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Abstract: The production of prompt D+
s mesons was measured for the first time in

collisions of heavy nuclei with the ALICE detector at the LHC. The analysis was performed

on a data sample of Pb-Pb collisions at a centre-of-mass energy per nucleon pair,
√
sNN,

of 2.76 TeV in two different centrality classes, namely 0–10% and 20–50%. D+
s mesons and

their antiparticles were reconstructed at mid-rapidity from their hadronic decay channel

D+
s → φπ+, with φ→ K−K+, in the transverse momentum intervals 4 < pT < 12 GeV/c

and 6 < pT < 12 GeV/c for the 0–10% and 20–50% centrality classes, respectively. The

nuclear modification factor RAA was computed by comparing the pT-differential production

yields in Pb-Pb collisions to those in proton-proton (pp) collisions at the same energy. This

pp reference was obtained using the cross section measured at
√
s = 7 TeV and scaled to√

s = 2.76 TeV. The RAA of D+
s mesons was compared to that of non-strange D mesons

in the 10% most central Pb-Pb collisions. At high pT (8 < pT < 12 GeV/c ) a suppression

of the D+
s -meson yield by a factor of about three, compatible within uncertainties with

that of non-strange D mesons, is observed. At lower pT (4 < pT < 8 GeV/c ) the values of

the D+
s -meson RAA are larger than those of non-strange D mesons, although compatible

within uncertainties. The production ratios D+
s /D

0 and D+
s /D

+ were also measured in

Pb-Pb collisions and compared to their values in proton-proton collisions.
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1 Introduction

Calculations of Quantum Chromodynamics (QCD) on the lattice predict that strongly-

interacting matter at temperatures exceeding the pseudo-critical value of about Tc ≈ 145–

165 MeV and vanishing baryon density behaves as a deconfined Plasma of Quarks and

Gluons (QGP) [1, 2]. In this state, partons are the relevant degrees of freedom and chiral

symmetry is predicted to be restored. The conditions to create a QGP are expected to be

attained in collisions of heavy nuclei at high energies. This deconfined state of matter exists

for a short time (few fm/c), during which the medium created in the collision expands and

cools down until its temperature drops below the pseudo-critical value Tc and the process

of hadronisation takes place.

Heavy quarks (charm and beauty) are sensitive probes to investigate the properties of

the medium formed in heavy-ion collisions. They are produced in quark-antiquark pairs

predominantly at the initial stage of the collision in hard-scattering processes characterized

by timescales shorter than the QGP formation time [3–5]. The heavy quarks propagate

through the expanding hot and dense medium, thus experiencing the effects of the medium

over its entire evolution. While traversing the medium, they interact with its constituents

via both inelastic and elastic QCD processes, exchanging energy and momentum with the

expanding medium [5, 6]. For heavy quarks at intermediate and high momentum, these

interactions lead to energy loss due to medium-induced gluon radiation and collisional

processes.

Evidence for heavy-quark in-medium energy loss is provided by the observation of a

substantial modification of the transverse momentum (pT) distributions of heavy-flavour
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decay leptons [7–10], D mesons [11, 12] and non-prompt J/ψ [13] in Au-Au and Pb-Pb

collisions at RHIC and LHC energies as compared to proton-proton (pp) collisions. This

modification is usually quantified by the nuclear modification factor RAA, defined as the

ratio between the yield measured in nucleus-nucleus collisions and the cross section in pp

interactions scaled by the average nuclear overlap function. In absence of nuclear effects,

RAA is expected to be unity. Parton in-medium energy loss causes a suppression of hadron

yields, RAA < 1, at intermediate and high transverse momentum (pT > 3 GeV/c). In

central nucleus-nucleus collisions at RHIC and LHC energies, RAA values significantly lower

than unity were observed for heavy-flavour hadrons with pT values larger than 3–4 GeV/c.

In this pT range, the D-meson yields measured in p-Pb collisions at
√
sNN = 5.02 TeV

are consistent with binary-scaled pp cross sections [14], providing clear evidence that the

suppression observed in Pb-Pb collisions is not due to cold nuclear matter effects and is

induced by a strong coupling of the charm quarks with the hot and dense medium.

In case of substantial interactions with the medium, heavy quarks lose a significant

amount of energy while traversing the fireball and may participate in the collective expan-

sion of the system and possibly reach thermal equilibrium with the medium constituents.

In this respect, the measurement of a positive elliptic flow v2 of D mesons at LHC ener-

gies [15, 16] and of heavy-flavour decay electrons at RHIC energies [8, 9, 17] provides an

indication that the interactions with the medium constituents transfer to charm quarks

information on the azimuthal anisotropy of the system.

It is also predicted that a significant fraction of low- and intermediate-momentum heavy

quarks could hadronise via recombination with other quarks from the medium [18–20]. An

important role of hadronisation via (re)combination, either during the deconfined phase [21]

or at the phase boundary [22], is indeed supported by the results of J/ψ nuclear modification

factor and elliptic flow at low pT [23–25]. Hadronisation via recombination allows in some

models, e.g. [26–28], a better description of heavy-flavour production measurements at

RHIC and LHC energies, in particular the RAA of D0 mesons at low pT measured in Au-

Au collisions at
√
sNN = 200 GeV [12] and the positive and sizable D-meson v2 in Pb-Pb

collisions at
√
sNN = 2.76 TeV [15].

The measurement of D+
s -meson production in Pb-Pb collisions can provide crucial ad-

ditional information for understanding the interactions of charm quarks with the strongly-

interacting medium formed in heavy-ion collisions at high energies. In particular, the

D+
s -meson yield is sensitive to strangeness production and to the hadronisation mechanism

of charm quarks.

An enhancement of strange particle production in heavy-ion collisions as compared to

pp interactions was long suggested as a possible signal of QGP formation [29, 30]. Strange

quarks are expected to be abundant in a deconfined medium due to the short time needed to

reach equilibrium values among the parton species and to the lower energy threshold for ss

production. A pattern of strangeness enhancement increasing with the hadron strangeness

content when going from pp (p-A) to heavy-ion collisions was observed at the SPS [31–

34], at RHIC [35] and at the LHC [36]. In the frame of the statistical hadronisation

models, strange particle production in heavy-ion collisions follows the expectation for a

grand-canonical ensemble. In contrast, for pp collisions canonical suppression effects are
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found to be important, reducing the phase space available for strange particles [37, 38]. In

this context, the increase in strange particle yields in heavy-ion collisions compared to pp

interactions is viewed as due primarily to the lifting of the canonical suppression.

This strangeness enhancement effect could also affect the production of charmed

hadrons if the dominant mechanism for D-meson formation at low and intermediate mo-

menta is in-medium hadronisation of charm quarks via recombination with light quarks.

Under these conditions, the relative yield of D+
s mesons with respect to non-strange

charmed mesons at low pT is predicted to be enhanced in nucleus-nucleus collisions as

compared to pp interactions [39–41]. The comparison of the pT-differential production

yields of non-strange D mesons and of D+
s mesons in Pb-Pb and pp collisions is therefore

sensitive to the role of recombination in charm-quark hadronisation.

A consequence of the possibly enhanced production of D+
s mesons in heavy-ion col-

lisions would be a slight reduction of the fraction of charm quarks hadronising into non-

strange meson species. Therefore, the measurement of the D+
s -meson production is also

relevant for the interpretation of the comparison of the nuclear modification factors of

non-strange D mesons and light-flavour hadrons (pions) [11, 42], which is predicted to

be sensitive to the quark-mass and colour-charge dependence of parton in-medium energy

loss [6, 43, 44]. Furthermore, due to this possible modification of the relative abundances

of D-meson species, measuring the D+
s yield at low pT is needed also to determine the total

charm production cross section in Pb-Pb collisions.

The pT-differential inclusive production cross section of prompt1 D+
s mesons (average

of particles and antiparticles) was measured in pp collisions at
√
s = 7 TeV with the

ALICE detector and it was found to be described within uncertainties by perturbative

QCD (pQCD) calculations [45]. The D+
s nuclear modification factor was measured in p-Pb

collisions at
√
sNN = 5.02 TeV and found to be consistent with unity [14]. In this paper,

we report on the measurement of prompt D+
s -meson production and nuclear modification

factor in Pb-Pb collisions at
√
sNN = 2.76 TeV. D+

s mesons (and their antiparticles) were

reconstructed at mid-rapidity, |y| < 0.5, through their hadronic decay channel D+
s → φπ+

with a subsequent decay φ→ K−K+. The production yield was measured in two classes of

collision centrality, central (0–10%) and semi-central (20–50%), and compared to a binary-

scaled pp reference obtained by scaling the cross section measured at
√
s = 7 TeV to the

Pb-Pb centre-of-mass energy via a pQCD-driven approach. The experimental apparatus

and the data sample of Pb-Pb collisions used for this analysis are briefly presented in

section 2. In section 3, the D+
s meson reconstruction strategy, the selection criteria and

the raw yield extraction from the KKπ invariant mass distributions are discussed. The

corrections applied to obtain the pT-differential production yields of D+
s mesons, including

the subtraction of the non-prompt contribution from beauty-hadron decays, are described

in section 4. The various sources of systematic uncertainty are discussed in detail in

section 5. The results on the D+
s -meson production yield and nuclear modification factor

1In this paper, ‘prompt’ indicates D mesons produced at the interaction point, either directly in the

hadronisation of the charm quark or in strong decays of excited charm resonances. The contribution from

weak decays of beauty hadrons, which gives rise to feed-down D mesons displaced from the interaction

vertex, was subtracted.
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are presented in section 6 together with the comparison to non-strange D-meson RAA and

to model calculations. The D+
s /D

0 and D+
s /D

+ yield ratios in three pT intervals for the

10% most central Pb-Pb collisions are compared to those in pp collisions.

2 Apparatus and data sample

The ALICE detector and its performance are described in detail in refs. [46] and [47], re-

spectively. The apparatus consists of a central barrel covering the pseudorapidity region

|η| < 0.9, a forward muon spectrometer (−4.0 < η < −2.5) and a set of detectors for trig-

gering and event centrality determination. The detectors of the central barrel are located

inside a 0.5 T magnetic field parallel to the LHC beam direction, that corresponds to the

z-axis in the ALICE reference frame. The information provided by the following detectors

was utilised to perform the analysis presented in this paper: the Inner Tracking System

(ITS), the Time Projection Chamber (TPC) and the Time Of Flight (TOF) detector were

used to reconstruct and identify charged particles at mid-rapidity, while the V0 scintillator

detector provided the information for triggering, centrality determination and event selec-

tion. The neutron Zero Degree Calorimeters (ZDC) were also used, together with the V0

detector, for the event selection.

The trajectories of the D-meson decay particles are reconstructed from their hits in

the ITS and TPC detectors. Particle identification is performed utilising the information

from the TPC and TOF detectors. The ITS consists of six cylindrical layers of silicon

detectors covering the pseudorapidity interval |η| < 0.9. The two innermost layers, located

at 3.9 and 7.6 cm from the beam line, are composed of Silicon Pixel Detectors (SPD).

The two intermediate layers are equipped with Silicon Drift Detectors (SDD) and the two

outermost layers, with a maximum radius of 43.0 cm, are composed of double-sided Silicon

Strip Detectors (SSD). The high spatial resolution of the ITS detectors, together with the

low material budget (∼ 7.7% of a radiation length at η = 0) and the small distance from

the interaction point, provides a resolution on the track impact parameter (i.e. the distance

of closest approach of the track to the primary vertex) better than 65 µm for transverse

momenta pT > 1 GeV/c in Pb-Pb collisions [47]. The TPC, covering the pseudorapidity

interval |η| < 0.9, provides track reconstruction with up to 159 points along the trajectory

of a charged particle and allows its identification via the measurement of specific energy loss

dE/dx. Particle identification is complemented with the particle time-of-flight measured

with the TOF detector, which is composed of Multi-gap Resistive Plate Chambers and is

positioned at 370–399 cm from the beam axis, covering the full azimuth and the pseudo-

rapidity interval |η| < 0.9. The TPC and TOF information provides pion/kaon separation

at better than 3 σ level for tracks with momentum up to 2.5 GeV/c [47].

The analysis was performed on a sample of Pb-Pb collisions at centre-of-mass energy

per nucleon pair,
√
sNN, of 2.76 TeV collected in 2011. The events were recorded with

an interaction trigger that required coincident signals in both scintillator arrays of the

V0 detector, covering the pseudorapidity ranges −3.7 < η < −1.7 and 2.8 < η < 5.1,

respectively. An online selection based on the V0 signal amplitude was used to record

samples of central and semi-central collisions through two separate trigger classes. Events
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Centrality class 〈TAA〉 (mb−1) Nevt Lint (µb−1)

0–10% 23.44 ± 0.76 16.4×106 21.3±0.7

20–50% 5.46 ± 0.20 13.5×106 5.8±0.2

Table 1. Average value of the nuclear overlap function, 〈TAA〉, for the considered centrality classes,

expressed as percentiles of the hadronic Pb-Pb cross section. The values were obtained with a Monte

Carlo implementation of the Glauber model assuming an inelastic nucleon-nucleon cross section of

64 mb [51]. The number of analysed events and the corresponding integrated luminosity in each

centrality class are also shown. The uncertainty on the integrated luminosity derives from the

uncertainty of the hadronic Pb-Pb cross section from the Glauber model [51].

were further selected offline to remove background from beam-gas interactions on the basis

of the timing information provided by the V0 and the neutron ZDC detectors (two hadronic

calorimeters located at z = 114 m on both sides of the interaction point covering the interval

|η| > 8.7). Only events with an interaction vertex reconstructed from ITS+TPC tracks

with |zvertex| < 10 cm were considered in the analysis.

Collisions were classified in centrality classes based on the sum of the signal amplitudes

in the two V0 scintillator arrays. Each class is defined in terms of percentiles of the hadronic

Pb-Pb cross section, as determined from a fit to the V0 signal amplitude distribution based

on the Glauber-model description of the geometry of the nuclear collision [48–50] and a

two-component model for particle production [51]. The analysis was performed in two

centrality classes: 0–10% and 20–50%. In total, 16.5×106 events, corresponding to an

integrated luminosity Lint = (21.5±0.7) µb−1, were analysed in the 0–10% centrality class,

and 13.5×106 events, Lint = (5.9± 0.2) µb−1, in the 20–50% class. The average values of

the nuclear overlap function TAA (defined as the convolution of the nuclear density profiles

of the colliding ions [50] and proportional to the number Ncoll of binary nucleon-nucleon

collisions occurring in the Pb-Pb collision) are reported in table 1 for the 0–10% and 20–

50% centrality classes, together with their systematic uncertainty estimated as described

in [51].

3 D+
s meson reconstruction and selection

D+
s mesons and their antiparticles were reconstructed in the decay channel D+

s → φπ+ →
K−K+π+ (and its charge conjugate), whose branching ratio (BR) is (2.24 ± 0.10)% [52].

Other D+
s decay channels can give rise to the same K−K+π+ final state, such as D+

s →
K
∗0

K+ and D+
s → f0(980)π+, with BR of (2.58 ± 0.11)% and (1.14 ± 0.31)%, respec-

tively [52]. However, as explained in ref. [45], the applied cuts for the selection of the

D+
s signal candidates strongly reduce contributions from these channels, and therefore the

measured yield is dominated by the D+
s → φπ+ → K−K+π+ decays. The decay channel

through the φ resonance was chosen because the narrower width of the φ invariant-mass

peak with respect to f0(980) and K
∗0

provides the best discrimination between signal and

background.
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The analysis strategy for the extraction of the signal out of a large combinatorial

background is based on the reconstruction of decay topologies with a secondary vertex

significantly displaced from the interaction point. The secondary vertex position and its

covariance matrix were determined from the decay tracks by using the same analytic χ2

minimization method as for the computation of the primary vertex [53]. The resolution

on the position of the D+
s decay vertex was estimated with Monte Carlo simulations and

it was found to be about 100 µm. D+
s mesons have a mean proper decay length cτ =

150 ± 2 µm [52], which makes it possible to resolve their decay vertices from the primary

vertex. With the current data sample, the signal of D+
s mesons could be extracted in

three pT intervals (4–6, 6–8 and 8–12 GeV/c) in the 0–10% centrality class and in two pT

intervals (6–8 and 8–12 GeV/c) in the 20–50% centrality class.

D+
s candidates were defined from triplets of tracks with the proper charge sign com-

bination. Tracks were selected requiring |η| < 0.8 and pT > 0.6 (0.4) GeV/c in the 0–10%

(20–50%) centrality class. In addition, tracks were also required to have at least 70 (out

of a maximum of 159) associated hits in the TPC, a χ2/ndf < 2 of the track momentum

fit in the TPC and at least one associated hit in one of the two SPD layers. With these

track selection criteria, the acceptance in rapidity for D mesons drops steeply to zero for

|y| >∼ 0.5 at low pT and for |y| >∼ 0.8 at pT
>∼ 5 GeV/c. A pT-dependent fiducial acceptance

cut was therefore applied on the D-meson rapidity, |y| < yfid(pT), with yfid(pT) increasing

from 0.5 to 0.8 in 0 < pT < 5 GeV/c according to a second order polynomial function and

taking a constant value of 0.8 for pT > 5 GeV/c.

D+
s candidates were filtered by applying kinematical cuts and geometrical selections on

the decay topology, together with particle identification criteria. The selection criteria were

tuned in each pT interval and centrality class to have a good statistical significance of the

signal, while keeping the selection efficiency as high as possible. It was also checked that

background fluctuations were not causing a distortion in the signal line shape by verifying

that the D+
s -meson mass and its resolution were in agreement with the Particle Data Group

(PDG) world-average value (1.969 GeV/c2 [52]) and the Monte Carlo simulation results,

respectively. The resulting selection criteria depend on the transverse momentum of the

candidate and provide a selection efficiency that increases with increasing pT.

The main variables used to select the D+
s decay topology were the decay length (L),

defined as the distance between the primary and secondary vertices, and the cosine of the

pointing angle (cos θpoint), which is the angle between the reconstructed D+
s momentum

and the line connecting the primary and secondary vertices. Additional selections were

applied on the projections of decay length and cosine of pointing angle in the transverse

plane xy (Lxy, cos θxypoint), in order to exploit the better resolution on the track parameters

in that plane. A further cut was applied on Lxy divided by its uncertainty (Lxy/σLxy).

The three tracks were also required to have a small distance to the reconstructed decay

vertex, by defining the variable σvertex as the square root of the sum in quadrature of the

distances of each track to the secondary vertex. To further suppress the combinatorial

background, the angles θ∗(π), i.e. the angle between the pion in the KKπ rest frame and

the KKπ flight line in the laboratory frame, and θ′(K), i.e. the angle between one of the

kaons and the pion in the KK rest frame, were exploited. The cut values used for D+
s

– 6 –
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mesons with 4 < pT < 6 GeV/c in the 0–10% centrality class were: L, Lxy > 500 µm,

Lxy/σLxy > 7.5, cos θpoint > 0.94, cos θxypoint > 0.94, σvertex < 400 µm, cos θ∗(π) > 0.05 and

| cos3 θ′(K)| < 0.9. Looser selection criteria were used for D+
s selection at higher pT and in

more peripheral events, due to the lower combinatorial background.

In addition, to select D+
s mesons decaying in the considered φπ+ mode, with

φ→ K−K+, candidates were rejected if none of the two pairs of opposite-charged

tracks had an invariant mass compatible with the PDG world average for the φ mass

(1.0195 GeV/c2 [52]). The difference between the reconstructed K+K− invariant mass and

world-average φ mass was required to be less than 4 MeV/c2 (a selection that preserves

about 70% of the signal) for D+
s candidates in the three pT intervals considered in the

0–10% centrality class, while looser selections were used for semi-central events.

Particle identification was used to obtain a further reduction of the background. Com-

patibility cuts were applied to the difference between the measured signals and those ex-

pected for a pion or a kaon. A track was considered compatible with the kaon or pion

hypothesis if both its dE/dx and time-of-flight were within 3 σ from the expected values.

Tracks without a TOF signal (mostly at low momentum) were identified using only the

TPC information and requiring a 2 σ compatibility with the expected dE/dx. Triplets of

selected tracks were required to have two tracks compatible with the kaon hypothesis and

one with the pion hypothesis. In addition, since the decay particle with opposite charge

sign has to be a kaon, a triplet was rejected if the opposite-sign track was not compatible

with the kaon hypothesis. This particle identification strategy preserves about 85% of the

D+
s signal.

For each candidate, two values of invariant mass can be computed, corresponding

to the two possible assignments of the kaon and pion mass to the two same-sign tracks.

Signal candidates with wrong mass assignment to the same-sign tracks would give rise to

a contribution to the invariant-mass distributions that could potentially introduce a bias

in the measured raw yield of D+
s mesons. It was verified, both in data and in simulations,

that this contribution is reduced to a negligible level by the particle identification selection

and by the requirement that the invariant mass of the two tracks identified as kaons is

compatible with the φ mass.

The invariant-mass distributions of the D+
s candidates (sum of D+

s and D−s candidates)

are shown in figure 1 in the three pT intervals for the 10% most central Pb-Pb collisions. The

raw signal yields were extracted by fitting the invariant-mass distributions with a function

that consists of the sum of a Gaussian term to describe the signal peak and an exponential

function to describe the background. The fit was performed in the invariant-mass range

1.88 < M(KKπ) < 2.1 GeV/c2 in all pT intervals. The lower limit of 1.88 GeV/c2 was

chosen to exclude the contribution of D+ → K−K+π+ decays, BR = (0.265+0.008
−0.009)% [52],

which could give rise to a bump in the background shape for invariant-mass values around

the D+ mass (1.870 GeV/c2) [52]. The mean values of the Gaussian functions in all the pT

intervals are compatible within two times their uncertainty with the PDG world average

for the D+
s mass and the Gaussian widths are in agreement with the expected values from

Monte Carlo simulations.

In table 2 the extracted raw yields of D+
s mesons (sum of particle and antiparticle),

defined as the integral of the Gaussian functions, are listed for the different pT intervals

– 7 –
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Figure 1. Invariant-mass distributions of D+
s candidates and charge conjugates in the three con-

sidered pT intervals in the 10% most central Pb-Pb collisions.

Centrality class pT interval ND±
s raw S/B (3σ) S/

√
S + B (3σ) χ2/ndf

(GeV/c)

4–6 438±144 0.02 3.0 27.4 / 18

0–10% 6–8 117± 38 0.10 3.2 17.5 / 18

8–12 89± 21 0.38 5.0 26.5 / 18

20–50% 6–8 197± 61 0.07 3.5 9.9 / 21

8–12 52± 20 0.29 3.4 17.9 / 21

Table 2. Measured raw yields (ND±
s raw), signal over background (S/B), statistical significance

(S/
√

S + B) and χ2/ndf of the invariant-mass fit for D+
s and their antiparticles in the considered

pT intervals for the 0–10% and 20–50% centrality classes. The uncertainty on the D±
s raw yield is

the statistical uncertainty obtained from the fit.

in both the considered centrality classes, together with the signal-over-background (S/B)

ratios and the statistical significance (S/
√

S + B). The background was evaluated by inte-

grating the background fit functions in ±3σ around the centroid of the Gaussian.

4 Corrections

The raw yields extracted from the fits to the invariant-mass distributions of D+
s and D−s

candidates were corrected to obtain the production yields of prompt (i.e. not coming from

weak decays of B mesons) D+
s mesons. The pT-differential yield of prompt D+

s was com-

puted as

dND+
s

dpT

∣∣∣∣∣
|y|<0.5

=
1

∆pT

1

BR ·Nevt

fprompt(pT) · 1
2N

D±
s raw(pT)

∣∣∣
|y|<yfid

2yfid(pT) (Acc× ε)prompt(pT)
, (4.1)

where ND±
s raw(pT) are the values of the raw yields (sum of particles and antiparticles)

reported in table 2, which were corrected for the B-meson decay feed-down contribution
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(i.e. multiplied by the prompt fraction fprompt), divided by the acceptance-times-efficiency

for prompt D+
s mesons, (Acc× ε)prompt, and divided by a factor of two to obtain the charge

(particle and antiparticle) averaged yields. The corrected yields were divided by the decay

channel branching ratio (BR), the pT interval width (∆pT), the rapidity coverage (2yfid)

and the number of analysed events (Nevt).

The correction for the acceptance and the efficiency was determined using Monte Carlo

simulations. Pb-Pb collisions at
√
sNN = 2.76 TeV were simulated using the HIJING v1.383

event generator [54]. Prompt and feed-down D+
s (and D−s ) signals were added with the

PYTHIA v6.4.21 generator [55]. In order to minimize the bias on the detector occupancy,

the number of D mesons injected into each HIJING event was adjusted according to the

Pb-Pb collision centrality. The pT distribution of the generated D+
s mesons in the 0–10%

centrality class was weighted in order to match the shape measured for D0 mesons in

central Pb-Pb collisions [42]. For the 20–50% centrality class, the generated pT distribu-

tion was defined based on FONLL perturbative QCD calculations [56, 57] multiplied by

the nuclear modification factor predicted by the BAMPS partonic transport model [58],

which reproduces the measured non-strange D-meson RAA in semi-central collisions within

uncertainties [16].

The generated particles were transported through the ALICE detector using the

GEANT3 [59] particle transport package together with a detailed description of the ge-

ometry of the apparatus and of the detector response. The simulation was tuned to repro-

duce the position and width of the interaction vertex distribution, the number of active

electronic channels and the accuracy of the detector calibration, and their time evolution

within the Pb-Pb data taking period.

The efficiencies were evaluated in centrality classes corresponding to those used in the

analysis of the data in terms of charged-particle multiplicity, hence of detector occupancy.

In the left-hand panel of figure 2, the (Acc×ε) values for prompt and feed-down D+
s mesons

with rapidity |y| < yfid are shown for the 0–10% centrality class. The same figure shows

also the (Acc× ε) values for the case without the PID selections, demonstrating that this

selection is about 85% efficient for the signal.

The magnitude of (Acc × ε) increases with increasing pT, from 0.4% in the lowest pT

interval up to 2% in 8 < pT < 12 GeV/c. The (Acc× ε) values for D+
s from beauty-hadron

decays are larger than those for prompt D+
s by a factor of approximately 2.5–3.5 depending

on pT, because the decay vertices of the feed-down D+
s mesons are more displaced from the

primary vertex and they are, therefore, more efficiently selected by the analysis cuts. The

efficiency of the selections used in the centrality interval 20–50% is higher by a factor of

about two with respect to that in the most central events, because the smaller combinatorial

background in semi-peripheral collisions allowed the usage of looser selections on the D+
s

candidates.

The ratio of prompt to inclusive contributions in the D+
s -meson raw yield, fprompt,

was evaluated using a procedure similar to the one adopted for the pp measurement [45].

The contribution of feed-down from B decays in the raw yield depends on pT and on the

applied geometrical selection criteria. The feed-down contribution was estimated using the

beauty-hadron production cross section from FONLL perturbative QCD calculations for
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Figure 2. Left: acceptance-times-efficiency for D+
s mesons in the 10% most central Pb-Pb collisions.

The efficiencies for prompt (solid lines) and feed-down (dotted lines) D+
s mesons are shown. Also

displayed, for comparison, the efficiency for prompt D+
s mesons without PID selections (dashed

lines). Right: relative variation of the prompt D+
s -meson yield in the 0–10% centrality class as a

function of the hypothesis on Rfeed-down
AA /Rprompt

AA for the B feed-down subtraction approach based

on eq. (4.2).

pp collisions at
√
s = 2.76 TeV scaled by the average nuclear overlap function 〈TAA〉 in

each centrality class, the B→D+X decay kinematics from the EvtGen package [60] and

the Monte Carlo efficiencies for feed-down D+
s mesons. The resulting sample of feed-down

D+
s mesons is composed of two contributions: about 50% of the feed-down originates from

B0
s -meson decays, while the remaining 50% comes from decays of non-strange B mesons

(B0 and B+). A hypothesis on the nuclear modification factor of feed-down D+
s mesons,

Rfeed-down
AA , was introduced to account for the different modification of beauty and charm

production in Pb-Pb collisions and for the possible enhancement of the B0
s over non-strange

B-meson yield due to the effect of hadronisation via recombination [61]. The fraction of

prompt D+
s yield was therefore computed in each pT interval as

fprompt = 1−N
D+

s feed-down raw

ND+
s raw

= 1−〈TAA〉·
(

d2σ

dydpT

)FONLL

feed-down

· Rfeed-down
AA ·(Acc×ε)feed-down·2yfid∆pT·BR·Nevt

ND±
s raw/2

,

(4.2)

where (Acc × ε)feed-down is the acceptance-times-efficiency for feed-down D+
s mesons. To

determine the central value of fprompt, it was assumed that the nuclear modification factors

of feed-down and prompt D+
s mesons were equal (Rfeed-down

AA = Rprompt
AA ). The resulting

feed-down contribution is about 20–25% depending on the pT interval. To determine the

systematic uncertainty the hypothesis was varied in the range 1/3 < Rfeed-down
AA /Rprompt

AA <

3, as discussed in detail in section 5. It should be noted that the central value and the
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range of the hypothesis on Rfeed-down
AA /Rprompt

AA differ from those used for non-strange D

mesons in refs. [15, 16, 42], owing to the unknown role of recombination in the beauty

sector, which could enhance the ratio of B0
s over non-strange B mesons, and to the large

fraction of feed-down D+
s mesons originating from non-strange B-meson decays.

The nuclear modification factor of D+
s mesons was computed as

RAA(pT) =
dND+

s
AA/dpT

〈TAA〉 dσD+
s

pp /dpT

. (4.3)

The values of the average nuclear overlap function, 〈TAA〉, for the considered centrality

classes are reported in table 1. The pT-differential cross section of prompt D+
s mesons with

|y| < 0.5 in pp collisions at
√
s = 2.76 TeV, used as reference for RAA, was obtained by

scaling in energy the measurement at
√
s = 7 TeV [45]. The ratio of the cross sections from

FONLL pQCD calculations [57] at
√
s = 2.76 and 7 TeV was used as the scaling factor.

Since FONLL does not have a specific prediction for D+
s mesons, the cross sections of the

D-meson admixture (70% of D0 and 30% of D+) were used for the scaling. The theoretical

uncertainty on the scaling factor was evaluated by considering the envelope of the results

obtained by varying independently the factorisation and renormalisation scales and the

charm quark mass, as explained in detail in ref. [62]. For D0, D+ and D∗+ mesons, the

result of the scaling was validated by comparison with data [63].

5 Systematic uncertainties

The systematic uncertainties on the prompt D+
s -meson yields in Pb-Pb collisions are sum-

marised in table 3.

The systematic uncertainty on the raw-yield extraction was estimated from the distri-

bution of the results obtained by repeating the fit to the invariant-mass spectra varying

i) the fit range and ii) the probability distribution functions used to model the signal and

background contributions. In particular, a second order polynomial function was used as

an alternative functional form to describe the background. The signal line shape was var-

ied by using Gaussian functions with mean and width fixed to the world-average D+
s mass

and to the values expected from Monte Carlo simulations, respectively. Furthermore, the

raw yield was also extracted by counting the entries in the invariant-mass distributions

after subtraction of the background estimated from a fit to the side bands of the D+
s peak.

In case of fitting in an extended mass range, it was verified that the effect on the D+
s

yield due to the possible bump produced in the candidate invariant-mass distribution by

D+ → φπ+ → K−K+π+ decays was negligible. An additional test was performed by fitting

the D+
s candidate invariant-mass distribution after subtracting the background estimated

by coupling a pion track with K+K− pairs having an invariant mass in the side bands of

the φ peak. The uncertainty was estimated to be 8% in all pT intervals.

The contribution to the measured yield from D+
s decaying into the K−K+π+ final state

via other resonant channels (i.e. not via a φ meson) was found to be negligible, due to the

much lower selection efficiency, as discussed in ref. [45].
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0–10% centrality 20–50% centrality

pT interval (GeV/c) pT interval (GeV/c)

4–6 6–8 8–12 6–8 8–12

Raw yield extraction 8% 8% 8% 8% 8%

Tracking efficiency 15% 15% 15% 15% 15%

Selection efficiency 20% 20% 20% 20% 20%

PID efficiency 7% 7% 7% 7% 7%

MC pT shape 2% 1% 1% 1% 1%

Feed-down from B

FONLL feed-down corr. + 6
−28% +10

−27% + 7
−27% + 6

−20% + 7
−25%

Rfeed-down
AA /Rprompt

AA (eq. (4.2)) +10
−22% +16

−30% +13
−26% +11

−22% +12
−24%

Centrality limits < 1% < 1%

Branching ratio 4.5%

Table 3. Relative systematic uncertainties on pT-differential yields of prompt D+
s mesons in Pb-Pb

collisions for the two considered centrality classes.

Other contributions to the systematic uncertainty originate from the imperfect imple-

mentation of the detector description in the Monte Carlo simulations, which could affect

the particle reconstruction, the D+
s selection efficiency, and the kaon and pion identification.

The systematic uncertainty on the tracking efficiency (including the effect of the track

selection) was estimated by comparing the efficiency (i) of track finding in the TPC and

(ii) of track prolongation from the TPC to the ITS between data and simulations, and (iii)

by varying the track quality selections. The estimated uncertainty is 5% per track, which

results in 15% for the three-body decay of D+
s mesons.

The effect of residual discrepancies between data and simulations on the variables

used to select the D+
s candidates was estimated by repeating the analysis with different

geometrical selections on the decay topology and varying the cut on the compatibility

between the K+K− invariant mass and the φ mass. A systematic uncertainty of 20% was

estimated from the spread of the resulting corrected yields.

The systematic uncertainty induced by a different efficiency for particle identification

in data and simulations was estimated by comparing the corrected D+
s yields obtained

using different PID approaches, testing both looser and tighter cuts with respect to the

baseline selection described in section 4. Due to the limited statistical significance, an

analysis without PID selection could not be carried out. Such a test was performed in the

analysis of D0 (→ K−π+), D+ (→ K−π+π+) and D∗+ (→ D0π+) and a 5% uncertainty was

estimated for the case of 3 σ cuts on dE/dx and time-of-flight signals, which correspond

to the loosest selections that could be tested for the D+
s . Based on all these checks a

systematic uncertainty of 7% on the PID selection efficiency was estimated.
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The efficiency is also sensitive to differences between the real and simulated D+
s mo-

mentum distributions. The effect depends on the width of the pT intervals and on the

variation of the efficiency within them. A systematic uncertainty was defined from the rel-

ative difference among the efficiencies obtained using different pT shapes for the generated

D+
s mesons, namely the measured dN/dpT of D0 mesons in central Pb-Pb collisions, the

pT shape predicted by FONLL pQCD calculations with and without the nuclear modifica-

tion predicted by the BAMPS partonic transport model. The resulting contribution to the

systematic uncertainty was found to be 2% for the momentum interval 4 < pT < 6 GeV/c,

where the selection efficiency is strongly pT dependent, and 1% at higher pT.

The systematic uncertainty due to the subtraction of D+
s mesons from B-meson de-

cays was estimated following the procedure described in ref. [11]. The contribution of

the uncertainties inherent in the FONLL perturbative calculation was included by vary-

ing the heavy-quark masses and the factorisation and renormalisation scales, µF and µR,

independently in the ranges 0.5 < µF/mT < 2, 0.5 < µR/mT < 2, with the constraint

0.5 < µF/µR < 2, where mT =
√
p2

T +m2
Q. Furthermore, the prompt fraction obtained

in each pT interval was compared with the results of a different procedure in which the

FONLL cross sections for prompt and feed-down D mesons and their respective Monte

Carlo efficiencies were the input for evaluating the correction factor

f ′prompt =

1 +
(Acc× ε)feed-down

(Acc× ε)prompt
·

(
d2σ

dy dpT

)FONLL

feed-down(
d2σ

dy dpT

)FONLL

prompt

·
Rfeed-down

AA

Rprompt
AA


−1

. (5.1)

Since FONLL does not have a specific prediction for D+
s mesons, four different

approaches were used to compute the predicted pT shapes of promptly produced D+
s ,(

d2σ/dy dpT

)FONLL

prompt
, as explained in detail in ref. [45]: (i) FONLL prediction for the ad-

mixture of charm hadrons; (ii) FONLL prediction for D∗+ mesons (the D∗+ mass being

close to that of the D+
s ); (iii) FONLL prediction for c quarks and fragmentation functions

from [64] with parameter r = (mD −mc)/mD (mD and mc being the masses of the con-

sidered D-meson species and of the c quark, respectively); (iv) FONLL prediction for c

quarks and fragmentation functions from [64] with parameter r = 0.1 (as used in FONLL

calculations) for all meson species. In the latter two cases, the D∗+s mesons produced in

the c quark fragmentation were made to decay with PYTHIA and the resulting D+
s were

summed to the primary ones to obtain the prompt yield. The systematic uncertainty due

to the B feed-down subtraction was finally evaluated as the envelope of the results obtained

with the two methods, namely eq. (4.2) and (5.1), when varying the FONLL parameters

and the c→ D+
s fragmentation function used to determine

(
d2σ/dy dpT

)FONLL

prompt
in eq. (5.1).

The contribution due to the different nuclear modification factor of prompt and feed-

down D+
s mesons was estimated by varying the hypothesis on Rfeed-down

AA /Rprompt
AA in the

range 1/3 < Rfeed-down
AA /Rprompt

AA < 3 for both feed-down subtraction methods. The variation

of the hypothesis is motivated by the combined effect on the RAA of (i) the different energy

loss of charm and beauty quarks in the QGP, as predicted by energy loss models and

supported by experimental data on D meson and non-prompt J/ψ RAA at the LHC [11,
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pT interval (GeV/c)

4–6 6–8 8–12

Data systematics in pp 26% 25% 29%

Feed-down from B + 4
−17% + 6

−15% + 5
−17%

√
s-scaling of the pp reference +14

− 7% +10
− 6% + 8

− 5%

Normalisation 3.5%

Branching ratio 4.5%

Table 4. Relative systematic uncertainties on the pp reference cross section. The row labeled

‘Data systematics’ reports the sum in quadrature of the contributions due to raw yield extraction,

tracking efficiency, selection efficiency, PID efficiency, MC pT shape and ‘other resonant channels’

from ref. [45].

13, 42, 65, 66]; (ii) the possibly different contribution of coalescence in charm and beauty

quark hadronisation, leading to a different abundance of D+
s and B0

s mesons relative to

non-strange mesons; and (iii) the possibly different modulation of D and B spectra due to

radial flow. The resulting uncertainty for the case of B feed-down subtraction approach

based on eq. (4.2) is shown in the right-hand panel of figure 2 for the three pT intervals in

the 0–10% centrality class.

The Pb-Pb data are also affected by a systematic uncertainty on the determination

of the limits of the centrality classes, due to the 1.1% relative uncertainty on the fraction

of the total hadronic cross section used in the Glauber fit [51]. This contribution was

estimated from the variation of the D-meson dN/dpT when the limits of the centrality

classes are shifted by ±1.1%. The resulting uncertainty, which is common to all pT bins,

is less than 1% for both the 0–10% and the 20–50% centrality classes.

Finally, the 4.5% uncertainty on the branching ratio [52] was considered.

In the calculation of the RAA, the uncertainties on the reference cross section for pp

collisions, the Pb-Pb yields, and the average nuclear overlap function were considered.

For the pp reference, the uncertainties on the measurement at
√
s = 7 TeV, described

in ref. [45] and those due to the FONLL-based scaling to
√
s = 2.76 TeV, described in

section 4, were summed in quadrature. The contributions to the systematic uncertainty

on the pp reference cross section are reported in table 4.

The uncertainties on the pp reference were added in quadrature to those on the Pb-Pb

prompt D+
s yields, described above, except for the BR that cancels out in the ratio and

the feed-down contribution deriving from FONLL uncertainties, that partly cancels in the

ratio. This contribution was evaluated by comparing the RAA values obtained with the two

methods for feed-down correction of eq. (4.2) and (5.1) and with the different heavy-quark

masses, fragmentation functions, factorisation and renormalisation scales used in FONLL.

In this study, these variations were done simultaneously for the Pb-Pb yield and for the pp

reference cross section, so as to take into account the correlations of these sources in the

numerator and denominator of RAA.

Finally, the RAA normalisation uncertainty was computed as the quadratic sum of

the 3.5% pp normalisation uncertainty [45], the contribution due to the 1.1% uncertainty
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on the fraction of hadronic cross section used in the Glauber fit discussed above, and the

uncertainty on 〈TAA〉, which is of 3.2% and 3.7% for the 0–10% and 20–50% centrality

classes, respectively.

6 Results

The transverse momentum distributions dN/dpT of prompt D+
s mesons in Pb-Pb collisions

are shown in figure 3, for the 0–10% and 20–50% centrality classes. The yields reported in

figure 3 refer to particles only, since they were computed as the average of particles and

antiparticles under the assumption that the production cross section is the same for D+
s

and D−s . The vertical error bars represent the statistical uncertainties. The symbols are

positioned horizontally at the centre of each pT interval, with the horizontal bars repre-

senting the width of the pT interval. The systematic uncertainties from data analysis are

shown as empty boxes around the data points, while those due to the B feed-down sub-

traction, which include the contributions of the FONLL uncertainties and of the variation

of the hypothesis on Rfeed-down
AA /Rprompt

AA , are displayed as shaded boxes. The normalisation

uncertainties are reported as text on the figures.

The pT-differential yields measured in Pb-Pb collisions are compared to the reference

yields in pp collisions at the same energy, scaled by the nuclear overlap function 〈TAA〉,
reported in table 1. The pp reference at

√
s = 2.76 TeV is obtained by scaling the cross

section measured at 7 TeV as described in section 4. A clear suppression of the D+
s -meson

yield in the 10% most central Pb-Pb collisions relative to the binary-scaled pp yields is

observed in the highest pT interval (8 < pT < 12 GeV/c). In the 20–50% centrality class,

an indication of suppression is found in 8 < pT < 12 GeV/c. At lower pT, in both centrality

classes, it is not possible to conclude on the presence of a suppression of the D+
s -meson

yield in heavy-ion collisions with respect to the pp reference.

The nuclear modification factor RAA of prompt D+
s mesons was computed from the

dN/dpT distributions. The results are shown as a function of pT in the left-hand panel

of figure 4 for the two centrality classes. The vertical bars represent the statistical uncer-

tainties, the empty boxes are the total pT-dependent systematic uncertainties described

in section 5, except for the normalisation uncertainty, which is displayed as a filled box

at RAA = 1. A suppression by a factor of about three of the D+
s -meson yield in Pb-Pb

collisions relative to the binary-scaled pp cross section is observed in the highest pT inter-

val (8 < pT < 12 GeV/c) for the 10% most central collisions. A smaller suppression (by

a factor of about two) is measured in the 20–50% centrality class in 8 < pT < 12 GeV/c,

even though with the current uncertainties no conclusions can be drawn on the centrality

dependence of the D+
s -meson nuclear modification factor at high pT. Since no significant

modification of the D+
s -meson production relative to binary-scaled pp collisions is observed

in p-Pb reactions in the pT range considered here [14], the substantial suppression of the

D+
s -meson yield at high pT in Pb-Pb collisions cannot be explained in terms of initial state

effects, but it is predominantly due to strong final-state effects induced by the hot and

dense partonic medium created in the collisions of heavy nuclei. At lower pT the central

values of the measurement show a larger RAA, however the large statistical and systematic
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Figure 3. Transverse momentum distributions dN/dpT of prompt D+
s mesons in the 0–10% (left

panel) and 20–50% (right panel) centrality classes in Pb-Pb collisions at
√
sNN = 2.76 TeV. Statisti-

cal uncertainties (bars), systematic uncertainties from data analysis (empty boxes) and systematic

uncertainties due to beauty feed-down subtraction (shaded boxes) are shown. The reference pp
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s mesons compared to non-strange D mesons (average of D0, D+ and D∗+ [42])
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uncertainties do not allow to draw a conclusion on the pT dependence of the D+
s nuclear

modification factor.

The RAA of prompt D+
s mesons in the 10% most central collisions is compared in the

right-hand panel of figure 4 to the average nuclear modification factor of D0, D+ and D∗+
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Figure 5. Ratios of prompt D-meson yields (D+
s /D0 and D+

s /D+) as a function of pT in the

10% most central Pb-Pb collisions at
√
sNN = 2.76 TeV compared to the results in pp collisions at√

s = 7 TeV. Statistical (bars) and systematic (boxes) uncertainties are shown.

mesons measured in the same centrality class [42]. This comparison is meant to address the

expected effect of hadronisation via quark recombination in the partonic medium on the

relative abundances of strange and non-strange D-meson species. In the three pT intervals,

the values of the D+
s -meson RAA are higher than those of non-strange D mesons, although

compatible within uncertainties. Even considering that a part of the systematic uncertainty

is correlated between strange and non-strange D mesons, the current uncertainties do not

allow a conclusive statement on the expected enhancement of the D+
s -meson yield relative

to that of non-strange D mesons in heavy-ion collisions.

An alternative approach to study the predicted modification of the charm-quark hadro-

nisation in the presence of a QGP is to compare the ratios between the measured yields of

D+
s and D0(D+) mesons in Pb-Pb and pp collisions. This comparison is shown in figure 5

for the 10% most central Pb-Pb collisions. In the left-hand panel the D+
s /D

0 ratio is dis-

played, while the right-hand panel shows the ratio D+
s /D

+. The ratios D+
s /D

0 and D+
s /D

+

in pp collisions are taken from the measurements at
√
s = 7 TeV [45].2 No strong depen-

dence on the collision energy is expected (see [45] and references therein). In the evaluation

of the systematic uncertainties on the D-meson yield ratios, the sources of correlated and

uncorrelated systematic effects were treated separately. In particular, the contributions of

the yield extraction, topological selection efficiency and PID efficiency were considered as

uncorrelated and summed in quadrature. The uncertainty on the tracking efficiency cancels

completely in the ratios between production cross sections of meson species reconstructed

from three-body decay channels (D+ and D+
s ), while a 5% systematic uncertainty (4% in

2The values from ref. [45] were re-computed with the most recent value for the branching ratio of

the D+
s → φπ+ → K−K+π+ decay chain, which is 2.24% [52], while it was 2.28% at the time of the pp

publication.
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Figure 6. RAA of prompt D+
s and non-strange D mesons (average of D0, D+ and D∗+) in the

0–10% centrality class compared to predictions of the TAMU model [61]. The bands shown for the

TAMU predictions encompass the charm-shadowing uncertainty.

the pp case) was considered in the ratio to the D0 yields, which are reconstructed from a

two-particle final state. To propagate the uncertainty due to the B feed-down subtraction,

the contribution of the FONLL cross section was treated as completely correlated among

the D-meson species. It was estimated from the spread of the D-meson yield ratios ob-

tained by varying the factorisation and renormalisation scales and the heavy-quark mass in

FONLL coherently for the three meson species. The contribution due to the hypothesis on

Rfeed-down
AA /Rprompt

AA was considered as uncorrelated between D+
s and non-strange D mesons

and summed in quadrature. The difference between the D+
s /D

0 ratios in pp and in central

Pb-Pb collisions is of about 1 σ of the combined statistical and systematic uncertainties

in both the two lowest pT intervals, 4 < pT < 6 GeV/c and 6 < pT < 8 GeV/c. An en-

hancement of Ds/D ratios in heavy-ion collisions is predicted if recombination contributes

to charm quark hadronisation in the QGP. However, considering the current level of ex-

perimental uncertainties, no conclusion on charm-quark hadronisation can be drawn from

this first measurement of D+
s -meson production in Pb-Pb collisions.

In the framework of the Statistical Hadronisation Model [39, 67, 68], the pT-integrated

ratios of D-meson abundances for a chemical freeze-out temperature T = 156 MeV (as

extracted from fits to the measured abundances of light-flavour hadrons [69]) and vanishing

baryo-chemical potential, are expected to be D+
s /D

0 = 0.338 and D+
s /D

+ = 0.830, which

are higher by a factor of about two with respect to the values calculated for pp collisions

at LHC energies [45].

In figure 6, the measured RAA of non-strange D mesons and of D+
s are compared to

the prediction of the TAMU model [27, 61]. Among the several models available for open

charm production in heavy-ion collisions, TAMU is the only one providing a quantitative

prediction for the D+
s -meson nuclear modification factor. This is a heavy-quark transport

model based on heavy-quark diffusion, implemented via simulations based on the relativis-
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tic Langevin equation, in a hydrodynamically expanding medium. The interactions of the

charm quarks with the medium are modeled including only elastic processes, which are as-

sumed to govern the heavy-quark scattering amplitudes at low and intermediate momenta.

The heavy-quark transport coefficients are calculated within a non-perturbative T -matrix

approach, where the interactions proceed via resonance formation that transfers momen-

tum from the heavy quarks to the medium constituents. The hadronisation of charm quarks

is performed via recombination with thermalized up, down and strange quarks. The re-

maining charm quarks are converted to hadrons using the vacuum fragmentation functions

from [64] and fragmentation fractions f(c→ D) from PYTHIA. This model predicts an

enhancement of the D+
s over the non-strange D-meson RAA at low pT as a consequence

of the recombination of charm quarks with thermally equilibrated strange quarks in the

QGP. At higher pT, where the dominant hadronisation mechanism is fragmentation, similar

RAA values are predicted for the different D-meson species. The model describes the mea-

sured D+
s -meson nuclear modification factor within uncertainties and at low pT provides

also a reasonable description of non-strange D-meson RAA. The measured suppression of

non-strange D mesons is underestimated at higher pT, where the contribution of inelastic

processes (gluon radiation), which are missing in this transport calculation, is expected to

play a major role.

7 Summary

The production of D+
s mesons was measured for the first time in heavy-ion collisions. The

measurement was carried out on a sample of Pb-Pb collisions at
√
sNN = 2.76 TeV in two

centrality classes, namely 0–10% and 20–50%.

The results for the 10% most central collisions indicate a substantial suppression

(RAA ≈ 0.3) of the production of D+
s mesons at high pT (8 < pT < 12 GeV/c) with respect

to the expectation based on the pp cross section scaled by the average nuclear overlap func-

tion. The observed suppression is compatible with that of non-strange D mesons and can

be described by models including strong coupling of the charm quarks with the deconfined

medium formed in the collision.

At lower momenta (4 < pT < 8 GeV/c), the values of the D+
s -meson nuclear modifi-

cation factor are larger than those of non-strange D mesons, although compatible within

uncertainties. This result provides a possible hint for an enhancement of Ds/D ratio,

which is expected if the recombination process significantly contributes to the charm quark

hadronisation in the QGP.

The precision of the measurements will be improved using the larger data samples of

Pb-Pb collisions that will be collected during the ongoing LHC Run-2. The larger sample

size will allow us to observe the D+
s signal with less stringent selections, thus reducing the

systematic uncertainty on the efficiency correction. In addition, the higher Pb-Pb collision

centre-of-mass energy will reduce the impact of the
√
s-scaling of the pp reference. This

will open the possibility to exploit the measurement of D+
s -meson production in heavy-

ion collisions to assess the recombination effects in the charm-quark hadronisation and to
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provide further constraints to models describing the coupling of heavy quarks with the

medium.
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J.D. Mulligan136 , M.G. Munhoz120 , R.H. Munzer92 ,37 , S. Murray65 , L. Musa36 ,

J. Musinsky59 , B. Naik48 , R. Nair77 , B.K. Nandi48 , R. Nania104 , E. Nappi103 , M.U. Naru16 ,

H. Natal da Luz120 , C. Nattrass125 , K. Nayak79 , T.K. Nayak132 , S. Nazarenko98 ,

A. Nedosekin58 , L. Nellen63 , F. Ng122 , M. Nicassio96 , M. Niculescu62 , J. Niedziela36 ,

B.S. Nielsen80 , S. Nikolaev99 , S. Nikulin99 , V. Nikulin85 , F. Noferini12 ,104 , P. Nomokonov66 ,

G. Nooren57 , J.C.C. Noris2 , J. Norman124 , A. Nyanin99 , J. Nystrand18 , H. Oeschler93 ,

S. Oh136 , S.K. Oh67 , A. Ohlson36 , A. Okatan69 , T. Okubo47 , L. Olah135 , J. Oleniacz133 ,

A.C. Oliveira Da Silva120 , M.H. Oliver136 , J. Onderwaater96 , C. Oppedisano110 , R. Orava46 ,

A. Ortiz Velasquez63 , A. Oskarsson34 , J. Otwinowski117 , K. Oyama93 ,76 , M. Ozdemir53 ,
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31 Dipartimento di Fisica ‘E.R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy
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CNRS-IN2P3, Clermont-Ferrand, France
71 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3,
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114 Suranaree University of Technology, Nakhon Ratchasima, Thailand
115 Technical University of Košice, Košice, Slovakia
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