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The elliptic flow, v2, of muons from heavy-flavour hadron decays at forward rapidity (2.5 < y < 4) 
is measured in Pb–Pb collisions at √sNN = 2.76 TeV with the ALICE detector at the LHC. The scalar 
product, two- and four-particle Q cumulants and Lee–Yang zeros methods are used. The dependence of 
the v2 of muons from heavy-flavour hadron decays on the collision centrality, in the range 0–40%, and 
on transverse momentum, pT, is studied in the interval 3 < pT < 10 GeV/c. A positive v2 is observed 
with the scalar product and two-particle Q cumulants in semi-central collisions (10–20% and 20–40% 
centrality classes) for the pT interval from 3 to about 5 GeV/c with a significance larger than 3σ , 
based on the combination of statistical and systematic uncertainties. The v2 magnitude tends to decrease 
towards more central collisions and with increasing pT. It becomes compatible with zero in the interval 
6 < pT < 10 GeV/c. The results are compared to models describing the interaction of heavy quarks and 
open heavy-flavour hadrons with the high-density medium formed in high-energy heavy-ion collisions.

© 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open 
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Experiments with ultra-relativistic heavy-ion collisions aim at 
investigating the properties of strongly-interacting matter at very 
high temperatures and energy densities. Quantum Chromodynam-
ics (QCD) calculations on the lattice predict, under these con-
ditions, the formation of a Quark–Gluon Plasma (QGP), where 
color confinement vanishes and chiral symmetry is partially re-
stored [1–5]. Heavy quarks (charm and beauty) are created in ini-
tial hard-scattering processes on a time scale shorter than the QGP 
formation time. Subsequently, they interact with the medium con-
stituents via inelastic [6,7] and elastic [8–10] processes. Therefore, 
heavy quarks are regarded as effective probes of the QGP proper-
ties.

Heavy-quark energy loss due to in-medium interactions can 
be studied by means of the nuclear modification factor RAA, de-
fined as the ratio of the yield of heavy-flavour particles measured 
in nucleus–nucleus (AA) collisions to that observed in proton–
proton (pp) collisions scaled by the number of binary nucleon–
nucleon collisions. The PHENIX and STAR Collaborations measured, 
in central Au–Au collisions at 

√
sNN = 200 GeV, a strong suppres-

sion corresponding to a RAA of about 0.2–0.3 for heavy-flavour 
decay electrons at mid-rapidity (y) and transverse momentum 
pT > 5 GeV/c [11–17]. A similar suppression was also measured by 

� E-mail address: alice-publications@cern.ch.

the STAR Collaboration for mid-rapidity D0 mesons [18]. A signif-
icant suppression was also observed by the PHENIX Collaboration 
at forward rapidity for muons from heavy-flavour hadron decays 
in central Cu–Cu collisions at 

√
sNN = 200 GeV [19]. At the LHC, 

the ALICE Collaboration reported a similar effect in central Pb–Pb 
collisions at 

√
sNN = 2.76 TeV for D mesons at mid-rapidity [20]

and muons from heavy-flavour hadron decays at forward rapid-
ity [21] in the interval 2 < pT < 16 GeV/c and 4 < pT < 10 GeV/c, 
respectively. The CMS Collaboration measured a significant sup-
pression of non-prompt J/ψ from beauty-hadron decays in the 
interval 6.5 < pT < 30 GeV/c (3 < pT < 30 GeV/c) and |y| < 2.4
(1.6 < |y| < 2.4) [22,23]. A first measurement of non-prompt J/ψ
by the ALICE Collaboration at mid-rapidity (|y| < 0.8) and in the 
interval 4.5 < pT < 10 GeV/c has been recently published [24].

Further insights into the QGP evolution and the in-medium 
interactions can be gained from the study of the azimuthal 
anisotropy of particles carrying heavy quarks which, in contrast 
to light quarks, have experienced the full system evolution. The 
study of azimuthal anisotropy is a field of intense experimental 
and theoretical investigations (see [25] and references therein). In 
non-central collisions, the initial spatial anisotropy of the overlap 
region, elongated in the direction perpendicular to the reaction 
plane, defined by the beam axis and the impact parameter of 
the collision, is converted into an anisotropy in momentum space 
through rescatterings [26]. Experimentally, the study of the particle 
azimuthal anisotropy is based on a Fourier expansion of azimuthal 
distributions given by:

http://dx.doi.org/10.1016/j.physletb.2015.11.059
0370-2693/© 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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d2N

dpTdϕ
= 1

2π

dN

dpT

(
1 + 2

∞∑
n=1

vn(pT) cos[n(ϕ − �n)]
)

, (1)

where ϕ and pT are the particle azimuthal angle and transverse 
momentum, respectively. The Fourier coefficients, vn , characterize 
the anisotropy of produced particles and �n is the azimuthal angle 
of the initial-state symmetry plane for the nth harmonic, intro-
duced to account for the event-by-event fluctuations of the initial 
nucleon density profile. The second Fourier coefficient, v2, which 
can also be expressed as v2 = 〈cos[2(ϕ − �2)]〉, is named elliptic 
flow.

The v2 of heavy-flavour hadrons is expected to provide infor-
mation on the collective expansion and degree of thermalization 
of heavy quarks in the medium at low pT (pT < 2–3 GeV/c). The 
participation of heavy quarks in the collective expansion is ex-
pected to give a positive v2 [26]. Moving towards intermediate 
pT (3 < pT < 6 GeV/c), the v2 Fourier coefficient is also expected 
to be sensitive to the presence of recombination processes in the 
hadronization of heavy quarks [27,28]. At high pT (pT > 6 GeV/c), 
the v2 measurement can constrain the path-length dependence of 
the in-medium parton energy loss, which becomes the dominant 
contribution to the azimuthal anisotropy and is also predicted to 
give a positive v2 [29,30], thus complementing the RAA measure-
ment.

The PHENIX Collaboration reported a positive v2 of heavy-
flavour decay electrons at mid-rapidity in Au–Au collisions at √

sNN = 200 GeV, reaching a maximum value of about 0.15 at 
pT = 1.5 GeV/c in semi-central collisions [14,15,31]. A similar 
behavior was also observed by the STAR Collaboration [32]. Re-
cently, a v2 value significantly larger than zero was measured for D 
mesons at mid-rapidity in Pb–Pb collisions at 

√
sNN = 2.76 TeV [33,

34]. A complementary measurement at the same energy, provided 
by the heavy-flavour decay muon elliptic flow at forward rapidity 
(2.5 < y < 4), is of great interest in order to provide new con-
straints for models that implement the heavy-quark interactions 
with the medium. Finally, the measurement is also important for 
the interpretation of the J/ψ elliptic flow results at forward ra-
pidity [35] in terms of a regeneration production from deconfined 
charm quarks in the medium.

In this Letter, we present the measurement of the elliptic flow 
of muons from heavy-flavour hadron decays at forward rapidity 
(2.5 < y < 4) in Pb–Pb collisions at 

√
sNN = 2.76 TeV recorded 

with the ALICE detector. The elliptic flow is measured using dif-
ferent methods: scalar product [36], two- and four-particle Q cu-
mulants [37,38] and Lee–Yang zeros [39–41]. These methods ex-
hibit different sensitivities to flow fluctuations and correlations not 
related to the azimuthal asymmetry in the initial geometry (non-
flow effects). The v2 coefficient is measured as a function of pT in 
the interval 3 < pT < 10 GeV/c and in three centrality classes in 
the range 0–40%. The centrality dependence of v2 is presented in 
the interval 3 < pT < 5 GeV/c.

The Letter is organized as follows. The ALICE detector, with an 
emphasis on the muon spectrometer, and the data sample are pre-
sented in Section 2. The analysis details, the methods for the v2

measurement, the inclusive muon v2 determination, the proce-
dure for the subtraction of the background of muons from decays 
of light-flavour hadrons and the study of systematic uncertainties, 
are described in Section 3. The v2 results for muons from heavy-
flavour decays are presented in Section 4. The v2 measurement in 
semi-central collisions as well as the published RAA in central col-
lisions are compared to model calculations in Section 5. Finally, 
conclusions are given in Section 6.

2. ALICE experiment and data sample

The ALICE detector is described in detail in [42,43]. The ap-
paratus is composed of a set of central barrel detectors (pseudo-
rapidity coverage |η| < 0.9) located inside a solenoid magnet that 
generates a field of 0.5 T parallel to the beam direction, a muon 
spectrometer (−4 < η < −2.51) and a set of detectors for event 
characterization and triggering located in the forward and back-
ward η regions. The muon spectrometer consists of a passive front 
absorber made of carbon, concrete and steel, a beam shield, a 
3 T m dipole magnet, tracking chambers, a muon filter (iron wall) 
and trigger chambers. The muon tracking system is composed of 
five stations, each including two planes of cathod pad chambers, 
with the third station inside the dipole magnet. The muon track-
ing system is completed by four trigger planes of resistive plate 
chambers downstream of the iron wall, which absorbs hadrons 
that punch through the front absorber, as well as secondary parti-
cles produced inside it and low momentum muons (p < 4 GeV/c).

Two scintillator arrays (V0) covering the pseudo-rapidity inter-
vals −3.7 < η < −1.7 and 2.8 < η < 5.1 are used for triggering, 
for collision centrality determination and for beam-induced back-
ground rejection. The Zero Degree Calorimeters (ZDC), located at 
114 m from the centre of the detector on both sides, can detect 
spectator protons and neutrons and are also used for the offline 
rejection of beam-induced background and electromagnetic inter-
actions. The Silicon Pixel Detector (SPD), that composes the two 
innermost layers of the Inner Tracking System (ITS), is used for 
the interaction vertex reconstruction. The Time Projection Chamber 
(TPC), which measures charged-particle tracks with full azimuthal 
coverage in |η| < 0.9, is used in this analysis for the measurement 
of the reference particles (Section 3.1).

The results presented in this Letter are obtained from the data 
sample recorded with ALICE during the 2011 Pb–Pb run. The data 
were collected with a minimum-bias trigger requiring the coinci-
dence of signals in the two V0 arrays in synchronization with the 
passage of two crossing bunches. In addition, the recorded event 
sample was enriched with central and semi-central Pb–Pb colli-
sions by applying thresholds, at the trigger level, on the V0 signal 
amplitude. The beam-induced background (beam–gas interactions) 
was reduced by using the timing information from the V0 and 
ZDC detectors. Furthermore, a minimal energy deposit in the ZDC 
was required to reject the contribution from electromagnetic Pb–
Pb interactions. Only events with a reconstructed primary vertex 
within ±10 cm from the nominal position of the interaction ver-
tex along the beam direction are analyzed. The Pb–Pb collisions are 
classified according to their degree of centrality by means of the 
sum of the amplitudes of the signals in the V0 detector and the 
centrality classes are defined as percentiles of the total hadronic 
Pb–Pb cross section [44]. The analysis is carried out in three cen-
trality classes: 0–10% (using the sample with trigger on central 
collisions), 10–20% and 20–40% (using the sample with trigger on 
semi-central collisions). The analyzed data sample corresponds to 
an integrated luminosity of 11.3 μb−1 in the 0–10% centrality class 
and of 3.5 μb−1 in the other two centrality classes.

3. Data analysis

The elliptic flow of muons from heavy-flavour hadron decays, 
vμ←HF

2 , is obtained from the measurement of the inclusive muon 
elliptic flow, vμ

2 , by subtracting the elliptic flow of muons from pri-

1 In the ALICE reference frame, the muon spectrometer covers a negative η range 
and consequently a negative y range. In the following, given that the colliding sys-
tem is symmetric, the results are presented with a positive y notation.
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mary charged pion and kaon decays vμ←π,K
2 (Sections 3.1 and 3.4), 

as:

vμ←HF
2 = vμ

2 − f μ←π,K · vμ←π,K
2

1 − f μ←π,K
, (2)

where f μ←π,K is the muon background fraction, defined as the 
ratio of the yield of muons from primary charged pion and kaon 
decays to that of inclusive muons. The measurement of the vμ←HF

2
coefficient is carried out in the interval 3 < pT < 10 GeV/c in order 
to limit the systematic uncertainty on the subtraction of the muon 
background contribution.

3.1. Track selection

The selection criteria for particles of interest, muon tracks, are 
similar to those used in the previous analyses of pp collisions at √

s = 2.76 TeV and 7 TeV and Pb–Pb collisions at 
√

sNN = 2.76 TeV
[21,45]. The tracks are required to be within the geometrical ac-
ceptance of the muon spectrometer, with −4 < η < −2.5 and 
170◦ < θabs < 178◦ , where θabs is the polar angle measured at the 
end of the absorber. In order to improve the muon identification, a 
reconstructed track in the tracking chambers is required to match 
a track segment in the trigger chambers. This leads to a very ef-
ficient rejection of the background produced by charged hadrons, 
which are absorbed in the iron wall. Furthermore, a cut on the 
product p · DCA of the track momentum p and distance of clos-
est approach (DCA) to the primary vertex is applied to remove the 
beam-induced background tracks and fake tracks coming from the 
superposition of several particles crossing the muon spectrometer. 
Due to multiple scattering in the front absorber, the DCA distri-
bution of tracks coming form the interaction vertex is expected 
to be described by a Gaussian function, its width being depen-
dent on the absorber material and proportional to 1/p. Background 
tracks have a very broad distribution in p · DCA and are effectively 
rejected by a cut at 6σ , where σ is extracted from a Gaussian 
fit to the p · DCA distribution measured in two intervals of θabs, 
corresponding to different materials in the front absorber. The rel-
ative momentum resolution of reconstructed tracks varies from 
about 1% to 4% for tracks with momentum between 20 GeV/c and 
100 GeV/c. After the cuts are applied, in the region pT > 3 GeV/c
the residual background to heavy-flavour decay muons consists of 
muons from decays of primary charged pions and kaons2 and it 
amounts to 5–15%, depending on pT and on collision centrality 
(Section 3.4).

The mid-rapidity charged-particle tracks used to determine the 
flow vector �Q n or the generating function (Section 3.2) are called 
in the following reference particles. They are defined as tracks 
measured in the TPC in |η| < 0.8. These are required to have at 
least 70 associated space points out of the maximum of 159, a 
χ2 per degree of freedom (ndf) for the momentum fit in the 
range χ2/ndf < 2 and a transverse momentum value in the in-
terval 0.2 < pT < 5 GeV/c. Additionally, tracks are rejected if their 
distance of closest approach to the primary vertex is larger than 
3 cm in the plane transverse to the beam direction or in the lon-
gitudinal direction.

3.2. Flow analysis methods

The elliptic flow measurement is carried out using various 
methods that have different sensitivities to flow fluctuations and 

2 Note that the contribution of muons from secondary light hadron decays pro-
duced inside the front absorber is negligible for pT > 3 GeV/c [45].

non-flow effects [46]. Flow fluctuations are mainly due to event-
by-event fluctuations of the initial density profile, while non-flow 
effects correspond to correlations not related to the azimuthal 
anisotropy in the initial state, such as resonance decays, jets and 
Bose–Einstein correlations between identical particles. It is worth 
mentioning that, in the present analysis, most of these non-flow 
effects are strongly suppressed by introducing an η gap between 
reference particles and particles of interest [47]. In this analysis, 
the scalar product [36], two- and four-particle Q cumulants [37,
38] and Lee–Yang zeros [39–41] methods are employed. The de-
scription of these methods will be limited to the features specific 
to the present analysis. The following notations are introduced: 
vμ(μ←HF)

2 {SP}, refers to the measurement using the scalar product, 
vμ(μ←HF)

2 {2} and vμ(μ←HF)
2 {4} correspond to the ones using the 

two-particle Q cumulants and four-particle Q cumulants, while 
vμ(μ←HF)

2 {LYZ-Prod} and vμ(μ←HF)
2 {LYZ-Sum} are obtained using 

Lee–Yang zeros with product and sum generating functions. The 
superscripts μ and μ ← HF refer to inclusive muons and muons 
from heavy-flavour hadron decays, respectively. It is worth men-
tioning that these methods are more accurate than the standard 
event plane method, which yields a measurement lying between 
the event-averaged mean value and the root-mean-square value 
in the presence of flow fluctuations [48,49]. Moreover, the multi-
particle correlation methods (four-particle Q cumulants and Lee–
Yang zeros) are less affected by non-flow correlations than two-
particle correlation methods, but they cannot be used reliably 
when the muon flow magnitude is small and when the num-
ber of muons is small in the selected phase-space region e.g. in 
central and peripheral collisions, respectively [37,39]. Under these 
conditions, the scalar product and two-particle cumulant methods 
provide a v2 measurement in a wider centrality range.

The scalar product method [36,48], derived from the standard 
event plane technique [48], is based on the measurement of the 
flow vector �Q n [36] computed from reference particles. In order 
to determine the elliptic flow, the �Q 2 vector in a given event is 
expressed as:

�Q 2 =
( N∑

j=1

cos2ϕ j,

N∑
j=1

sin2ϕ j

)
, (3)

where ϕ j is the particle azimuthal angle and N is the multiplicity 
of reference particles.

With this method the 2nd harmonic coefficient is given by:

v2{SP} = 〈 �Q 2 · �u2,i(η, pT)〉
2
√

〈 �Q A
2 · �Q B

2 〉
, (4)

where the brackets in the numerator indicate the average over 
muons at forward rapidity, in all events. The vector Q 2 is calcu-
lated from Eq. (3) and the vector �u2,i = (cos 2ϕi, sin 2ϕi) is the unit 
vector of the ith muon. In the denominator, each sample of refer-
ence particles used to compute �Q 2 is divided into two sub-samples 
of same multiplicity in symmetrical η intervals, −0.8 < η < −0.5
and 0.5 < η < 0.8, separated by a η gap of one unit of pseudo-
rapidity, labeled with the superscripts A and B and the brackets 
correspond to the average over events.

The cumulant technique [37,38] is based on a cumulant expan-
sion of multi-particle azimuthal correlations. Different order cumu-
lants have different sensitivities to flow fluctuations. In the present 
analysis, two- and four-particle cumulants are used to extract the 
muon elliptic flow. The results presented in the following are ob-
tained from a direct calculation of multi-particle cumulants per-
formed by using the Q -cumulant technique [38], which is based 
on the moments of the magnitude of the flow vector �Q 2. It is 
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worth mentioning that in this approach the cumulants are not 
biased by the interferences between various harmonics. The ref-
erence elliptic flow values V 2 evaluated from the 2nd order cumu-
lant c2{2} and 4th order cumulant c2{4} with reference particles 
are given by V 2{2} = √

c2{2} and V 2{4} = 4
√−c2{4}, respectively. 

Once the reference elliptic flow is estimated, the muon elliptic flow 
with respect to the reference elliptic flow is obtained from the 2nd 
and 4th order cumulants according to:

v2{2} = d2{2}
V 2{2} and v2{4} = d2{4}

V 2{4}3
, (5)

where d2{2} and d2{4} are the 2nd and 4th order cumulants of 
selected muons [38].

The Lee–Yang zeros method [39–41] relies on correlations in-
volving all particles in the event. This is the limit of cumulants 
when the order of cumulants goes to infinity. The method is based 
on the location of the zeros in the complex plane, of a generat-
ing function of azimuthal correlations, which relates the position 
of the first minimum of the generating function to the magnitude 
of the reference elliptic flow V 2 defined as:

V 2 ≡
〈 M∑

j=1

cos[2(ϕ j − �2)]
〉

events
, (6)

where M is the multiplicity of reference particles and the average 
is taken over all events. For this purpose, the following complex-
valued generating function is evaluated as a function of a positive 
real variable r and few, typically five, equally spaced reference an-
gles ϑ (LYZ-Prod method):

Gϑ(ir) ≡
〈 M∏

j=1

(1 + ir cos[2(ϕ j − ϑ)])
〉

events
. (7)

The first positive minimum of |Gϑ (ir)|, denoted as rϑ
0 , allows one 

to estimate V ϑ
2 , which can be written as V ϑ

2 = j01/rϑ
0 , where 

j01 
 2.405 is the first root of the Bessel function. Once the first 
minimum rϑ

0 is determined, the differential muon elliptic flow 
is estimated with respect to the reference flow V ϑ

2 as detailed 
in [41]. Finally, the result is averaged over all ϑ angles. An alter-
native form of the generating function provided with the LYZ-Sum 
method is:

Gϑ(ir) ≡
〈
exp

(
ir

M∑
j=1

cos[2(ϕ j − ϑ)]
)〉

events
. (8)

The version of the method involving a product for the construction 
of the generation function (Eq. (7)) was designed to disentangle 
interferences between different harmonics, which is not the case 
with the generating function using a sum of the individual refer-
ence particle contributions. Both generating functions are used in 
this analysis.

Note that, for all methods, autocorrelation effects are avoided 
because the particles (muons) used in the determination of the 
flow are not included in the estimation of the reference flow.

3.3. Inclusive muon elliptic flow

The elliptic flow of inclusive muons, vμ
2 , is studied with two-

particle correlation methods (scalar product and two-particle Q
cumulants) in the centrality intervals 0–10%, 10–20% and 20–40%. 
In the 20–40% centrality interval, the multi-particle correlation 
methods (four-particle Q cumulants and Lee–Yang zeros) are also 
used.

Several sources of systematic uncertainty affecting the muon el-
liptic flow measurement are considered. These take into account 
the changes due to the variations of the reference particle selec-
tion criteria as in [33,34,50], to allow us to check the robustness 
of the vμ

2 measurement. Since the collision impact parameter dis-
tribution could slightly depend on the observable used for the 
centrality determination, a systematic uncertainty is estimated by 
repeating the analysis using the number of clusters in the outer-
most layer of the SPD and the number of tracks in the TPC as 
centrality estimators, instead of the V0 signal amplitude. The sys-
tematic uncertainty due to the effect of TPC tracks from different 
Pb–Pb collisions piled-up in the same recorded event is estimated 
by applying a tighter cut to remove outliers in the multiplicity dis-
tribution of reference particles. This is done by requiring that the 
centrality values determined using the V0 signal amplitude and the 
number of TPC tracks do not differ by more than 5%. An additional 
systematic uncertainty specific to the scalar product is evaluated 
by varying the η gap between the two sub-events from 1 to 0.8 
η-units (see Eq. (4) and [36]). The various systematic uncertain-
ties are added in quadrature. They tend to increase with increasing 
pT (see Fig. 1). A summary of the systematic uncertainties, in the 
interval 3 < pT < 4.5 GeV/c, is presented in Table 1.

Fig. 1 shows the pT-differential muon elliptic flow (vμ
2 ) in the 

0–10%, 10–20% and 20–40% centrality classes as obtained using 
the various methods. The values of vμ

2 slightly increase from cen-
tral to semi-central collisions and this effect is more pronounced 
in the pT interval 3 < pT < 4.5 GeV/c. The two-particle correla-
tion methods (scalar product and two-particle Q cumulants) give 
consistent results over the whole pT range, indicating that these 
methods have a similar sensitivity to non-flow effects3 and in par-
ticular to flow fluctuations. A similar agreement is found when 
comparing the multi-particle correlation methods (four-particle Q
cumulants and Lee–Yang zeros) to each other. No significant differ-
ence between the vμ

2 results extracted with Lee–Yang zeros using 
either the sum or product generating function is seen, hence in-
dicating that interferences between harmonics are negligible [51]. 
Moreover, four-particle Q cumulants give comparable results as 
Lee–Yang zeros. The four-particle Q cumulants and Lee–Yang ze-
ros are expected to be less affected by non-flow effects than scalar 
product or two-particle Q cumulants [52]. However, as mentioned 
non-flow effects are expected to be negligible, even with two-
particle correlation techniques, due to the large η between ref-
erence particles and inclusive muons. Finally, the central values of 
vμ

2 obtained with four-particle Q cumulants or Lee–Yang zeros are 
systematically smaller than with two-particle correlation methods, 
although compatible within uncertainties. Such differences may in-
dicate that initial fluctuations play a role in the development of the 
final momentum-space anisotropy.

3.4. Muon background subtraction

The subtraction of the muon background contribution to the 
measured vμ

2 requires an estimate of the elliptic flow of muons 
from charged pion and kaon decays, vμ←π,K

2 , and of the back-
ground fraction, f μ←π,K (see Eq. (2)). The determination of 
the vμ←π,K

2 coefficient requires two steps. First, the pT- and 
η-differential v2 of charged particles measured in |η| < 2.5 by 
the ATLAS Collaboration in Pb–Pb collisions [53] and the pT dis-
tributions of charged pions and kaons measured in |y| < 0.8 by 

3 Note that, in this analysis, most non-flow correlations are suppressed, even with 
two-particle correlation methods since reference particles and inclusive muons are 
separated by at least 1.7 η-units. However, it is worth mentioning that the main 
difference between the two methods is the η gap between the two sub-samples 
used to compute �Q 2 (Eq. (4)) which also allows to partly remove non-flow effects.



ALICE Collaboration / Physics Letters B 753 (2016) 41–56 45
Table 1
Systematic uncertainty sources affecting the inclusive muon elliptic flow measurement in the 0–10%, 10–20% and 
20–40% centrality classes for the interval 3 < pT < 4.5 GeV/c. They are given as a percentage of the v2 value.

vμ
2 analysis Source Systematic uncertainty (%)

0–10% 10–20% 20–40%

vμ
2 {SP} Reference particles 3 1 3

Centrality selection 6 1 4
TPC pile-up 2 4 2
η gap 13 1 1

vμ
2 {2} Reference particles 13 3 2

Centrality selection 14 3 6
TPC pile-up 8 1 4

vμ
2 {4} Reference particles 10

Centrality selection 1
TPC pile-up 1

vμ
2 {LYZ-Sum} Reference particles 4

Centrality selection 7
TPC pile-up 2

vμ
2 {LYZ-Prod} Reference particles 2

Centrality selection 8
TPC pile-up 2

Fig. 1. pT-differential inclusive muon v2 in 2.5 < y < 4 and various centrality intervals, in Pb–Pb collisions at √sNN = 2.76 TeV. The symbols are placed at the centre of the 
pT interval and, for visibility, the points from two-particle Q cumulants and Lee–Yang zeros with product generating function are shifted horizontally. The vertical error bars 
represent the statistical uncertainty, the horizontal error bars correspond to the width of the bin (not shown for the shifted data points) and the open boxes are the systematic 
uncertainties. The pT intervals used with the Lee–Yang zeros method are different with respect to the other methods. Upper panels: results from two-particle correlation flow 
methods (scalar product and two-particle Q cumulants) in the 0–10% (left) and 10–20% (right) centrality intervals. Lower panels: results in the 20–40% centrality interval 
from two-particle correlation flow methods (scalar product and two-particle Q cumulants) and from four-particle Q cumulants (left), and from four-particle Q cumulants 
and Lee–Yang zeros (right).
the ALICE Collaboration in pp and Pb–Pb collisions [54,55] are 
extrapolated to forward rapidity. Then, the pT distributions of 
muons from charged pion and kaon decays, needed to estimate 
f μ←π,K and vμ←π,K

2 , are generated according to a simulation tak-
ing into account the decay kinematics and the effect of the front 
absorber.

The pT- and η-differential elliptic flow of charged particles in 
|η| < 2.5, vch

2 , is extrapolated to forward rapidity using:

vch
2 (pT, η) = F (η) · vch

2 (pT,2 < |η| < 2.5), (9)

where vch
2 (pT, 2 < |η| < 2.5) is the measured charged-particle el-

liptic flow in 2 < |η| < 2.5 with the event plane method. Since 
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the vch
2 (pT) measured by the ATLAS Collaboration is affected by 

statistical fluctuations, it is assumed that in the interval 10 <
pT < 20 GeV/c, needed to simulate the decay muons up to pT =
10 GeV/c, vch

2 remains constant with a value given by the one 
measured in the interval 10 < pT < 12 GeV/c. The extrapolation 
factor F (η) is calculated by parameterizing the η-differential vch

2
measured by the ATLAS Collaboration in various pT intervals with 
a second order polynomial. In the interval 7 < pT < 20 GeV/c, the 
ATLAS vch

2 does not show a dependence on η in |η| < 2.5. There-
fore, for pT > 7 GeV/c, F (η) is computed as the average between 
a flat extrapolation function and the extrapolation factor obtained 
with the parabolic parameterization in 4 < pT < 7 GeV/c.

The mid-rapidity charged pion and kaon pT distributions mea-
sured in Pb–Pb collisions are extrapolated to forward rapidity using 
the same strategy as in [21] and summarized in the following. As-
suming that the nuclear modification factor Rπ,K

AA of charged pions 
and kaons in Pb–Pb collisions does not depend on rapidity up to 
y = 4 [21,56], the pT distributions of charged pions and kaons at 
forward rapidity can be expressed as:

dNπ,K
PbPb

dpTdy
= 〈TAA〉 · dσπ,K

pp

dpTdy
· [Rπ,K

AA (pT)]y=0, (10)

where 〈TAA〉 is the average nuclear overlap function in central-
ity classes under study, estimated as described in [57]. The sys-
tematic uncertainty introduced by the assumption on Rπ,K

AA will 
be discussed later. The rapidity extrapolation of the mid-rapidity 
pion and kaon pT-differential cross sections measured in pp colli-
sions [21,58] is done according to:

d2σπ,K
pp

dpTdy
=

[
d2σπ,K

pp

dpTdy

]
y=0

· exp
(−y2

2σ 2
y

)
, (11)

σy being estimated from Monte-Carlo event generators (see [21]
for details).

The elliptic flow of muons from charged pion and kaon de-
cays, vμ←π,K

2 , in 2.5 < y < 4 and in various centrality classes,4

is obtained by means of fast simulations using vch
2 (η, pT) given 

by Eq. (9) and charged pion and kaon pT distributions as ob-
tained from Eqs. (10)–(11). The absorber effect is accounted for 
by rejecting the pions and kaons that do not decay within a dis-
tance corresponding to one interaction length from the beginning 
of the absorber. The simulation was repeated twice, considering 
that charged particles are either all pions or all kaons.

The background fraction, f μ←π,K, is calculated as the ratio of 
the pT-differential yield of muons from charged pion and kaon de-
cays in 2.5 < y < 4 obtained in the simulation to the measured 
pT-differential yield of inclusive muons.

The systematic uncertainties affecting the estimated vμ←π,K
2

are summarized in Table 2. They originate from i) the method used 
to measure the charged-particle vch

2 in ATLAS, ii) the η and pT ex-
trapolation of vch

2 and iii) the treatment of the charged-particle 
vch

2 in the fast simulation procedure. As the event plane method 
was used for the vch

2 measurement in ATLAS, the results range 

between the mean (〈vch
2 〉) and R.M.S. (

√
〈(vch

2 )2〉) of the true vch
2

values due to fluctuations, depending on the event plane resolu-
tion which varies with the collision centrality [49]. According to a 
Monte-Carlo Glauber model [49], the ratio 

√
〈v2

2〉/〈v2〉 is expected 

4 The vμ←π,K
2 of muons from charged pion and kaon decays in the 20–40% cen-

trality class is then obtained from the mean of the charged-particle v2 in 20–30% 
and 30–40% centrality classes, with an additional systematic uncertainty provided 
by the difference with respect to the results in these two centrality classes.

Table 2
Systematic uncertainty sources affecting the estimated vμ←π,K

2 for the interval 3 <
pT < 10 GeV/c. They are stated as a percentage of the v2 value. The given range 
reflects the dependence on the collision centrality.

Source Systematic uncertainty (%)

Input vch
2 bias 9

vch
2 η extrapolation 9–12

vch
2 high pT extrapolation 13–15

π and K in fast simulations < 1

to vary from about 1.06 to 1.15. Consequently, a conservative sys-
tematic uncertainty of 15% is applied to account for this bias and 
is propagated to vμ←π,K

2 . The systematic uncertainty due to the η
extrapolation of vch

2 is evaluated using several fit functions (first 
and third order polynomials, and Gaussian function) in the region 
pT < 7 GeV/c, and for larger pT values an additional systematic 
uncertainty due to the extrapolation procedure is considered. The 
latter is determined by comparing the results obtained with the 
two extrapolation functions used in the interval pT > 7 GeV/c. The 
systematic uncertainty due to the assumption on vch

2 in the re-
gion pT > 10 GeV/c is estimated by varying vch

2 between 0 and 
the value in 10 < pT < 12 GeV/c in the fast simulations. Such un-
certainty affects mainly the high pT region (pT > 7 GeV/c). Finally, 
the systematic uncertainty obtained by treating charged particles 
separately as pions and kaons is found to be negligible. The vari-
ous systematic uncertainty sources are propagated to the estimated 
vμ←π,K

2 and added in quadrature.
The systematic uncertainty on f μ←π,K, detailed in [21], in-

cludes the uncertainty on the generated pT distributions of muons 
from charged pion and kaon decays, and the uncertainty on the 
measured inclusive muon pT distributions. The former originates 
from the input charged pion and kaon distributions, the rapidity 
extrapolation and the absorber effect. The systematic uncertainty 
on the measured inclusive muon yields contains the systematic 
uncertainty on detector response, residual mis-alignment and cen-
trality dependence of the efficiency. This gives a total systematic 
uncertainty on f μ←π,K of about 21% in the interval 3 < pT <

4.5 GeV/c with almost no dependence on the collision centrality. 
Finally, as done for the measurement of the heavy-flavour decay 
muon RAA [21], the systematic uncertainty due to the unknown 
suppression of charged particles at forward rapidity is calculated 
by varying f μ←π,K from 0 to two times the estimated value. 
This corresponds to a variation of Rπ,K

AA (pT) at forward rapidity 
from 0 up to two times [Rπ,K

AA (pT)]y=0. This systematic uncertainty 
amounts to 10–30% in the interval 3 < pT < 4.5 GeV/c, depending 
on the collision centrality and the flow analysis method.

Fig. 2 presents the estimated background elliptic flow (vμ←π,K
2 , 

left) and background fraction ( f μ←π,K, right) as a function of pT in 
the 0–10%, 10–20% and 20–40% centrality classes. The open boxes 
represent the systematic uncertainties previously discussed, except 
for the systematic uncertainty due to the unknown suppression of 
charged particles at forward rapidity which is treated separately. 
The estimated vμ←π,K

2 and f μ←π,K decrease with increasing pT. 
A decreasing trend of the magnitude of vμ←π,K

2 from semi-central 
collisions towards central collisions is also observed.

Finally, the systematic uncertainty on the elliptic flow of muons 
from heavy-flavour decays, vμ←HF

2 , contains two contributions: the 
systematic uncertainties on vμ

2 , vμ←π,K
2 and f μ←π,K propagated 

according to the definition of vμ←HF
2 given in Eq. (2), and the sys-

tematic uncertainty due to the unknown suppression of charged 
particles at forward rapidity. The final systematic uncertainty on 
vμ←HF

2 is obtained by adding in quadrature the two contributions. 
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Fig. 2. Estimated background v2 (vμ←π,K
2 , left) and background fraction ( f μ←π,K, right) as a function of pT in 2.5 < y < 4 and various centrality intervals, in Pb–Pb collisions 

at √sNN = 2.76 TeV. The symbols are placed at the centre of the pT interval and, for visibility, the points for the centrality classes 10–20% and 20–40% are shifted horizontally. 
The horizontal error bars correspond to the width of the bin (not shown for the shifted values) and the open boxes are the systematic uncertainties. See the text for details.

Fig. 3. pT-differential elliptic flow of muons from heavy-flavour decays, vμ←HF
2 , in 2.5 < y < 4 and various centrality intervals, in Pb–Pb collisions at √sNN = 2.76 TeV. The 

symbols are placed at the centre of the pT interval and, for visibility, the points from two-particle Q cumulants and Lee–Yang zeros with product generating function are 
shifted horizontally. The meaning of the symbols is the same as in Fig. 1. The horizontal error bars are not plotted for shifted data points. The pT intervals used with the 
Lee–Yang zeros method are different with respect to the other methods. Upper panels: results from two-particle correlation flow methods (scalar product and two-particle 
Q cumulants) in the 0–10% (left) and 10–20% (right) centrality intervals. Lower panels: results in the 20–40% centrality interval from two-particle correlation flow methods 
(scalar product and two-particle Q cumulants) and from four-particle Q cumulants (left), and from four-particle Q cumulants and Lee–Yang zeros (right). See the text for 
details.
It amounts to about 12%–36% in the interval 3 < pT < 4.5 GeV/c, 
depending on the collision centrality and the flow analysis method.

4. Results

Fig. 3 presents the pT-differential elliptic flow of muons from 
heavy-flavour hadron decays, vμ←HF

2 , calculated with Eq. (2). The 
results are shown for the 0–10% (upper, left), 10–20% (upper, right) 
and 20–40% (bottom) centrality classes using the same flow meth-
ods as for the measurement of the inclusive muon elliptic flow 

(Fig. 1). When comparing the results to those obtained for in-
clusive muons (Fig. 1), one can notice that vμ←HF

2 and vμ
2 are 

similar due to the small background fraction (5% to 15%) in the pT
interval 3–10 GeV/c. The differences between the various meth-
ods are similar to those discussed for the measurement of the 
inclusive muon vμ

2 i.e. i) scalar product and two-particle Q cu-
mulants give compatible results, ii) consistent results are also 
found with four-particle Q cumulants and Lee–Yang zeros, and 
iii) the vμ←HF

2 values extracted from these multi-particle corre-
lation methods are smaller, although still compatible within un-
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Fig. 4. Elliptic flow of muons from heavy-flavour hadron decays as a function of the collision centrality in 2.5 < y < 4 and 3 < pT < 5 GeV/c, in Pb–Pb collisions at √
sNN = 2.76 TeV. The results are obtained with scalar product and two-particle Q cumulants. Vertical bars (open boxes) represent the statistical (systematic) uncertainty, 

the horizontal error bars correspond to the width of the centrality bin. For visibility, the points from scalar product are shifted horizontally and the horizontal error bars are 
not plotted.
certainties, than the ones obtained with two-particle correlation 
methods. As mentioned in Section 3.3, such differences are ex-
pected if initial-state fluctuations play a role in the development 
of the final momentum-space anisotropy.

A positive vμ←HF
2 is observed at intermediate pT for the 20–40% 

and 10–20% centrality classes with a significance larger than 3σ

when combining statistical and systematic uncertainties. In the 
20–40% centrality class, the values of the significance in the in-
terval 3 < pT < 4 GeV/c (4 < pT < 5.5 GeV/c) are 4σ (3.2σ ) and 
4.3σ (3.8σ ) with scalar product and two-particle Q cumulants, 
respectively. In the 10–20% centrality class and in the interval 
3 < pT < 4.5 GeV/c, the values of the significance correspond to 
4.4σ both with scalar product and two-particle Q cumulants. This 
behavior results from the interplay between the significant inter-
action of heavy quarks with the expanding medium and the path-
length dependence of in-medium parton energy loss [29,30]. The 
vμ←HF

2 of muons from heavy-flavour hadron decays decreases with 
increasing pT and becomes compatible with zero in the high pT re-
gion.

Fig. 4 shows the centrality dependence of the elliptic flow of 
muons from heavy-flavour hadron decays in the interval 3 < pT <

5 GeV/c. It is investigated with scalar product and two-particle Q
cumulants, which can be applied in a wider event-multiplicity (i.e. 
centrality) interval compared to multi-particle correlation methods. 
A significant decrease of the v2 magnitude towards central colli-
sions is observed. This is expected from the decrease of the initial 
spatial anisotropy from semi-central to central collisions.

ALICE has measured the elliptic flow of prompt D mesons in 
|y| < 0.8 in three centrality classes in the interval 0–50% with 
various two-particle correlation methods [33,34]. Similar trends as 
those reported here for muons from heavy-flavour decays are ob-
served, although in different pT and rapidity intervals. In particular, 
a positive v2 was observed for D mesons in semi-central collisions 
in 2 < pT < 6 GeV/c with a significance of 5.7σ .

The positive elliptic flow of muons from heavy-flavour hadron 
decays has been observed in a pT interval from 3 to about 5 GeV/c
where the charm contribution is expected to be dominant with 
respect to the beauty component according to perturbative QCD 
calculations [21]. This measurement supports the interpretation of 
the J/ψ positive v2 at forward rapidity [35] in terms of a signifi-
cant contribution to J/ψ production from recombination of flowing 
charm quarks in the deconfined medium.

5. Comparison with models

The results presented in this publication may constrain mod-
els describing the interactions of heavy quarks with the medium 
via elastic (collisional) and inelastic (radiative) processes, and in 
particular the parton energy loss dependence on the path-length 
within the medium.

The elliptic flow coefficient and the nuclear modification fac-
tor of muons from heavy-flavour hadron decays [21] are com-
pared to the following three models. The MC@sHQ + EPOS trans-
port model [59] treats the propagation of heavy quarks in the 
medium including collisional and radiative energy loss, within 
a 3 + 1 dimensional fluid dynamical expansion based on the 
EPOS model [60,61]. The hadronization of heavy quarks takes 
place at the transition temperature via recombination at low pT
and fragmentation at intermediate and high pT. The final-state 
hadronic interactions are not included in the model. TAMU [62]
is a transport model including only collisional processes via the 
Langevin equation. The hydrodynamical expansion is constrained 
by pT spectra and elliptic flow data of light-flavour hadrons. The 
hadronization is modeled including a component of recombina-
tion of heavy quarks with light-flavour hadrons in the QGP. The 
diffusion of heavy-flavour mesons in the hadronic phase is also in-
cluded. BAMPS [63–65] is a partonic transport model based on the 
Boltzmann approach to multi-parton scatterings. It includes colli-
sional processes with a running strong coupling constant. The lack 
of radiative contributions is accounted for by scaling the binary 
cross section with a correction factor, tuned to describe the nu-
clear modification factor and elliptic flow results at RHIC energies. 
Vacuum fragmentation functions are used for the hadronization.

Fig. 5 shows a comparison of the three models with the 
measurement of the pT-differential elliptic flow of muons from 
heavy-flavour hadron decays in the 20–40% centrality class (up-
per panel) and of the pT-differential nuclear modification factor 
of muons from heavy-flavour hadron decays in the 0–10% cen-
trality class [21] (lower panel). In the interval 3 < pT < 5 GeV/c, 
the BAMPS model describes the vμ←HF

2 data within uncertainties, 
while the TAMU and MC@sHQ+EPOS models give vμ←HF

2 values 
lower than the data. The three models describe the vμ←HF

2 data 
at higher pT, although the sizeable experimental uncertainties af-
fect the significance of the comparison. The BAMPS model tends to 
slightly underestimate the RAA of muons from heavy-flavour de-
cays in the 10% most central collisions, while the MC@sHQ+EPOS 
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Fig. 5. Upper panel: pT-differential elliptic flow of muons from heavy-flavour hadron 
decays in 2.5 < y < 4, in Pb–Pb collisions at √

sNN = 2.76 TeV for the central-
ity class 20–40% compared to various transport model predictions: MC@sHQ +
EPOS [59–61], TAMU [62] and BAMPS [63–65]. The TAMU model is shown with 
a theoretical uncertainty band. Lower panel: pT-differential RAA of muons from 
heavy-flavour hadron decays for the centrality class 0–10% from [21] compared to 
the same models as for vμ←HF

2 .

model tends to overestimate it. The TAMU model describes the 
RAA measurement over the entire pT interval within uncertain-
ties. These comparisons indicate that it is challenging to simul-
taneously describe the strong suppression of high-pT muons from 
heavy-flavour hadron decays in central collisions and the azimuthal 
anisotropy in semi-central collisions. Similar trends are also ob-
served in the mid-rapidity region from the comparison of the RAA
and v2 of D mesons with model calculations [34].

6. Conclusions

In summary, we have reported on a measurement of the elliptic 
flow of muons from heavy-flavour hadron decays at forward rapid-
ity in central and semi-central Pb–Pb collisions at 

√
sNN = 2.76 TeV

with the ALICE detector at the LHC.
Measurements have been carried out using several methods 

which exhibit different sensitivity to initial-state fluctuations and 
non-flow correlations. The systematic comparison of scalar prod-
uct, two- and four-particle Q cumulants and Lee–Yang zeros helps 
in understanding the processes that build up the observed differ-
ences between two-particle correlation methods and multi-particle 
correlation methods and suggests that flow fluctuations are signif-
icant.

The magnitude of the elliptic flow of muons from heavy-flavour 
hadron decays increases from central to semi-central collisions and 

decreases with increasing pT, becoming compatible with zero at 
high pT. The results indicate a positive elliptic flow with the scalar 
product and two-particle Q cumulants in semi-central collisions 
(10–20% and 20–40% centrality classes) for the pT interval from 3 
to about 5 GeV/c with a significance larger than 3σ . The elliptic 
flow in semi-central collisions and the previously published nu-
clear modification factor in the 10% most central collisions were 
compared with transport model calculations. These comparisons 
show that a simultaneous description of RAA and v2 over the 
whole pT interval remains a challenge. The results reported in this 
Letter in various centrality classes may provide further important 
constraints to the models.
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L. Pinsky 121, D.B. Piyarathna 121, M. Płoskoń 74, M. Planinic 128, J. Pluta 132, S. Pochybova 134, 
P.L.M. Podesta-Lerma 118, M.G. Poghosyan 86,84, B. Polichtchouk 111, N. Poljak 128, W. Poonsawat 113, 
A. Pop 78, S. Porteboeuf-Houssais 70, J. Porter 74, J. Pospisil 83, S.K. Prasad 4, R. Preghenella 36,104, 
F. Prino 110, C.A. Pruneau 133, I. Pshenichnov 56, M. Puccio 110, G. Puddu 25, P. Pujahari 133, V. Punin 98, 
J. Putschke 133, H. Qvigstad 22, A. Rachevski 109, S. Raha 4, S. Rajput 90, J. Rak 122, A. Rakotozafindrabe 15, 
L. Ramello 32, F. Rami 55, R. Raniwala 91, S. Raniwala 91, S.S. Räsänen 46, B.T. Rascanu 53, D. Rathee 87, 
K.F. Read 124, J.S. Real 71, K. Redlich 77, R.J. Reed 133, A. Rehman 18, P. Reichelt 53, F. Reidt 93,36, X. Ren 7, 
R. Renfordt 53, A.R. Reolon 72, A. Reshetin 56, F. Rettig 43, J.-P. Revol 12, K. Reygers 93, V. Riabov 85, 
R.A. Ricci 73, T. Richert 34, M. Richter 22, P. Riedler 36, W. Riegler 36, F. Riggi 29, C. Ristea 62, A. Rivetti 110, 
E. Rocco 57, M. Rodríguez Cahuantzi 2, A. Rodriguez Manso 81, K. Røed 22, E. Rogochaya 66, D. Rohr 43, 
D. Röhrich 18, R. Romita 123, F. Ronchetti 72,36, L. Ronflette 112, P. Rosnet 70, A. Rossi 30,36, 
F. Roukoutakis 88, A. Roy 49, C. Roy 55, P. Roy 100, A.J. Rubio Montero 10, R. Rui 26, R. Russo 27, 
E. Ryabinkin 99, Y. Ryabov 85, A. Rybicki 116, S. Sadovsky 111, K. Šafařík 36, B. Sahlmuller 53, P. Sahoo 49, 
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