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We report the observation of transverse polarization-dependent azimuthal correlations in charged pion
pair production with the STAR experiment in p* + p collisions at RHIC. These correlations directly probe
quark transversity distributions. We measure signals in excess of 5 standard deviations at high transverse

momenta, at high pseudorapidities # > 0.5, and for pair masses around the mass of the p meson. This is the
first direct transversity measurement in p + p collisions.
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The nonperturbative structure of the nucleon can be
described in terms of parton distribution functions (PDFs),
equivalent to number densities of quarks and gluons in a
fast moving nucleon. Transversity, h{(x), is the least well
known of the PDFs. It represents the transverse quark
polarization in transversely polarized nucleons for quark
flavor ¢ and momentum fraction x. Because of its chiral
odd nature, transversity vanishes for gluons in the nucleon
(s, = %h) and is primarily a property of the valence quarks
[1]. An experimental measurement of the nucleon tensor
charge 6q = [; dx[h{(x) — h{(x)] will directly test our
theory of quantum chromodynamics (QCD) when com-
pared to calculations on the lattice or model calculations
[2-11]. h; becomes accessible in physics observables when
it is coupled with an additional chiral-odd partner, e.g., a
transverse spin-dependent fragmentation process. This
second part has to be measured independently in order
to extract ;. Our current knowledge of /; [2,4] is based on
fixed-target semi-inclusive deep inelastic lepton-nucleon
scattering (SIDIS) [12—-16] in combination with data from
electron-positron annihilation [17,18]. Proton-proton colli-
sions allow us to reach into the dominant valence quark
region, but the framework of perturbative QCD introduces
complications when the intrinsic transverse momentum
from the hadronization process has to be considered [19]. It
has been shown that dihadron correlations in the final state
persist when integrated over intrinsic transverse momenta.
This so-called interference fragmentation function (IFF),
Hi, can therefore be described collinearly [20]; the
contributions to the cross section can be factorized [21]
and the IFF should be universal among electron-positron
annihilation, SIDIS, and proton-proton scattering.

We present measurements of charged pion pair correla-
tions from the STAR experiment at the Relativistic Heavy
Ton Collider (RHIC) at a center-of-mass energy /s =
200 GeV. The data, the first measurement of transversity
in polarized proton collisions, show nonzero h{(x) at
0.15 < x < 0.30. In this range, transversity is not well
constrained by previous SIDIS measurements and our
result will be particularly important to restrict the d-quark
transversity which is charge suppressed in lepton-proton
scattering.

RHIC, located at Brookhaven National Laboratory,
collides bunched beams of heavy ions as well as polarized
protons. The stable beam polarization orientation is trans-
verse to the collider plane and the polarization direction
alternates between subsequent bunches or pairs thereof
(polarization up 1 or down |). The bunch polarization
pattern is changed from fill to fill in order to reduce
systematic effects. While typically both beams are polar-
ized, a single-spin measurement is achieved by summing
over the bunches in one beam, effectively reducing its
polarization to near zero. This procedure essentially pro-
vides two statistically independent experiments at the same
time. The polarization of each beam is measured by

polarimeters using the elastic scattering of protons on very
thin carbon targets, several times during a RHIC fill. The
polarimeters are calibrated using a polarized hydrogen gas
jet target [22]. We report results from the RHIC run in 2006
with an integrated luminosity of 1.8 pb™! and an average
beam polarization of about 60%.

The STAR experiment [23] is located at one of the
collision points in RHIC. This analysis is based on data in
the central pseudorapidity range —1 <#n < 1. Data are
collected by the Time Projection Chamber (TPC), which
provides tracking and charged pion identification [23]
and by the Barrel Electromagnetic Calorimeter (BEMC),
which is a lead scintillator sampling calorimeter [24].
Signals from a pair of scintillator-based beam-beam coun-
ters (BBC) at forward rapidities 3.3 < |5| < 5.0 in combi-
nation with the BEMC provide a trigger for hard QCD
events [25]. The trigger requires a coincidence between
the BBCs and either a minimum transverse energy,
Er > 5 GeV in a single BEMC tower, or one of several
jet patch triggers subtending Ag¢ x Ay =1.0x1.0
(Er > 4.0 or 7.8 GeV).

Charged pion pairs are selected by requiring tracks that
originate within 60 cm in the longitudinal direction and
1 cm in the transverse direction from the nominal
interaction vertex and that are required to point into
the central region. Tracks are required to have a minimum
transverse momentum py of 1.5 GeV/c. Using dE/dx
measurements in the TPC to select pions, a purity of the
single pion sample of greater than 95% over the whole
kinematic range is achieved. All pion pairs in an event are
considered where the pions are close enough in (1, ¢)
space to originate from the fragmentation of the same
parton. The default value of this opening angle cut is

\/(ﬂn, —12,)* + (¢pr, — ¢5,)* < 0.3. Pion pairs produced

in the weak decay of the K meson are not expected to
contribute to the asymmetry; therefore, the corresponding
mass range (497.6 =10 MeV) was excluded from the
analysis.

Following Ref. [26], the transversely polarized cross
section of hadron pairs in p' + p collisions can be
written as

dA6

dour o sinlgs) [ dxadns () G HE (2. 0)

(1)

Here, 6 is the polarized scattering cross section of partons a
and b with four-momentum transfer 7. The unpolarized
parton distribution is f(x). The fragmentation function
H f , 1s a function of z, the fractional energy with respect to
the fragmenting quark carried by the hadron pair and its
invariant mass, M. The angle ¢rs = ¢pr — ¢p5 is derived
according to Fig. 1 from the angle between the polarization
vector and the production plane ¢ and the angle between
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FIG. 1 (color online). Azimuthal angle definitions in the
dihadron system. s, is the direction of the spin of the polarized
proton, p,. {1.2) are the momenta of the positive and negative pion,
respectively, and ¢y is the angle between the production and
dihadron plane.

the two hadron plane and the production plane ¢%. The
production plane is spanned by the incident proton
momentum Pye,m and the sum of the two hadron momenta
P = Pni + Dra- The difference of the momenta R=
Phi — Dno lies in the hadron plane. The convolution of
hi(x) and HY', will introduce an asymmetry, modulated by
sin(¢gs). The effect will inherit the dependence on the
partonic variable x from %, (x) and the final state variables
M and z.

An experimental observable directly proportional to the
differential cross section is constructed for each RHIC fill:

NT(d)RS) - ”‘Ni(d’ks)
N (prs) + - NV (ggs)

= PyeamAur Sin(¢RS)’ (2)

where N'/4 is the number of pion pairs meeting the selection
criteria for each polarization state, Py.,, the beam polari-
zation, and r the ratio L'/L' between the integrated
luminosities of the two polarization states.

The data are binned in 16 equal bins covering 2z in
azimuth. The amplitude Ay of sin(¢gg) is extracted by a
fit to the data. The description of the functional form is
very good, with a reduced y> per degree of freedom of
0.975 £ 0.007 over all kinematic bins. We include all pion
pairs with opposite charges from an event and define p, ; to
be the momentum of the positive particle (and pj,, the
negative particle, accordingly). Note that this charge order-

ing is essential because it establishes the direction of R A
random charge assignment would lead to a vanishing
asymmetry since it would randomize the sign of ¢pg.
Figure 2 shows the results for A;; as a function of the
invariant mass M of the pion pair, both for forward ( > 0)
and backward (5 < 0) going particles. We define the

0.08 p'+p - "+ 1w, Vs= 200 Ge

r = (n)=+0.5
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FIG. 2 (color online). Ay as a function of invariant mass M of
the pion pair (upper panel). The corresponding partonic variables
x and z are obtained from simulation (lower panel). An enhance-
ment of the signal can be seen near the p mass.

forward direction here along the momentum of the polar-
ized beam. The results combine independent measurements
of the asymmetries for both polarized RHIC beams in the
two halves of the STAR detector, which provides internal
consistency checks.

We used PYTHIA [27] event simulations in conjunction
with a model of the STAR detector response implemented
in GEANT [28] to determine the partonic scattering proc-
esses as well as the partonic variables x and z, the fractional
momentum of the parent quark carried by the two hadrons.
These are shown in the lower panel of Fig. 2. Simulated
events have been embedded in detector response from
unbiased real events and subsequently run through the
whole analysis chain. Distributions of experimental proper-
ties have been matched reasonably well between simulation
and measured data, which gives us confidence that the
partonic variables are indeed describing the physics at
hand. The mean x value, (x), of the recorded data at
midrapidity is around 0.2 and changes very little over the
available invariant mass range. This value is well into the
valence region, x > 0.1, where transversity is expected to
be sizable. On the other hand, (z) rises more strongly with
the invariant mass. This is essentially a consequence of the
opening angle cut and the required minimum p; for each
hadron. Naively, one expects that the IFF is uniformly
rising in z, since hadrons at high z carry more of the parent
quark spin information. This is consistent with measure-
ments in e e~ annihilation [18] where sizable values have
been observed at similar z and M.

In model calculations, the transverse spin dependence of
the IFF originates from an interference of amplitudes with
different angular momenta [29]. In our kinematic region,
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FIG. 3. Ay as afunction of pseudorapidity # (upper panel) and
corresponding partonic variables x and z (lower panel).

this will mainly be contributions from vector meson decays
in a relative p wave which interfere with the nonresonant
background in a relative s wave. Therefore, it is expected
that the invariant mass dependence will show an enhance-
ment around the mass of the p meson at 770 GeV/c? [29].
Our results confirm these expectations and show a clear
signal in the forward direction around the p mass.

Backward asymmetries, # < 0, are sensitive to quarks at
small x. They are consistent with zero, as is expected since
transversity is thought to be primarily carried by the
valence quarks.

Figure 3 shows A7 as a function of # in more detail. The
(x) of the parton participating in the hard scattering, which
originates from the proton of the polarized beam, rises
approximately linearly with # from 0.15 to 0.25, while
(z) 2 0.4 in the covered acceptance. The measured asym-
metries reflect the x dependence and valence quark nature
of transversity and rise monotonically with #. The partonic
spin transfer coefficient becomes larger in the forward
direction as well [30], but its contribution to the n
dependence of the asymmetry is small compared to the
shape of the transversity distribution.

We show the corresponding distributions of x as deter-
mined from embedded event simulation studies in Fig. 4 for
the highest and lowest # ranges from Fig. 3. The distribu-
tions are fairly wide and asymmetrical as is expected for
hadronic collisions. They also partially overlap, but the
different pseudorapidities clearly are sensitive to different
partonic kinematics.

While we do not have access to the partonic variables in
the experiment, the kinematics can be limited or shifted by
variations of the cuts on the data. In particular, the opening
angle between the two pions directly affects the mean (pr)
of the pair at fixed invariant masses. Wider opening angles

3of—
%ﬁﬁ# — M) =-0.75
—~ 25[— éﬁ
zoE n — () = +0.75
;20; #J‘-T‘*
£ sk "
%15% +f5€¢*‘*#
g 14w
> i r -.

03 04 05 07 G
partonic momentum x

0.2

FIG. 4 (color online). Comparison of the shape of the partonic
momentum distributions in the polarized protons for different
pseudorapidity regions of the pion pair as determined from
embedded event simulation studies. The distributions are not
fully normalized.

preferentially select lower transverse momenta, so choosing
a tighter cut will result in a higher (p7) especially at large
M. This correlation is illustrated in the bottom of Fig. 5
(see also the Supplemental Material for data tables [31]).
The event simulations show that the larger transverse
momenta also lead to an increased contribution from
high-x partons and high-z fragmentation. It has previously
been shown that Hffq scales with z [18] and this is
consistent with our observations in Fig. 5 at invariant
masses above 0.7 MeV/c?. Although we find a systematic
effect of the opening angle on the size of the asymmetries,
we need to point out that the data still carry significant
statistical uncertainties at the highest masses. The z

0.18
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0.1

5 0.08
< 0.06
0.04
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-0.02

[ g gy
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FIG. 5 (color online).

Ayr(M) with different opening angle

cuts. The signal in each M bin exhibits a strong dependence on
the mean p;. Data points are slightly shifted in M for better
visibility.
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dependence may still be a minor contribution to the rise of
the asymmetry in the available kinematic range.

The leading systematic uncertainty for the presented data
comes from the 4.8% scale uncertainty of the beam
polarization. On average the purity of the single pion
sample is 96%, which has been determined in simulation
studies. The purity shows a slight dependence on the
transverse momentum, starting at around 94% and rising
up to 97% at the highest py. From model calculations, the
asymmetry in 7 — p correlations is expected to be very
small. Data from 7z — K asymmetries [32] are of the same
sign as those of the two-pion system and of similar or
smaller size. We do not assign a systematic uncertainty to
the results due to the unknown size of the background
asymmetry. In the worst case the dilution of the asymmetry
is on the same order of magnitude as the impurity of the
pion sample. Triggering on large electromagnetic energy
deposits introduces a bias in the sampled event kinematics
and partonic processes [33]. From simulations, we deter-
mine that our trigger bias in selecting the partonic
subprocess leads to an enhancement of the fraction of
quark-quark scattering sampled of up to 20%, whereas
quark-gluon and gluon-gluon scattering processes are
suppressed by up to 10%. Overall, systematic uncertainties
are very small compared to the statistical precision of the
measurement, and they are not shown in the figures.

A variety of systematic checks have been carried out to
ensure the correctness of the results. A random assignment
of the polarization states of the beam bunches leads to
vanishing spin asymmetries. The y? values of the individual
fits are distributed according to a y? distribution (within the
relevant statistics). An alternative way of computing the
asymmetry takes advantage of the fact that the asymmetry
is antisymmetric in ¢pg and therefore a shift of z and a
flip of the beam polarization both lead to a sign change of
the asymmetry [34]. The advantage of this “proper-flip”
method is that the relative luminosity as well as detector
efficiency dependencies cancel. The final results of A7 are
in fact the same as those from Eq. (2), which needs the
relative luminosity as input. In addition, the consistency
between asymmetries for both RHIC beams is an important
check, as is the stability of the results over the duration of
the measurement.

In summary, STAR has observed transverse spin-
dependent charged pion pair correlation asymmetries with
a statistical significance of more than 5 standard deviations
away from zero. Using the collinear factorization frame-
work, the distribution of transversely polarized quarks
described by the proton’s transversity distribution function
can be extracted from these results. This constitutes the first
signal of transversity in p' + p collisions. The observed
signal is enhanced for invariant masses of the hadron pair
around the p mass and rises with p; and 7 consistent with
qualitative expectations from the transversity distribution
function and the dependence of the IFF on z and M. These

results can be included in an extraction of transversity from
world data in a collinear framework [35] that is currently
underway [36]. Compared with previous measurements of
two hadron correlations in SIDIS, the RHIC data allow
access to a complementary kinematic regime. Proton-
proton collisions do not suffer from u-quark dominance
and will therefore help constrain the d-quark transversity.
This global fit will enable for the first time a comparison of
transverse single spin asymmetries with similar partonic
kinematics measured in p' + p collisions to those from
SIDIS and e" — e~ annihilation. This will provide an
important test of universality.
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