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We report the first results of elliptic (v2), triangular (v3), and quadrangular (v4) flow of charged particles
in Pb-Pb collisions at a center-of-mass energy per nucleon pair of

ffiffiffiffiffiffiffiffi

sNN
p ¼ 5.02 TeV with the ALICE

detector at the CERN Large Hadron Collider. The measurements are performed in the central
pseudorapidity region jηj < 0.8 and for the transverse momentum range 0.2 < pT < 5 GeV=c.
The anisotropic flow is measured using two-particle correlations with a pseudorapidity gap greater than
one unit and with the multiparticle cumulant method. Compared to results from Pb-Pb collisions at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 2.76 TeV, the anisotropic flow coefficients v2, v3, and v4 are found to increase by ð3.0� 0.6Þ%,
ð4.3� 1.4Þ%, and ð10.2� 3.8Þ%, respectively, in the centrality range 0%–50%. This increase can be
attributed mostly to an increase of the average transverse momentum between the two energies. The
measurements are found to be compatible with hydrodynamic model calculations. This comparison
provides a unique opportunity to test the validity of the hydrodynamic picture and the power to further
discriminate between various possibilities for the temperature dependence of shear viscosity to entropy
density ratio of the produced matter in heavy-ion collisions at the highest energies.

DOI: 10.1103/PhysRevLett.116.132302

Thegoal of studieswith relativistic heavy-ion collisions is to
investigate the quark-gluon plasma (QGP), a state of matter
where quarks and gluons move freely over distances that are
large in comparison to the typical size of a hadron. The
transition from normal nuclear matter to the QGP state is
expected to occur at extreme values of energy density
(0.2–0.5 GeV=fm3, according to lattice quantum chromody-
namics calculations [1,2]), which are accessible in ultrarela-
tivistic heavy-ion collisions at the Large Hadron Collider
(LHC) [3,4]. The study of such collisions provides a unique
opportunity to probe the properties of the QGP in a region of
the QCD phase diagram where a crossover between the
deconfined phase and normal nuclearmatter is expected [5–9].
Studies of the azimuthal anisotropy of particle produc-

tion have contributed significantly to the characterization of
the system created in heavy-ion collisions [10,11].
Anisotropic flow, which measures the momentum
anisotropy of the final-state particles, is sensitive both to
the initial geometry of the overlap region and to the
transport properties and equation of state of the system.
By using a general Fourier series decomposition of the
azimuthal distribution of produced particles,

dN
dφ

∝ 1þ 2
X

∞

n¼1

vn cos½nðφ −ΨnÞ�; ð1Þ

anisotropic flow is quantified with coefficients vn and
corresponding symmetry planes Ψn [12]. Because of the
approximately ellipsoidal shape of the overlap region in
noncentral heavy-ion collisions (i.e., collisions that corre-
spond to a large impact parameter), the dominant flow
coefficient is v2, referred to as elliptic flow. In the transition
from highest RHIC to LHC energies, elliptic flow increases
by 30% [13], as predicted by hydrodynamic models that
include viscous corrections [14–18]. Nonvanishing values
of higher anisotropic flow harmonics v3–v6 at the LHC are
ascribed primarily to the response of the produced QGP to
fluctuations of the initial energy density profile of the
colliding nucleons [19–22]. Moreover, because of such
fluctuations, each flow harmonic vn has a distinct sym-
metry plane Ψn and recent measurements of their inter-
correlations provide independent constraints on the QGP
properties [23]. The combination of all such results
demonstrates that the shear viscosity to entropy density
ratio (η=s) of the QGP produced in ultrarelativistic heavy-
ion collisions at RHIC and LHC has a value close to 1=4π,
a lower bound obtained in strong-coupling calculations
based on the AdS=CFT conjecture [24].
Recently, predictions from Niemi et al. on anisotropic

flow coefficients for Pb–Pb ffiffiffiffiffiffiffiffi

sNN
p ¼ 5.02 TeV collisions

using the Eskola-Kajantie-Ruuskanen-Tuominen model
were reported in Ref. [25]. These predictions have a special
emphasis on the discriminating power between various
parametrizations of the temperature dependence of η=s. It
was argued that in the transition from 2.76 to 5.02 TeV, the
elliptic flow estimated from two-particle correlations
(denoted further in the text as v2f2g, where the number
in the curly brackets indicates the number of particles that
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are used in correlation [26]) can increase, at most, ∼5% for
all centrality classes. Details of the increase depend on the
parametrization of η=sðTÞ. On the other hand, higher flow
harmonic observables, like v3f2g and v4f2g, are predicted
to increase more rapidly, 10%–30%. With a different
approach, where previously measured values of flow
harmonics at lower LHC energies are taken as a baseline,
Noronha-Hostler et al. [27] predict a larger increase for
both elliptic and triangular flow in peripheral compared to
central collisions in transition from 2.76 to 5.02 TeV. They
conclude that the anisotropic flow already reaches satu-
ration and its maximum value in central collisions at
2.76 TeV.
A necessary condition for the development of aniso-

tropic flow is the initial anisotropy in the interaction region
of the two colliding ions. These coordinate space anisot-
ropies are described in terms of eccentricities, which are not
directly accessible experimentally. Nonetheless, the theo-
retical modeling of such eccentricities is actively being
studied. For instance, hydrodynamic calculations based on
a MC-Glauber model and MC–Kharzeev-Levin-Nardi ini-
tial conditions do not agree on the details of the saturation
of elliptic flow at LHC energies [28]. However, with these
two initial state models, it was shown that the final spatial
eccentricity decreases monotonically as the collision
energy increases [28], and is expected to become negative
only at the very large collision energies available at the
LHC (see Fig. 9 in Ref. [28]).
In addition to the initial conditions, various other stages

of evolution of the system in a heavy-ion collision may
contribute to the development of anisotropic flow. At lower
energies, the state of the system will primarily resemble a
hadronic gas, and hadron rescattering is the dominant
contribution to the anisotropic flow. At higher energies,
anisotropic flow mostly develops in the thermalized color-
deconfined QGP phase. However, even at these higher
energies, the contribution from the hadronic phase can be
significant. The relative amount of time the system spends
in different phases varies with collision energy [28,29].
Radial flow, a measure for the average velocity of the
system’s collective radial expansion, also increases as a
function of collision energy, which translates into more
particles being transferred to a higher transverse momen-
tum (pT) region, thus leading to an increase in average
anisotropic flow values. On the other hand, the opposite
dependence of differential v2ðpTÞ is expected for light (an
increase at low pT) and heavy particles (a decrease at low
pT) as a function of collision energy, which might yield to
the saturation of the elliptic flow signal [28]. Finally, the
relative importance of various stages in the system evolu-
tion as a function of collision energy can also vary for each
flow coefficient [29].
The data used in this Letter were recorded with the

ALICE detector [30,31] in November 2015 in run 2 at the
LHC with Pb-Pb collisions at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 5.02 TeV. Minimum

bias Pb–Pb events were triggered by the coincidence of
signals from the V0 detector. The V0 detector is composed
of two arrays of scintillator counters, V0-A and V0-C,
which cover the pseudorapidity ranges 2.8 < η < 5.1 and
−3.7 < η < −1.7, respectively [30]. Centrality quantifies
the fraction of a geometrical cross section of the colliding
nuclei. It is determined using the sum of the amplitudes of
the V0-A and -C signals, which provides a resolution better
than 0.5% and up to 20% for central Pb-Pb collisions, and
better than 2% for peripheral collisions [32]. The off-line
event selection employs the information from two zero
degree calorimeters (ZDCs) [30] positioned 112.5 m from
the interaction point on either side. Beam background
events are removed using timing information from the V0
and the ZDCs, respectively. To ensure a uniform acceptance
and reconstruction efficiency in the pseudorapidity region
jηj < 0.8, only events with a reconstructed vertex within
10 cm from the center of the detector along the beam
direction were used. A sample of 140 k Pb-Pb collision
events passed the selection criteria. Only one low lumi-
nosity run (with a trigger rate of 27 Hz) was used, being
least affected by pileup and distortions from space charge in
the main tracking detector, the time projection cham-
ber (TPC).
Charged tracks are reconstructed using the ALICE inner

tracking system (ITS) and the TPC [30]. This combination
ensures a high detection efficiency, optimum momentum
resolution, and a minimum contribution from photon
conversions and secondary charged particles produced
either from the detector material or from weak decays.
In order to reduce the contamination from secondary
particles, only tracks with a distance of closest approach
to the interaction point of less than 3 cm, both in the
longitudinal and transverse directions, are accepted. The
tracking efficiency is calculated from a Monte Carlo
simulation that uses HIJING [33] to simulate particle
production. GEANT3 [34] is then used for transporting
simulated particles, followed by a full calculation of the
detector response (including the production of secondary
particles) and track reconstruction performed with the
ALICE reconstruction framework. The tracking efficiency
is ∼70% at pT ∼ 0.2 GeV=c and increases to an approx-
imately constant value of ∼80% for pT > 1 GeV=c. The
pT resolution is better than 5% for the region presented in
this Letter. The systematic uncertainty related to the
nonuniform reconstruction efficiency was found to be at
the level of 1%. The flow coefficients from tracks that are
reconstructed from TPC space points alone were compared
to coefficients extracted from particles that used both
TPC clusters and ITS hits, which were found to agree
within ∼2%. This difference was taken into account in
the estimation of the systematic uncertainty. Altering the
selection criteria for the tracks reconstructed with the TPC
resulted in a variation of the results of 0.5%, at most. Other
selection criteria that have been scrutinized are the
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centrality determination, e.g., using the silicon pixel detec-
tor (SPD), which contributed by less than 1%, the polarity
of the magnetic field of the ALICE detector and the
position of the reconstructed primary vertex, whose con-
tributions were found to be negligible. The systematic
uncertainties evaluated for each of the sources mentioned
above were added in quadrature to obtain the total
systematic uncertainty of the measurements.
In this Letter, we report the anisotropic flow measure-

ments obtained from two- and multiparticle cumulants,
using the approach proposed in Refs. [35–37]. These two
measurements have different sensitivities to flow fluctua-
tions and nonflow effects. Nonflow effects are azimuthal
correlations not associated with the symmetry planes and
usually arise from resonance decays and jets. Their con-
tributions are expected to be suppressed when using a large
pseudorapidity gap between particle pairs. Thus, in this
study, we require a pseudorapidity gap of jΔηj > 1. This
observable is denoted as vnf2; jΔηj > 1g. On the other
hand, nonflow contributions to multiparticle cumulants
vnf4g, vnf6g, vnf8g are found to be negligible in events
with large multiplicities characteristic of heavy-ion
collisions [38].
Figure 1(a) presents the centrality dependence of v2, v3,

and v4 from two- and multiparticle cumulants, integrated
over the pT range 0.2 < pT < 5.0 GeV=c, for 2.76 and
5.02 TeV Pb-Pb collisions. To elucidate the energy evo-
lution of v2, v3, and v4, the ratios of anisotropic flow
measured at 5.02 to 2.76 TeVare presented in Figs. 1(b) and
1(c). Assuming that nonflow effects are suppressed by the
pseudorapidity gap, the remaining differences between
two- and multiparticle cumulants of v2 can be related to
the strength of elliptic flow fluctuations, which are
expected to give a positive and a negative contribution
to the two- and multiparticle cumulant estimates, respec-
tively [11]. Moreover, the multiparticle cumulants v2f4g,
v2f6g, and v2f8g are all observed to agree within 1%,
which indicates that nonflow effects are largely suppressed.
It is seen that v2f2; jΔηj > 1g increases from central to
peripheral collisions and reaches a maximum value of
0.104� 0.001 ðstatÞ �0.002 ðsystÞ in the 40%–50% cen-
trality class. For the higher harmonics, i.e., v3 and v4, the
values are smaller and the centrality dependence is much
weaker.
Furthermore, the predictions of anisotropic flow coef-

ficients vn from the previously mentioned hydrodynamic
model [27] are compared to the measurements in Fig. 1(a).
These predictions combine the changes in initial spatial
anisotropy and the hydrodynamic response (treated as
systematic uncertainty and shown by the width of the
bands). The predictions are compatible with the measured
anisotropic flow vn coefficients. At the same time, a
different hydrodynamic calculation [25], which employs
both constant η=s ¼ 0.20 and temperature dependent
η=s, can also describe the increase in anisotropic flow

measurements of v2 [shown in Fig. 1(b)], v3 and v4
[see Fig. 1(c)]. In particular, among the different scenarios
proposed in Ref. [25], the measurements seem to favor a
constant η=s going from

ffiffiffiffiffiffiffiffi

sNN
p ¼ 2.76 to 5.02 TeV Pb-Pb

collisions.
The increase of v2 and v3 from the two energies is rather

moderate, while for v4 it is more pronounced. In addition,
none of the ratios of flow harmonics exhibit a significant
centrality dependence in the centrality range 0%–50%,
and thus the results of a fit with a constant value over
these ratios are reported. An increase of ð3.0� 0.6Þ%,
ð4.3� 1.4Þ%, and ð10.2� 3.8Þ% is obtained for elliptic,
triangular, and quadrangular flow, respectively, over the
centrality range 0%–50% in Pb-Pb collisions when going
from 2.76 to 5.02 TeV. This increase of anisotropic flow is
compatible with theoretical predictions described in
Refs. [25,27]. Overall, these measurements support a
low value of η=s for the system created in Pb-Pb collisions
at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 5.02 TeV and seem to indicate that it does not
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FIG. 1. (a) Anisotropic flow vn integrated over the pT range
0.2 < pT < 5.0 GeV=c, as a function of event centrality, for the
two-particle (with jΔηj > 1) and multiparticle cumulant methods.
Measurements for Pb-Pb collisions at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 5.02 (2.76) TeV

are shown by solid (open) markers [20]. The ratios of
v2f2; jΔηj > 1g (red), v2f4g (gray) and v3f2; jΔηj > 1g (blue),
v4f2; jΔηj > 1g (green) between Pb-Pb collisions at 5.02 and
2.76 TeV are presented in Figs. 1(b) and 1(c). Various hydro-
dynamic calculations are also presented [25,27]. The statistical
and systematical uncertainties are summed in quadrature (the
systematic uncertainty is smaller than the statistical uncertainty,
which is typically within 5%). Data points are shifted for
visibility.
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increase significantly with respect to Pb-Pb collisions
at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 2.76 TeV.
The anisotropic flow coefficients v2f2; jΔηj > 1g,

v3f2; jΔηj > 1g, and v4f2; jΔηj > 1g as a function of
transverse momentum (pT) are presented in Fig. 2 for
the 0%–5% and 30%–40% centrality classes. For the
0%–5% centrality class, at pT>2GeV=c v3f2g is observed
to become larger than v2f2g, while v4f2g is compatible
with v2f2g, within uncertainties. For the 30%–40% central-
ity class, we see that v2f2g is higher than v3f2g and v4f2g
for the entire pT range measured, with no crossing of the
different order flow coefficients observed. Figure 2(c)
presents the pT differential v2f4g for the 10%–20%,
20%–30% and 30%–40% centrality classes. The v2f4g
decreases from midcentral to central collisions over the pT
range measured. The comparison with the corresponding
measurements from Pb-Pb collisions at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 2.76 TeV

exhibits comparable values, as illustrated by the ratio of
v2f4g for the two energies in Fig. 2(d). This indicates
that the increase observed in the pT integrated flow results
seen in Fig. 1 can be attributed to an increase of mean
transverse momentum hpTi. The measurements of pT-
differential flow are more sensitive to initial conditions and
η=s, and they are expected to provide important informa-
tion to constrain further details of the theoretical calcu-
lations, e.g., determination of radial flow and freeze-out
conditions.
Figure 3 presents the comparison of the fully pT

integrated v2 measured in the 20%–30% centrality in
Pb-Pb collisions at the LHC with results at lower energies.
This integrated value in the full pT range is determined
using two methods. The first uses fits to the efficiency-

corrected charged-particle spectra and the pT differential
v2f4g presented in Fig. 2, extrapolated to pT ¼ 0.
The error on the integrated v2 is estimated both from the
uncertainty on the pT-differential measurements and from
different parametrizations that provide a good fit of the
data. The second calculates v2f4g using tracklets formed
from SPD hits in the ITS, which have an acceptance of
pT ≳ 50 MeV=c. As each method uses different ALICE
subdetectors, they can provide independent measurements
of v2 coefficients. For this centrality range, they agree
within 1% for both energies. The values presented in the
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FIG. 2. vnðpTÞ using the two-particle cumulant method with jΔηj > 1 for (a) 0%–5% and (b) 30%–40% centrality classes; (c) v2ðpTÞ
using four-particle cumulant method for the centrality 10%–20%, 20%–30%, and 30%–40%. Measurements for Pb-Pb collisions at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 2.76 TeV are also presented as shading. (d) The ratio of v2f4g in 20%–30% from two collision energies is also shown here.
The statistical and systematical uncertainties are summed in quadrature (the systematic uncertainty is smaller than the statistical
uncertainty, which is typically within 5%).
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Ref. [13] for references to all data points).
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figure are weighted averages of these two measurements,
using the inverse of the variance of each of them as weights.
A continuous increase of anisotropic flow for this centrality
has been observed from SPS and RHIC to LHC energies.
For these fully pT integrated coefficients, an increase of
ð4.9� 1.9Þ% is observed going from

ffiffiffiffiffiffiffiffi

sNN
p ¼ 2.76 to

5.02 TeV, which is close to the values of the previously
mentioned hydrodynamic calculations [25,27].
In summary, we have presented the first anisotropic

flow measurements of charged particles in Pb-Pb collisions
at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 5.02 TeV at the LHC. An average increase

of ð3.0� 0.6Þ%, ð4.3� 1.4Þ%, and ð10.2� 3.8Þ% is
observed for the transverse momentum integrated elliptic,
triangular, and quadrangular flow, respectively, over the
centrality range 0%–50%, going from 2.76 to 5.02 TeV.
The transverse momentum dependence of anisotropic flow
has also been investigated, and it does not change appreci-
ably between the two LHC energies. Therefore, the
increase in integrated flow coefficients can be attributed
mostly to an increase in average transverse momentum. The
measurements are found to be compatible with predictions
from hydrodynamic models [25,27]. Further comparisons
of pT-differential flow measurements and theoretical cal-
culations, which are not available at this time, will provide
extra constraints on the initial conditions and the transport
properties of the QGP.
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S. Sadovsky,111 K. Šafařík,35 B. Sahlmuller,53 P. Sahoo,48 R. Sahoo,48 S. Sahoo,61 P. K. Sahu,61 J. Saini,132 S. Sakai,74

M. A. Saleh,134 J. Salzwedel,20 S. Sambyal,91 V. Samsonov,86 L. Šándor,59 A. Sandoval,64 M. Sano,128 D. Sarkar,132

N. Sarkar,132 P. Sarma,44 E. Scapparone,104 F. Scarlassara,29 C. Schiaua,78 R. Schicker,94 C. Schmidt,97 H. R. Schmidt,34

S. Schuchmann,53 J. Schukraft,35 M. Schulc,39 Y. Schutz,35,113 K. Schwarz,97 K. Schweda,97 G. Scioli,27 E. Scomparin,110

R. Scott,125 M. Šefčík,40 J. E. Seger,87 Y. Sekiguchi,127 D. Sekihata,46 I. Selyuzhenkov,97 K. Senosi,65 S. Senyukov,3,35

E. Serradilla,10,64 A. Sevcenco,62 A. Shabanov,56 A. Shabetai,113 O. Shadura,3 R. Shahoyan,35 M. I. Shahzad,16

A. Shangaraev,111 A. Sharma,91 M. Sharma,91 M. Sharma,91 N. Sharma,125 A. I. Sheikh,132 K. Shigaki,46 Q. Shou,7

K. Shtejer,26,9 Y. Sibiriak,80 S. Siddhanta,105 K. M. Sielewicz,35 T. Siemiarczuk,77 D. Silvermyr,33 C. Silvestre,71

G. Simatovic,129 G. Simonetti,35 R. Singaraju,132 R. Singh,79 S. Singha,132,79 V. Singhal,132 B. C. Sinha,132 T. Sinha,100

B. Sitar,38 M. Sitta,31 T. B. Skaali,22 M. Slupecki,123 N. Smirnov,136 R. J. M. Snellings,57 T. W. Snellman,123 J. Song,96

M. Song,137 Z. Song,7 F. Soramel,29 S. Sorensen,125 R. D. de Souza,121 F. Sozzi,97 M. Spacek,39 E. Spiriti,72 I. Sputowska,117

M. Spyropoulou-Stassinaki,89 J. Stachel,94 I. Stan,62 P. Stankus,85 E. Stenlund,33 G. Steyn,65 J. H. Stiller,94 D. Stocco,113

P. Strmen,38 A. A. P. Suaide,120 T. Sugitate,46 C. Suire,51 M. Suleymanov,16 M. Suljic,25,† R. Sultanov,58 M. Šumbera,84

S. Sumowidagdo,49 A. Szabo,38 A. Szanto de Toledo,120,† I. Szarka,38 A. Szczepankiewicz,35 M. Szymanski,133

U. Tabassam,16 J. Takahashi,121 G. J. Tambave,18 N. Tanaka,128 M. Tarhini,51 M. Tariq,19 M. G. Tarzila,78 A. Tauro,35

G. Tejeda Muñoz,2 A. Telesca,35 K. Terasaki,127 C. Terrevoli,29 B. Teyssier,130 J. Thäder,74 D. Thakur,48 D. Thomas,118

R. Tieulent,130 A. R. Timmins,122 A. Toia,53 S. Trogolo,26 G. Trombetta,32 V. Trubnikov,3 W. H. Trzaska,123 T. Tsuji,127

A. Tumkin,99 R. Turrisi,107 T. S. Tveter,22 K. Ullaland,18 A. Uras,130 G. L. Usai,24 A. Utrobicic,129 M. Vala,59

L. Valencia Palomo,70 S. Vallero,26 J. Van Der Maarel,57 J. W. Van Hoorne,35 M. van Leeuwen,57 T. Vanat,84

P. Vande Vyvre,35 D. Varga,135 A. Vargas,2 M. Vargyas,123 R. Varma,47 M. Vasileiou,89 A. Vasiliev,80 A. Vauthier,71

V. Vechernin,131 A. M. Veen,57 M. Veldhoen,57 A. Velure,18 E. Vercellin,26 S. Vergara Limón,2 R. Vernet,8 M. Verweij,134

L. Vickovic,116 G. Viesti,29,† J. Viinikainen,123 Z. Vilakazi,126 O. Villalobos Baillie,101 A. Villatoro Tello,2 A. Vinogradov,80,†

L. Vinogradov,131 Y. Vinogradov,99,† T. Virgili,30 V. Vislavicius,33 Y. P. Viyogi,132 A. Vodopyanov,66 M. A. Völkl,94

K. Voloshin,58 S. A. Voloshin,134 G. Volpe,32,135 B. von Haller,35 I. Vorobyev,36,93 D. Vranic,97,35 J. Vrláková,40

B. Vulpescu,70 B. Wagner,18 J. Wagner,97 H. Wang,57 M. Wang,7,113 D. Watanabe,128 Y. Watanabe,127 M. Weber,35,112

S. G. Weber,97 D. F. Weiser,94 J. P. Wessels,54 U. Westerhoff,54 A. M. Whitehead,90 J. Wiechula,34 J. Wikne,22 G. Wilk,77

J. Wilkinson,94 M. C. S. Williams,104 B. Windelband,94 M. Winn,94 H. Yang,57 P. Yang,7 S. Yano,46 Z. Yasin,16 Z. Yin,7

H. Yokoyama,128 I.-K. Yoo,96 J. H. Yoon,50 V. Yurchenko,3 I. Yushmanov,80 A. Zaborowska,133 V. Zaccolo,81 A. Zaman,16

C. Zampolli,104,35 H. J. C. Zanoli,120 S. Zaporozhets,66 N. Zardoshti,101 A. Zarochentsev,131 P. Závada,60 N. Zaviyalov,99

H. Zbroszczyk,133 I. S. Zgura,62 M. Zhalov,86 H. Zhang,18 X. Zhang,74,7 Y. Zhang,7 C. Zhang,57 Z. Zhang,7 C. Zhao,22

N. Zhigareva,58 D. Zhou,7 Y. Zhou,81 Z. Zhou,18 H. Zhu,18 J. Zhu,7,113 A. Zichichi,27,12 A. Zimmermann,94

M. B. Zimmermann,54,35 G. Zinovjev,3 and M. Zyzak42

(The ALICE Collaboration)

1A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
2Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
3Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine

4Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India
5Budker Institute for Nuclear Physics, Novosibirsk, Russia

6California Polytechnic State University, San Luis Obispo, California, USA
7Central China Normal University, Wuhan, China

8Centre de Calcul de l’IN2P3, Villeurbanne, France
9Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba

10Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
11Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
12Centro Fermi—Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi,” Rome, Italy

13Chicago State University, Chicago, Illinois, USA
14China Institute of Atomic Energy, Beijing, China

15Commissariat à l’Energie Atomique, IRFU, Saclay, France
16COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan

17Departamento de Física de Partículas and IGFAE, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
18Department of Physics and Technology, University of Bergen, Bergen, Norway

PRL 116, 132302 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
1 APRIL 2016

132302-9



19Department of Physics, Aligarh Muslim University, Aligarh, India
20Department of Physics, Ohio State University, Columbus, Ohio, USA

21Department of Physics, Sejong University, Seoul, South Korea
22Department of Physics, University of Oslo, Oslo, Norway

23Dipartimento di Fisica dell’Università “La Sapienza” and Sezione INFN Rome, Italy
24Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy
25Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy
26Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy

27Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy
28Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy
29Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padova, Italy

30Dipartimento di Fisica “E.R. Caianiello” dell’Università and Gruppo Collegato INFN, Salerno, Italy
31Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and Gruppo Collegato INFN,

Alessandria, Italy
32Dipartimento Interateneo di Fisica “M. Merlin” and Sezione INFN, Bari, Italy

33Division of Experimental High Energy Physics, University of Lund, Lund, Sweden
34Eberhard Karls Universität Tübingen, Tübingen, Germany

35European Organization for Nuclear Research (CERN), Geneva, Switzerland
36Excellence Cluster Universe, Technische Universität München, Munich, Germany

37Faculty of Engineering, Bergen University College, Bergen, Norway
38Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia

39Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
40Faculty of Science, P.J. Šafárik University, Košice, Slovakia

41Faculty of Technology, Buskerud and Vestfold University College, Vestfold, Norway
42Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany

43Gangneung-Wonju National University, Gangneung, South Korea
44Gauhati University, Department of Physics, Guwahati, India

45Helsinki Institute of Physics (HIP), Helsinki, Finland
46Hiroshima University, Hiroshima, Japan

47Indian Institute of Technology Bombay (IIT), Mumbai, India
48Indian Institute of Technology Indore, Indore (IITI), India

49Indonesian Institute of Sciences, Jakarta, Indonesia
50Inha University, Incheon, South Korea

51Institut de Physique Nucléaire d’Orsay (IPNO), Université Paris–Sud, CNRS-IN2P3, Orsay, France
52Institut für Informatik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
53Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany

54Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Münster, Germany
55Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg, CNRS-IN2P3, Strasbourg, France

56Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
57Institute for Subatomic Physics, Utrecht University, Utrecht, Netherlands

58Institute for Theoretical and Experimental Physics, Moscow, Russia
59Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia

60Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
61Institute of Physics, Bhubaneswar, India

62Institute of Space Science (ISS), Bucharest, Romania
63Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico

64Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
65iThemba LABS, National Research Foundation, Somerset West, South Africa

66Joint Institute for Nuclear Research (JINR), Dubna, Russia
67Konkuk University, Seoul, South Korea

68Korea Institute of Science and Technology Information, Daejeon, South Korea
69KTO Karatay University, Konya, Turkey

70Laboratoire de Physique Corpusculaire (LPC), Clermont Université, Université Blaise Pascal,
CNRS–IN2P3, Clermont-Ferrand, France

71Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble Alpes, CNRS-IN2P3, Grenoble, France
72Laboratori Nazionali di Frascati, INFN, Frascati, Italy
73Laboratori Nazionali di Legnaro, INFN, Legnaro, Italy

74Lawrence Berkeley National Laboratory, Berkeley, California, USA
75Moscow Engineering Physics Institute, Moscow, Russia
76Nagasaki Institute of Applied Science, Nagasaki, Japan

PRL 116, 132302 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
1 APRIL 2016

132302-10



77National Centre for Nuclear Studies, Warsaw, Poland
78National Institute for Physics and Nuclear Engineering, Bucharest, Romania
79National Institute of Science Education and Research, Bhubaneswar, India

80National Research Centre Kurchatov Institute, Moscow, Russia
81Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

82Nikhef, Nationaal instituut voor subatomaire fysica, Amsterdam, Netherlands
83Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom

84Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež u Prahy, Czech Republic
85Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

86Petersburg Nuclear Physics Institute, Gatchina, Russia
87Physics Department, Creighton University, Omaha, Nebraska, USA

88Physics Department, Panjab University, Chandigarh, India
89Physics Department, University of Athens, Athens, Greece

90Physics Department, University of Cape Town, Cape Town, South Africa
91Physics Department, University of Jammu, Jammu, India

92Physics Department, University of Rajasthan, Jaipur, India
93Physik Department, Technische Universität München, Munich, Germany

94Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
95Purdue University, West Lafayette, Indiana, USA
96Pusan National University, Pusan, South Korea

97Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
98Rudjer Bošković Institute, Zagreb, Croatia

99Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
100Saha Institute of Nuclear Physics, Kolkata, India

101School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
102Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru

103Sezione INFN, Bari, Italy
104Sezione INFN, Bologna, Italy
105Sezione INFN, Cagliari, Italy
106Sezione INFN, Catania, Italy
107Sezione INFN, Padova, Italy
108Sezione INFN, Rome, Italy
109Sezione INFN, Trieste, Italy
110Sezione INFN, Turin, Italy

111SSC IHEP of NRC Kurchatov institute, Protvino, Russia
112Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria

113SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS-IN2P3, Nantes, France
114Suranaree University of Technology, Nakhon Ratchasima, Thailand

115Technical University of Košice, Košice, Slovakia
116Technical University of Split FESB, Split, Croatia

117The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
118Physics Department, The University of Texas at Austin, Austin, Texas, USA

119Universidad Autónoma de Sinaloa, Culiacán, Mexico
120Universidade de São Paulo (USP), São Paulo, Brazil

121Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
122University of Houston, Houston, Texas, USA
123University of Jyväskylä, Jyväskylä, Finland

124University of Liverpool, Liverpool, United Kingdom
125University of Tennessee, Knoxville, Tennessee, USA

126University of the Witwatersrand, Johannesburg, South Africa
127University of Tokyo, Tokyo, Japan

128University of Tsukuba, Tsukuba, Japan
129University of Zagreb, Zagreb, Croatia

130Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, France
131V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia

132Variable Energy Cyclotron Centre, Kolkata, India
133Warsaw University of Technology, Warsaw, Poland

134Wayne State University, Detroit, Michigan, USA
135Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary

136Yale University, New Haven, Connecticut, USA

PRL 116, 132302 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
1 APRIL 2016

132302-11



137Yonsei University, Seoul, South Korea
138Zentrum für Technologietransfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms, Germany

†Deceased.
aAlso at Georgia State University, Atlanta, Georgia, USA.
bAlso at Department of Applied Physics, Aligarh Muslim University, Aligarh, India.
cAlso at D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.

PRL 116, 132302 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
1 APRIL 2016

132302-12


