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The pseudorapidity (η) and transverse-momentum (pT) distributions of charged particles produced in 
proton–proton collisions are measured at the centre-of-mass energy 

√
s = 13 TeV. The pseudorapidity 

distribution in |η| < 1.8 is reported for inelastic events and for events with at least one charged particle 
in |η| < 1. The pseudorapidity density of charged particles produced in the pseudorapidity region |η| <

0.5 is 5.31 ± 0.18 and 6.46 ± 0.19 for the two event classes, respectively. The transverse-momentum 
distribution of charged particles is measured in the range 0.15 < pT < 20 GeV/c and |η| < 0.8 for events 
with at least one charged particle in |η| < 1. The evolution of the transverse momentum spectra of 
charged particles is also investigated as a function of event multiplicity. The results are compared with 
calculations from PYTHIA and EPOS Monte Carlo generators.

© 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open 
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

After a two-year long shutdown, the Large Hadron Collider 
(LHC) at CERN restarted its physics programme in June 2015 with 
proton–proton collisions at 

√
s = 13 TeV, the highest centre-of-

mass energy reached so far in laboratory. The measurement of the 
inclusive production of charged hadrons in high-energy proton–
proton interactions is a key observable to characterise the global 
properties of the collision, in particular whenever the collision 
energy increases significantly. Particle production at collider ener-
gies originates from the interplay of perturbative (hard) and non-
perturbative (soft) QCD processes. Soft scattering processes and 
parton hadronisation dominate the bulk of particle production at 
low transverse momenta and can only be modelled phenomeno-
logically. Hence, these measurements provide constraints for a bet-
ter tuning of models and event generators for hadron-collider and 
cosmic-ray physics [1].

We present the pseudorapidity (η) and transverse-momen-
tum (pT) distributions of primary charged particles measured in 
proton–proton collisions at the centre-of-mass energy 

√
s = 13 TeV

with the ALICE detector [2] at the LHC [3]. Primary particles are 
defined as prompt particles produced in the collisions, including 
all decay products, with the exception of those from weak decays 
of strange particles. Similar measurements have been performed 
by ALICE in proton–proton (pp), proton–lead (p–Pb) and lead–lead 
(Pb–Pb) collisions collected during the previous LHC run at lower 

� E-mail address: alice-publications@cern.ch.

energies [4–14]. The pseudorapidity distribution is measured at 
central rapidity in |η| < 1.8. The measurements reported here have 
been obtained for inelastic events (INEL) and events having at least 
one charged particle produced with pT > 0 in the pseudorapidity 
interval |η| < 1 (INEL > 0). Similar results were recently published 
by the CMS Collaboration for INEL events [15]. The transverse-
momentum distribution of charged particles is measured in the 
range 0.15 < pT < 20 GeV/c and |η| < 0.8 for INEL > 0 events. The 
evolution of the transverse momentum spectra of charged particles 
is also investigated as a function of event multiplicity. The data 
have been compared to calculations from models commonly used 
at the LHC.

2. The ALICE detector and data collection

A comprehensive description of the ALICE experimental setup 
can be found in [2,16]. The main detectors utilised for the analy-
sis presented here are the Inner Tracking System (ITS), the Time-
Projection Chamber (TPC), the V0 counters and the ALICE Diffrac-
tive (AD) detector. The ITS and TPC detectors, which are located 
inside a solenoidal magnet providing a magnetic field of 0.5 T, are 
used for primary-vertex and track reconstruction. The V0 counters 
and the AD detector are employed for triggering and for back-
ground suppression.

The ITS is composed of six cylindrical layers of high-resolution 
silicon tracking detectors. The innermost layers consist of two ar-
rays of hybrid Silicon Pixel Detectors (SPD) located at radii 3.9 and 
7.6 cm from the beam axis and covering respectively |η| < 2.0
and |η| < 1.4 for particles emerging from the nominal interac-
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tion point (z = 0 cm). The TPC is a large cylindrical drift de-
tector of radial and longitudinal size of about 85 < r < 250 cm
and −250 < z < 250 cm, respectively. The active volume of nearly 
90 m3 is filled with an Ar–CO2 (88–12%) gas mixture and is di-
vided into two halves by a central high-voltage membrane main-
tained at −100 kV. The two end-caps are each equipped with 36 
multi-wire proportional chambers with cathode pad readout, com-
prising a total of 558 000 readout channels. The V0 counters are 
two scintillator hodoscopes placed on either side of the interaction 
region at z = 3.3 m and z = −0.9 m, covering the pseudorapidity 
regions 2.8 < η < 5.1 and −3.7 < η < −1.7, respectively. The AD 
detector was integrated in ALICE during the LHC shutdown before 
Run 2 to enhance the capabilities of the experiment to tag diffrac-
tive processes and low pT events [17]. It consists of two double 
layers of scintillation counters placed far from the interaction re-
gion, on both sides: one in the ALICE cavern at z = 17.0 m and 
one in the LHC tunnel at z = −19.5 m. The pseudorapidity cover-
age of the two AD arrays is 4.8 < η < 6.3 and −7.0 < η < −4.9, 
respectively.

The data were collected after the startup of LHC Run 2 in June 
2015. Beams consisting of 39 bunches were circulating in the ma-
chine, with about 8 × 109 protons per bunch. In the ALICE interac-
tion region, 15 pairs of bunches were colliding, leading to a lumi-
nosity of about 5 ×1027 cm−2 s−1. This value corresponds to a rate 
of about 350 Hz for inelastic proton–proton collisions. The proba-
bility that a recorded event contains more than one collision was 
estimated to be around 10−3, which is consistent with the fraction 
of events containing more than one distinct vertex and tagged as 
pileup. The luminous region had an RMS width of about 5 cm in 
the z direction and about 85 μm in the transverse direction. The 
data were collected using a minimum-bias trigger requiring a hit 
in either the V0 scintillators or in the AD arrays. The events were 
recorded in coincidence with the arrival of proton bunches from 
both directions. Control triggers taken for various combinations 
of beam and empty buckets were used to measure beam-induced 
and accidental backgrounds. The contamination from background 
events is removed offline by using the timing information from 
the V0 and the AD detectors, which have a time resolution better 
than 1 ns. Background events are also rejected by exploiting the 
correlation between the number of clusters of pixel hits and the 
number of tracklets (short track segments pointing to the primary 
vertex) in the SPD. From the analysis of control triggers it is es-
timated that the remaining background fraction in the sample is 
less than 10−4 and can be neglected.

3. Event selection and data analysis

About 1.5 million events pass the minimum-bias selection cri-
teria. Events used for the data analysis are further required to have 
a valid reconstructed vertex within |z| < 10 cm. All corrections are 
calculated using a sample of about 4 million Monte Carlo events 
from the PYTHIA 6 [18] (Perugia-2011 [19]) event generator with 
particle transport performed via a GEANT3 [20] simulation of the 
ALICE detector.

The analysis technique employed for the measurement of the 
charged-particle pseudorapidity distribution is based on the recon-
struction of tracklets, which are built using the position of the 
reconstructed primary vertex and two hits, one on each SPD layer. 
Details on the algorithm for tracklet reconstruction are described 
in [4]. This technique effectively allows to reconstruct charged par-
ticles with pT above the 50 MeV/c cut-off determined by parti-
cle absorption in the material. The charged-particle pseudorapidity 
density is obtained from the measured distribution of tracklets 
dNtracklets/dη as dNch/dη = α(1 − β)dNtracklets/dη. The correction 
α accounts for the acceptance and efficiency for a primary parti-

Table 1
Summary of the relative systematic uncertainties (expressed in %) contributing to 
the measurement of the charged-particle pseudorapidity and transverse-momentum 
distributions. The values for the dNch/dη analysis are reported separately for the 
INEL and INEL > 0 classes. For the dNch/dpT analysis the pT dependence is sum-
marised with the values at 0.15 and 20 GeV/c for the INEL > 0 class.

dNch/dη dNch/dpT

INEL INEL > 0 0.15 20 GeV/c

Background events and pileup Negligible Negligible
Normalisation 2.8 2.3 2.3

Detector acceptance and efficiency 1.5 1.8 5.6
Material budget 0.1 1.5 0.2
Track(let) selection criteria Negligible 1.5 3.0
Particle composition 0.2 0.3 2.4
Weak decays of strange hadrons 0.5 3.4 0.4
Zero-pT extrapolation 1.0 Not applicable

Total (η, pT dependent) 1.9 4.4 6.8

Total 3.4 3.0 5.0 7.2

cle to produce a tracklet, while β is the contamination of recon-
structed tracklets from combinations of hits not produced by the 
same primary particle. Both correction factors are determined as 
a function of the z position of the primary vertex and the pseu-
dorapidity of the tracklet from detector simulations and are found 
to be on average 1.5 and 0.01, respectively. The vertex position re-
quirement results in an effective |η| < 1.8 coverage. Differences in 
strange-particle content between data and simulations, observed 
at lower beam energies [21,22], are taken into account by scaling 
the strangeness production in the Monte Carlo event sample by a 
factor 1.85 (strangeness correction), resulting in a further contami-
nation correction of about 1%.

The transverse-momentum distribution is measured from tracks 
reconstructed using the information from the ITS and TPC detec-
tors. Candidate tracks are selected with cuts on the number of 
space points used for tracking and on the quality of the track fit, 
as well as on the distance of closest approach to the reconstructed 
vertex. Details on the track-reconstruction algorithm and quality 
cuts can be found in [10,11,14]. The requirements applied for track 
selection result in an effective |η| < 0.8 acceptance. The efficiency 
for track reconstruction and selection depends on the particle type 
and it is known that PYTHIA 6 does not reproduce correctly the 
particle fractions measured at 

√
s = 7 TeV. A reweighting of the 

Monte Carlo efficiencies for each species with the relative abun-
dances measured in minimum-bias pp collisions at 

√
s = 7 TeV

[21,22] is performed. The overall primary charged-particle recon-
struction efficiency for |η| < 0.8 increases sharply from 34% at 
150 MeV/c, reaches 73% at 0.8 GeV/c, decreases moderately to 
67% for pT = 2 GeV/c and rises again to reach a saturation value 
of 74% at 10 GeV/c. The minimum around 2 GeV/c arises due to 
the azimuthal segmentation of the TPC readout chambers. Tracks 
of moderate pT, which may not have enough hits in adjacent 
azimuthal sectors, do not pass the selection criteria. Finally, the 
residual contamination from secondary particles is subtracted from 
the spectrum; this contamination, estimated from Monte Carlo 
simulations, is 7% for our lowest pT bin and decreases below 1% 
for pT > 2 GeV/c.

4. Systematic uncertainties

A summary of the contributions to the relative systematic un-
certainties of the charged-particle pseudorapidity and transverse-
momentum distributions is reported in Table 1.

One of the main contributions to the normalisation of the re-
sults comes from the limited knowledge of cross-sections and 
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kinematics of diffractive processes. For proton–proton collisions 
at 

√
s = 13 TeV there is not yet any experimental information 

available about diffractive processes, therefore trigger and event-
selection efficiency corrections are solely based on previous ex-
perimental data at lower collision energies and simulations with 
Monte Carlo event generators. The corresponding systematic un-
certainty has been evaluated by varying the fractions of single-
diffractive (SD) and double-diffractive (DD) events produced by 
PYTHIA 6 (Perugia-2011) by ±50% of their nominal values at 

√
s =

13 TeV. The resulting contribution to the systematic uncertainties 
for INEL and INEL > 0 events is estimated to be about 2% and 1.2%, 
respectively. To estimate systematic uncertainties associated to the 
model dependence of the normalisation correction we employed 
PYTHIA 8 [23] (Monash-2013 [24]), which shows large differences 
both in the multiplicity and transverse-momentum distributions of 
charged particles with respect to PYTHIA 6, especially in diffractive 
events [25]. A difference of about 0.4% and 2% is observed for INEL 
and INEL > 0 events, respectively. Finally, an uncertainty of 2% has 
been estimated by varying the offline event-selection criteria ap-
plied to the trigger detectors which only affects the normalisation 
of the INEL sample.

The systematic uncertainties for the transverse-momentum dis-
tribution analysis are evaluated in a similar way as in previous 
analyses of pp [9,10], p–Pb [11,12], and Pb–Pb [14] data. The dom-
inant sources of uncertainty are the track selections, the efficiency 
corrections and, for low pT, the contamination from weak decays 
of strange hadrons. The systematic uncertainties for the pseudo-
rapidity distribution analysis are discussed in the following. The 
uncertainty in detector acceptance and efficiency is estimated to 
be about 1.5%, determined from the change of the multiplicity at 
a given η by varying the range of the z position of the vertex 
and performing the measurement in different runs. The material 
budget in the ALICE central barrel |η| < 1 is known with a preci-
sion of about 5% [16]. The corresponding systematic uncertainty, 
obtained by varying the material budget in the simulation, is es-
timated to be about 0.1% and is negligibly small compared to the 
other sources. The sensitivity to tracklet selection criteria was es-
timated varying the selection requirements and is negligible. The 
uncertainty due to the particle composition is estimated to be 
about 0.2% and was determined by changing the relative fractions 
of charged kaons and protons with respect to charged pions pro-
duced by the Monte Carlo generator by ±30%. The uncertainty 
resulting from the subtraction of the contamination from weak de-
cays of strange hadrons is estimated to amount to about 0.5% by 
varying the strangeness correction by ±30%. The uncertainty due 
to the correction down to zero pT is estimated to be about 1% by 
varying the amount of particles below the 50 MeV/c low-pT cutoff 
by +100

−50 %.

5. Results

Fig. 1 shows the average charged-particle density distribution 
〈dNch/dη〉 measured in INEL and INEL > 0 events in the pseudora-
pidity range |η| < 1.8. The data points have been symmetrised av-
eraging the results obtained in ±η, which were consistent within 
statistical uncertainties. The corresponding pseudorapidity densi-
ties in |η| < 0.5 are 5.31 ± 0.18 and 6.46 ± 0.19, respectively. The 
pseudorapidity density for the INEL > 0 events is also measured 
in |η| < 1 for direct comparison with INEL > 0 results reported 
by ALICE at lower energies [5] and is 6.61 ± 0.20. Also shown in 
Fig. 1 are the results recently published by the CMS Collaboration 
for inelastic collisions [15], which agree, within the uncertainties, 
with the measurement presented here. We compared our mea-
surement to Monte Carlo calculations performed with PYTHIA 6 
[18] (Perugia-2011 [19]), PYTHIA 8 [26] (Monash-2013 [24]) and 

Fig. 1. Average pseudorapidity density of charged particles as a function of η pro-
duced in pp collisions at √s = 13 TeV. The ALICE results are shown in the normali-
sation classes INEL and INEL > 0 and compared to Monte Carlo calculations [18,19,
24,26–28] and to the results from the CMS Collaboration [15]. The uncertainties are 
the quadratic sum of statistical and systematic contributions.

Fig. 2. Charged-particle pseudorapidity density measured in the central pseudora-
pidity region |η| < 0.5 for INEL and INEL > 0 events [4–6,15,29–33]. The uncertain-
ties are the quadratic sum of statistical and systematic contributions. The lines are 
power-law fits of the energy dependence of the data and the grey bands represent 
the standard deviation of the fits.

EPOS LHC1 [27,28] in both the INEL and INEL > 0 event classes. 
PYTHIA 6 calculations are in better agreement with the data than 
PYTHIA 8 in both classes, with PYTHIA 8 being higher than the 
data by about 12% (7%) in INEL events and about 7% (3%) in 
INEL > 0 events at η ∼ 0 (η ∼ 1.5). EPOS LHC calculations are 
about 7% (4%) and about 7% (5%) higher than the data in INEL and 
INEL > 0 events, respectively, at η ∼ 0 (η ∼ 1.5). In Fig. 2 we show 

1 Calculations performed with CRMC package version 1.5.3.
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Fig. 3. Invariant charged-particle yield as a function of pT normalised to INEL > 0
events. The data are compared to Monte Carlo calculations [18,19,24,26–28]. For the 
ratio of models (MC) and data (lower panel) the systematic and total uncertainties 
of the data are shown as grey bands.

a compilation of results on pseudorapidity density of charged par-
ticles measured in |η| < 0.5 for the INEL and INEL > 0 results at 
different proton–proton collider energies [4–6,15,29–33]. The en-
ergy dependence of 〈dNch/dη〉 is parametrised by the power law 
asb fitted to data, where a and b are free parameters. By com-
bining the data at lower energies with ALICE and CMS results at √

s = 13 TeV, we obtain b = 0.103 ± 0.002 and b = 0.111 ± 0.004
for INEL and INEL > 0 event classes, respectively. Notice that the fit 
results assume that uncertainties at different centre-of-mass ener-
gies are independent, which is not strictly the case.

Fig. 3 presents the measured pT spectrum and its compari-
son with calculations with PYTHIA 6 (Perugia-2011), PYTHIA 8 
(Monash-2013) and EPOS LHC. For bulk particle production, the 
mechanism of colour reconnection is an important one in the 
PYTHIA models (see discussion below and in Ref. [34]). EPOS is 
a model based on the Gribov–Regge theory at parton level [27]. 
Collective (flow-like) effects are incorporated in the EPOS3 version 
[35] and treated via parametrisations in the EPOS LHC version [28]. 
These event generators, benefitting from the tuning performed on 
the LHC data in Run 1, describe the pT spectrum reasonably well, 
although not in detail. It is interesting to note that both PYTHIA 8 
and EPOS LHC models show a similar pattern in the ratio to data 
with discrepancies up to 20% and that PYTHIA 6 overestimates par-
ticle production at high pT.

Fig. 4 shows the ratio of transverse-momentum spectra of 
charged particles at 

√
s = 13 TeV and 7 TeV. The published data 

at 
√

s = 7 TeV [10] were for INEL events. We have recalculated 
the normalisation of the spectrum to correspond to INEL > 0
events in a similar manner as done for 

√
s = 13 TeV. The trigger 

and event-selection efficiency for INEL > 0 events at 
√

s = 7 TeV
was estimated using the same Monte Carlo simulations used for 
the publication [10]. The systematic uncertainties of the ratio are 
the quadratic sum of uncertainties at the two energies. As ex-
pected, the spectrum is significantly harder at 

√
s = 13 TeV than 

at 
√

s = 7 TeV. PYTHIA 6, PYTHIA 8 and EPOS LHC reproduce the 

Fig. 4. Ratio of transverse-momentum spectra in INEL > 0 events at √
s =

13 and 7 TeV. The boxes represent the systematic uncertainties. The data are com-
pared to Monte Carlo calculations [18,19,24,26–28].

trend observed in the data, but exhibit a slightly more pronounced 
hardening with energy in the transverse momentum region of a 
few GeV/c. The effect appears to be more significant in PYTHIA 8 
than in PYTHIA 6 and EPOS LHC.

The correlation of the particle mean transverse momentum 
(〈pT〉) with the multiplicity of the event (Nch) first observed at 
the Spp̄S collider [36] has been studied by many experiments at 
hadron colliders in pp(p̄) covering collision energies from 

√
s =

31 GeV up to 7 TeV [9,37–44]. The increase of 〈pT〉 with Nch in 
the central rapidity region observed in all experiments could be 
reproduced in the PYTHIA event generator only if a mechanism 
of hadronisation with colour reconnections (CR) is considered [34,
45–47]. A connection between CR and features of collective flow 
has been conjectured in [48]. In heavy-ion collisions, collective 
flow is established as a genuine space–time evolution of a fireball, 
while CR in PYTHIA is a mechanism invoked for hadronisation. The 
relevance of the CR-flow conjecture is currently investigated fur-
ther [49]. A mechanism involving collective string hadronisation is 
also used in the EPOS model [28].

Fig. 5 shows the ratio of spectra measured in three inter-
vals of multiplicity to the inclusive (INEL > 0) spectrum. For this 
ratio, the spectra were normalised by the integral prior to di-
viding. The selection is performed on the multiplicity measured 
in the same kinematic region as the spectrum, |η| < 0.8 and 
0.15 < pT < 20 GeV/c, using the measured track multiplicity Nacc

ch
for data and the true value of Nch known in Monte Carlo events. 
For INEL > 0 events, 〈Nacc

ch 〉 = 6.73 (and, from the spectrum in 
Fig. 3, 〈Nch〉 = 9.41 ±0.38) for data and 〈Nch〉 = 10.13 for PYTHIA 8 
and 〈Nch〉 = 9.97 for EPOS LHC events. The low-multiplicity in-
terval corresponds to Nch (Nacc

ch ) smaller than the average value 
in INEL > 0 events, 〈Nch〉 (〈Nacc

ch 〉), the medium-multiplicity inter-
val covers between 〈Nch〉 (〈Nacc

ch 〉) and twice 〈Nch〉 (〈Nacc
ch 〉), while 

the high-multiplicity interval includes all events with Nch (Nacc
ch ) ≥

2〈Nch〉 (〈Nacc
ch 〉). Given that the measurement efficiency of the pT

spectrum for INEL > 0 events with Nch = 1 is about 50%, the data 
is slightly biased for the lowest multiplicity interval. This leads to a 
slight hardening of the measured spectrum, but the magnitude of 
the spectral shape change, of a few percent, is clearly smaller than 
the observed difference between data and models. The systematic 
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Fig. 5. Ratios of transverse-momentum distributions of charged particles in three in-
tervals of multiplicities to the respective one for inclusive (INEL > 0) collisions. The 
spectra were normalised by the integral prior to division. The data are compared to 
Monte Carlo calculations [24,26–28].

uncertainties of the measured spectra cancel out completely in the 
ratios. A residual contribution, not estimated at this stage, is that 
of the contamination from strange-particle decays.

It is known that the increase of 〈pT〉 as a function of multi-
plicity is moderate [44]. The data in Fig. 5 show that the correla-
tion of the spectrum with multiplicity is prominent for the whole 
pT range and in particular that it is stronger at high pT. In first 
order, this correlation arises naturally from jets, giving the lead-
ing high-pT hadron and a significant contribution to multiplicity. 
The general features seen in the data, which are similar to those 
first seen at 

√
s = 0.9 TeV [9], are reproduced by PYTHIA 8 and 

EPOS LHC fairly well, but some disagreements are noticeable too, 
in particular in the pT region of a few GeV/c. This is more promi-
nent for EPOS LHC. It was shown earlier [44] that both EPOS LHC 
and PYTHIA 8 reproduce well, although slightly overpredicting, the 
correlation of 〈pT〉 with Nch. The present data on spectral shape 
highlight some deficiencies in both models concerning the descrip-
tion of spectral shapes as a function of multiplicity.

6. Conclusions

We have reported the measurement of the pseudorapidity and 
transverse-momentum distributions of charged particles produced 
in proton–proton collisions at 

√
s = 13 TeV with the ALICE detec-

tor at LHC. The pseudorapidity distribution is measured for two 
normalisation classes: inelastic events (INEL) and events having at 
least one charged particle in the pseudorapidity interval |η| < 1
(INEL > 0). The charged-particle densities in |η| < 0.5 are 5.31 ±
0.18 and 6.46 ± 0.19, respectively. The transverse-momentum dis-
tribution is measured in the range 0.15 < pT < 20 GeV/c and 
|η| < 0.8 for INEL > 0 events. The spectrum is significantly harder 
than at 

√
s = 7 TeV and shows rich features when correlated with 

the charged-particle multiplicity measured in the same kinematic 
region. The results are found to be in fair agreement with the 
expectations from lower energy extrapolations and with the calcu-
lations from PYTHIA and EPOS Monte Carlo generators, but not in 
all details. Both models exhibit a slightly more pronounced hard-
ening of the pT distributions with collision energy than the data 
for transverse momenta above a few GeV/c.
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Technology of the Government of India; Istituto Nazionale di Fisica 
Nucleare (INFN) and Centro Fermi – Museo Storico della Fisica 
e Centro Studi e Ricerche “Enrico Fermi”, Italy; Japan Society for 
the Promotion of Science (JSPS) KAKENHI and MEXT, Japan; Joint 
Institute for Nuclear Research, Dubna; National Research Founda-
tion of Korea (NRF); Consejo Nacional de Ciencia y Tecnología
(CONACYT), Direccion General de Asuntos del Personal Academico 
(DGAPA), México, Amerique Latine Formation academique – Euro-
pean Commission (ALFA-EC) and the EPLANET Program (European 
Particle Physics Latin American Network); Stichting voor Funda-
menteel Onderzoek der Materie (FOM) and the Nederlandse Organ-
isatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Re-
search Council of Norway (NFR); National Science Centre, Poland; 
Ministry of National Education/Institute for Atomic Physics and 
National Council of Scientific Research in Higher Education (CNCSI-
UEFISCDI), Romania; Ministry of Education and Science of Russian 
Federation, Russian Academy of Sciences, Russian Federal Agency 
of Atomic Energy, Russian Federal Agency for Science and Inno-
vations and The Russian Foundation for Basic Research; Ministry 
of Education of Slovakia; Department of Science and Technology, 
South Africa; Centro de Investigaciones Energeticas, Medioambi-
entales y Tecnologicas (CIEMAT), E-Infrastructure shared between 
Europe and Latin America (EELA), Ministerio de Economía y Com-
petitividad (MINECO) of Spain, Xunta de Galicia (Consellería de 
Educación), Centro de Aplicaciones Tecnológicas y Desarrollo Nu-
clear (CEADEN), Cubaenergía, Cuba, and IAEA (International Atomic 
Energy Agency); Swedish Research Council (VR) and Knut & Alice 
Wallenberg Foundation (KAW); Ukraine Ministry of Education and 
Science; United Kingdom Science and Technology Facilities Council 
(STFC); The United States Department of Energy, the United States 
National Science Foundation, the State of Texas, and the State of 
Ohio; Ministry of Science, Education and Sports of Croatia and 
Unity through Knowledge Fund, Croatia; Council of Scientific and 
Industrial Research (CSIR), New Delhi, India; Pontificia Universidad 
Católica del Perú.
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J. Bielčíková 84, A. Bilandzic 81, R. Biswas 4, S. Biswas 79, S. Bjelogrlic 57, J.T. Blair 118, D. Blau 80, 
C. Blume 53, F. Bock 94,74, A. Bogdanov 75, H. Bøggild 81, L. Boldizsár 135, M. Bombara 41, J. Book 53, 
H. Borel 15, A. Borissov 96, M. Borri 83,124, F. Bossú 65, E. Botta 27, S. Böttger 52, C. Bourjau 81, 
P. Braun-Munzinger 97, M. Bregant 120, T. Breitner 52, T.A. Broker 53, T.A. Browning 95, M. Broz 40, 
E.J. Brucken 46, E. Bruna 110, G.E. Bruno 33, D. Budnikov 99, H. Buesching 53, S. Bufalino 27,36, P. Buncic 36, 
O. Busch 94,128, Z. Buthelezi 65, J.B. Butt 16, J.T. Buxton 20, D. Caffarri 36, X. Cai 7, H. Caines 136, 
L. Calero Diaz 72, A. Caliva 57, E. Calvo Villar 102, P. Camerini 26, F. Carena 36, W. Carena 36, 
F. Carnesecchi 28, J. Castillo Castellanos 15, A.J. Castro 125, E.A.R. Casula 25, C. Ceballos Sanchez 9, 
J. Cepila 40, P. Cerello 110, J. Cerkala 115, B. Chang 123, S. Chapeland 36, M. Chartier 124, J.L. Charvet 15, 
S. Chattopadhyay 132, S. Chattopadhyay 100, V. Chelnokov 3, M. Cherney 87, C. Cheshkov 130, B. Cheynis 130, 
V. Chibante Barroso 36, D.D. Chinellato 121, S. Cho 50, P. Chochula 36, K. Choi 96, M. Chojnacki 81, 
S. Choudhury 132, P. Christakoglou 82, C.H. Christensen 81, P. Christiansen 34, T. Chujo 128, S.U. Chung 96, 
C. Cicalo 105, L. Cifarelli 12,28, F. Cindolo 104, J. Cleymans 90, F. Colamaria 33, D. Colella 59,33,36, 
A. Collu 74,25, M. Colocci 28, G. Conesa Balbastre 71, Z. Conesa del Valle 51, M.E. Connors 136,ii, 
J.G. Contreras 40, T.M. Cormier 85, Y. Corrales Morales 110, I. Cortés Maldonado 2, P. Cortese 32, 
M.R. Cosentino 120, F. Costa 36, P. Crochet 70, R. Cruz Albino 11, E. Cuautle 63, L. Cunqueiro 36, 
T. Dahms 93,37, A. Dainese 107, A. Danu 62, D. Das 100, I. Das 51,100, S. Das 4, A. Dash 121,79, S. Dash 48, 
S. De 120, A. De Caro 31,12, G. de Cataldo 103, C. de Conti 120, J. de Cuveland 43, A. De Falco 25, 
D. De Gruttola 12,31, N. De Marco 110, S. De Pasquale 31, A. Deisting 97,94, A. Deloff 77, E. Dénes 135,i, 
C. Deplano 82, P. Dhankher 48, D. Di Bari 33, A. Di Mauro 36, P. Di Nezza 72, M.A. Diaz Corchero 10, 
T. Dietel 90, P. Dillenseger 53, R. Divià 36, Ø. Djuvsland 18, A. Dobrin 57,82, D. Domenicis Gimenez 120, 
B. Dönigus 53, O. Dordic 22, T. Drozhzhova 53, A.K. Dubey 132, A. Dubla 57, L. Ducroux 130, P. Dupieux 70, 
R.J. Ehlers 136, D. Elia 103, H. Engel 52, E. Epple 136, B. Erazmus 113, I. Erdemir 53, F. Erhardt 129, 
B. Espagnon 51, M. Estienne 113, S. Esumi 128, J. Eum 96, D. Evans 101, S. Evdokimov 111, G. Eyyubova 40, 
L. Fabbietti 93,37, D. Fabris 107, J. Faivre 71, A. Fantoni 72, M. Fasel 74, L. Feldkamp 54, A. Feliciello 110, 
G. Feofilov 131, J. Ferencei 84, A. Fernández Téllez 2, E.G. Ferreiro 17, A. Ferretti 27, A. Festanti 30, 
V.J.G. Feuillard 15,70, J. Figiel 117, M.A.S. Figueredo 124,120, S. Filchagin 99, D. Finogeev 56, F.M. Fionda 25, 
E.M. Fiore 33, M.G. Fleck 94, M. Floris 36, S. Foertsch 65, P. Foka 97, S. Fokin 80, E. Fragiacomo 109, 
A. Francescon 30,36, U. Frankenfeld 97, U. Fuchs 36, C. Furget 71, A. Furs 56, M. Fusco Girard 31, 
J.J. Gaardhøje 81, M. Gagliardi 27, A.M. Gago 102, M. Gallio 27, D.R. Gangadharan 74, P. Ganoti 36,89, C. Gao 7, 
C. Garabatos 97, E. Garcia-Solis 13, C. Gargiulo 36, P. Gasik 37,93, E.F. Gauger 118, M. Germain 113, 
A. Gheata 36, M. Gheata 36,62, P. Ghosh 132, S.K. Ghosh 4, P. Gianotti 72, P. Giubellino 36,110, P. Giubilato 30, 
E. Gladysz-Dziadus 117, P. Glässel 94, D.M. Goméz Coral 64, A. Gomez Ramirez 52, V. Gonzalez 10, 
P. González-Zamora 10, S. Gorbunov 43, L. Görlich 117, S. Gotovac 116, V. Grabski 64, O.A. Grachov 136, 
L.K. Graczykowski 133, K.L. Graham 101, A. Grelli 57, A. Grigoras 36, C. Grigoras 36, V. Grigoriev 75, 
A. Grigoryan 1, S. Grigoryan 66, B. Grinyov 3, N. Grion 109, J.M. Gronefeld 97, J.F. Grosse-Oetringhaus 36, 
J.-Y. Grossiord 130, R. Grosso 97, F. Guber 56, R. Guernane 71, B. Guerzoni 28, K. Gulbrandsen 81, T. Gunji 127, 
A. Gupta 91, R. Gupta 91, R. Haake 54, Ø. Haaland 18, C. Hadjidakis 51, M. Haiduc 62, H. Hamagaki 127, 
G. Hamar 135, J.W. Harris 136, A. Harton 13, D. Hatzifotiadou 104, S. Hayashi 127, S.T. Heckel 53, M. Heide 54, 
H. Helstrup 38, A. Herghelegiu 78, G. Herrera Corral 11, B.A. Hess 35, K.F. Hetland 38, H. Hillemanns 36, 
B. Hippolyte 55, R. Hosokawa 128, P. Hristov 36, M. Huang 18, T.J. Humanic 20, N. Hussain 45, T. Hussain 19, 
D. Hutter 43, D.S. Hwang 21, R. Ilkaev 99, M. Inaba 128, M. Ippolitov 75,80, M. Irfan 19, M. Ivanov 97, 
V. Ivanov 86, V. Izucheev 111, P.M. Jacobs 74, M.B. Jadhav 48, S. Jadlovska 115, J. Jadlovsky 115,59, 
C. Jahnke 120, M.J. Jakubowska 133, H.J. Jang 68, M.A. Janik 133, P.H.S.Y. Jayarathna 122, C. Jena 30, S. Jena 122, 



326 ALICE Collaboration / Physics Letters B 753 (2016) 319–329

R.T. Jimenez Bustamante 97, P.G. Jones 101, H. Jung 44, A. Jusko 101, P. Kalinak 59, A. Kalweit 36, J. Kamin 53, 
J.H. Kang 137, V. Kaplin 75, S. Kar 132, A. Karasu Uysal 69, O. Karavichev 56, T. Karavicheva 56, 
L. Karayan 97,94, E. Karpechev 56, U. Kebschull 52, R. Keidel 138, D.L.D. Keijdener 57, M. Keil 36, 
M. Mohisin Khan 19,iii, P. Khan 100, S.A. Khan 132, A. Khanzadeev 86, Y. Kharlov 111, B. Kileng 38, B. Kim 123, 
D.W. Kim 44, D.J. Kim 123, D. Kim 137, H. Kim 137, J.S. Kim 44, M. Kim 44, M. Kim 137, S. Kim 21, T. Kim 137, 
S. Kirsch 43, I. Kisel 43, S. Kiselev 58, A. Kisiel 133, G. Kiss 135, J.L. Klay 6, C. Klein 53, J. Klein 36,94, 
C. Klein-Bösing 54, S. Klewin 94, A. Kluge 36, M.L. Knichel 94, A.G. Knospe 118, T. Kobayashi 128, 
C. Kobdaj 114, M. Kofarago 36, T. Kollegger 97,43, A. Kolojvari 131, V. Kondratiev 131, N. Kondratyeva 75, 
E. Kondratyuk 111, A. Konevskikh 56, M. Kopcik 115, M. Kour 91, C. Kouzinopoulos 36, O. Kovalenko 77, 
V. Kovalenko 131, M. Kowalski 117, G. Koyithatta Meethaleveedu 48, I. Králik 59, A. Kravčáková 41, 
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