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This study investigates university students’ graph interpretation strategies and difficulties in math-
ematics, physics (kinematics), and contexts other than physics. Eight sets of parallel (isomorphic)
mathematics, physics, and other context questions about graphs, which were developed by us, were
administered to 385 first-year students at the Faculty of Science, University of Zagreb. Students were asked
to provide explanations and/or mathematical procedures with their answers. Students’ main strategies and
difficulties identified through the analysis of those explanations and procedures are described. Student
strategies of graph interpretation were found to be largely context dependent and domain specific. A small
fraction of students have used the same strategy in all three domains (mathematics, physics, and other
contexts) on most sets of parallel questions. Some students have shown indications of transfer of
knowledge in the sense that they used techniques and strategies developed in physics for solving
(or attempting to solve) other context problems. In physics, the preferred strategy was the use of formulas,
which sometimes seemed to block the use of other, more productive strategies which students displayed in
other domains. Students’ answers indicated the presence of slope-height confusion and interval-point
confusion in all three domains. Students generally better interpreted graph slope than the area under a
graph, although the concept of slope still seemed to be quite vague for many. The interpretation of the
concept of area under a graph needs more attention in both physics and mathematics teaching.

DOI: 10.1103/PhysRevPhysEducRes.12.010106

I. INTRODUCTION

Student understanding of graphs is very important in all
areas of science, especially physics and mathematics. Many
student difficulties with graph interpretation were docu-
mented and identified in studies that were carried out in
physics (mostly kinematics) [1–6] or mathematics [7–13].
Overall, the findings of both physics and mathematics
education research were rather similar and pointed to the
presence of similar student difficulties in both domains.
Leinhardt, Zaslavsky, and Stein [9] classified student

difficulties with graphs as interval-point confusions, slope-
height confusions, and iconic confusions. Iconic confusion
is usually characteristic of younger students, although
traces of it can be found also in older populations, some-
times even university students [1,3]. It consists of students’
incorrect interpretation of the graph as an actual picture of
the motion. Students who show this difficulty will tend to

interpret, for example, a curved v vs t graph as representing
the motion along a curved trajectory. Such students do not
yet see the graph as a symbolic representation of an abstract
relationship between the variables on its axis, but as a
concrete picture of a body’s motion. It is therefore difficult
for them to see why the graph should change if the variables
on the axes change, and they will generally expect the
graph to remain the same.
The slope-height confusion happens when students

mistake the height of the graph for its slope [1,3,9]. For
example, when asked to reason about the slope of a graph,
students sometimes just read off the y coordinate (the
height of the graph at the point of interest). If they observe,
for example, the constant diminishing of the y coordinate of
the graph they usually conclude that the slope of the graph
shows the same behavior (e.g., the slope of the straight line
constantly diminishes, because the y coordinate constantly
diminishes).
The interval-point confusion refers to the cases where

students focus on a single point of the graph when they
should be using an interval. This difficulty will be dis-
played, for example, when students attempt to determine
the slope of a graph from one point only, instead of
choosing two points and calculating Δy=Δx. Slope-height
and interval-point confusions are quite common among
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students at the high school and university level
[1,3,4,9,13–15].
Few studies, to our knowledge, attempted to compare

student reasoning difficulties about graphs in different
contexts and domains [14–16]. Such comparison, on the
other hand, can provide interesting and important insights
into student knowledge and learning.
The study of Wemyss and van Kampen [15], in which

first-year university students solved three different context
problems including line graphs, found that the number of
students’ correct answers to a problem involving a water
level vs time graph, which students had not encountered in
the formal educational setting before, was much higher
than the number of correct answers to the supposedly more
familiar problem of determining the speed of an object from
a distance-time graph. The reason for students’ poorer
performance on physics problems was attributed to stu-
dents’ reliance on learned procedures in physics (e.g., use
of formulas). This study also found evidence that students’
mathematical knowledge of slope does not guarantee their
success on problems involving slope in kinematics. Similar
conclusions followed also from our previous study on high
school students’ understanding of a line graph slope [14].
The problem of transfer of knowledge between math-

ematics and physics was addressed also in cognitive
psychology, unrelated to graphs. One study that investi-
gated interdomain transfer between isomorphic topics in
algebra and physics (kinematics) found very high transfer
from algebra to physics, but almost no transfer from
physics to algebra, and suggested that “transfer from
physics to other domains is blocked by the embedding
of physics equations within a specific content domain”
[17]. The problem of domain specificity of knowledge is
not limited to physics; it is also present in mathematics
[18]. Michelsen [18] suggests that it is not just the
mathematical formalism that presents a barrier in learning
physics, but that there is also the missing link between
mathematics and physics. He suggests that the mathemati-
cal domain should be expanded by using examples from
physics and from everyday life contexts in mathematics
teaching, in order to solve the problem of domain speci-
ficity. In such an expanded domain, modeling of real life
situations could be a way of bridging the gap between
mathematics and physics.
In summary, existing research seems to indicate that

students have many difficulties with understanding of line
graphs, but also that the context of a problem may influence
the choice of students’ strategy, as well as the type of
difficulties which will be expressed. Problem context can,
therefore, influence its difficulty.
In a previous paper [16], of which this one is a sequel, we

have described the first part of the study that attempted to
compare first-year university students’ performance on
mathematically similar problems, which were situated in
mathematics, physics, and other contexts (parallel or

isomorphic problems). The analysis of item difficulties
of eight sets of parallel problems pointed to the higher
difficulty of problems that involved some context (either
physics or other context), compared to direct mathematical
problems on graphs. The added context generally increased
the difficulty of parallel problems with regards to math-
ematics, because problems including context required more
steps in solving (interpretation and translation of context
into mathematical language and vice versa). The analysis
also suggested that the concept of slope seemed to be better
understood than the concept of area under a graph. In the
same study students also gave explanations for their
answers, which provided additional insight in the reasoning
strategies that they used in different domains, but also in
their conceptual and reasoning difficulties regarding
graphs. These strategies and difficulties will be described
and analyzed in the present study, which attempts to
identify the main student strategies, as well as students’
reasoning difficulties, expressed on parallel graph prob-
lems, and to answer the following research questions:

(i) How consistent are students in their choice of
strategies and solutions to parallel questions in
different domains and contexts?

(ii) What are the main observed student difficulties in
each domain and how do they relate to the context of
the questions?

II. THEORETICAL BACKGROUND

There is still some debate going on among researchers in
physics education about the nature and origin of student
difficulties in physics, and the structure of students’ naive
knowledge. The two opposing views are sometimes
described [19] as knowledge as theory [20–21] and knowl-
edge as elements [22–24]. The first one sees naive knowl-
edge as highly organized and interconnected, containing
firm beliefs or ideas inconsistent with the accepted physics
knowledge, known as misconceptions or alternative con-
ceptions [20–21], and the other one sees naive knowledge
as a set of relatively loosely connected knowledge ele-
ments, whose activation is very context dependent [22–24].
In the knowledge-as-elements perspective, the displayed
difficulties reflect students’ inappropriate or simplified
reasoning patterns, which originate from using basic
reasoning elements called phenomenological primitives
(p prims), which are in themselves neither correct nor
incorrect [22]. Which knowledge or reasoning elements
will be activated in a certain situation depends largely on
the context of the problem and on students’ framing of the
problem [24]. Framing means that students consciously or
unconsciously make choices as to what knowledge to
activate and use, based on their perception of the situation
and on the social and cultural expectations. Student
responses are dynamically created in response to their
perception of the task [24]. The question of transfer of
knowledge, which is usually defined as the ability to extend
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what has been learned in one context to new contexts [25],
is then replaced with the question of which cognitive
resources will be considered appropriate by the student
in a given problem, and, therefore, activated. That will
largely be determined by the context and domain of the
problem.
The two perspectives on students’ naive knowledge

might also have different consequences for teaching: the
first one would require replacing firm incorrect ideas with
scientific ones through the radical process of conceptual
change, whereas the other one would focus more on
refinement of knowledge and appropriate use of reasoning
elements [19].
Many studies that have looked for transfer of knowledge

have usually come up with mostly negative results, which
may be due, among other things, also to the design of those
studies [26]. Bransford and Schwartz [26] have suggested
shifting the view on transfer from the direct application
perspective (successful application of knowledge acquired
in one context to similar problems in different contexts) to a
more dynamical view of preparation for future learning
(PFL). The PFL perspective can be demonstrated through
the questions about and approaches to the new problem,
which were shaped and influenced by the previous learn-
ing, even if students are not able to completely solve the
new problem. The PFL perspective is very important for
learning, because it reveals more about students’ useful
learning trajectories than the direct application perspective.
The focus is not only on what students can or cannot
directly transfer and solve, but whether students are able to
learn while they transfer. In this way, transfer can be
considered a dynamical way of reconstructing knowledge
[27] rather than just an application of previously acquired
knowledge in a different situation. This dynamical view of
transfer is in agreement with the knowledge-as-elements
perspective, because it assumes activation of different
knowledge elements in a new context and dynamical
creation of the response on the spot.

III. DATA COLLECTION AND ANALYSIS

Eight sets of parallel mathematics, physics, and other
context questions about graphs were developed by us and
described in the previous paper on graphs in different
contexts [16]. The complete test can be accessed through
the link at Ref. [28]. Five sets of questions referred to the
concept of graph slope, and three to the concept of area
under a graph. One set of questions is presented in Fig. 1.
Four sets of questions were in a multiple choice format, and
four sets were open ended. In addition to choosing the
correct answer in multiple choice questions, or providing
the answer in open-ended questions, students were asked to
provide explanations for their answers and/or necessary
calculations where appropriate, so that the insight into the
underlying student reasoning could be obtained. The labels
of questions are given in Table I. Questions with the same

two last labels are parallel in content (e.g., PS1, MS1,
and CS1).
The test consisting of those eight sets of questions was

administered to 385 first year students at the Faculty of
Science, University of Zagreb in Zagreb, Croatia. Students
were either prospective physics or mathematics teachers,
or prospective physicists or mathematicians. Students
received some credit points for writing explanations
(regardless of their correctness) and/or for required calcu-
lations. The tests were scored by us and first analyzed in
terms of item difficulties over different domains and
conceptual areas. The results of that analysis were pre-
sented in the previous paper [16].
In the present study, each student explanation provided

with the answers was carefully analyzed and categorized.
The categorization process followed the general guidelines
for analyzing verbal data [29].
By reading a sample of student answers, insights into

their thinking and into the most frequent approaches to
problems were obtained. The strategies suggested by those
answers then received codes, but the answers also provided
examples of what constitutes evidence for a certain strategy.
That would be applied to new data, which would usually
contain some new examples of student thinking, which
required either expanding or refining of prior operation-
alization of evidence for a certain category, or introduction
of new categories or subcategories. Coding was refined
through several passes through the data. Two of us coded
data separately (L.I. and A.A. coded slope categories, and
A.S. and A.A. coded area categories). Differences and
ambiguities in coding were discussed and resolved at
meetings of us. The categories were, in principle, different
for each set of questions, although some of them appeared
on multiple questions. Different categories reflect different
student strategies, some correct, and some incorrect.
Sometimes a student answer suggested more than one
strategy, and was accordingly assigned to two categories.
The data were finally summarized in tabular form, and
patterns in the data were detected and interpreted. At this
point, some of the less frequent categories were merged
into larger categories to make the general patterns in the
data more noticeable.
Based on the frequency of students’ use of different

strategies, several incorrect strategies were recognized
as possible indications of underlying student difficulties
with graph interpretation, and will be analyzed in the next
section.
To assess the measure of association between student

answers in different domains (as a possible indication of
transfer of knowledge), the phi coefficients for different
pairs of student answers to questions from the same set
were calculated [30]. The phi coefficient is a special case of
the Pearson product-moment correlation coefficient, which
is most useful for determining the intercorrelation between
the responses of subjects on two dichotomous test items
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[30]. For this analysis, each student answer to a test
question was assigned 1 if the answer was correct, and
0 if it was incorrect. The correctness of the answer was
determined on the basis of both the given answer and the
accompanying explanation or procedure. The phi coeffi-
cients were then calculated, and their significance was
evaluated. Cohen [31,32] has proposed the following phi
values as criteria for identifying the magnitude of an effect
size: small effect size for 0.10 ≤ Φ < 0.30; medium effect
size for 0.30 ≤ Φ < 0.50; large effect size for Φ ≥ 0.50.
High phi values for two questions do not automatically
indicate the use of same strategies, but low values probably
suggest different strategies. In addition, the number of
students who have used the same strategy in different
domains was determined for each set of questions.

IV. RESULTS AND DISCUSSION

A. Student strategies and difficulties
concerning graph slope

Student strategies on slope questions are presented in
Fig. 2 as well as in Table A in the Supplemental Material
[33]. We will shortly describe each one of those strategies.

1. The use of formula (correct or incorrect)

One of the most common strategies on slope problems
was the use of formulas, which could have been either
correct or incorrect. This strategy was most prominent, as
expected, on the first set of questions (S1), where calcu-
lation of slope was required. The use of formulas domi-
nated in all three domains (mathematics, physics, and other
contexts) on that set of questions (Table A [33], Fig. 2), but
the formulas that were used were different in each domain.
On mathematics question MS1, students mostly used

various mathematical formulas for a straight line to
calculate slope. On parallel physics question PS1, 49%
of students used incorrect or inappropriate formulas for
acceleration. The leading incorrect formula in physics
was a ¼ v=t, which was used by 41% of all students.

FIG. 1. An example of one set of parallel questions.

TABLE I. Labels of questions in the test.

Slope questions Area questions

Mathematics MS1 to MS5 MA1 to MA3
Physics PS1 to PS5 PA1 to PA3
Other contexts CS1 to CS5 CA1 to CA3
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On parallel other context question CS1, students usually
constructed a formula, either correctly (31%) or incorrectly
(40%). Of the incorrectly constructed formulas, the most
common ones (derived by 68% of students who constructed
an incorrect formula or 27% of all students) were of the
form k ¼ y=x.
Set S1 was the only set in which formulas were

necessary, but they were also used on sets S2 and S5,
which asked for qualitative comparison of slopes of straight
lines (S2), or comparison of the slope of a straight line and
the slope of a curve at a point (S5). Even though no
computation was required on set S2, some students decided
to use formulas in their argumentation (21% in mathemat-
ics, 44% in physics, and 8% in other context). On physics
question PS2, the dominant strategy was the use of
formulas for acceleration, but half of the students who
used that strategy, used an incorrect formula, mostly
a ¼ v=t. The use of formula also appeared as one of the
two main incorrect strategies on set S5, mostly pronounced
on physics question PS5, where 18% of students calculated
x=t at the point of intersection of the straight line and the
curve to justify the equality of velocities at that point.

2. Reasoning on the basis of rise over run

Qualitative reasoning on the basis of rise over run was
present on questions S2–S4. On set S2 students mostly
reasoned on the basis of rise over run on other context
question CS2, when comparing the increase of the prices of
the two stocks in the same interval of time. It was the most
prominent correct strategy on set S3, where students
concluded that the slope was negative when the ordinate

value y of the graph decreased with increase in the value
of x. Similar reasoning was used by students on set S4 to
explain the negativity of the line graph slope.

3. Relating or identifying slope with the angle between
the straight line and one of the axes or steepness

Many students made conclusions about slope on the
basis of the size of the angle between the straight line
and the horizontal coordinate axis, or referred to graph’s
steepness in their explanations. Some students (7%)
explicitly identified the slope with that angle on MS1,
whereas for others who used angle-based reasoning, the
same mistake remains a possibility which we can suspect,
but cannot be sure of. The angle-based reasoning usually
led students to the correct qualitative conclusions about
slope. It was especially prominent on set S2, where
comparison of the slopes of two straight lines was required.

4. Reasoning about slope on the basis
of graph appearance

On sets S3 and S4, the slope of the line graph, and
especially its sign, was evaluated by many students through
reasoning based on the graph’s appearance. Explanations
for negativity of slope were characterized by unclear
expressions, such as “the graph/straight line is going
down/descending,” suggesting that the idea of negative
slope may be vague for those students, and that they
probably only memorized the rule that the slope is negative
for descending straight lines. Regarding the aspect of
constancy of slope on set S4, this strategy very likely

FIG. 2. Overview of different strategies on slope questions and their frequencies (the number of students who used them).
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indicated the presence of slope-height confusion, although
it was not explicitly expressed.

5. Applying factual knowledge that a straight line
has constant slope

The constancy of the graph’s slope was explained in
many cases (30% on MS4, 18% on PS4, and 18% on CS4)
only by stating that the slope of the straight line is constant,
as an application of factual knowledge without further
argumentation.

6. Identifying slope with the height of the graph

Confusing the slope of the graph with its height is a well-
known student difficulty, which was found also in this
study. The constant decreasing of the height of the graph
was a very strong and easily recognizable visual cue on set
S4, and it may have triggered slope-height confusion in
some students. The main incorrect strategy, present in all
three domains on set S4, consisted of identifying the
decreasing graph height with the slope, and, consequently,
interpreting the values of the slope of each straight line as
also constantly decreasing (Fig. 2, Table A [33]). Typical
explanations for this type of answer were like the follow-
ing: “We see from the graph that velocity was decreasing
over time, so it was the same with acceleration”.
It is likely that many more students who did not provide

explanations on set S4, but only chose the answer that slope
was decreasing, had very likely made the same error
(altogether 20% in mathematics, 29% in physics, and
26% in other context). On set S3, the main observed
difficulty was that students sometimes identified the sign of
the slope with the sign of the y coordinate (about 10% in
physics and mathematics, but 22% in other context), which
may also be regarded as a special case, or a consequence, of
slope-height confusion. The following student’s explana-
tion illustrates this difficulty:

“The growth rate of GDP is negative between 2006. and
2010, because GDP is negative in that period”.

On set S5, 15% to 23% of students concluded that the
slope of the straight line and the slope of the tangent line on
a curve were equal at the point of intersection of the straight
line and the curve. This may also suggest slope-height
confusion, since students seemed to conclude that equal
heights meant equal slopes, although it remains possible
that some of those students chose the point of intersection
only because it was the dominant visual cue in S5
problems.

7. Identifying the slope of a curved graph at a point
with the slope of the tangent line at that point

Practically the only correct strategy, used on set S5 by
41%, 37%, and 34% of students on mathematics, physics,
and other context questions, respectively, was to draw a

tangent line to the curved graph, and to compare its slope to
the slope of the straight line (there were also a few attempts
to use calculus). This strategy was specific only for set S5,
which was the only set that involved a curved graph.

B. Student strategies and difficulties concerning the
area under a graph

Student strategies concerning the area under a graph
are presented in Fig. 3, as well as in Table B in the
Supplemental Material [33].

1. Calculation of the area under a graph

Calculation of the area under a graph using formulas
from geometry (Fig. 3, Table B [33]) was the most
frequently used strategy on mathematics area questions,
as expected, since it was explicitly invoked in the formu-
lation of those questions. Calculation of the area under a
graph was in itself not the main problem for students, as
can be concluded from the low difficulties1 of problems
MA1–MA3 [16] relative to difficulties of questions from
the other two domains. It is still worth noting that a non-
negligible fraction of students had trouble identifying
and/or calculating correctly the required areas on items
MA1 (13%), MA2 (29%), and MA3 (41%), or that 8% of
students on CA1, as well as 11% of students on MA3, read
off the wrong number from the graph. On physics and other
context problems, calculation of the area under a graph was
used far less frequently, since solving those problems first
required interpreting the area under a graph as the quantity
of interest, which turned out to be the main source of
difficulty in those problems. Typically 10%–25% of stu-
dents calculated area on physics and other context ques-
tions, compared to 80%–90% on mathematics questions.
The largest number of students who calculated the area
under the graph on nonmathematics questions was found
on question PA1, which asked for the determination of the
covered distance on the basis of the v vs t graph. This might
be explained by the fact that most students are explicitly
taught in high school physics courses to find the covered
distance by calculating the area under the v vs t graph,
whereas the interpretation of area under a vs t graphs is
usually not discussed.

2. The use of physics formulas

The most frequently used strategy on physics questions
was the use of physics formulas, but far more often
incorrectly than correctly (Fig. 3, Table B [33]). It was

1We can note that the questions in mathematics treated only the
calculation of the (positive) area under the linear graph. Other
aspects of the reversed problem of differentiation (slope), that is,
the adequate understanding (applied to linear graphs) of the
notion of indefinite integral and the fundamental theorem of
calculus, including the aspect of accumulation, were not inves-
tigated through mathematics questions.
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the leading strategy on PA1 (55%). Some of the kinematics
formulas that students were frequently using produced the
correct result on PA1, but not on PA2 and PA3. On sets A2
and A3, the leading strategy on physics questions was also
the use of formulas (52% and 41%, respectively), whereas
in other contexts it was the calculation of the area under a
graph (16% and 25%) (Fig. 3, Table B [33]). On both sets
A2 and A3, the other context question was solved correctly
more often than the physics question, the main reason being
that students often relied on incorrect formulas on physics
questions. Incorrect and misapplied formulas were quite
common. For example, on question PA2, 18% of students
used the formula Δv ¼ ΔaΔt, 20% used Δv ¼ v2 − v1 ¼
a2t2 − a1t1, and 6% of students used v ¼ at. These
formulas reflect, among other things, students’ poor under-
standing of the symbol delta (Δ). Some students occasion-
ally tried to construct their own formulas on other context
questions and others sometimes tried to apply some physics
formulas (correctly or incorrectly). The wording of the
question may also have played a role in students’ choice of
strategies. On question CA1 (Fig. 1) the Croatian word for
rate was the same as the word for speed (brzina), which has
triggered the use of physics kinematics formulas in some
students to describe the rate of change of water level, and
helped them to solve the problem correctly.

3. Reading off values from the graph

Both physics and other context questions triggered the
use of a variety of less frequent strategies which included
reading off some values from the graph, mostly the y

coordinate, with little or no further processing. On CA1
(which asked for the total change of the water level of a
river), the leading strategy (used by 22% of students) was
simply to read off the maximum value from the ordinate
axis. Some students came to the idea of multiplication,
usually through some kind of dimensional analysis (Fig. 4),
and they multiplied the x and y values.
The fact that some questions (CA1 and PA2) asked for

the change of quantities has possibly increased the use of
an incorrect strategy, which consisted in simply reading off
the change in the y coordinate from the graph (Fig. 3,
Table B [33]).

4. Fitting a new scale to the graph and some other
less frequent strategies

Since PA3 and CA3 included in their formulation an
initial value of the unknown quantity (velocity or rental
price), they have both triggered a similar incorrect strategy,
used by about 10% of students in each domain. It consisted
of fitting a new scale to the ordinate axis of the graph, by
assigning, for example, the initial value of velocity to the
value of acceleration at t ¼ 0 on the graph, and then
reading off from the graph the rescaled value of velocity
at the required instant (Fig. 5). It seems that students who
used this strategy expected the graph to remain the same
regardless of what quantities were on graph axes, and/or
attempted again to misuse proportional reasoning. An
example of student explanation on PA3 illustrates this
difficulty:

FIG. 3. Overview of student strategies on area questions and their frequencies (number of students who used them).
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“Acceleration has decreased by half at 7 s, so the
velocity did also, because these quantities are
proportional.”

On other context questions students had no ready-made
formulas to use, so they seemed to think more creatively,
generated more strategies, and therefore managed to solve
problems more often than in physics (although not too
often in general). Some students tried to construct their own
formulas, correctly or incorrectly. Some used an intuitive
idea of accumulation on area problems and approximated
the area under a graph with a sum of areas of narrow
rectangles (5% on CA3). Others (e.g., 4% on CA3) used the
average value of the quantity presented in the graph (e.g.,
average bus rental price per km in CA3) to calculate the
required quantity (e.g., total price of bus rental).

C. Consistency of students’ strategies
in different domains

Two indicators were used to probe students’ consistency
in the strategies and solutions to parallel problems in

different domains: phi coefficients, which indicate the
association of students’ final answers to parallel questions,
and the number of the same strategies used on different
combinations of parallel questions. Both were typically
rather low, as is suggested by Figs. 6 and 7, as well as
Table C and Table D in the Supplemental Material [33].
The association of student answers on sets S1–S3 was

low (Fig. 6, Table C [33]), and the use of the same strategies
(Fig. 7, Table D [33]) was below 15%, except for physics
and other contexts, where it ranged between 18% and 31%
(when correct and incorrect strategies are added). This
suggests that most students probably saw the parallel
questions from sets S1–S3 as different, and approached
them with different strategies. Set S4 is characterized by a
medium association of student answers (Fig. 6, Table C
[33]), suggesting the possibility that students were more
likely to recognize similarities between the questions of set
S4 than those of the sets S1–S3. On the whole, set S5,
which was the second most difficult set of slope questions
(after S1, the calculation of slope) [16], was also the set of
questions with the most pronounced association between

FIG. 5. An example of student answer to question CA3, where student fitted a scale of velocities on the graph of acceleration vs time,
and determined the velocity at t ¼ 7 s as 15 m=s from the initial velocity of 30 m=s.

FIG. 4. The response of one student to question CA1, indicating dimensional analysis which led student to the idea of multiplication.
The variables on the axes of the graph are time and water level rate of change.
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student answers (Fig. 6, Table C [33]), with phi coefficients
indicating strong effect size. The use of similar strategies in
different domains was also more frequent on set S5 than on
the other sets of slope questions (Fig. 7, Table D [33]),
displayed by 31%–51% of students on different combina-
tions of two domains. The reason for that could be that the
curved graphs from set S5 stood out among line graphs and
enabled students to recognize similarities of the questions
more readily than in other sets of questions.
For area questions, the association between student

answers to mathematics questions and questions from
any of the other two domains were quite low. The phi
coefficients suggest small effect size [32]. On all three sets
of area questions, the strongest association was found
between student answers to physics and other context
questions (Fig. 6, Table C [33]).
The phi coefficients and the number of students who used

the same strategies on different combinations of questions
usually seem to tell the same story, except in a few cases.

Figure 7 indicates somewhat larger numbers of the same
strategies on different domain area questions (typically
between about 10% and 20%, with the exception of 27%
on MA1 and PA1) than would be expected from phi
coefficients alone. This might be due to a distinct asymmetry
in student answers: mathematics questions were solved
correctly by most students, and physics and other context
questions were rarely solved correctly, so phi coefficients
could not find a correlation between final answers in
mathematics and the other two domains. On the other hand,
the association of answers between physics and other context
questions ismore pronounced, becausewhen students solved
either physics or other context problems of a certain set
correctly, they often solved the other one as well.

D. Main findings

Main findings 1–3 answer the first research question and
main findings 4–6 the second research question.

FIG. 7. Number of students on each set of questions who used same strategies in different combinations of domains.

FIG. 6. Phi coefficients for each set of slope questions, indicating association of student answers to different combinations of questions
(e.g., mathematics and physics, physics and other contexts, mathematics and other contexts).
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1. Strategies used on parallel questions are often
context dependent and domain specific

Only a small fraction of students typically used the same
strategy on all three questions of the same set of questions
(Fig. 7, Table D [33]), although some have used the same
strategy on two of the three questions. It seems that in many
cases students perceived the questions from the same set
as different and approached them in different ways. The
strategy that was used usually depended on the domain and
the context of the problem, with the exception of set S5, and
to a lesser extent set S4.
Students seem to apply similar strategies in different

contexts more often on problems for which they do not
have firmly established domain specific (mathematics or
physics) procedures, and/or where visual cues more
strongly suggest similarity. On set S5 students might have
recognized the similarity between the three questions of the
set more easily than on other questions, because the curved
graphs stood out among other graphs which were all
straight lines. Also, since their knowledge about curved
graphs was probably quite limited, the students were
more likely to transfer the little that they knew from one
domain to another, or—if they had no knowledge about the
slope of curved graphs at all—to use the same wrong
strategy on at least two, or even all three questions (Fig. 7,
Table D [33]).
On area questions, the most important difference in

strategies was found between physics and other context
questions. In physics, students usually relied on physics
formulas. On other context questions students did not have
formulas to use, so they were forced to find other
approaches. The choice of strategy depended in some cases
also on the formulation or wording of a problem, as a part
of the context of the problem.
Formulation of problems is very important, since it can

trigger the use of some new solving strategies, enhance or
impede transfer of knowledge, and determine which cog-
nitive resources will be activated and used.
It seems that if students acquire domain specific proce-

dures for solving a certain class of problems (such as
determining the slope of the straight line in mathematics
with the use of mathematical formulas or calculating
acceleration in physics with the use of physics formulas),
they will tend to stick to those procedures, and will
generally not seem to recognize the mathematical similarity
of the problems in different domains. This may be an
indication of the absence of transfer of knowledge between
the domains, but it could also be a consequence of students’
different learning experiences in different school subjects,
where they had implicitly learned that each discipline has
its own language and conventions, and that they have to
answer questions in the way that the particular discipline
requires. So, for example, if they had perceived a question
as a mathematical one, they might have felt obliged to
answer it in a “mathematical way.” This could have been an

indication of the problem of framing [24]. How students
framed the problem may have determined their choice of
strategy for its solving.

2. The preferred strategy on physics questions seems
to be the use of formulas (often incorrect ones)

Even though students demonstrated that they were
capable of using different strategies for reasoning about
graphs, the preferred strategy in physics domain tended to
be the use of formulas (Figs. 2,3; Tables A, B [33]). On all
area problems and some slope problems, students chose the
use of formulas as the main strategy for solving physics
problems. On sets A1–A3, the use of formulas was by far
the most frequent strategy in physics. However, that
strategy was not very productive, since the formulas that
were used were most often incorrect or inappropriate, and
produced wrong solutions. Students often applied incorrect
formulas, such as a ¼ v=t, or started with the correct
formula a ¼ Δv=Δt, but then continued to use it as
a ¼ v=t. Some students tried to apply formulas that were
inappropriate for accelerated motion problems, such as, for
example, v ¼ s=t. The application of the incorrect or
inappropriate formulas led students to many incorrect
conclusions on physics questions, even on the questions
where calculations were not necessary, e.g., slope question
S2. At the same time, it was not uncommon for students to
give correct answers to parallel questions in mathematics
and other contexts domains, demonstrating that they were
able to reason correctly about the same problem in a
different context. Another problem that was striking is that
students very often did not seem to understand either the
meaning, or the area of applicability of formulas they were
using in physics. The very extensive use of the formula
a ¼ v=t on the test indicates that many students may not
have understood the very meaning of the concept of
acceleration (as the rate of change of velocity), and
therefore cannot be expected to understand its representa-
tion as the slope of the v vs t graph. All these findings
suggest that students mostly do not see formulas as
mathematical models of physical situations and have many
problems with their interpretation and understanding.
Translating physics into mathematics is not an easy task
for students, as some previous studies on modeling in
physics and student understanding of physics equation have
already shown (e.g., Refs. [34,35]).

3. Students use more creative strategies on other
context problems than on physics problems

Other context problems seemed to activate more of
students’ cognitive resources, and students displayed a
wider variety of strategies on those problems than on
physics problems. About twice as many students came to
the idea to calculate the area under a graph on questions
CA2 and CA3 than on PA2 and PA3 (Fig. 6, Table B [33]).
Some students came to that idea on other context questions
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by using some form of dimensional analysis, which led
some only to the conclusion that multiplication is needed,
and others to the idea of calculating the area. Dimensional
analysis is an approach primarily developed in physics, but
surprisingly students did not use the same approach on
physics questions.
A lot of students’ ideas in solving other context problems

actually originated from what they had learned in physics,
so they could be regarded as examples of transfer of
knowledge in the sense of “preparation for future learning”
[26]. There have been cases of negative transfer as well,
such as the inappropriate use of the formula v ¼ s=t, or of
misuse of proportional reasoning, which is not uncom-
mon [36].
Many of the student approaches to other context prob-

lems could have helped them to solve physics problems as
well, but the reliance on formulas as the primary strategy in
physics prevented students from using other approaches of
which they were capable. Some instances of transfer of
knowledge in the sense of preparation for future learning
were evidenced in students’ use of knowledge and tech-
niques (e.g., dimensional analysis, modeling) acquired in
one domain (usually physics) in some other domain
(usually other context questions). Some students seemed
to think more creatively and used more of the available
resources on other context questions, than on the physics
questions, where they seemed to be bound too much by
how they perceived the conventions of the discipline.

4. Students show similar difficulties with graph
interpretation in all domains

Iconic confusion, slope-height confusion, and interval-
point confusion can be considered a form of naïve
reasoning in which students misapply certain elements
of reasoning, or use simplified reasoning schemes [9]. In
this study we have observed interval-point confusions
and slope-height confusions, while iconic confusions were
very rare.
The same patterns of naïve reasoning were present

in all three domains, but not equally often in each one
of them. This is something that we had already noticed in a
previous study on high school students’ understanding of
line graph slope, for the domains of physics and math-
ematics [14]. Slope-height confusion was most clearly
displayed on set S4. The visual cue in this set of questions
(the decreasing height of the graphs) was very strong, and it
seems that students primarily relied on it when concluding
incorrectly that the slope, or some slope-related quantity,
such as acceleration, was decreasing. The difference
between physics and mathematics was present (29% in
physics, and 20% in mathematics), although it was not as
large as in high school students, where 68% of students
displayed slope-height confusion in physics and 33% in
mathematics [14].

On set S2 students most clearly exhibited interval-point
confusion when reasoning about slope on the basis of the
formula a ¼ v=t, which was in most cases the only
explanation that was given. The use of this formula
suggests that students do not distinguish point from
interval, and do not know when to use one or the other.
The same happened in mathematics and in other contexts,
where they sometimes used y=x or price/time to determine
slope. However, while 20% of students displayed this
difficulty on question PS2, only 1% of students displayed
it on MS2 and CS2 questions. This can be attributed partly
to students’ reliance on formulas in physics, but partly also
to their insufficient understanding of the rate concept, as
well as of the symbol delta.

5. Slope is a vague concept for many students;
calculating slope seems to be the most

difficult aspect of the concept

When students just use the word slope in an explanation,
we cannot always be sure what they mean, and whether
their meaning of slope is consistent with the concept
definition. On all mathematical slope questions students
quite often gave unclear or no explanations (Fig. 2,
Table A), which indicated that they did not know how
to explain the concept of slope. However, in physics and in
other contexts they would sometimes refer to slope in their
explanations. If students use the word slope, even in a
seemingly correct way, instructors should not automatically
assume that students therefore fully understand the mean-
ing of the concept.
Student explanations on mathematics slope items

revealed that for many students slope may not be more
than the vague notion of how steep a straight line is,
sometimes identified with the angle that the straight line
forms with one of the coordinate axis. In problems which
demand only qualitative comparison of slopes, this may
often be enough to give the correct answer. However, when
it comes to calculating slope, this vague idea no longer
helps. Slope calculation was required only in set S1. This
was the most difficult slope item in physics and the other
context domain, and the second most difficult slope item in
mathematics [16]. Even though students did not do too well
on determining slope in the mathematics domain, they did
even worse in other domains. The percentage of students
who know how to determine slope mathematically (54%) is
roughly the same as was found in two other studies on first-
year university students [3,15]. An important aspect of the
understanding of the concept of slope is the understanding
of the meaning of negative slope. Negative slope is
obviously more difficult to understand than positive slope.
On sets S3 and S4 students displayed some of their
difficulties. It seems that students who used vague explan-
ations of negative slope on the basis of graph appearance
(e.g., “straight line is going down”) do not fully understand
the concept, but have some visual rule for recognizing it.
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6. Interpretation of the meaning of the area under a
graph is very difficult for students

Most students know how to determine the area under a
graph, but the interpretation of the meaning of that area
seems to be a much bigger problem. This was already
suggested by the very large difference in difficulty between
mathematics area questions and area questions from the
other two domains in the previous study [16], but also
confirmed in this one by the explanations given to all area
items. It was noticed that few students can interpret areas
under graphs in situations other than those previously
encountered. Unlike slope, whose meaning is more often
discussed during teaching, and encountered in a greater
variety of situations than the area under a graph, inter-
pretation of area seems to be limited to a few isolated
examples in physics (such as “covered distance is calcu-
lated as the area under the v vs t graph”), learned without
sufficient understanding and without the necessary reason-
ing required to transfer that knowledge to other situations.
It is interesting that students are more likely to come to the
correct interpretation of area on other context questions
than in physics, because in physics they often seem to be
blocked in their thinking by their overreliance on formulas.

V. CONCLUSIONS

We have attempted to analyze and compare student
reasoning (their strategies and difficulties) on mathemati-
cally similar problems, situated in different domains and
contexts. The analysis of student explanations, which
accompanied their answers to test questions, suggested
that student reasoning about problems is often very much
bound by the contexts and conventions of the disciplines in
which their knowledge was acquired. The observed
dependence of student strategies on the domain and context
of the questions seems to support the knowledge-in-pieces
framework, which explains this dependence through
context-dependent activation of cognitive resources and
the importance of framing.
The study revealed some differences between student

understanding of the concept of graph slope and the
concept of area under a graph. Although we can say
generally that the concept of graph slope seems to be
better understood than the concept of area under a graph,
we have still noticed that for many students the concept of
slope may be quite vague and needs refinement and
strengthening. The area under a graph seems to be very
difficult for students to interpret in unfamiliar situations.
An important implication for physics teaching is that we

should work more on building student reasoning, which
leads towards the interpretation of area (which is essentially
the idea of integral), and not only provide ready-made
interpretation for specific cases in physics. That could also
help later to strengthen student understanding of the
concept of a definite and indefinite integral in mathematics.
Students seemed to think more freely and creatively, and

to transfer more of their knowledge, in problems which in
their perception probably did not fall in the category of
either physics or mathematics (other contexts problems).
Other context problems may have a potential to expose
and develop student reasoning more than the standard
domain—specific mathematics and physics questions.
They should be used more, in both mathematics and
physics teaching. Both disciplines should work more on
establishing links between common concepts and proce-
dures in mathematics and physics and promote their
integration in students’ minds to a much larger extent than
is the case now. Students’ almost exclusive reliance on
formulas in physics presents, in our opinion, an important
obstacle for the development of students’ deeper reasoning
in physics, and sometimes even an obstacle for the
application of their already existing knowledge and rea-
soning developed in other domains.
This study confirms once again that human knowledge is

very complex and multifaceted. Whenever we are trying to
probe or assess student knowledge we should be aware of
that fact. The problem lies not only in the quantity and
quality of knowledge, but also in its accessibility. It is
possible to pose basically the same problem three times, as
we have done in this study, and to get three very different
answers from the same student. The context and formu-
lation of the question, students’ framing of the question, the
procedures and conventions of the domain in which a
certain piece of knowledge was first acquired, the
existing or missing links between the domains—all that
and much more contributes to the form and content of the
student answer. Using many contexts during teaching,
and constantly building links between different domains,
could be a good way to building stronger student
knowledge.
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