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Two-particle angular correlations between trigger particles in the forward pseudorapidity range (2.5 <
|η| < 4.0) and associated particles in the central range (|η| < 1.0) are measured with the ALICE detector 
in p–Pb collisions at a nucleon–nucleon centre-of-mass energy of 5.02 TeV. The trigger particles are 
reconstructed using the muon spectrometer, and the associated particles by the central barrel tracking 
detectors. In high-multiplicity events, the double-ridge structure, previously discovered in two-particle 
angular correlations at midrapidity, is found to persist to the pseudorapidity ranges studied in this Letter. 
The second-order Fourier coefficients for muons in high-multiplicity events are extracted after jet-like 
correlations from low-multiplicity events have been subtracted. The coefficients are found to have a 
similar transverse momentum (pT) dependence in p-going (p–Pb) and Pb-going (Pb–p) configurations, 
with the Pb-going coefficients larger by about 16 ± 6%, rather independent of pT within the uncertainties 
of the measurement. The data are compared with calculations using the AMPT model, which predicts a 
different pT and η dependence than observed in the data. The results are sensitive to the parent particle 
v2 and composition of reconstructed muon tracks, where the contribution from heavy flavour decays is 
expected to dominate at pT > 2 GeV/c.

© 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open 
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Measurements of correlations in �ϕ and �η, where �ϕ and 
�η are the differences in azimuthal angle (ϕ) and pseudora-
pidity (η) between two particles, respectively, provide insight on 
the underlying mechanism of particle production in collisions of 
hadrons and nuclei at high energy.

For such measurements in proton–proton (pp) collisions, jet 
production leads to a characteristic peak-like structure on the 
“near side” (at �ϕ ≈ 0, �η ≈ 0) and an elongated structure in 
�η on the “away side” (at �ϕ ≈ π ) [1]. In nucleus–nucleus (A–A) 
collisions, ridge-like structures extending over a long range along 
the �η axis emerge on the near and away sides, in addition to the 
jet-related correlations [2–14]. The Fourier decomposition of the 
correlation in �ϕ at large �η is dominated by the second- and 
third-order harmonic coefficients v2 and v3, but significant har-
monics have been measured up to v6 [6,7,9–16]. In A–A collisions, 
the vn coefficients are interpreted as the collective response of the 
created matter to the collision geometry and fluctuations in the 
initial state [17,18], and are used to extract its transport properties 
in hydrodynamic models [19–21].

� E-mail address: alice-publications@cern.ch.

Long-range ridge structures on the near side (�ϕ ≈ 0) were 
also observed in high-multiplicity pp collisions at a centre-of-mass 
energy 

√
s = 7 TeV [22] and in proton–lead (p–Pb) collisions at 

a nucleon–nucleon centre-of-mass energy 
√

sNN = 5.02 TeV [23]. 
Shortly after, measurements in which the contributions from jet 
fragmentation were suppressed by subtracting the correlations 
extracted from low-multiplicity events revealed the presence of 
essentially the same long-range structures on the away side as 
on the near side in high-multiplicity events [24,25]. Evidence of 
long-range double-ridge structures in high-multiplicity deuteron–
gold (d–Au) collisions at 

√
sNN = 0.2 TeV was also reported [26]. 

By now, the existence of long-range correlations in p–Pb collisions 
is firmly established by measurements [27–31] involving four, six 
or more particle correlations, with the lower-order correlations re-
moved [32], demonstrating that the long-range ridges originate 
from genuine multi-particle correlations. Intriguingly, the trans-
verse momentum dependence of the extracted vn [27,28,30], and 
the particle-mass dependence of vn [33–35] are found to be qual-
itatively similar to those measured in A–A collisions.

The similarity of the ridges in the pp, p–Pb, d–Au and A–A 
systems suggests the possibility of a common hydrodynamical ori-
gin [36–43]. However, whether hydrodynamical models can indeed 
be reliably applied to such small systems is under intense de-
bate [44]. Other proposed mechanisms involve initial-state effects, 
such as gluon saturation and extended color connections forming

http://dx.doi.org/10.1016/j.physletb.2015.12.010
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along the longitudinal direction [45–49] or final-state parton–
parton induced interactions [50–54].

Further insight into the production mechanism of these long-
range correlation structures may be gained by studying their 
η-dependence. A preliminary result [55] indicates a mild η depen-
dence, but the measurement is limited to |η| < 2. A similar mag-
nitude of the two-particle correlation amplitudes in the Au-going 
and d-going directions at 2.8 < |η| < 3.8 has also been reported 
in d–Au collisions at 

√
sNN = 0.2 TeV [56]. Calculations for v2 at 

large η (2.5 < |η| < 4) in p–Pb collisions at 
√

sNN = 5.02 TeV from 
a 3 + 1 dimensional, viscous hydrodynamical model and a multi-
phase transport model (AMPT) predict a stronger η dependence, 
with about 50% and 30% larger v2 values on the lead nucleus side 
for the hydrodynamical and AMPT model, respectively [57].

In this Letter, we report a measurement of angular correlations 
between trigger particles in the pseudorapidity range 2.5 < |η| <
4.0 and associated particles in the central range |η| < 1.0 in p–Pb 
collisions at 

√
sNN = 5.02 TeV at the Large Hadron Collider (LHC). 

The trigger particles are inclusive muons, reconstructed using the 
ALICE muon spectrometer, and the associated particles are charged 
particles, reconstructed by the ALICE central barrel tracking detec-
tors. As in previous measurements [24,33], the double ridge is ex-
tracted by subtracting the correlations obtained in low-multiplicity 
events from those in high-multiplicity events. Results for the sec-
ond order Fourier coefficient for muons, vμ

2 {2PC, sub}, and the 
ratio of vμ

2 {2PC, sub} coefficients1 in the Pb-going (Pb–p) and p-
going (p–Pb) directions are reported for high-multiplicity events, 
and compared to model predictions. The remainder of the Letter 
is structured as follows: We describe the experimental setup in 
Sec. 2, the event and track selection in Sec. 3, the analysis method 
in Sec. 4 and the evaluation of the systematic uncertainties in 
Sec. 5. Finally, in Sec. 6 we report the results, and compare them 
with model predictions. In Sec. 7 we conclude with a summary.

2. Experimental setup

In 2013, the LHC provided collisions between protons with 
a beam energy of 4 TeV and lead ions with a beam energy of 
1.58 TeV per nucleon, resulting in a centre-of-mass energy of √

sNN = 5.02 TeV. The beams were set up in two configurations: 
a period with the proton momentum in the direction of negative η
in the ALICE coordinate system, denoted as p–Pb, followed by a pe-
riod with reversed beams, denoted as Pb–p. Due to the asymmetric 
beam energies, the nucleon–nucleon centre-of-mass reference sys-
tem moves with a rapidity of 0.465 in the direction of the proton 
beam with respect to the ALICE laboratory system. Pseudorapid-
ity, denoted by η, is given in the laboratory frame throughout this 
Letter.

Details on ALICE and its subdetectors can be found in Refs. [58,
59]. In the following, we give a brief summary of the components 
needed for the measurement reported in the Letter.

Trigger tracks used in this analysis are detected in the muon 
spectrometer with an acceptance of −4.0 < η < −2.5. The muon 
spectrometer consists of a thick absorber of about ten interaction 
lengths (λI), which filters muons in front of five tracking stations 
made of two planes of Cathode Pad Chambers each. The third sta-
tion is placed inside a dipole magnet with a 3 Tm integrated field. 
The tracking apparatus is completed by a trigger system made of 
four layers of Resistive Plate Chambers placed behind a second 
absorber of 7.2 λI thickness. This setup ensures that most of the 

1 Here, and in the following, “2PC” stands for “two-particle correlation” and “sub” 
for “subtraction”, and indicates the analysis technique with which the coefficients 
are measured.

hadrons in the acceptance are stopped in one of the absorber lay-
ers, providing a muon purity above 99% for the tracks used in this 
analysis. In p–Pb collisions, the trigger particle travels in the same 
direction as the p beam (p-going case), while in Pb–p collisions in 
the same direction as the Pb nucleus (Pb-going case).

Associated particles in |η| < 1.0 are reconstructed using the 
combined information from the Inner Tracking System (ITS) and 
the Time Projection Chamber (TPC), which are located inside the 
ALICE solenoid with a field of 0.5 T. The ITS consists of six lay-
ers of silicon detectors: two layers of Silicon Pixel Detector (SPD), 
surrounded by two layers of Silicon Drift Detector (SDD) and two 
layers of Silicon Strip Detector (SSD). SPD tracklets, short track seg-
ments reconstructed in the two SPD layers alone, are also used as 
associated particles.

The V0 detector, consisting of two arrays with 32 scintillator 
tiles arranged in four rings each, is used to generate the minimum-
bias trigger and offline for multiplicity selection [60]. The de-
tector covers the full azimuth within 2.8 < η < 5.1 (V0-A) and 
−3.7 < η < −1.7 (V0-C). The timing information of the V0 is also 
used for offline rejection of interactions of the beam with residual 
gas. In addition, two neutron Zero Degree Calorimeters (ZDCs) lo-
cated at +112.5 m (ZNA) and −112.5 m (ZNC) from the interaction 
point are used in the offline event selection and as an alternative 
approach to define event-multiplicity classes.

3. Event and track selection

The online event selection used in this analysis is based on 
a combination of minimum-bias (MB) and muon trigger inputs. 
The MB selection uses the coincidence between hits in the V0-A
and V0-C detectors and covers 99.2% of the non-single-diffractive 
cross section as described in [61]. Only approximately 5% of the 
MB events contain one or more tracks reconstructed in the muon 
spectrometer. In order to increase the number of recorded events, 
the presence of at least one muon above a pT threshold was 
required in addition to the MB trigger condition. Two different 
thresholds were used: a low-pT threshold corresponding to about 
0.5 GeV/c (μ-low-pT) and a higher pT threshold corresponding 
to about 4.2 GeV/c (μ-high-pT). These thresholds are not sharp 
and the reported values correspond to a 50% trigger probability 
for a muon candidate. The integrated luminosity collected with 
μ-high-pT triggers is 5.0 nb−1 in the p–Pb and 5.8 nb−1 in the 
Pb–p periods. The μ-low-pT trigger class was downscaled by a fac-
tor 10–35 depending on the data taking conditions, resulting in an 
integrated luminosity of 0.28 nb−1 in the p–Pb and 0.26 nb−1 in 
the Pb–p periods.

The TPC and SDD detectors have longer deadtime compared to 
the muon spectrometer, the SPD and the V0. Therefore, they were 
read out only in a fraction of μ-low-pT events (about 25% in p–Pb 
and below 10% in Pb–p collisions). Both muon-track and muon-
tracklet correlation results were measured in the p–Pb configura-
tion. For Pb–p collisions, only muon-tracklet correlations could be 
studied due to the significantly lower number of triggers with the 
TPC in the readout.

The primary-vertex position is determined using reconstructed 
clusters in the SPD detector as described in Ref. [59]. Only events 
with a reconstructed vertex coordinate along the beam direction 
(zvtx) within 7 cm from the nominal interaction point are selected. 
The probability of multiple interactions in the same bunch crossing 
(pileup) was dependent on the beam conditions and always below 
3%. Pileup events are removed by rejecting triggers with more than 
one reconstructed vertex.

All events were characterized by their event activity, and sorted 
into event classes. As in previous studies [24,33], the event char-
acterization was based on the signal in the V0 detectors. However, 
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Fig. 1. Parent particle composition of reconstructed muon tracks (left panel) and reconstruction efficiency for muons from pion and kaon decays relative to that for heavy 
flavor (HF) decay muons (right panel) from a detector simulation of the ALICE muon spectrometer.
Table 1
V0S multiplicity classes as fractions of the analyzed 
event sample and the corresponding 〈dNch/dη〉||η|<0.5. 
The 〈dNch/dη〉 values are not corrected for trigger and 
vertex-reconstruction inefficiencies, which are about 4% 
for non-single-diffractive events [61], mainly affecting 
the 80–100% lowest mulitiplicity events [62]. Only sys-
tematic uncertainties are listed, since the statistical un-
certainties are negligible.

Event 
class

〈dNch/dη〉||η|<0.5

pT > 0 GeV/c

0–20% 35.8 ±0.8
20–40% 23.2 ±0.5
40–60% 15.8 ±0.4
60–100% 6.8±0.2

unlike before, both beam orientations were investigated in this Let-
ter. Therefore, the signals from only two out the four rings of V0-A
and V0-C detectors were combined to guarantee a more symmet-
ric acceptance. On the V0-A side, the two outermost rings with an 
acceptance of 2.8 < η < 3.9, while on the V0-C side the two in-
nermost rings with an acceptance of −3.7 < η < −2.7 were used. 
This combination is called V0S in the following. The definition of 
the event classes as fractions of the analyzed event sample and 
their corresponding average number of particles at midrapidity 
(〈dNch/dη〉||η|<0.5), measured using tracklets as explained below, 
is given in Table 1.

Muon tracks are reconstructed in the geometrical acceptance of 
the muon spectrometer (−4 < η < −2.5). The tracks are required 
to exit the front absorber at a radial distance from the beam axis, 
Rabs, in the range 17.6 < Rabs < 89.5 cm in order to avoid regions 
with large material density. The muon identification is performed 
by matching the tracks reconstructed in the tracking chambers 
with the corresponding track segments in the trigger chambers. 
Beam-gas tracks, which do not point to the interaction vertex, are 
removed by a selection on the product of the total momentum of a 
given track and its distance to the interaction vertex in the trans-
verse plane. In the analysis, muons in the transverse momentum 
range 0.5 < pT < 4 GeV/c were considered.

Reconstructed muons mainly originate from weak decays of π , 
K2 and mesons from heavy flavor (HF) decays. Because of the dif-
ferent pT distribution of the various sources and the absorber in 
front of the spectrometer, which suppresses by design weak decays 

2 Here, and in the following, pions and kaons refer to the sum of both charge 
states. Neutral particles are also considered in the case of kaons.

from light hadrons, the parent particle composition for the recon-
structed muon tracks changes as a function of pT. The composition 
shown as a function of the reconstructed pT in the left panel of 
Fig. 1 was evaluated using full detector simulations based on the 
DPMJET Monte Carlo (MC) event generator [63]. The detector re-
sponse was simulated using GEANT3 for particle transport [64]. 
The composition of parent particles in the simulation differs by 
less than 10% for the two beam configurations. The reconstructed 
muons are dominated by light-hadron decays below 1.5 GeV/c, and 
by heavy flavor decays above 2 GeV/c. No significant multiplic-
ity dependence was found. Similar conclusions are obtained using 
simulations with the AMPT generator [65].

Without strong model assumptions, one cannot deduce the 
composition of parent particles from the measured muon distribu-
tion, and correct the data for muon decay and absorber effects. For 
comparison of the v2 data with calculations, however, only relative 
contributions of the parent species matter. In order to ease future 
model calculations, the reconstruction efficiencies for muons from 
pion and kaon decays relative to those for muons from heavy fla-
vor decays are provided in the right panel of Fig. 1 as a function of 
the generated decay muon pT in different pseudorapidity intervals. 
Contributions from muon decays of other particles are significantly 
smaller than those for pions and can be ignored. The systematic 
uncertainty on the relative efficiencies was estimated to be less 
than 5%.

Tracks reconstructed in the ITS and the TPC are selected in the 
fiducial region |η| < 1 and 0.5 < pT < 4 GeV/c. The track selection 
used in this Letter is the same as in Ref. [24].

Tracklet candidates are formed using information on the posi-
tion of the primary vertex and the two hits on the SPD layers [66], 
located at a distance of 3.9 and 7.6 cm from the detector centre. 
The differences of the azimuthal (�ϕ h, bending plane) and po-
lar (�θ h, non-bending direction) angles of the hits with respect 
to the primary vertex are used to select particles, typically with 
pT > 50 MeV/c. Particles below 50 MeV/c are mostly absorbed 
by material. Compared to previous analyses [61,66] a tighter cut 
in �ϕ h is applied (�ϕ h < 5 mrad) to select particles with larger 
pT and to minimize contributions of fake and secondary tracks to 
below 2.5%. The corresponding mean pT of selected particles, esti-
mated from the DPMJET MC, is about 0.75 GeV/c.

4. Analysis

The associated yield of tracks or tracklets per trigger particle in 
the muon spectrometer is measured as a function of the difference 
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Fig. 2. Associated yield per trigger particle as a function of �η and �ϕ for muon-track correlations in p–Pb (left) and muon-tracklet correlations in p–Pb (middle) and 
Pb–p (right panels), measured in 60–100% (top row) and 0–20% (bottom row) event classes. The trigger particle (muon) range is 0.5 < pt

T < 1 GeV/c, the associated particle 
intervals are 0.5 < pa

T < 4.0 GeV/c for tracks and 0 < �ϕ h < 5 mrad for tracklets. Statistical uncertainties are not shown.
in azimuthal angle (�ϕ) and pseudorapidity (�η). As in previous 
analyses [24,33], it is defined as

Y = 1

Ntrig

d2Nassoc

d�ηd�ϕ
= S(�η,�ϕ)

B(�η,�ϕ)
, (1)

in intervals of event multiplicity and trigger particle transverse 
momentum, pt

T. The variable Ntrig denotes the total number of 
trigger particles in the event class and pt

T interval, not corrected 
for single-muon efficiency. The signal distribution S(�η, �ϕ) =
1/Ntrigd2Nsame/d�ηd�ϕ is the associated yield per trigger par-
ticle for particle pairs from the same event, obtained in 1 cm-
wide intervals of zvtx. A correction for pair acceptance and pair 
efficiency is obtained by dividing by the background distribution 
B(�η, �ϕ) = α d2 Nmixed/d�ηd�ϕ . The background distribution 
is constructed by correlating trigger particles from one event with 
the associated particles from other events within the same event 
multiplicity class and 1 cm-wide zvtx intervals. The factor α is used 
to normalize the background distribution to unity in the �η region 
of maximal pair acceptance. The final per-trigger yield is obtained 
by calculating the average over the zvtx intervals weighted by Ntrig.

In Fig. 2, the associated yield per trigger particle as a func-
tion of �ϕ and �η for muon-track correlations in p–Pb (left) 
and muon-tracklet correlations in p–Pb (middle) and Pb–p (right 
panels), measured in 60–100% (top row) and 0–20% (bottom row) 
event classes is shown. In the low-multiplicity class (60–100%), 
the dominant feature is the recoil jet on the away side (π/2 <
�ϕ < 3π/2). While in previous two-particle correlation studies 
at midrapidity [24,33] the away-side jet structure was mostly 
flat in �η, from �η = −1.5 to �η = −5.0 it decreases, as ex-
pected considering the kinematics of dijets at large �η. The near 
side (|�ϕ| < π/2) shows almost no structure in �ϕ and �η, 
since it is sufficiently separated from the near-side jet peak at 

(�ϕ, �η) = (0, 0), so that no contribution from jets is expected. 
In the high-multiplicity (0–20%) class, the away-side jet structure 
is also visible, and the associated yields are considerably higher 
than for the low-multiplicity (60–100%) class. Moreover, in contrast 
to the low-multiplicity class, a near-side structure emerges, simi-
lar to that previously observed at lower pseudorapidities, revealing 
that the near-side ridge extends up to pseudorapidity ranges of 
2.5 < |η| < 4.

In order to isolate long-range correlations, we apply the same 
subtraction method as in previous measurements [24,33]. Jet-
associated yields have only a weak multiplicity dependence [67], 
thus the subtraction of the low-multiplicity event class removes 
most of the jet-like correlations. The per-trigger yield of the 
60–100% event class is subtracted from that in the 0–20% event 
class, and the result is presented (labelled as Ysub) in the top pan-
els of Fig. 3. After subtraction, two similar ridges on the near and 
on the away side are clearly visible.

The magnitude of the contributing long-range amplitudes is 
quantified by extracting the Fourier coefficients from the �ϕ pro-
jection of the per-trigger yield distribution, after the subtraction of 
the low-multiplicity class, as shown in the lower panels of Fig. 3. 
In order to reduce the statistical fluctuations at the edges of the 
per-trigger yield distribution, the �ϕ projection is obtained from 
a first-order polynomial fit along �η for each �ϕ interval. In the 
p–Pb cases, the near- and away-side amplitudes are quite differ-
ent, while in the Pb–p case the amplitudes on the near and away 
side are similar. The difference in the amplitudes of the near- and 
away-side ridge, which may be due to a residual jet contribution in 
the subtracted distribution, is taken into account in the systematic 
error evaluation, as explained in Sec. 5.

The Fourier coefficients are then obtained by fitting Ysub with

a0 + 2 a1 cos(�ϕ) + 2 a2 cos(2�ϕ) + 2 a3 cos(3�ϕ) , (2)
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Fig. 3. Top panels: Associated yield per trigger particle as a function of �ϕ and �η for muon-track correlations in p–Pb (left) and muon-tracklet correlations in p–Pb (centre) 
and Pb–p (right) collisions for the 0–20% event class, where the corresponding correlation from the 60–100% event class has been subtracted. Statistical uncertainties are not 
shown. The trigger particle (muon) range is 0.5 < pt

T < 1 GeV/c, the associated particle intervals are 0.5 < pa
T < 4.0 GeV/c for tracks and 0 < �ϕ h < 5 mrad for tracklets. 

Bottom panels: The same as above projected onto �ϕ. The lines indicate the fit to the data and the first harmonic contributions as explained in the text.

Table 2
Summary of main systematic uncertainties. The uncertainties usually depend on pT and vary within the given ranges.

Systematic effect Assoc. tracks Assoc. tracklets

p–Pb p–Pb Pb–p Ratio

Acceptance (zvtx dependence) 3–4% 0–5% 0–3% 0–1%
Remaining jet after subtraction 4–10% 5–14% 1–2% 3–15%
Remaining ridge in low-multiplicity class 1–4% 1–6% 0–2% 2–8%
Calculation of v2 0–1% 0–1% 1% 0–2%
Resolution correction 1% 0–1% 0–1% 0–2%

Sum (added in quadrature) 7–11% 6–14% 2–4% 5–17%
leading to χ2/NDF values typically below 1.5. The relative modu-
lation is given by Vn�{2PC, sub} = an

a0+b , where b is the baseline of 
the low-multiplicity class (60–100%) estimated from the integral 
of the per-trigger yield around the minimum. Assuming that the 
two-particle Fourier coefficient factorizes into a product of trigger 
and associate single-particle v2 [30], the vn{2PC, sub} coefficients 
for particles reconstructed in the muon spectrometer are then ob-
tained as

vn{2PC, sub} = Vn�{2PC, sub}/
√

V c
n�{2PC, sub}, (3)

where V c
n�{2PC, sub} is measured by correlating only central bar-

rel tracks (or tracklets) with each other (essentially repeating the 
analysis as in Ref. [24]).

In this Letter, v2{2PC, sub} values for muons in the acceptance 
of the muon spectrometer are reported. Weak decays and scat-
tering in the absorber of the muon spectrometer can cause the 
kinematics of reconstructed muons to deviate from those of their 
parent particles, and can influence the reconstructed v2, especially 
in case v2,parent has a strong pT dependence. Since we cannot 
correct the measured v2 for the species-dependent inefficiencies 

induced by the absorber, we denote the resulting coefficients by 
vμ

2 {2PC, sub} to indicate that the result holds for decay muons 
measured in the muon spectrometer.

5. Systematic uncertainties

The systematic uncertainty on vμ
2 {2PC, sub} was estimated by 

varying the analysis procedure as described in this section. The 
uncertainty on the ratio between the vμ

2 {2PC, sub} in Pb–p and p–
Pb collisions was obtained on the ratio itself, in order to properly 
treat the (anti-) correlated systematics between the p–Pb and Pb–p
data samples. A summary is given in Table 2.

The acceptance of the ALICE central barrel depends on the po-
sition of zvtx. To study its influence on vμ

2 {2PC, sub}, the analysis 
was repeated using only events with a reconstructed primary ver-
tex within ±5 cm instead of ±7 cm from the nominal interaction 
point. The yield per trigger particle was not corrected for sin-
gle track acceptance and efficiency of associated particles. Since 
vμ

2 {2PC, sub} is a relative quantity, it is not expected to depend on 
the normalization. This was verified in the case of the muon-track 
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analysis, where good agreement was found between the second-
order Fourier coefficients obtained with and without single-track 
acceptance and efficiency corrections. Hence, no additional uncer-
tainty was considered.

As observed in previous analyses [24,33], the subtraction of the 
low-multiplicity class leads to a residual peak around (�η, �ϕ) ≈
(0, 0), possibly due to a bias of the event selection on the jet 
fragmentation in low-multiplicity events [67]. The pseudorapidity 
gap [24,25] used to calculate V c

n� was varied from 1.2 to 1.0 and 
to 0.8 in order to estimate the contribution of the residual near-
side short-range correlations. Due to the large gap in pseudorapid-
ity between the ALICE central barrel and the muon spectrometer, 
this contribution does not affect the forward-central correlation. 
The effect of the bias introduced by the multiplicity selection was 
addressed on the away side by scaling the 60–100% multiplicity 
class. The scaling factor ( f ) is determined as the ratio between 
away-side yields in high- and low-multiplicity classes after the 
subtraction of the second-order Fourier component [67]. This pro-
cedure was applied in the calculation of both Vn� and V c

n� . The 
scaling factors were found to be larger in the case of p–Pb col-
lisions ( f ≤ 1.40), compared to Pb–p ( f ≤ 1.26), and tend to be 
lower for increasing pT. The difference with respect to the base-
line results, for which no scaling ( f = 1) is applied, was taken as 
the systematic uncertainty.

As previously reported [67], the contribution of the long-range 
correlations to the measured yields is not significant in low-
multiplicity events. Still, their potential influence was addressed 
by changing the multiplicity range from 60–100% to 70–100% for 
the low-multiplicity class.

To test the stability of the fit, the v2 coefficient was calculated 
using a fit with only the first and the second Fourier components 
in Eq. (2). As another variation, the baseline b was calculated from 
a fit of the per-trigger yield in the low-multiplicity class using a 
Gaussian to model the shape of the away-side ridge and a constant 
to estimate b. An equivalent approach, which makes use of the 
baseline of the high-multiplicity class B in Vn�{2PC, sub} = an/B , 
was also used, where B was estimated from the integral or from 
a parabolic fit of the correlation function around the minimum. 
Finally, the �ϕ projection was obtained from a weighted aver-
age instead of a first-order polynomial fit along �η for each �ϕ
interval.

The effect from the finite angular and momentum resolution 
of the muon spectrometer on vμ

2 {2PC, sub} was evaluated from a 
dedicated MC study with the measured v2 as input distribution, 
and resulted in a small correction of below 2%. The associated un-
certainty was evaluated by varying the input v2 by 50% at the 
lowest and highest measured points.

6. Results

The vμ
2 {2PC, sub} coefficients were measured for muon tracks 

in the p-going direction (p–Pb period) using both tracks and track-
lets as associated central barrel particles, as described in Sec. 4. 
The vμ

2 {2PC, sub} coefficients obtained from the per-trigger yields 
of associated central barrel tracks agree well with those of associ-
ated tracklets, as shown in Fig. 4 as a function of muon pT. Since 
the two measurements probe different ranges in associated parti-
cle pT, the agreement is a consequence of trigger and associate v2
factorization [30]. In addition, good agreement was found between 
the vμ

2 {2PC, sub} obtained with different cuts on �ϕ h of associ-
ated tracklets (inducing a change of average pT by about 20%).

The p-going and Pb-going vμ
2 {2PC, sub} coefficients obtained 

using muon-tracklet correlations for the two different beam con-
figurations (p–Pb and Pb–p) are reported in the left panel of Fig. 5
as a function of muon pT. The Pb-going vμ

2 {2PC, sub} (i.e. when the 

Fig. 4. Comparison of vμ
2 {2PC, sub} for −4 < η < −2.5 extracted from muon-track 

and muon-tracklet correlations in p–Pb collisions at √sNN = 5.02 TeV.

muon trigger particle travels in the same direction as the Pb nu-
cleus) is observed to be larger than the p-going vμ

2 {2PC, sub} over 
the measured pT range, but the two have a similar pT-dependence. 
To quantify the asymmetry, the Pb-going over p-going ratio for the 
vμ

2 {2PC, sub} coefficients is reported in the right panel of Fig. 5
as a function of muon pT. The ratio is found to be rather inde-
pendent of pT given the statistical and systematic uncertainties 
of the measurement. A constant fit to the ratio adding statisti-
cal and systematic uncertainties in quadrature gives 1.16 ± 0.06
with a χ2/NDF = 0.4. The analysis was also repeated using the 
energy deposited in the neutron ZDCs on the Pb-going side in-
stead of the V0S amplitude for the event class definition. As dis-
cussed in detail in [62], the correlation between forward energy 
measured in the ZDCs and particle density at central rapidities is 
weak in p–Pb collisions. Therefore, event classes defined as fixed 
fractions of the signal distribution in the ZDCs select different 
events, with different mean particle multiplicity at midrapidity, 
than the samples selected with the same fractions in the V0 de-
tector. Still, the vμ

2 {2PC, sub} values were measured to be similar, 
within 25% of those extracted with V0S estimator. In addition, the 
asymmetry between Pb- and p-going vμ

2 {2PC, sub} was found to 
persist with similar shape and magnitude. The observed asym-
metry may result from decorrelations of event planes at different 
rapidity [68].

The data in Fig. 5 cannot be readily compared with existing 
predictions [57] for a 3 + 1 dimensional, viscous hydrodynamical 
model [39] and the AMPT model with the string-melting mecha-
nism enabled [65]. The model calculations were performed with-
out taking into account the effect of the muon absorber, and rep-
resent the v2 of primary particles, while as discussed in Sec. 3 the 
measured vμ

2 {2PC, sub} coefficients are reported for decay muons. 
Depending on particle composition and on the pT-dependence of 
the parent particle v2 distribution, the difference between primary 
particle v2 and decay muon v2 can be quite large. For example, at 
1 GeV/c, assuming the v2 of the parent particles rises with pT like 
at mid-rapidity [33], the measured vμ

2 {2PC, sub} for muons orig-
inating from decays of pions (kaons) would be ≈20 (40)% larger 
than that of the parent pions (kaons).

Instead, in Fig. 5 we show a comparison of the data with AMPT 
model calculations performed with the same parameters as in 
[57]. These calculations were performed at generator level, decay-
ing primary particles into muons using the PYTHIA decayer [69]. 
The effects of the muon absorber were included by applying the 
pT and η dependent relative efficiencies provided in the right 
panel of Fig. 1. Event characterization was done by mimicking the 
V0S criteria at particle level, i.e. by counting charged particles in 
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Fig. 5. The vμ
2 {2PC, sub} coefficients from muon-tracklet correlations in p-going and Pb-going directions (left) and their ratio (right) for −4 < η < −2.5 in p–Pb collisions at √

sNN = 5.02 TeV. The data are compared to model calculations from AMPT.
2.8 < η < 3.9 and −3.7 < η < −2.7. The v2 values were obtained 
separately for muons decaying from pions, kaons and heavy-flavor 
hadrons, and otherwise performing the analysis in the same way 
as in data. We found the v2 for HF muons to be consistent with 
zero within the generated statistics (5M events with a HF muon in 
the acceptance of the muon spectrometer for each period). Hence, 
for the inclusive v2, which is obtained by weighting the calcu-
lated v2 with the relative yields in each decay channel, the v2
for HF muons has been set to zero to reduce statistical fluctua-
tions. In AMPT the factor f used to scale low-multiplicity class to 
eliminate the remaining jet contribution after subtraction, reaches 
values much larger than in the data, up to f = 2. Applying the 
scaling reduces the extracted v2 and consequently this choice con-
stitutes the lower (upper) bound of the shaded area in Fig. 5 left 
(right), while the opposite bounds correspond to f = 1 (as used 
for the baseline result in the data).

As shown in the left panel of Fig. 5, below pT < 1.5 GeV/c, 
where the inclusive muon yield is expected to be dominated by 
weak decays of pions and kaons, the calculation produces qual-
itatively similar trends as observed in the data. However, quan-
titatively a different pT and η dependence is found, visible in 
particular in the right panel of Fig. 5. At pT > 2 GeV/c, where the 
inclusive muon yield is dominated by heavy-flavor decays, the data 
may support a finite value for the v2 of HF muons, or a drastically 
different composition of the parent distribution or their v2 val-
ues in AMPT compared to data. Indeed, comparing predictions of 
AMPT to pion, kaon and D-meson yields measured at midrapid-
ity [70,71], muons from heavy-flavor decays would be underesti-
mated by a factor 3–5 relative to pion and kaon decays assuming 
the same discrepancy between model and data at forward rapid-
ity. A finite value for HF muon v2 would be consistent with the 
emergence of radial flow in heavy-flavor meson spectra as pre-
dicted in [72], and has been recently measured in Pb–Pb collisions 
at 

√
sNN = 2.76 TeV [73].

7. Summary

Two-particle angular correlations between trigger particles in 
the forward pseudorapidity range 2.5 < |η| < 4.0 and associated 
particles in the central range |η| < 1.0 measured by ALICE are 
reported in p–Pb collisions at a nucleon–nucleon centre-of-mass 
energy of 5.02 TeV. The trigger particles are inclusive muons and 
the associated particles are charged particles, reconstructed by 
the muon spectrometer and central barrel tracking detectors, re-
spectively. The composition of parent particles for the measured 

muons is expected to vary as a function of pT (Fig. 1). A near-
side ridge is observed in high-multiplicity events (Fig. 2). After 
subtraction of jet-like correlations measured in low-multiplicity 
events, the double-ridge structure, previously discovered in two-
particle angular correlations at midrapidity, is found to persist even 
in the pseudorapidity ranges studied here (Fig. 3). The second-
order Fourier coefficients for muon tracks are determined as-
suming factorization of the Fourier coefficients at central and 
forward rapidity. The measurement in p–Pb collisions was per-
formed in two different ways, using tracks or tracklets for parti-
cles at |η| < 1.0, yielding consistent results (Fig. 4). The second-
order Fourier coefficients for muons in high-multiplicity events 
were found to have a similar transverse momentum dependence 
in the p-going (p–Pb) and Pb-going (Pb–p) configurations, with 
the Pb-going coefficients larger by 16 ± 6%, rather independent 
of pT within the uncertainties of the measurement (Fig. 5). The 
results were compared with calculations using the AMPT model 
incorporating the effects of the muon absorber, showing a dif-
ferent pT and η dependence than observed in the data. Above 
2 GeV/c, the results are sensitive to the v2 of heavy-flavor de-
cay muons. Forthcoming model calculations should apply the rela-
tive efficiencies for muon decays from pion and kaons (provided 
in Fig. 1) at generator level for detailed comparison with our 
data. Further measurements (e.g. of heavy-flavor muon yields or 
charged-particle v2 at forward rapidity) will be needed to re-
duce the ambiguity between muon parent particle composition 
and their v2.
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