s-wave Coulomb functions, and \(\rho = \frac{1}{2} q_{pp} r^*\). The amplitude of the low-energy s-wave elastic scattering due to the short range interaction \(f_c(q_{pp})\) may be expressed as

\[
f_c(q_{pp}) = \left[\frac{1}{f_0} + \frac{d_0 q_{pp}^2}{8} - \frac{1}{2} q_{pp} A_c(\eta) - \frac{2}{a} h(\eta) \right]^{-1},
\]

where \(f_0\) is the scattering length, \(d_0\) is the effective radius of the interaction, \(h(\eta) = (\psi(i\eta) + \psi(-i\eta) - \ln(\eta^2))/2\), and \(\psi\) is the digamma function. For the pp system in the singlet (triplet) state, \(f_0\) and \(d_0\) are 7.77 fm (5.4 fm) and 2.77 fm (1.7 fm).

For the feeddown term, the theoretical p\(\Lambda\) correlation function for a given \(R_p\Lambda)\) transformed into the pp momentum space is obtained from the Lednický-Lyuboshitz model [35] and calculated as

\[
C_{p\Lambda}(q_{pp}; R_p\Lambda) = \sum_{q_{pp}} C_{pp}(q_{pp}; R_p\Lambda) T(q_{pp}, q_{p\Lambda})/ \sum_{q_{pp}} T(q_{pp}, q_{p\Lambda}),
\]

where \(C_{p\Lambda}(q_{pp}; R_p\Lambda) = 1 + C_{\text{strongFSI}}(q_{pp}; R_p\Lambda),\) and \(T(q_{pp}, q_{p\Lambda})\) are the transformation factors related to \(\Lambda\) decay kinematics, calculated with THERMINATOR 2 [40]. Here, a spin-dependent version of Eq. (8) is used [35]:

\[
C_{\text{strongFSI}}(q, R) = \sum_{S} \rho_S \left[\frac{1}{2} \left| \frac{f_S(q)}{R} \right|^2 \left(1 - \frac{d_0^S}{2\sqrt{\pi} R} \right) + 2 \Re \frac{f_S(q)}{\sqrt{\pi} R} \left(F_1(q R) - \frac{\ln f_S(q)}{R} F_2(q R) \right) \right],
\]

where \(f_S(q)\) is the spin-dependent scattering amplitude, \(\rho_S\) is the fraction of pairs in each total spin state \(S\), and \(d_0^S\) is the effective radius of the interaction. It is assumed that the radii of pp and p\(\Lambda\) sources are equal. Therefore, there are three free fit parameters in Eq. (10): \(\lambda_{pp}, \lambda_{p\Lambda},\) and \(R\). Theoretical pp and p\(\Lambda\) correlation functions were calculated using several values of the free parameters, and the fit function (for the set of parameters given during each fit iteration) was formed by a quadratic interpolation of the calculated correlation functions.

E. Systematic uncertainties

The effects of various sources of systematic uncertainty on the extracted fit parameters were studied as functions of centrality and \(k_T\). Table II shows the minimum and maximum uncertainties from each source. The values of the total uncertainty are not necessarily equal to the sum of the individual uncertainties, as the latter can come from different centrality or \(k_T\) bins. All four analyses studied the effects of changing the selection criteria for the events, particles, and pairs used (variation of cut values up to \(\pm 25\%\)) and varying the range of \(q\) values over which the fit is performed (variation of \(q\) limits up to \(\pm 25\%\)). Uncertainties associated with momentum resolution corrections are included in the \(\pi, K^{\pm}\), and \(p\) analyses; the \(K^0\rangle\) analysis also studied this and found the uncertainties to be negligible. The \(K^{\pm}\), \(K^0\rangle\), and \(p\) analyses encountered uncertainties associated with the nonflat background seen at large-\(q\) for high-\(k_T\) pairs in peripheral collisions [estimated by using different parametrizations (linear or polynomial) to fit the large-\(q\) region]. Strong FSI uncertainties
TABLE II. Minimal and maximal uncertainty values for various sources of systematic uncertainty (in percent). The λ for the proton analysis refers to the sum of λ_{pp} and $\lambda_{p\Lambda}$. Please note that each value is the minimum (maximum) uncertainty from a specific source, but each can be from a different centrality or k_T bin. Thus, the minimum (maximum) total uncertainties are greater (smaller) than (or equal to) the sum of the minimum (maximum) individual uncertainties. “n/a” denotes that the given descriptor of the systematic uncertainty is not applicable for the specific pair type, and “−” means that the contribution from the given source is negligible.

<table>
<thead>
<tr>
<th>Source</th>
<th>π^\pm</th>
<th>K^\pm</th>
<th>K_S^0</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R_{inv} λ</td>
<td>R_{inv} λ</td>
<td>R_{inv} λ</td>
<td>R_{inv} λ</td>
</tr>
<tr>
<td>Non-flat background</td>
<td>0.2–5</td>
<td>0–5 0–4</td>
<td>0–4 0–3</td>
<td>3–26 3–57</td>
</tr>
<tr>
<td>Fit range</td>
<td>3–5</td>
<td>1–5 1–5</td>
<td>0–2 5–10</td>
<td>n/a n/a</td>
</tr>
<tr>
<td>Strong FSI</td>
<td>−−</td>
<td>−−</td>
<td>−−</td>
<td>−−</td>
</tr>
<tr>
<td>Coulomb function</td>
<td>3–5</td>
<td>2 4</td>
<td>n/a n/a</td>
<td>n/a n/a</td>
</tr>
<tr>
<td>PID and purity</td>
<td>−−</td>
<td>3–5</td>
<td>n/a n/a</td>
<td>n/a n/a</td>
</tr>
<tr>
<td>Momentum resolution</td>
<td>3–5</td>
<td>3–5 5–10</td>
<td>−−</td>
<td>1–30 1–8</td>
</tr>
<tr>
<td>Fixing λ_{pp}</td>
<td>n/a n/a</td>
<td>n/a n/a</td>
<td>n/a n/a</td>
<td>n/a n/a</td>
</tr>
<tr>
<td>$R_{pp}/R_{p\Lambda}$ ratio</td>
<td>n/a n/a</td>
<td>n/a n/a</td>
<td>n/a n/a</td>
<td>n/a n/a</td>
</tr>
<tr>
<td>Total (quad. sum)</td>
<td>11–21 34</td>
<td>6–9 10–32</td>
<td>2–7 7–15</td>
<td>10–40 30–80</td>
</tr>
</tbody>
</table>

affect both kaon analyses. For K_S^0, the strong FSI uncertainty comes from the fact that several sets of $f_0(980)$ and $a_0(980)$ parameters are available [46–49]; each set is used to fit the data, the results are averaged, and the maximum difference was taken as the systematic error. The π and K^\pm analyses have uncertainties associated with the choice of the Coulomb function used in the fitting procedure. The K^\pm analysis had additional uncertainties due to the misidentification of particles and the associated purity correction. The p analysis also had uncertainties associated with the uncertainty in the $R_{pp}/R_{p\Lambda}$ ratio and attempts to fix the λ_{pp} parameter using the single-particle purity. All of the analyses were performed separately for the two different signs of the ALICE dipole magnetic field, but the resulting systematic uncertainty was found to be negligible in all cases.

Systematic uncertainties on correlation functions (Figs. 4–6) were derived from the variation of single- and two-particle cuts.

IV. RESULTS

Figures 7 and 8 present the extracted fit parameters from $\pi^\pm\pi^\pm$, $K^\pm K^\pm$, $K_S^0 K_S^0$, and pp correlations for several intervals of centrality and transverse mass. Both statistical and systematic uncertainties are shown. The quality of the fits used to extract the shown parameters can be assessed using the χ^2/NDF values, which are in the ranges $1.2–5.0$, $0.8–3.5$, $0.6–1.5$, and $0.8–3.2$ for the pion, charged kaon, neutral kaon, and proton analyses, respectively.

Figure 7 shows the extracted λ parameters vs m_T for several centralities. The proton λ is the sum of λ_{pp} and $\lambda_{p\Lambda}$ from Eq. (10). The values for all species measured lie mostly in the range $0.3–0.7$ and show no significant centrality dependence. The values of λ are less than unity due to long-lived resonances which dilute the correlation functions and also lead to non-Gaussian shapes of the correlation functions, especially in the one-dimensional case [20]. Results for kaons and protons are consistent with each other at similar m_T. Values of λ for pions are lower than for kaons due to the stronger influence of resonances; an additional cause could be a partial coherence of pions [19].

Figure 8 shows the extracted R_{inv} parameters vs m_T for several centralities. For overlapping m_T, the radius parameters are mostly consistent with each other within uncertainties, though the pion radii are generally larger than the kaon radii. The K_S^0 radii are slightly higher than K^\pm radii for central collisions, but the difference is less than the systematic uncertainties. The radius parameters show increasing size with increasing centrality as would be expected from a simple geometric picture of the collisions. They also show a decreasing size with increasing m_T as would be expected in the presence of collective radial flow [6]. Both of these dependencies can be seen in previous $\pi^\pm\pi^\pm$, femtoscopy measurements [4,5] and also reinforce the interpretation that collective flow is present in these collisions for pions, kaons (neutral and charged), and protons alike. Deviations from exact...
m_T scaling of R_{inv} can be explained as a consequence of the increase of the Lorentz factor with decreasing particle mass. In a hydrodynamic model [50], scaling is observed for the three-dimensional radii measured in the longitudinally comoving system (LCMS). The transformation from LCMS to PRF involves a boost along the outward direction only, where the boost value is proportional to the transverse velocity of the comoving system (LCMS). The transformation from LCMS to PRF is done and, subsequently, R_{inv} in the PRF. Indeed, we observe such an effect in the data, as pion radii are systematically higher than kaon radii at the same m_T.

A comparison of a hydrodynamic flow+kinetics model, HKM [14], with the measured R_{inv} and λ parameters for 0–5% centrality is shown in Fig. 9. The HKM values in Fig. 9 are specifically from $K^\pm K^\pm$, but the predictions for $K^0_S K^0_S$ and $K^\pm K^\pm$ are consistent with each other. For R_{inv}, the charged kaon data show very good agreement with the predictions. The experimental data for the neutral kaons are again slightly higher than for the charged kaons, but this difference is still within systematic uncertainties. For λ, both sets of kaon data match the decreasing trend with increasing k_T exhibited by the HKM points, but the model slightly overpredicts the data. It is shown in Ref. [14] that the most important resonances for KK pairs, $K^*(890)$ and $\phi(1020)$, do not significantly influence the λ parameter (due to their low contribution), and the discrepancy between the model and experimental data can be explained by the lower experimental kaon purity and deviations of the experimental correlation function shape from a Gaussian distribution. For protons, the HKM prediction is compatible with the data. HKM calculations for one-dimensional pion radii are currently not available, but three-dimensional radii were reasonably reproduced by this model [51].

V. SUMMARY

Results from femtoscopic studies of $\pi^+\pi^\pm$, $K^\pm K^\pm$, $K^0_S K^0_S$, pp, and $\bar{p}p$ correlations from Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV with ALICE at the LHC have been presented. The femtoscopic radii and λ parameters were extracted from one-dimensional correlation functions in terms of the invariant momentum difference. It was found that the emission source sizes of kaons and protons measured in these collisions exhibit transverse mass scaling within uncertainties, which is consistent with hydrodynamic model predictions assuming collective flow. The deviation from the scaling for the pions can be explained as a consequence of the increase of the Lorentz factor with decreasing particle mass during the transformation from LCMS to PRF systems [50]. The extracted λ parameters are found to be less than unity, as is expected due to long-lived resonances and non-Gaussian correlation functions. The predictions of the hydrokinetic model (HKM) for the one-dimensional femtoscopic radii for charged and neutral kaons and protons coincide well with the observations.

ACKNOWLEDGMENTS

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centers and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan,
Armenia, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community’s Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the “Region Pays de Loire,” “Region Alsace,” “Region Auvergne” and CEA, France; German Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian Orszagos Tudomanyos Kutatasi Alapmagromok (OTKA) and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi,” Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); Consejo Nacional de Cienca y Tecnologia (CONACYT), Direccioon General de Asuntos del Personal Academico (DGAPA), Mexico, Amerique Latine Formation academique - European Commission (ALFA-EC) and the EPLANET Program (European Particle Physics Latin American Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); National Science Centre, Poland; Ministry of National Education/Institute for Atomic Physics and National Council of Scientific Research in Higher Education (CNCSI-UEFISCDI), Romania; Ministry of Education and Science of Russian Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and The Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), E-Infrastructure shared between Europe and Latin America (EELA), Ministerio de Economía y Competitividad (MINECO) of Spain, Xunta de Galicia (Conseilleria de Educación), Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio; Ministry of Science, Education and Sports of Croatia and Unity through Knowledge Fund, Croatia; Council of Scientific and Industrial Research (CSIR), New Delhi, India.

