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We present measurements of the azimuthal dependence of charged jet production in central and semi-
central √sNN = 2.76 TeV Pb–Pb collisions with respect to the second harmonic event plane, quantified 
as vch jet

2 . Jet finding is performed employing the anti-kT algorithm with a resolution parameter R = 0.2
using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of 
the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region 
fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane 
orientations independently. Significant non-zero vch jet

2 is observed in semi-central collisions (30–50% 
centrality) for 20 < pch jet

T < 90 GeV/c. The azimuthal dependence of the charged jet production is similar 
to the dependence observed for jets comprising both charged and neutral fragments, and compatible with 
measurements of the v2 of single charged particles at high pT. Good agreement between the data and 
predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a 
dense QCD medium, is found in semi-central collisions.

© 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open 
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The aim of the heavy-ion program at the LHC is to study 
strongly interacting matter in ultra-relativistic nuclear collisions 
where the formation of a quark–gluon plasma (QGP), a decon-
fined state of quarks and gluons, is expected [1]. Hard partons 
that propagate through the collision medium lose energy via (mul-
tiple) scattering and gluon radiation [2,3]. Jet measurements are 
used to experimentally explore parton energy loss in the hot and 
dense medium. Studies at the LHC and RHIC have shown that jet 
and high-pT single particle production in heavy-ion collisions are 
suppressed with respect to the expected production in a super-
position of independent pp collisions [4–13]. This observation is 
consistent with energy loss, which is further supported by mea-
surements of dijet energy asymmetry and di-hadron angular cor-
relations [14–16].

In non-central Pb–Pb collisions, the initial overlap region of the 
colliding nuclei projected into the plane perpendicular to the beam 
direction has an approximately elliptic shape. Jets emitted along 
the minor axis of the ellipse (defined as the in-plane direction) on 
average traverse less medium – and are therefore expected to lose 
less energy – than jets that are emitted along the major axis of the 

� E-mail address: alice-publications@cern.ch.

ellipse (the out-of-plane direction). The dependence of jet produc-
tion on the angle relative to the second-harmonic symmetry plane 
�2 (the symmetry plane angles �n define the orientations of the 
symmetry axes of the initial nucleon distribution of the collision) 
can be used to probe the path-length dependence of jet energy 
loss. This dependence is quantified by the parameter vch jet

2 , the 
coefficient of the second term in a Fourier expansion of the az-
imuthal distribution of jets relative to symmetry planes �n ,

dN

d
(
ϕjet − �n

) ∝ 1 +
∞∑

n=1

2v jet
n cos

[
n

(
ϕjet − �n

)]
, (1)

where ϕjet denotes the azimuthal angle of the jet.
In central collisions, the average distance that a jet propagates 

through the medium is approximately equal in the in-plane and 
out-of-plane directions, therefore a small vch jet

2 is expected. In 
semi-central collisions the average in-medium distance is shorter, 
while the relative difference between the average distances in-
plane and out-of-plane is larger, hence a non-zero vch jet

2 is ex-
pected. Fluctuations in the initial distribution of nucleons within 
the overlap region can lead to additional contributions to vch jet

2
and higher harmonic coefficients in the Fourier decomposition.

The path-length dependence of parton energy loss is of par-
ticular interest because it is sensitive to the underlying energy-
loss mechanism. For collisional (elastic) energy loss, the amount 
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of lost energy depends linearly on path length, while for radia-
tive (inelastic) energy loss, the dependence is quadratic due to 
interference effects [17,18]. Some strong-interaction models based 
on the AdS/CFT correspondence suggest an even stronger path-
length dependence [19,20]. Earlier studies of the v2 of high-pT
single particles have already tested the path-length dependence 
of energy loss [21–25]. Comparisons of these results to theoret-
ical calculations have shown that the v2 is sensitive to several 
aspects of the medium evolution, including the effects of longi-
tudinal and transverse expansion and the life time of the system 
until freeze-out [26]. It is therefore important to measure multi-
ple observables that are sensitive to the path-length dependence 
of energy loss, such as recoil yields of charged particles and jets 
[11,27,28]. Jets are expected to better represent the original parton 
kinematics and provide more detailed information on energy loss. 
Theoretical predictions from JEWEL, which couples parton shower 
evolution to the presence of a QCD medium with a density derived 
from Glauber simulations [29,30], have shown that a finite v jet

2
is expected for non-central collisions at the LHC. Similar results 
have been found in v jet

2 studies in heavy-ion collisions generated 
by the AMPT model [31,32]. A first measurement of vcalo jet

2 of 
jets comprising both charged and neutral fragments has been re-
ported by the ATLAS Collaboration [33]. The results presented in 
this paper extend the vch jet

2 measurement to a lower pT range 
(pT > 30 GeV/c for central collisions and pT > 20 GeV/c for semi-
central collisions).

In this article, measurements of vch jet
2 of R = 0.2 charged jets 

reconstructed with the anti-kT jet finder algorithm in Pb–Pb colli-
sions with 0–5% and 30–50% collision centrality are presented. The 
largest experimental challenge in jet analyses in heavy-ion colli-
sions is the separation of the jet signal from the background of 
mostly low-pT particles from the underlying event and from unre-
lated scatterings that take place in the collision. The jet energy is 
corrected on a jet-by-jet basis using an estimate of the background 
transverse momentum density which takes into account the domi-
nant flow harmonics v2 and v3 of the background event-by-event, 
as will be described in Sections 2.1 and 2.2. The coefficient vch jet

2
is obtained from pT-differential jet yields measured with respect to 
the experimentally accessible event plane �EP, 2, which is recon-
structed at forward rapidities (2.8 < η < 5.1 and −3.7 < η < −1.7, 
Sec. 2.1). The reported vch jet

2 has been corrected back to the az-
imuthal anisotropy with respect to the underlying symmetry plane 
�2 by applying an event plane resolution correction (Sec. 2.4). 
Jets are reconstructed at mid-rapidity (|ηjet| < 0.7) using charged 
constituent tracks with momenta 0.15 < pT < 100 GeV/c, and are 
required to contain a charged hadron with pT ≥ 3 GeV/c. The 
in-plane and out-of-plane jet spectra are unfolded independently 
to take into account detector effects and remaining azimuthally-
dependent fluctuations in the underlying event transverse mo-
mentum density (Sec. 2.3). The jet spectra are corrected back to 
particle-level jets consisting of only primary charged particles from 
the collision.

2. Experimental setup and data analysis

ALICE is a dedicated heavy-ion experiment at the LHC at CERN. 
A full overview of the detector layout and performance can be 
found in [34,35]. The central barrel detector system, covering full 
azimuth, is positioned in a solenoidal magnet with a field strength 
of 0.5 T. It comprises the Inner Tracking System (ITS) built from six 
layers of silicon detectors (the Silicon Pixel, Drift, and Strip Detec-
tors: SPD, SDD and SSD) and a Time Projection Chamber (TPC). The 
two inner layers of the ITS, which comprise the SPD, are located at 
3.9 and 7.2 cm radial distance from the beam axis.

The data presented in this paper were recorded in the Pb–
Pb data taking periods in 2010 and 2011 at 

√
sNN = 2.76 TeV, 

using a minimum-bias trigger (2010) or an online centrality trig-
ger for hadronic interactions (2011), which requires a minimum 
multiplicity in both the V0A and V0C detectors (discs of seg-
mented scintillators covering full azimuth and 2.8 < η < 5.1 and 
−3.7 < η < −1.7, respectively). The V0 detectors are used to de-
termine event centrality based on the energy deposition in the 
scintillator tiles [36] and the event plane orientation, see Sec. 2.1. 
Centrality, determined from the sum of the V0 amplitudes, is ex-
pressed as percentiles of the total hadronic cross section, with 
0–5% referring to the most central (largest multiplicity) events 
[36]. The trigger is fully efficient in azimuth in the presented cen-
trality ranges. Centrality estimation using the V0 system does not 
bias the �EP, n determination [37]. Time information from the V0 
detectors is used to reject beam-gas interactions from the event 
sample and the remaining contribution of such interactions is neg-
ligible. Only events with a primary vertex position within ±10 cm
along the beam direction from the nominal interaction point were 
used in the analysis. A total of 6.8 × 106 events with 0–5% central-
ity and 8.6 × 106 events with 30–50% centrality, corresponding to 
integrated luminosities of 18 and 5.6 μb−1, respectively, are used 
in this analysis.

Charged particle tracks in this analysis are measured by the ITS 
and TPC and are selected in a pseudorapidity range |η| < 0.9 with 
transverse momenta 0.15 < pT < 100 GeV/c. To ensure a good mo-
mentum resolution, tracks were required to have at least three hits 
per track in the ITS. Since the SPD acceptance is non-uniform in 
azimuth for the data sample used in this analysis, two classes of 
tracks are used. The first class requires at least three hits per track 
in the ITS, with at least one hit per track in the SPD. The second 
class contains tracks without hits in the SPD, in which case the 
primary interaction vertex is used as an additional constraint for 
the momentum determination. For each track, the expected num-
ber of TPC space points is calculated based on its trajectory; tracks 
are accepted if they have at least 80% of the expected TPC space-
points, with a minimum of 70 TPC points. Tracks produced from 
interactions between particles and the detector, as well as tracks 
originating from weak decays (‘secondary tracks’) are rejected. The 
contribution of secondary tracks to the track sample is less than 
10% for tracks with pT < 1 GeV/c and negligible for tracks with 
higher transverse momentum.

2.1. Event plane determination

The coefficient vch jet
2 quantifies azimuthal anisotropy with re-

spect to �2. The azimuthal anisotropy of the underlying event 
(‘background flow’) is also described by a Fourier series with har-
monics vn = 〈cos(n[ϕ − �n])〉 [38,39] where ϕ denotes the track 
azimuthal angle. However, since the initial distribution of nucleons 
is not accessible experimentally, the event plane angles �EP, n , i.e.
the axes of symmetry of the density of outgoing particles in the 
transverse plane, are used in place of �n when measuring vch jet

2
and vn .

The event plane angles �EP, 2 and �EP, 3 in this study, cor-
responding to the two dominant Fourier harmonics, are recon-
structed using the V0 detectors. Each V0 array consists of four 
rings in the radial direction, with each ring comprising eight cells 
with the same azimuthal size. The calibrated amplitude of the sig-
nal in each cell, proportional to the multiplicity incident on the 
cell, is used as a weight wcell in the construction of the flow vec-
tors Q n [40]

Q n =
∑
cells

wcell exp (i n ϕcell) . (2)
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In order to account for a non-uniform detector response which can 
generate a bias in the �EP, n azimuthal distribution, the compo-
nents of the Q n-vectors are adjusted using a re-centering proce-
dure [41,42]. The V0A and V0C detectors cover different η regions 
in which multiplicity N and background flow vn may differ. The 
total V0 Q -vector is therefore constructed using weights χn [40]
that are approximately proportional to the event plane resolution 
in each detector,

Q n,V0 = χ2
n,V0A Q n,V0A + χ2

n,V0C Q n,V0C, (3)

to achieve the optimal combined event plane resolution. The event 
planes are reconstructed from the real and imaginary parts of Q n

as

�EP, n = arctan

( � [Q n]

	 [Q n]

)
/n. (4)

The vch jet
2 itself is measured with respect to the second har-

monic event plane angle. It is corrected for the finite precision 
with which the true symmetry plane is measured in the V0 system 
by applying an event plane resolution correction, see Sec. 2.4.

2.2. Jet reconstruction in the presence of background flow

Jet finding is performed using the FastJet [43,44] implementa-
tion of the infrared and collinear safe kT and anti-kT sequential 
recombination algorithms using the pT recombination scheme and 
taking massless jet constituents. The resolution parameter R = 0.2
determines the characteristic maximum distance of constituent 
tracks to the jet axis in the η–ϕ plane.

In heavy-ion collisions, a large combinatorial background is 
present from particles that are not related to the hard scattering 
that produced a given jet. This background is subtracted from each 
jet on an event-by-event basis. The anti-kT algorithm is used to 
find signal jets. A fiducial cut of |ηjet| < 0.7 is applied on the sig-
nal jets to ensure that all jets are fully contained within the ITS 
and TPC acceptances and edge effects are avoided. The contribu-
tion of combinatorial (or ‘fake’) jets (clustered underlying event 
energy) to the measured jet spectrum is reduced by requiring 
that reconstructed jets contain at least one charged particle with 
pT > 3 GeV/c and have an area of at least 0.56 π R2. These selec-
tion criteria leave the hard part of the jet spectrum unaltered while 
significantly reducing the number of combinatorial jets which sta-
bilizes the unfolding procedure [4,5,45].

The kT-algorithm is used to estimate the average transverse 
momentum density of the underlying event, 〈ρch〉, on an event-by-
event basis. The quantity 〈ρch〉 is the median of the distribution of 
praw

T,chjet/A (the ratio of transverse momentum to jet area) of recon-
structed R = 0.2 kT-jets, excluding the leading two jets from the 
sample as proposed in [46] and implemented in earlier ALICE jet 
studies [4,5,45]. The kT jets are required to lie within |ηjet| < 0.7
and have an area A > 0.01. The jet area A is determined by em-
bedding a fixed number of near zero-momentum ghost particles
per event prior to jet finding; the number of ghost particles in 
each reconstructed jet then gives a direct measure of the jet area. 
A ghost density of 200 particles per unit area is used, so that ap-
proximately 25 ghost particles are clustered into a jet with a radius 
of 0.2.

In each event, the anisotropy of the underlying event is mod-
eled using the dominant [47] flow harmonics v2 and v3,

ρch(ϕ) = ρ0
(
1 + 2{v2 cos

[
2
(
ϕ − �EP, 2

)]
+ v3 cos

[
3
(
ϕ − �EP, 3

)]}). (5)

Fig. 1. Transverse momentum density of charged tracks as a function of azimuthal 
angle for a single event from the most central 0–5% event class. Data points (blue) 
are given with statistical uncertainties only. The red curve is the fit of Eq. (5) to 
the distribution, the green and gray curves, obtained from the fit of Eq. (5) as well, 
show the independent contributions of v2 and v3 to ρch(ϕ). The dashed magenta 
line is the normalization constant ρ0. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

Here, ρch(ϕ) is the azimuthal distribution of summed track pT for 
tracks with 0.15 < pT < 5 GeV/c and |ηtrack| < 0.9. The parame-
ters ρ0 and vn are determined event-by-event from a fit of the 
right side of Eq. (5) to the data. The event plane angles �EP, n
are not fitted, but fixed to the V0 event plane angles. A single 
event example of this procedure is illustrated in Fig. 1, where the 
data points represent the transverse momentum density distribu-
tion in a single event, the red curve represents the full functional 
description of ρch(ϕ) (Eq. (5)), the green and gray curves give the 
contributions of the separate harmonics v2 and v3, and the dashed 
magenta line is the normalization constant ρ0. To reduce the bias 
of hard jets in the estimates of vn in Eq. (5) while retaining az-
imuthal uniformity, the leading jet in each event is removed by 
rejecting all tracks for which |ηjet − ηtrack| < R . The η separation 
between the tracks and the V0 detectors also removes short range 
correlations between the event planes and tracks.

The number of bins to which Eq. (5) is fitted is set on an event-
by-event basis to the square root of the number of tracks. The fit 
maximizes the estimated likelihood [48], which is based on a Pois-
son distribution for the bin content. Since the bin contents are 
not pure counts, but weighted by pT, the statistical uncertainties 
on each bin σi are estimated as the sum of the squares of the 
pT of the individual particles: σi = σ(

∑
pT) = √∑

p2
T. A scaled 

Poisson distribution P (xi/wi |mui/wi) is used as the probability 
distribution for the data points in the likelihood calculation, with 
a scale factor wi = σ 2

i /yi where yi is the bin content and μi
is the expected signal from the fit function. The compatibility of 
each fit with the data is tested by calculating the χ2 and eval-
uating the probability of finding a test statistic at least as large 
as the observed one in the χ2 distribution. When this probabil-
ity is less than 0.01, the average event background density 〈ρch〉
is used instead of ρch(ϕ); this occurs in 3% (most central) to 7% 
(semi-central) of events. The acceptance criterion is varied in the 
systematic studies; the sensitivity to it is small.

The corrected transverse momentum pchjet
T of a jet of area A is 

calculated from the measured raw jet momentum, praw
T,chjet, as

pchjet
T = praw

T,chjet − ρch local A (6)

where ρch local is obtained from integration of ρch(ϕ) around 
ϕjet ± R
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Fig. 2. The δpT distribution (Eq. (8)) from the random cone (RC) procedure as function of cone azimuthal angle ϕRC relative to the event plane. In panel (a) the azimuthally-
averaged background 〈ρch〉 has been subtracted; in panel (b) the azimuthally dependent ρch(ϕ) from an event-by-event fit of the pT-density with Eq. (5). The solid black 
line represents the mean of the δpT distribution.
ρch local = 〈ρch〉
2Rρ0

ϕ+R∫
ϕ−R

ρch(ϕ)dϕ. (7)

The pre-factor of the integral, 〈ρch〉
2Rρ0

, is chosen such that integration 
over the full azimuth yields the average transverse momentum 
density 〈ρch〉. The validity of Eq. (5) as a description of the contri-
bution of background flow to the underlying event energy is tested 
by placing cones of radius R = 0.2 at random positions (excluding 
the location of the leading jet) in the η–φ plane and subtracting 
the expected summed transverse momentum in a cone from the 
measured transverse momentum in the cone,

δpT =
∑

ptracks
T − ρπ R2. (8)

Here, ρ is the expected transverse momentum density. This pro-
cedure is repeated multiple times per event, until the full phase 
space is covered, to obtain a distribution of δpT values. The δpT
distribution as a function of the cone azimuthal angle ϕRC relative 
to the event plane �EP, 2 is shown in Fig. 2. In panel (a) 〈ρch〉 has 
been used for the estimation of the underlying event summed pT
and in panel (b) ρch(ϕ). Incorporating azimuthal dependence into 
the underlying event description leads to a sizable reduction in the 
cosine modulation of the δpT distribution.

The effectiveness of the subtraction of background flow is quan-
tified by comparing the expected and measured widths of the 
δpT distribution in the absence of background flow, σ(δpvn=0

T ) (see 
Fig. 2(b)) to the expected and measured widths of the δpT dis-
tribution in the presence of background flow, σ(δpvn

T ) (Fig. 2(a)). 
Assuming independent particle emission and Poissonian statistics, 
the expected width of the δpT distribution in the absence of back-
ground flow (vn = 0) is given by [45]

σ(δpvn=0
T ) =

√
N Aσ 2(pT) + N A〈pT〉2 (9)

where N A is the average expected number of tracks within a cone, 
〈pT〉 is the mean pT of a single particle spectrum and σ(pT) is 
the standard deviation of this spectrum. This expectation can be 
extended to include contributions from background flow by intro-
ducing non-Poissonian density fluctuations (the background flow 
harmonics vn) [45], as

σ(δpvn
T ) =

√
N Aσ 2(pT) + (N A + 2N2

A(v2
2 + v2

3))〈pT〉2. (10)

Fig. 3. Centrality dependence of the measured and expected relative change in the 
δpT distribution width from using the azimuthally dependent ρch local instead of the 
median 〈ρch〉. The blue points give the expected reduction from simple assumptions 
about the behavior of charged particle spectra and flow harmonics vn (following 
Eqs. (9) and (10)). The red points use the measured widths from δpT distributions 
directly. Statistical uncertainties are smaller than the marker size. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

The measured widths are obtained from the δpT distributions 
directly; the distributions are constructed using as the transverse 
momentum density ρ in Eq. (8) either 〈ρch〉 to obtain σ(δpvn

T ) or 
ρch local for σ(δpvn=0

T ).
Fig. 3 shows the expected and measured relative change in 

the width of the δpT distribution, quantified as (σ (δpvn
T ) −

σ(δpvn=0
T ))/σ (δpvn

T ), as function of collision centrality. The blue 
points give the expected reduction from Eqs. (9) and (10). The 
red points use the measured widths from δpT distributions. The 
expected change is in good quantitative agreement with the mea-
sured change over the entire centrality range, indicating that the 
width of the δpT distributions can be understood in terms of a 
simple independent particle emission model with background flow 
contributions.

The background subtraction, unfolding, and correction for the 
reaction plane resolution as described in Sections 2.3 and 2.4 were 
also validated using events consisting of PYTHIA jets embedded 
in heavy-ion background events and toy model events. In the first 
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study, full PYTHIA pp events were combined with reconstructed 
Pb–Pb collisions to create events with a controlled signal and back-
ground. The signal jets from PYTHIA have no preferred orientation, 
vch jet

2 = 0, while the heavy-ion events have a non-zero v2 of the 
soft particles. Jets found in the events were matched to the em-
bedded PYTHIA jets and the analysis was carried out with matched 
jets only. After unfolding, the vch jet

2 was compatible with 0, as ex-
pected. The other study was based on events generated using a 
simple thermal model for soft particle production and a distribu-
tion of high-pT particles that resembles the jet spectrum, as sug-
gested in [49]. A non-zero v2 = 0.07 was introduced for momenta 
pT < 5 GeV/c to model the background flow and two variations at 
large pT > 30 GeV/c: v2 = 0 or v2 = 0.05. In both cases, the input 
flow values were correctly reconstructed by the analysis.

2.3. Unfolding

After the subtraction procedure presented in the previous sec-
tion, the measured jet spectrum is unfolded [50,51] to correct for 
detector effects and fluctuations in the underlying event transverse 
momentum density. Mathematically, the unfolded jet spectrum can 
be derived from the measured spectrum by solving

M(prec
T,chjet)

=
∫

G(prec
T,chjet, pgen

T,chjet)T (pgen
T,chjet)ε(pgen

T,chjet)dpgen
T,chjet (11)

for T (pgen
T,chjet), the unfolded true jet spectrum, where M(prec

T,chjet) is 
the measured jet spectrum, G(prec

T,chjet, p
gen
T,chjet) is a functional de-

scription (response function) of distortions due to background fluc-
tuations and detector response, and ε(pgen

T,chjet) is the jet finding 

efficiency. The coefficient vch jet
2 is not affected by the efficiency, 

hence ε(pgen
T,chjet) will be omitted from here on. Since the measured 

jet spectrum is binned, Eq. (11) is discretized by replacing the in-
tegral by a matrix multiplication

Mm = Gm,t·T′
t (12)

where T′
t is the solution of the discretized equation (the prime 

indicates that T′
t is not corrected for jet-finding efficiency). The 

combined response matrix Gm,t is the product of the response 
matrices from detector effects and transverse momentum density 
fluctuations, the latter of which are constructed independently for 
the in-plane and out-of-plane spectra by embedding random cones 
at specific relative azimuth with respect to the event plane (see the 
text below Eq. (13) for the definition of the intervals).

The detector response matrix is obtained by matching pp jets 
generated by PYTHIA [52] (‘particle-level’ jets) to the same jets af-
ter transport through the detector (‘detector-level’ jets) by GEANT3 
[53], where the detector conditions are tuned to those of the 
Pb–Pb data-taking periods. Particle-level jets contain only primary 
charged particles produced by the event generator, which comprise 
all prompt charged particles produced in the collision, as well as 
products of strong and electromagnetic decays, while products of 
weak decays of strange hadrons are rejected. Matching is based on 
the shortest distance in the η–ϕ plane between detector level and 
particle level jets and is bijective, meaning that there is a one-to-
one correspondence between detector and particle level jets. The 
response matrix for background fluctuations is constructed from 
the δpT distributions, which, when normalized, are probability dis-
tributions for the change of the jet energy caused by background 
fluctuations.

Solving Eq. (12) requires inversion of Gm,t and generally leads 
to non-physical results which oscillate wildly due to the statis-

tical fluctuations of the measured jet yield. The unfolded solu-
tion therefore needs to be regularized. In general this is done 
by introducing a penalty term for large local curvatures associ-
ated with oscillations. Various algorithms for regularized unfolding 
exist; the unfolding method based on the Singular Value Decom-
position (SVD unfolding) [54] is used in this study. A comparison 
to the unfolded solution from χ2 minimization [55] is used in the 
systematic studies.

The measured jet spectrum is taken as input for the unfold-
ing routine in the range 30 < pchjet

T < 105 GeV/c for 0–5% collision 
centrality and 15 < pchjet

T < 90 GeV/c for 30–50% collision central-
ity. The lower bound corresponds to five times the width of the 
δpT distribution, the upper bound is the edge of the last measured 
bin which contains at least 10 counts. This configuration was found 
to lead to reliable unfolded solutions in Monte Carlo studies [4,49]. 
The unfolded jet spectrum starts at 0 GeV/c to allow for feed-in 
of true jets with low pchjet

T . In addition, combinatorial jets which 
are not rejected by the jet area and leading charged particle re-
quirements are migrated to momenta lower than the minimum 
measured pchjet

T . The unfolded solution ranges up to 200 GeV/c
(0–5%) and 170 GeV/c (30–50%) to allow for migration of jets to 
a pchjet

T higher than the maximum measured momentum. As the 
data points of the unfolded solution are strongly correlated for 
pchjet

T outside the experimentally measured interval, vch jet
2 will be 

reported only within the limits of the measured jet spectra.

2.4. Evaluation of vch jet
2

The coefficient vch jet
2 is calculated from the difference between 

the unfolded pT-differential jet yields in-plane (Nin) and out-of-
plane (Nout) with respect to the second harmonic event plane, 
corrected for event plane resolution,

vch jet
2 (pchjet

T ) = π

4

1

R2

Nin(pchjet
T ) − Nout(pchjet

T )

Nin(pchjet
T ) + Nout(pchjet

T )
. (13)

Eq. (13) is derived by integrating Eq. (1) for n = 2, over inter-

vals 
[−π

4 , π
4

]
and 

[
3π
4 , 5π

4

]
for Nin and 

[
π
4 , 3π

4

]
and 

[
5π
4 , 7π

4

]
for Nout, substituting �EP, 2 for �2. Eq. (13) is sensitive to corre-
lations between even-order harmonics v2n and �EP, 2. As a result 
of the integration limits however, the first harmonic of the Fourier 
expansion that can contribute to the observed vch jet

2 is vch jet
6 . The 

V0 event plane resolution R2 is introduced to account for the fi-
nite precision with which the true symmetry plane �2 is measured 
in the V0 system and is defined as

R2 =
〈
cos

[
2
(
�V0

EP, 2 − �2

)]〉
. (14)

Measuring event planes in multiple η regions (sub-events) allows 
for the evaluation of the resolution directly from data [56,57]. Us-
ing the full V0 detector and negative and positive η sides of the 
TPC as sub-events, the resolution in Eq. (13) is evaluated as

R2 =⎛
⎝

〈
cos

[
2
(
�V0

EP, 2 − �
TPC, η>0
EP, 2

)]〉 〈
cos

[
2
(
�V0

EP, 2 − �
TPC, η<0
EP, 2

)]〉
〈
cos

[
2
(
�

TPC, η>0
EP, 2 − �

TPC, η<0
EP, 2

)]〉
⎞
⎠

1/2

.

(15)

The event plane resolution R2 is found to be 0.47 in 0–5% cen-
trality and 0.75 in 30–50% centrality with negligible uncertainties. 
The �EP, 2 angles in the TPC are obtained following the procedure 
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of Eq. (4) on tracks with 0.15 < pT < 4 GeV/c, using unit track 
weights in the construction of the flow vectors Q 2 (see Eq. (2)).

Using the V0 detectors for the reconstruction of the event plane 
guarantees that the jet axis and event plane information are sepa-
rated in pseudorapidity by |η| > 1 and thus removes autocorre-
lation biases between the signal jets and event plane orientation. 
The possible non-flow correlation between the event plane angle 
and jets due to di-jets with one jet at mid-rapidity and one jet in 
the V0 acceptance was studied using the PYTHIA event generator. 
The rate of such di-jet configurations was found to be negligible 
(less than 1 per mille of the total di-jet rate at mid-rapidity) for 
pchjet

T > 20 GeV. Possible effects from back-to-back jet pairs with a 
jet in each of the V0 detectors are even smaller.

2.5. Systematic uncertainties

The measured vch jet
2 is corrected for experimental effects, such 

as the finite event plane resolution and detector effects on the jet 
energy scale as well as the effects of the uncorrelated background 
and its fluctuations using the corrections outlined in the Sec-
tions 2.1–2.4. Hydrodynamic flow of the background is taken into 
account event-by-event in the underlying event description, resid-
ual effects are removed by azimuthally dependent unfolding. The 
remaining uncertainties in these correction procedures are treated 
as systematic uncertainties. Systematic uncertainties on vch jet

2 are 
grouped into two categories, shape and correlated, based on their 
point-to-point correlation. Shape uncertainties are anti-correlated 
between parts of the unfolded spectrum: when the yield in part of 
the spectrum increases, it decreases elsewhere and vice versa. Cor-
related uncertainties are correlated point-to-point. Both types of 
uncertainties however have contributions which lead to correlated 
changes of Nin and Nout.

Correlated uncertainties are estimated for the in-plane and out-
of-plane jet spectra independently. Two sources of correlated un-
certainties are considered: tracking efficiency and the inclusion 
of combinatorial jets in the measured jet spectrum. The domi-
nant correlated uncertainty (� 10%) arises from tracking and is 
estimated by constructing a detector response matrix with a track-
ing efficiency reduced by 4% (motivated by studies [4] comparing 
reconstructed tracks to simulations of HIJING [58] events). The 
observed difference between the nominal and modified unfolded 
solution is taken as a symmetric uncertainty to allow for an over-
and underestimation of the tracking efficiency. The sensitivity of 
the unfolded result to combinatorial jets is tested by changing the 
lower range of the unfolded solution from 0 to 5 GeV/c, which 
leads to an overall (correlated) increase of the unfolded jet yield. 
Both correlated uncertainties are added in quadrature and prop-
agated to vch jet

2 assuming that variations are strongly correlated 
between the in-plane and out-of-plane jet spectra, while still al-
lowing for effects from azimuthally-dependent variations in track 
occupancy and reconstruction efficiency, by setting the sample cor-
relation coefficient ρ ≡ σi, j/(σiσ j) to 0.75.

Shape uncertainties fall into three categories: assumptions in 
the unfolding procedure, feed-in of combinatorial jets, and the 
sensitivity of the unfolded solution to the shape of the underly-
ing event energy distribution. The dominant contribution to the 
unfolding uncertainty is related to the regularization of the un-
folded solution. The SVD algorithm [54] regularizes the unfolding 
by omitting components of the measured spectrum for which the 
singular value is small and which amplify statistical noise in the 
result. To explore the sensitivity of the result to the regularization 
strength, the effective rank of the matrix equation that is solved 
is varied by changing an integer regularization parameter k by ±1. 
The SVD unfolding algorithm uses a prior spectrum as the start-
ing point of the unfolding; the result of the unfolding is the ratio 

between the full spectrum and this prior. The unfolded solution 
from the χ2 algorithm [55] is used as prior (default) as well as a 
PYTHIA spectrum. The bias from the choice of unfolding algorithm 
itself is tested by comparing the results of the SVD unfolding and 
the χ2 algorithm.

The same nominal unfolding approach is used for the in-plane 
and out-of-plane jet spectra and the δpT distributions for the 
in-plane and out-of-plane background fluctuations are similar in 
width; the unfolding uncertainty is therefore strongly correlated 
between the in-plane and out-of-plane jet spectra. These corre-
lations are taken into account by applying the variations in the 
unfolding procedure to the in-plane and out-of-plane jet spectra 
at the same time and calculating the resulting variations of vch jet

2 . 
The total uncertainty from unfolding is determined by constructing 
a distribution of all unfolded solutions in each pchjet

T interval and 
assigning the width of this distribution as a systematic uncertainty.

The other two components of the shape uncertainty are the 
sensitivity of the unfolded solution to combinatorial jets and un-
certainties arising from the description of the underlying event; 
both are estimated on the in-plane and out-of-plane jet spectra 
independently and propagated to vch jet

2 as uncorrelated. A system-
atic uncertainty is only assigned when the observed variation is 
found to be statistically incompatible with the nominal measure-
ment. The effect of combinatorial jets is tested by varying the min-
imum pchjet

T of the measured jet spectrum by ±5 GeV/c, effectively 
increasing or decreasing the possible contribution of combinatorial 
jet yield at low jet momentum. To test the assumptions made in 
the fitting of Eq. (5) the maximum pT of accepted tracks is low-
ered to 4 GeV/c. Additionally, the minimum p-value that is used 
as a goodness of fit criterion is changed from 0.01 (the nominal 
value) to 0.1. The minimum required distance of tracks to the lead-
ing jet axis in pseudorapidity is enlarged to 0.3.

Table 1 gives an overview of the systematic uncertainties in 
terms of absolute uncertainties on vch jet

2 for all sources (where 
the total uncertainty is the quadratic sum of the separate compo-
nents). High statistics Monte Carlo testing has been used to verify 
that uncertainties labeled ‘� stat’ are indeed negligible compared 
to other uncertainties.

3. Results and discussion

The coefficients vch jet
2 as function of pchjet

T for 0–5% and 
30–50% collision centrality are presented in Fig. 4. Significant pos-
itive vch jet

2 is observed in semi-central collisions and no (signifi-
cant) pT dependence is visible. The observed behavior is indicative 
of path-length-dependent in-medium parton energy loss. The ob-
served vch jet

2 in central collisions is of similar magnitude. The 
systematic uncertainties on the measurement however are larger 
than those on the semi-central vch jet

2 data, in particular at lower 
pchjet

T , as a result of the larger relative background contribution to 
the measured jet energy.

The significance of the results is assessed by calculating a 
p-value for the hypothesis that vch jet

2 = 0 over the presented mo-
mentum range. The p-value is evaluated starting from a modified 
χ2 calculation that takes into account both statistical and (corre-
lated) systematic uncertainties, as suggested in [59]. The modified 
χ2 for the hypothesis vch jet

2 = μi is calculated by minimizing

χ̃2(εcorr, εshape) =
[(

n∑
i=1

(v2,i + εcorrσcorr,i + εshape − μi)
2

σ 2
i

)

+ ε2
corr + 1

n

n∑
i=1

ε2
shape

σ 2
shape,i

]
(16)
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Table 1
Systematic uncertainties on vch jet

2 for various transverse momenta and centralities. Uncertainties in central and semi-central collisions are given in the same pT ranges. The 
definitions of shape uncertainty and correlated uncertainty are explained in Sec. 2.5. Fields with the value ‘� stat’ indicate that no systematic effect can be resolved within 
the statistical limits of the analysis.

pchjet
T (GeV/c) Uncertainty on vch jet

2

30–40 60–70 80–90 30–40 60–70 80–90

Centrality (%) 0–5 30–50

Shape Unfolding 0.017 0.012 0.016 0.016 0.011 0.015

pchjet
T -measured 0.013 � stat � stat 0.024 � stat � stat

ρch(ϕ) fit 0.015 � stat 0.016 � stat � stat � stat

Total 0.027 0.012 0.023 0.029 0.011 0.015

Correlated Tracking 0.009 0.009 0.009 0.007 0.007 0.007

pchjet
T -unfolded � stat � stat � stat � stat � stat � stat

Total 0.009 0.009 0.009 0.007 0.007 0.007

Fig. 4. Second-order harmonic coefficient vch jet
2 as a function of pchjet

T for 0–5% (a) and 30–50% (b) collision centrality. The error bars on the points represent statistical 
uncertainties, the open and shaded boxes indicate the shape and correlated uncertainties (as explained in Sec. 2.5).
with respect to the systematic shifts εshape, εcorr, where v2,i rep-
resent the measured data (n points), σi are statistical uncertainties 
and σshape,i , σcorr,i denote the two specific types of systematic un-
certainties. The parameter εcorr is a measure of the fully correlated 
shifts; a shift of all data points by the correlated uncertainty σcorr,i
gives a total contribution to χ̃2 of one unit. The systematic shifts 
for the shape uncertainty are taken to be of equal size for each 
point, since this gives the best agreement with the vch jet

2 = 0
hypothesis and thus provides a conservative estimate of the sig-
nificance; the penalty factor is constructed such that an average 
shift of all data points by σshape adds one unit to χ̃2.

The p-value itself is calculated using the χ2 distribution with 
n − 2 degrees of freedom. For semi-central collisions a p-value 
of 0.0009 is found, indicating significant positive vch jet

2 . It should 
be noted that the most significant data points are at pchjet

T <

60 GeV/c; the results in the range 60 < pchjet
T < 100 GeV/c are 

compatible with vch jet
2 = 0 (p-value 0.02). In central collisions, 

a p-value with respect to the hypothesis of vch jet
2 = 0 of 0.12 is 

found which indicates that vch jet
2 is compatible with 0 within two 

standard deviations. Following the same approach an upper limit 
of vch jet

2 = 0.088 is found within the same confidence interval.

3.1. Comparison to previous measurements and model predictions

To get a better qualitative understanding of the results, the v2

of single charged particles vpart
2 [21,22] and the ATLAS vcalo jet

2

measurement [33] are shown together with the vch jet
2 measure-

ment in Fig. 5. The ATLAS result is for jets with resolution param-
eter R = 0.2 within |η| < 2.1 comprising both charged and neu-
tral fragments. The event plane angle is measured by the forward 
calorimeter system at 3.2 < |η| < 4.9. Jets are reconstructed by ap-
plying the anti-kT algorithm to calorimeter towers, after which, in 
an iterative procedure, a flow-modulated underlying event energy 
is subtracted. Each jet is required to lie within 

√
η2 + ϕ2 < 0.2

of either a calorimeter cluster of pT > 9 GeV/c or a pT > 10 GeV/c
track jet with resolution parameter R = 0.4 built from constituent 
tracks of pT > 4 GeV/c (the full reconstruction procedure can be 
found in [33,60]).

It is important to realize that the energy scales of the ATLAS 
vcalo jet

2 and ALICE vch jet
2 measurements are different (as the ALICE 

jets do not include neutral fragments) which complicates a direct 
comparison between the two measurements. The central ATLAS re-
sults are also reported in 5–10% collision centrality. The ALICE and 
ATLAS measurements are in qualitative agreement, both indicating 
path-length-dependent parton energy loss. Given the uncertainties, 
the difference in the central values of the measurement is not sig-
nificant.

Fig. 5 also shows the v2 of single charged particles vpart
2 (from 

[21,22]), which is expected to be mostly caused by in-medium en-
ergy loss at intermediate and high momenta (pT � 5 GeV/c). Even 
though a direct quantitative comparison between vch jet

2 and vpart
2

cannot be made as the energy scales for jets and single particles 
are different, the measurements can be compared qualitatively, and 
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Fig. 5. Elliptic flow coefficient v2 of charged particles [21,22] (red, green) and R = 0.2 full jets (comprising both charged and neutral fragments) measured within |η| < 2.1

[33] (blue) superimposed on the results from the current analysis of R = 0.2 charged jets vch jet
2 . In all measurements, statistical errors are represented by bars and systematic 

uncertainties by shaded or open boxes. Note that the same parton pT corresponds to different single particle, full jet and charged jet pT. ATLAS vcalo jet
2 and CMS v2 from 

[22,33] in 30–50% centrality are the weighted arithmetic means of measurements in 10% centrality intervals using the inverse square of statistical uncertainties as weights. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. vch jet
2 of R = 0.2 charged jets obtained from the JEWEL Monte Carlo (red line) for central (a) and semi-central (b) collisions compared to data. JEWEL data points are 

presented with only statistical uncertainties. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
it can be seen that for central events, the single particle vpart
2 and 

vch jet
2 are of similar magnitude and only weakly dependent on pT

over a large range of pT (≈ 20–50 GeV/c). For non-central colli-
sions (30–50%), the measurements of v2 for single particles and 
jets are also in qualitative agreement in the pT range where the 
uncertainties allow for a comparison.

Fig. 6 shows the vch jet
2 of R = 0.2 charged jets from the JEWEL 

Monte Carlo [29,30] compared to the measured vch jet
2 . JEWEL sim-

ulates parton shower evolution in the presence of a dense QCD 
medium by generating hard scatterings according to a collision 
geometry from a Glauber [61] density profile. A 1D Bjorken expan-
sion is used to simulate the time evolution of the medium. After 
radiative and collisional energy loss, PYTHIA is used to hadronize 
the fragments to final state particles.

The analysis on the JEWEL events is performed with the same 
jet definition and acceptance criteria that are used for the vch jet

2
analysis in data, using the symmetry plane �2 from the simulated 
initial geometry as �EP, 2. The JEWEL Monte Carlo shows finite 
significant vch jet

2 in semi-central collisions; in central collisions 

vch jet
2 is compatible with zero. The JEWEL result for semi-central 

30–50% collisions is compatible with the measured values (p-value 
0.4 using Eq. (16) with the JEWEL results as hypothesis μi and 
the quadratic sum of the statistical uncertainties of both datasets 
as σi in the denominator of the first sum of Eq. (16)). In central 
JEWEL collisions vch jet

2 is consistent with zero, while the mea-

sured values are compatible with the JEWEL vch jet
2 within two 

standard deviations. It should also be noted that JEWEL currently 
uses an optical Glauber model for the initial state and therefore 
does not include fluctuations in the participant distribution due to 
the spatial configuration of nuclei in the nucleus. This simplified 
treatment of the overlap geometry may underestimate the vch jet

2

[38,62]. This comparison of vch jet
2 in JEWEL to experimental data 

complements earlier studies of the path-length-dependent parton 
energy loss and model predictions for the jet RAA [5].

4. Conclusion

The azimuthal anisotropy of R = 0.2 charged jet production, 
quantified as vch jet

2 , has been presented in central and semi-
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central collisions. Significant positive vch jet
2 is observed in semi-

central collisions, which indicates that jet suppression is sensitive 
to the initial geometry of the overlap region of the collision. This 
observation can be used to constrain predictions of the path-length 
dependence of in-medium parton energy loss. In central collisions, 
the central values of the measurement are positive, but the uncer-
tainties preclude drawing a strong conclusion on the magnitude of 
vch jet

2 .

The measured vch jet
2 for charged jets is also compared to sin-

gle particle v2 from ALICE and CMS and vcalo jet
2 from ATLAS. The 

measurements cannot be directly compared quantitatively since 
the energy scales are different, but qualitatively, the results agree 
and indicate a positive v2 for both charged particles and jets to 
high pT in central and semi-central collisions. This observation in-
dicates that parton energy loss is large and that the sensitivity to 
the collision geometry persists up to high transverse momenta.

The JEWEL Monte Carlo predicts sizable vch jet
2 for semi-central 

collisions and very small to zero vch jet
2 in central events. These 

predictions are in good agreement with the semi-central measure-
ment. For central collisions, the JEWEL prediction is below the 
measurement, but more data would be needed to reduce the un-
certainties on the measurement sufficiently to constrain the model.
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R. Sahoo 49, S. Sahoo 61, P.K. Sahu 61, J. Saini 132, S. Sakai 72, M.A. Saleh 134, J. Salzwedel 20, S. Sambyal 90, 
V. Samsonov 85, L. Šándor 59, A. Sandoval 64, M. Sano 128, D. Sarkar 132, E. Scapparone 104, F. Scarlassara 30, 
C. Schiaua 78, R. Schicker 93, C. Schmidt 96, H.R. Schmidt 35, S. Schuchmann 53, J. Schukraft 36, M. Schulc 40, 
T. Schuster 136, Y. Schutz 113,36, K. Schwarz 96, K. Schweda 96, G. Scioli 28, E. Scomparin 110, R. Scott 125, 
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