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We present midrapidity measurements from the PHENIX experiment of large parity-violating single-
spin asymmetries of high transverse momentum electrons and positrons from W= /Z decays, produced in
longitudinally polarized p + p collisions at center of mass energies of /s = 500 and 510 GeV. These
asymmetries allow direct access to the antiquark polarized parton distribution functions due to the parity-
violating nature of the W-boson coupling to quarks and antiquarks. The results presented are based on data
collected in 2011, 2012, and 2013 with an integrated luminosity of 240 pb~!, which exceeds previous
PHENIX published results by a factor of more than 27. These high Q data probe the parton structure of the
proton at W mass scale and provide an important addition to our understanding of the antiquark parton
helicity distribution functions at an intermediate Bjorken x value of roughly My/+/s = 0.16.

DOI: 10.1103/PhysRevD.93.051103

The determination of the contributions of partons to the
spin of the proton has inspired significant theoretical and
experimental effort for several decades [1-13]. The quark
contribution to the nucleon spin has been deduced through
measurements in polarized inclusive deep-inelastic scatter-
ing (DIS) and semi-inclusive deep-inelastic scattering

fDeceased.
.l_morrison @bnl.gov
*jamie.nagle @ colorado.edu

(SIDIS) experiments [6,12—15]. Although the overall quark
contribution (AX = Ag + Ag) has been well determined
through DIS experiments (in the range 107 < x < 1), the
contributions from sea quarks separated by flavor (deter-
mined through SIDIS experiments) are comparatively
poorly known. Data from HERMES and COMPASS
[6,16] provide constraints on the contribution from the
sea quarks, however, uncertainties in fragmentation func-
tions and the low energy scales of fixed target experiments
limit the accuracy with which these measurements can
quantitatively determine the sea quark contribution [17]. As
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such, an independent measurement using a different tech-
nique [18] to determine the contribution from different
flavors of sea quarks is desirable.

The use of W-boson production provides just such a
solution. Parity is maximally violated in the W couplings to
quarks and leptons, so W* production in p + p collisions
proceeds only by coupling to left-handed quarks and right-
handed antiquarks (u;dg — W* and d,iig = W™). By
measuring decay leptons in the final state, the flavor and
helicity state of the colliding quarks can be determined
[18-21]. Asymmetries measured in W* by reversing the
helicity of a colliding proton are sensitive to the individual
quark/antiquark helicity parton distribution functions
(PDFs) (Au, Ad, Ait and Ad). Moreover, the energy scale
for these events, of the order of the W-boson mass, allows
for small and precisely calculable higher-order corrections.

We present results for the parity-violating single-spin
asymmetry A; forp + p - W*/Z + X — e* + X’ at mid-
rapidity from 2011-2013 PHENIX data at the Relativistic
Heavy Ion Collider (RHIC). These results relate to an
intermediate Bjorken x value of roughly My /+/s = 0.16.
Initial measurements at RHIC in 2009 accumulated 8.6 pb~!
by PHENIX [9] and 12 pb~!' by STAR [10,11]. Here, the
total integrated luminosity is 240 pb~! at /s = 500 GeV in
2011, and at 510 GeV in 2012 and 2013 [22]. Proton-beam
polarizations were also considerably improved from ~0.39
in 2009 to 0.50-0.56 in 2011-2013.

The measurements are performed with the two PHENIX
central arm spectrometers. Each arm covers |A¢| = z/2 in
azimuth and |n| < 0.35 in pseudorapidity. A comprehen-
sive description of the PHENIX detector at RHIC can be
found in [23]. The major detector subsystems used for this
analysis are the electromagnetic calorimeter (EMCal) and
the drift chamber/pad chamber tracking system. Two beam-
beam counters located at 2144 cm from the collision point
along the beam line and covering 3.1 < || < 3.9 were
used to define the minimum bias trigger and to measure the
relative luminosity between different colliding bunch pairs.

The data were collected with an EMCal-based trigger
[24] with nominal energy threshold of 5.6 GeV, which
was fully efficient for e®* with transverse momentum
p% > 10 GeV/c. The p§ was determined from the energy
deposited in the EMCal with energy resolution op/E =

8.1%/+/E(GeV) @ 4%. The energy resolution was deter-
mined from the p; dependence of the widths of recon-
structed 7° and # meson mass peaks. The same 7° and 5
meson mass peaks were used in the energy calibration of the
EMCal, and were continuously monitored. Similar to our
previous analysis [9] and test beam data results [24], the
EMCal energy scale was confirmed to within 2.5%, for the
energy range analyzed with this data. A loose time-of-flight
cut was applied in the analysis to remove noncollision
background.

The tracking system was used for collision vertex
reconstruction, track charge sign determination, and
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background suppression. The main tracking detector, the
drift chamber (DC), spanning the radial distance 2.02—
2.46 m from the beam line, measured the charged track
bending in the axial magnetic field of the PHENIX central
magnet, with a field integral of 1.15 Tm. The z coordinate
for the tracks was obtained from the pad chambers situated
behind the DC. Reconstructed tracks were matched with
high energy clusters in the EMCal within a cone angle of
0.02, retaining > 99% of real e* tracks, as determined from
simulations. The coordinate information from both the
calorimeter and the tracking system was used to determine
the z vertex of the event, and only events with |z| < 30 cm
were used in the analysis.

The charge sign of a track was determined from the
bending angle apc, which is inversely proportional to the
track transverse momentum [apc(mrad) = 92/p; GeV/cl.
A region corresponding to |apc| < 1 mrad was removed in
order to minimize the possibility of charge misidentification.
This led to < 3% loss of e* from W-boson decays. To further
eliminate the charge sign ambiguity in the DC track
reconstruction, the regions in the vicinity of anode wires
were removed from the analysis, reducing the DC accep-
tance by ~15%. The remaining opposite charge contribution
to the W~ (W) signal was 2% (0.4%), as determined using
the DC resolution of 1.4 mrad and apc convoluted over the
W decay e* p; distribution. The result is consistent with a
full detector simulation.

Accurate momentum reconstruction in the tracking
system requires the precise determination of the beam
position in the plane orthogonal to the beam line. This was
measured and monitored using straight tracks from special
runs with the magnetic field off throughout the data taking
period.

An isolation cut was very efficient at suppressing
background events with a high degree of activity around
a candidate electron (as would happen for jet events). The
cut parameter ri,, was defined as r,, = (XE;)/E,, where
E; is the ith EMCal cluster energy and track pr around the
electron candidate in a cone with a radius in # and ¢ of 0.4,
and E, is the energy of electron candidate. A candidate was
kept for the analysis if r;, < 0.1.

Figure 1 shows the resulting yield of electron and
positron candidates for the 2013 data set. A Jacobian peak
around p$ = 40 GeV/c corresponds to e* from W~ and
Z boson decays. The isolation cut removed about 90% of
the background (as was evaluated from the background-
dominated region between 10 and 20 GeV/¢) and left more
than 90% of the signal in the Jacobian peak region
untouched (as evaluated from simulations explained
below). Similar results were obtained for the 2011 and
2012 data sets. Above 30 GeV/c the remaining candidate
events after the isolation cut are dominated by W and Z
decay to electrons/positrons, and by background events
below 25 GeV/c. This background consists mainly of high
momentum electrons/positrons from conversion of z°/5
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FIG. 1. (Upper panels) Spectra for (a) e and (b) e~ using the

EMCal for momentum determination from p + p collisions at
/s =510 GeV from 2013. From top to bottom, the curves are
the following: solid [red] is the sum between background and
signal; shaded band [orange] is the background estimation with
the uncertainty from the GPR method; dashed [dark blue] is the
W=*/Z — e* signal obtained from simulation normalized to the
data; and solid [light blue] is the contribution from Z — e*e™.
(Lower panels) Point-by-point comparison of the data and the fit
result: (data;-fit)/o;, where o; is statistical uncertainty of the ith
data point.

decay photons, charged pions/kaons, b,c — e decays and
accidental matching between high energy EMCal clusters
and tracks in the DC. The Z boson contribution in the signal
region above 30 GeV/c was estimated to be 7% (25%)
for the positrons (electrons) after all analysis cuts were
applied, as determined from simulations. The asymmetry of
the Z has been estimated theoretically using the DSSVO08
PDF sets and measured by the STAR Collaboration [11] to
be —0.07 £ 0.14.

Experimentally, the longitudinal single-spin asymmetry
is defined as

I NT —RN™

== 1
PNT +RN~’ (1)

L
where P is the beam polarization, N* (N~) is the number of
events in the signal region for the positive (negative) beam
helicity and R is the luminosity ratio (relative luminosity)
between positive and negative helicity bunches measured
using the minimum bias trigger defined by a coincidence of
the two beam-beam counters. The relative luminosity
between different helicity combinations did not differ from
unity by more than 2%. The asymmetry calculation was
performed for events in the p; range from 30 to 50 GeV/c,
which defined the signal region in this analysis. This range
was selected to optimize the signal to background. Less
than 1% of the signal is expected above 50 GeV/c.
Asymmetries obtained in this fashion must be corrected
for background events, which are parity conserving, in
the signal region. This dilution factor can be defined as
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(A = B)/A, where A (B) is the number of all (background)
events in the signal region 30 < py < 50 GeV/c. The final
asymmetry values can be obtained by dividing the result by
the dilution factor.

The background in the signal region was estimated using
the Gaussian process regression (GPR) technique [25-28]
to extrapolate the background shape from the background-
dominated region to the signal-dominated region. The
major advantage of this method is that it does not require
an a priori known functional form to test against data. At its
core, this method allows for the determination of the shape
of a set of data points with statistical uncertainties using
only the data themselves. Furthermore, the predictions
made using this method have a mathematically well-
defined Gaussian uncertainty.

Through our use of the radial basis function (RBF)
kernel [25,26], we assume a smooth (infinitely differ-
entiable) shape for the background. The background shape
was constrained from data points in the p; ranges
10-22 GeV/c and 60-65 GeV/c, where the signal con-
tribution is expected to be negligible. Although bins in the
range 60-65 GeV/c don’t contain any events, they still
improve the precision of the background evaluation. These
empty bins were assigned a statistical uncertainty of 1
count. The background in the signal region is assumed to
vary on pr scales equal or larger than those in the
background-dominated regions.

The RBF kernel contains a characteristic length param-
eter that is an indicator of how far away from data the
background extrapolations can be made. For obtained
characteristic lengths larger than 30 GeV/ ¢, we concluded
that our background estimation (based on data between 10
to 22 GeV/c and 60 to 65 GeV/c¢) in the signal region (30
to 50 GeV/c¢) has an appropriate statistical uncertainty.

Table I summarizes the background contributions with
statistical uncertainties obtained using the GPR approach
along with the counts in the signal region for each data set.
The GPR analysis was performed for different p; ranges
for the background estimation and including/excluding the
constraint between 60 and 65 GeV/c. The results were
within the statistical uncertainty of the full GPR analysis so
no additional systematic was added.

In Fig. 1, the background and signal shapes were used to
describe the data points. The only fit parameter was the
normalization for the signal shape. The signal shape was
obtained from a PYTHIA simulation [29] of W* and Z boson
decays to electrons/positrons, followed by a full GEANT3-
based [30] detector response simulation. The simulated
events were analyzed using the analysis package used for
the data. The fit quality of the data-driven background
shape plus the simulated signal shape is reasonable for both
e” and e™ spectra.

As a cross check of the background determination, a fit
to the data using a phenomenologically motivated modified
power law function as the background shape was also
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TABLE L. Number of events recorded for et and e~ for 30 < p; < 50 GeV /¢ and the background contributions, dilution factors, and
two-beam polarizations for each analyzed data set.
Polarization

Lepton Year Counts Background contribution Dilution factor B Y

et 2011 70 2.3 + 2.3(stat) & 0.6(syst) 0.97 + 0.03(stat) & 0.01(syst) 0.51 +£0.02 0.50 +£0.02
2012 105 2.5 & 2.5(stat) 737 (syst) 0.98 £ 0.02(stat) 707 (syst) 0.55 £0.02 0.57 £0.02
2013 669 18.6 £ 7.3(stat) + 14.9(syst) 0.97 £ 0.01(stat) £ 0.02(syst) 0.55 +£0.02 0.55 +£0.02

e” 2011 27 1.7 £ 1.6(stat) £ 0.7(syst) 0.94 + 0.06(stat) £ 0.02(syst) 0.51+0.02 0.50 +0.02
2012 47 5.5 + 4.7(stat) & 2.2(syst) 0.88 =+ 0.10(stat) & 0.05(syst) 0.55 +£0.02 0.57 £0.02
2013 233 13.9 £ 5.6(stat) T7y9 (syst) 0.94 = 0.02(stat) £ (syst) 0.55+0.02 0.55+0.02

performed  (f(py) = 1/p%™P7). The discrepancy
between the central value results from two methods was
assigned as a systematic uncertainty for the background
determination. Another source of uncertainty may come
from the possible systematic discrepancy between the data
points and the fit result in some p regions (e.g. data excess
over the fit in the vicinity of p; = 30 GeV/c in Fig. 1).
Following a conservative approach for uncertainty evalu-
ation, the sum of the signed differences between data points
and the fit results within the signal region was assigned as
an additional systematic uncertainty. The final systematic
uncertainty was obtained by adding in quadrature the
systematic uncertainty from the two sources discussed
above. Using the GPR-estimated background contamina-
tion in the signal region, the dilution factor for each data set
was calculated and is presented in Table I.

The asymmetry calculation was done following two
independent methods. First the asymmetry was calculated
separately for each polarized beam using Eq. (1), with the
polarization for the other beam averaged to zero. The final
result is a weighted average of asymmetries from two
beams. A likelihood method was also used in order to deal
with the lower statistics, particularly in the 2011 and 2012
data sets.

The two rings at RHIC with counterpropagating beams
are designated yellow (y,Y) and blue (b,B). The number of
expected counts y, for the data sample can be expressed as

Hyy = RyyN(1 +b-A Pg+y-A Py+b-y-A PgPy)
(2)

where Ry, is the relative luminosity between the colliding
beam helicity configurations, y (b) denotes the helicity of
the two colliding beams and takes the value of 41 (—1) for
positive (negative) helicity, the parameter N is an average
count, Py and Py are the polarizations of the two beams,
A is the double spin asymmetry. The spin asymmetries
were calculated by maximizing a likelihood function
defined using Poisson statistics as

L= H P(ﬂyb’Nyb)’ (3)

y=+1b==+1

where Ny, is the spin sorted yield. To calculate the 2013
positive and negative # bin asymmetries a generalized form
for these equations was used.

Table Il summarizes the A; results. Both of the asymmetry
calculation methods employed gave consistent results for all
the data sets. The systematic uncertainties were obtained
by propagating the systematic uncertainties of the dilution
factors to the final asymmetry values. A scale uncertainty of
3.5% from the RHIC beam polarization measurements is
not included in Table I. The asymmetry in the background
region was also measured and for all cases the asymmetry
was consistent with zero, within uncertainties.

These results are shown in Fig. 2 with two theoretical
calculations: collisions at high energies (CHE) [21] for the
NNPDFpoll.1 [14] and a recent calculation [31] using the
DSSV 14 PDF sets [32]. While the DSSV 14 curve was
obtained from a global fit of DIS and SIDIS data (including
recent COMPASS results [15,16]), the NNPDFpoll.l1
uncertainty band contains the 2012 STAR [11] result for
flavor separation in addition to DIS data. The theoretical
asymmetry calculations agree with the data within 1.5¢
uncertainty of the data points. These results will be used to
further constrain the quark and antiquark polarized parton
distributions functions at an intermediate Bjorken x value
of roughly My /+/s = 0.16.

Figure 3 shows the combined asymmetry for all of the
PHENIX data sets and published data from STAR [11]. The

TABLE II. Longitudinal single-spin asymmetries, A;, for the
2011 and 2012 data sets (combined) spanning the entire 7 range
of PHENIX (|| < 0.35), for the 2013 data set separated into two
n bins, and for the combined 2011-2013 data sets.

Lepton  Data set (n) A
et 201142012 0 —0.27 £ 0.10(stat) £ 0.01(syst)
20137>0 017 —0.38 £ 0.07(stat) = 0.01(syst)
20137 <0 —0.17 —0.35 = 0.07(stat) = 0.01(syst)
2011-2013 all 0  —0.35 4 0.04(stat) £ 0.01(syst)
e” 2011+2012 0 0.28 £0.16(stat) & 0.02(syst)

20137y >0 0.17
2013 <0 -0.17
20112013 all O

0.10 = 0.13(stat) T5:07 (syst)
0.17 £ 0.12(stat) T57 (syst)
0.17 =+ 0.08(stat) =+ 0.02(syst)
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FIG. 2. Asymmetry results from the combined 2011 and 2012
data sets for |n| < 0.35 (black circles) and the 2013 data (red
squares) separated into two equal 7 bins between —0.35 and 0.35.
The green line and shaded region shows a theoretical calculation
using CHE [21] with the NNPDFpoll.1 PDF sets [14], while the
dashed magenta line shows the DSSV14 calculation [31].
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FIG. 3. Asymmetry results from the combined 2011-2013 data
sets from PHENIX [red] circles and the STAR 20112012 [11] W
results [blue] stars and their respective DSSV 14 theoretical
predictions.

two data sets cannot be compared directly, because
PHENIX measures the asymmetry from W= + Z decays,
while the STAR result is solely from W* decays. The
comparison can be made through the curves, which account
for the specifics of each measurement. Qualitatively, both
data sets show the same trend with data points below
(above) the central value of the theoretical prediction for
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W+ (W7), for || < 0.5. The W~ difference a larger Ai
contribution in the covered x ~ 0.16 range, when compared
with the central value of the DSSV 14 PDF fit calculation.

In summary, for high p; e~ and et from W* and Z
boson decays, PHENIX measured the single-spin asym-
metries with more than 27 times higher statistics and better
polarization compared to 2009 [9]. These new results and
the STAR data [11] will help constrain the antiquark PDFs
in a global analysis. Asymmetries calculated from global
fits based on previous measurements, such as DSSV14 and
NNPDFpoll.1, are consistent with our data. The use of the
electroweak interaction provides an independent tool to
extract quark and antiquark helicity contribution. The data
presented here are complementary to previous SIDIS
measurements and bring the field one step closer to
elucidation of the proton-spin puzzle [1].
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