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A novel method for calculating spectroscopic properties of medium-mass and heavy atomic nuclei with an odd
number of nucleons is introduced, based on the framework of nuclear energy density functional theory and the
particle-core coupling scheme. The deformation energy surface of the even-even core, as well as the spherical
single-particle energies and occupation probabilities of the odd particle(s), are obtained in a self-consistent
mean-field calculation determined by the choice of the energy density functional and pairing interaction. This
method uniquely determines the parameters of the Hamiltonian of the boson core, and only the strength of the
particle-core coupling is specifically adjusted to selected data for a particular nucleus. The approach is illustrated
in a systematic study of low-energy excitation spectra and transition rates of axially deformed odd-mass Eu
isotopes.
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I. INTRODUCTION

As in many other quantum systems, the interplay between
single-particle and collective degrees of freedom plays a
crucial role in the physics of atomic nuclei [1–3]. This is
apparent especially in systems with an odd number of protons
Z and/or neutrons N . At low energies in nuclei with even
Z and N , nucleons are coupled pairwise and this manifests
in low-lying rotational and vibrational collective excitations
[1]. Many nuclear models have successfully been applied in
studies of the structure of even-even nuclei [1–5]. The situation
is, however, more complicated in nuclei with odd Z and/or N ,
because one has to consider unpaired fermions explicitly and
treat the single-particle and collective degrees of freedom on
the same level [1,6]. Although most nuclear species have an
odd Z and/or N , microscopic studies of their structure have
not been pursued as extensively as in the case of even-even
systems, especially for medium-heavy and heavy nuclei.

Nuclear density functional theory (DFT) provides a reliable
global microscopic approach to many structure phenomena
[7–10]. The basic implementation of the energy density
functional (EDF) framework is in terms of self-consistent
mean-field (SCMF) methods, in which an EDF is constructed
as a functional of one-body nucleon density matrices that
correspond to a single product state. The static nuclear
mean field is characterized by the breaking of symmetries
of the underlying Hamiltonian—translational, rotational, and
particle number—and, therefore, includes important static
correlations, e.g., deformations and pairing. To calculate spec-
troscopic properties, such as excitation spectra and transition
rates, the mean-field approach has to be extended to include
collective correlations that arise from symmetry restoration
and fluctuations around mean-field minima. Collective corre-
lations are taken into account through restoration of broken
symmetries and configuration mixing of symmetry-breaking
product states using, for instance, the generator coordinate
method (GCM) [2].

GCM configuration mixing of angular-momentum and
particle-number projected states based on EDFs or effec-
tive interactions has become a standard tool for nuclear
structure studies of even-even nuclei. However, considerable

challenges are encountered when extending this method to
odd-mass systems. In fact, it is only recently that such a
consistent extension, where the generator coordinate space is
built from self-consistently blocked one-quasiparticle Hartree-
Fock-Bogoliubov (HFB) states, has been reported in Ref. [11].
Even though this is a very promising approach to a systematic
description of odd-mass nuclei, the fact that several blocked
states have to be considered at each deformation, as well
as the explicit breaking of time-reversal symmetry, presents
significant difficulties in realistic applications, especially for
heavy nuclei.

A wealth of new data on spectroscopic properties of
odd-A nuclei in recent years has led to a renewed interest in
particle-vibration coupling (PVC) approaches [1] that explic-
itly consider the polarization of a nucleus by the odd particle.
A number of PVC models of various levels of refinement and
self-consistency have been developed [12–19] and applied to
studies of structure phenomena. In this work we present an
approach based on nuclear DFT and the particle-core coupling
scheme [1,6]. It is an extension of a method introduced in
Ref. [20] for determining the Hamiltonian of the interacting
boson model (IBM) [5], starting with an EDF-based SCMF
calculation of deformation energy surfaces. By mapping a
deformation constrained energy surface onto the equivalent
Hamiltonian of the IBM, that is, onto the energy expecta-
tion value in the boson condensate state, the Hamiltonian
parameters are determined. The resulting IBM Hamiltonian
is used to calculate excitation spectra and transition rates.
For an odd-mass nucleus this method is here applied to the
even-even core; that is, the even-even core is described in
terms of boson degrees of freedom, and only the fermion
degrees of freedom of the odd unpaired particle(s) are treated
explicitly. By extending the method of Ref. [20] to systems
with odd N and/or Z, it becomes equivalent to the well known
phenomenological interacting boson-fermion model (IBFM)
[21,22]. The advantage of the present approach is that, except
for the strength parameter(s) of the boson-fermion coupling,
all parameters of the model Hamiltonian are determined by
the choice of the (microscopic) energy density functional
and pairing interaction. At the cost of having to adjust the
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boson-fermion coupling strength to data, we are able to include
all states in a major shell in the fermion space, and extend the
applicability of the approach to arbitrary heavy odd N and/or
Z nuclei.

In Sec. II we describe the method that will be used to
determine the boson-core and boson-fermion Hamiltonians,
and compare the resulting parameters with those of previous
phenomenological calculation in Ref. [23]. Section III presents
model results for spectroscopic properties, that is, excita-
tion spectra and electromagnetic transitions and moments.
Section IV contains a short summary and concluding remarks.

II. THEORETICAL FRAMEWORK

The model Hamiltonian for an odd-mass nucleus contains
a term that corresponds to the even-even (boson) core ĤB ,
a single-particle Hamiltonian that describes the unpaired
nucleon(s) ĤF , and a term that describes the interaction
between bosons and fermions ĤBF :

Ĥ = ĤB + ĤF + ĤBF . (1)

The assumption is that the Hamiltonian conserves separately
the number of bosons NB and the number of fermions NF .
Here we will only consider the simplest case with NF = 1.
For low-energy states, the dominant components in the boson
space are the s (spin 0+) and d (spin 2+) bosons [24]. The

FIG. 1. (a) Projection of the RHB deformation energy surface
along the β axis for 155Eu, plotted with respect to the minimum. The
calculation is based on the relativistic density functional DD-PC1 and
a separable pairing force of finite range. (b) Distribution ρ(β) of the
wave functions for the lowest-lying positive-parity (J π = 5/2+) and
negative-parity (J π = 5/2−) states of 155Eu (see the text for details).

TABLE I. Parameters of the boson Hamiltonian ĤB (εd , κ , κ ′, and
χ ), and single-particle energies of the positive-parity orbits 2d5/2,
2d3/2, and 3s1/2, relative to the 1g7/2 orbit. All entries, except the
dimensionless parameter χ , are in MeV.

N εd κ κ ′ χ εd 5/2 εd 3/2 εs 1/2

88 0.46 −0.079 −0.017 −0.55 3.14 5.04 5.74
90 0.29 −0.079 −0.021 −0.55 3.24 5.11 5.88
92 0.13 −0.079 −0.022 −0.55 3.32 5.14 5.98

number of bosons equals the number of valence (spherical
open-shell) proton and neutron pairs (particle or hole pairs).
Since in the present study the model will be applied to axially
deformed rotational nuclei, for the boson Hamiltonian ĤB we
employ the standard form [5]:

ĤB = εd n̂d + κQ̂B · Q̂B + κ ′L̂ · L̂, (2)

with the d-boson number operator n̂d = d† · d̃ , the quadrupole
operator Q̂B = s†d̃ + d†s̃ + χ [d† × d̃](2), and the angular
momentum operator L̂ = √

10[d† × d̃](1). εd , κ , κ ′, and χ are
parameters that will be determined by a DFT-based SCMF
calculation. The fermion Hamiltonian for a single nucleon
reads ĤF = ∑

j εj [a†
j × ãj ](0), with εj the single-particle

FIG. 2. Values of the parameters �±
0 (a), 	±

0 (b), and A±
0

(c) for positive- and negative-parity states, and the occupation
probabilities v2 of the spherical orbitals 1g7/2, 2d5/2, and 1h11/2 (d).
The corresponding values used in Ref. [23], denoted by “Ph.”, are
shown for comparison. In Ref. [23] identical occupation probabilities
were used for the orbitals 1f7/2 and 2d5/2.
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energy of the spherical orbital j . For the particle-core coupling
ĤBF we use the simplest form [21,22]:

ĤBF =
∑
jj ′

�jj ′Q̂B · [a†
j × ãj ′ ](2)

+
∑
jj ′j ′′

	
j ′′
jj ′ : [[d† × ãj ](j ′′) × [a†

j ′ × d̃](j ′′)](0) :

+
∑

j

Aj [a† × ãj ](0)n̂d , (3)

where the first and second terms are referred to as the
quadrupole and exchange interaction, respectively. The former
describes the quadrupole boson-fermion interaction, whereas
the latter takes into account the fact that bosons are fermion
pairs and its inclusion is essential for a detailed reproduction
of low-energy spectra and electromagnetic transition probabil-
ities. Q̂B is the same boson quadrupole operator as in ĤB , and
: (· · · ) : indicates normal ordering. The strength parameters
�jj ′ and 	

j ′′
jj ′ can be rewritten, by use of the generalized

seniority scheme, in the following j -dependent forms [25]:

�jj ′ = �0γjj ′ , (4)

	
j ′′
jj ′ = −2	0

√
5

2j ′′ + 1
βjj ′βj ′j ′′ , (5)

where γjj ′ = (ujuj ′ −vjvj ′ )Qjj ′ and βjj ′ = (ujvj ′ + vjuj ′ )
Qjj ′ , and the matrix element of the quadrupole operator in the
single-particle basis Qjj ′ = 〈j ||Y (2)||j ′〉. The factors uj and vj

denote the occupation probabilities of the orbit j , and satisfy
u2

j + v2
j = 1. The last term in Eq. (3) denotes the monopole

term. Aj can be parametrized as Aj = −√
2j + 1A0 with A0

denoting the strength parameter [23]. The effect of this term is
to compress or expand the single-nucleon energy levels [21].

As an illustrative application of the method, we consider
the case of a single nucleon coupled to an axially symmetric
rotor: the low-energy spectra of the isotopes 151,153,155Eu.
These nuclei were extensively investigated in the IBFM
calculation of Ref. [23] and, therefore, one can directly
compare the present results with those obtained in a purely
phenomenological approach. The corresponding even-even
core nuclei 150,152,154Sm present excellent examples of axially
deformed rotors [5]. The number of bosons equals the number
of nucleon pairs outside the doubly magic core 132Sn, that is,
9, 10, and 11 for 151,153,155Eu, respectively.

In the first step of the construction of the boson-fermion
Hamiltonian Ĥ in Eq. (1), the parameters for the even-even
core ĤB Eq. (2) are determined. To this aim we employ the
procedure developed in Refs. [20,26]: based on a specific
choice for a nuclear EDF, the constrained SCMF calculation
determines the microscopic deformation energy surface as
function of the polar deformation parameters β and γ [1]. This
energy surface is mapped onto the corresponding expectation
value of the boson Hamiltonian in the intrinsic (coherent)
state [27] of the interacting boson system, and this mapping
completely determines the parameters of ĤB . Only the strength
parameter κ ′ for the L̂ · L̂ term is determined separately so
that the cranking moment of inertia in the IBM intrinsic state
becomes equal to the Inglis-Belyaev moment of inertia I
obtained from the self-consistent cranking calculation at the
mean-field minimum [26]. Here I is increased by 30%, taking
into the fact that the Inglis-Belyaev formula gives significantly
smaller moment of inertia than the empirical values.

As an illustration, Fig. 1(a) displays the projection of
the energy map of 154Sm along the axis of β deformation,

FIG. 3. The calculated low-energy positive- and negative-parity levels of 151,153,155Eu plotted in comparison with their experimental
counterparts [31].
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obtained from the constrained self-consistent relativistic
Hartree-Bogoliubov (RHB) calculation based on the energy
density functional DD-PC1 [28] and a separable pairing
force of finite range [29]. One notices a pronounced prolate
equilibrium minimum at βmin ≈ 0.34. The corresponding
parameters εd , κ , κ ′, and χ of ĤB , determined by the mapping
of the microscopic energy surface, are summarized in Table I.

For the fermion valence space we include all the spherical
single-particle orbits in the proton major shell Z = 50–82:
1g7/2, 2d5/2, 2d3/2, and 3s1/2 for positive-parity, and 1h11/2

for negative parity, with single-particle (canonical) energies
and occupation probabilities determined by the self-consistent
RHB calculation constrained at zero deformation. It remains
then to adjust the three strength parameters of the boson-
fermion interaction Hamiltonian ĤBF . �0, 	0, and A0 are the
only parameters that are fitted to data, separately for positive-
and negative-parity states. For each nucleus, the optimal values
for the strength parameters are chosen so as to reproduce the
energies of the first excited state and of the band head of the
second-lowest band. We include the monopole term only for
2d5/2 and 1h11/2 orbitals so as to improve the description of
the band head of the second-lowest band.

The resulting total boson-fermion Hamiltonian Ĥ is diag-
onalized numerically in the spherical basis |j,L,α,J 〉, where
α is a generic notation for a set of quantum numbers nd,ν,n


that distinguish states with the same boson angular momentum
L [5], and J is the total angular momentum of the Bose-Fermi
system (|L − j | � J � L + j ).

To illustrate the method, we display in Fig. 1(b) the
distribution ρ(β) of the wave functions for the lowest positive-
and negative-parity states of 155Eu as functions of the axial
deformation β. The function ρ(β) is computed by taking
the overlap between the eigenstate of the IBFM Hamiltonian
and the projected intrinsic state of the coupled boson-fermion
system expanded in terms of the basis |j,L,α,J 〉 [30]. Starting
from the spherical single-proton states, as a result of the
interaction ĤBF between the unpaired proton and the deformed
boson core, the distributions of wave functions for both states
Jπ = 5/2+

1 and 5/2−
1 display peaks close to the minimum of

the energy surface of the even-even core 154Sm. The additional
peaks at the corresponding negative values of β (γ = 60◦) arise
because the energy surface exhibits a parabolic dependence on
γ [cf. panel (a) of Fig. 1].

In Fig. 2 we plot the strengths parameters �0 (a), 	0

(b), A0 (c), and the RHB occupation probabilities v2
j of the

spherical orbitals 1g7/2, 2d5/2, and 1h11/2 (d). The values
used in the fully phenomenological calculation of Ref. [23]
are also included for comparison. One notices that, for states
of both parities, the values of �0, 	0, and A0 used in the
present calculation are significantly different from the ones
of Ref. [23]. The difference most likely results from the
occupation probabilities and energy spacing between the 1g7/2

and 2d5/2 single-particle levels: from Fig. 2(d), v2
g7/2 ≈ 0.96,

v2
d5/2 ≈ 0.55 and v2

h11/2 ≈ 0.13 in the present study, whereas
v2

g7/2 = v2
d5/2 ≈ 0.5–0.6 and v2

h11/2 ≈ 0.35 in [23]. From
Table I, we note that |εg7/2 − εd5/2| ≈ 3 MeV, in contrast to
<0.5 MeV in Ref. [23]. Nevertheless, in both studies �0 and
	0 display a smooth variation with neutron number. Another

difference is that in Ref. [23] the monopole boson-fermion
interaction with a constant strength parameter A0 = −0.1
MeV was included in the Hamiltonian for all orbitals, whereas
the monopole term is used only for 2d5/2 and 1h11/2 orbitals
and varies smoothly with neutron number in the present
calculation.

III. ODD-A EUROPIUM ISOTOPES

Figure 3 compares the calculated low-energy positive- and
negative-parity levels of 151,153,155Eu to available data [31].
For the positive-parity states [Figs. 3(a) and 3(b)], the 5/2+

1

state is the ground state in all three nuclei. For 153,155Eu the
levels above the ground state, that is, 7/2+

1 , 9/2+
1 , 11/2+

1 ,
and 13/2+

1 , form a rotational band with excitation energies
proportional to J (J + 1) (cf. also Figs. 5 and 6). 151Eu differs
in structure from 153,155Eu by the fact that its 7/2+

1 state is low
in energy and close to the 5/2+

1 ground state. Indeed, its boson
core 150Sm is rather close to the transitional region between
rotational and vibrational nuclei, whereas 153,155Eu are prolate
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FIG. 4. Detailed comparison of the calculated low-energy levels
of 151Eu with available data [31]. The excitation energies for the
negative-parity states are shown relative to the lowest state. Note that
the experimental states in parentheses denote tentative assignments.
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deformed rotors. Considering that only three free parameters
are adjusted to data, the calculation quantitatively reproduces
the experimental systematics, except perhaps for the excitation
energy of the 7/2+

2 level in 151Eu. The 3/2+
1 state is supposed

to be the band head of the excited band, followed by the levels
5/2+

2 and 7/2+
2 . For the negative-parity states in Figs. 3(c)

and 3(d), the model results agree with the empirical rotational-
like level structure in 153,155Eu. A significant structural change
is obtained in 151Eu, in which the 11/2− level becomes the
ground state.

We emphasize the fact that the model can describe not
only systematic trends of low-lying levels, but also details
of excitation spectra and decay patterns in individual nuclei.
Figures 4, 5, and 6 display the comparison between theoretical
and experimental low-energy levels for the positive and
negative-parity states of 151,153,155Eu, respectively. The levels
are grouped into bands according to the dominant decay
pattern. One notes that, overall, the theoretical results are in
good agreement with experiment, particularly for the more
deformed 153,155Eu. The present results reproduce data on the
same level of accuracy as the fully phenomenological approach
of Ref. [23].
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FIG. 5. Same as in the caption to Fig. 4, but for the isotope 153Eu.
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FIG. 6. Same as the caption to Fig. 4, but for 155Eu.

For 151Eu it was suggested in Ref. [23] that the positive-
parity 5/2+

1 and 7/2+
1 states correspond to the 2d5/2 and

1g7/2 single-particle states, and become the band heads of the
bands (5/2+

1 ,7/2+
2 ,9/2+

2 , . . .) and (7/2+
1 ,9/2+

1 ,11/2+
1 , . . .),

respectively. In the present study, in contrast, the levels
that belong to both bands, built on 5/2+

1 and 7/2+
1 states,

are predominantly based on the 1g7/2 configuration. For the
negative-parity states of 151Eu in Fig. 4(b) our calculation
predicts that the three bands based on 11/2−

1 , 7/2−
1 , and 9/2−

1
follow the 
J = 2 systematics of states decoupled from the
deformation of the core. Figures 5 and 6 show that the band
structures of 153Eu and 155Eu are very similar. In both nuclei
the two positive-parity bands built on the states Jπ = 5/2+

and 3/2+ are assigned to the Kπ = 5/2+ and Kπ = 3/2+

rotational bands, respectively. The level energies of these
J (J + 1) rotational bands exhibit the strong-coupling 
J = 1
systematics. The positive-parity bands based on 5/2+

1 and
3/2+

1 predominantly correspond to the 1g7/2 and 2d5/2 proton
configurations, respectively, with significant mixing of the two
configurations. The similarity between band structures in 153Eu
and 155Eu is also evident for the negative-parity bands based
on the 1h11/2 spherical orbital.
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TABLE II. The calculated reduced E2 (in Weisskopf units) and M1 (in μ2
N ) transition probabilities for low-lying states, and spectroscopic

quadrupole moments Q(J π ) (in b) and magnetic moments μ(J π ) (in μN ) for 151,153,155Eu, compared to available experimental values [31–35].

151Eu 153Eu 155Eu

Th. Expt. Th. Expt. Th. Expt.

B(E2; 3/2+
1 → 5/2+

1 ) 18 22(12) 40 1.4(5) 4.3 0.47(9)

B(E2; 3/2+
1 → 7/2+

1 ) 4.0 2.4(4) 22 1.9(4) 3.6 0.73(6)

B(E2; 5/2+
2 → 3/2+

1 ) 86 210 154(82) 281

B(E2; 5/2+
2 → 5/2+

1 ) 10 34 0.9(4) 3.9

B(E2; 5/2+
2 → 7/2+

1 ) 0.8 0.8 2.8(1.7) 0.012

B(E2; 7/2+
1 → 5/2+

1 ) 57 8.1(9) 190 300(21) 267

B(E2; 7/2+
2 → 5/2+

1 ) 26 7.2 0.53(7) 9.8

B(E2; 7/2+
2 → 7/2+

1 ) 34 <80 47 4(4) 24

B(E2; 9/2+
1 → 5/2+

1 ) 10 51 97(8) 68

B(E2; 9/2+
1 → 7/2+

1 ) 87 198 179(21) 246

B(E2; 3/2−
1 → 5/2−

1 ) 11 20 0.5

B(E2; 7/2−
1 → 5/2−

1 ) 38 241 266

B(E2; 9/2−
1 → 7/2−

1 ) 6.7 >70 197 222

B(M1; 3/2+
1 → 5/2+

1 ) 0.0098 0.0078(16) 0.016 0.0034(1) 0.000072 0.00098(9)

B(M1; 5/2+
2 → 3/2+

1 ) 0.167 0.11 0.22(2) 0.120

B(M1; 5/2+
2 → 5/2+

1 ) 0.00024 0.00055 0.00016(4) 0.00030

B(M1; 5/2+
2 → 7/2+

1 ) 0.0077 0.012 0.0030(3) 0.0011

B(M1; 7/2+
1 → 5/2+

1 ) 0.0060 0.0083(4) 0.020 0.011(1) 0.021

B(M1; 7/2+
2 → 5/2+

1 ) 0.089 0.20(5) 0.048 4.6 × 10−5(4) 0.046

B(M1; 7/2+
2 → 7/2+

1 ) 0.020 0.015(5) 0.018 0.00106(6) 0.011

B(M1; 9/2+
1 → 7/2+

1 ) 0.016 0.034 0.016(1) 0.033

B(M1; 3/2−
1 → 5/2−

1 ) 1.73 2.49 2.75

B(M1; 7/2−
1 → 5/2−

1 ) 0.26 0.014 0.14

B(M1; 9/2−
1 → 7/2−

1 ) 0.55 0.039 0.20

Q(3/2+
1 ) +0.70 +1.14 1.254(13) +1.27

Q(5/2+
1 ) +1.16 +0.903(10) +1.79 +2.28(9) +2.26 +2.49(2)

Q(7/2+
1 ) +0.79 1.28(2) +0.63 +0.44(2) +0.63

μ(3/2+
1 ) +1.22 +1.25 +2.048 +1.22

μ(5/2+
1 ) +1.53 +3.4717(6) +1.54 +1.53 +1.52 +1.52

μ(7/2+
1 ) +2.02 +2.591(2) +1.93 +1.81(6) +1.86

μ(5/2−
1 ) +5.52 +3.05 +3.22(23) +2.96 +9.6(10)

The relevant decay modes are the electric quadrupole (E2)
and magnetic dipole (M1) transitions. The corresponding op-
erator T (E2) = eBQ̂B + eF Q̂F , with Q̂F = −∑

jj ′ γjj ′[a†
j ×

ãj ′ ](2)/
√

5, and eB and eF denote the effective charges. eB

is adjusted to reproduce the experimental B(E2; 2+
1 → 0+

1 )
value for the boson core nucleus, and the constant value
eF = 1.0 eb is used for the unpaired proton. The magnetic
dipole operator T (M1) = √

3/4π (gBL̂ + ∑
j gF

j ĵ ), where ĵ is
the fermion angular momentum operator, and gB and gF

j are
the boson and fermion g factors, respectively. gB is adjusted
to the experimental magnetic moment of the 2+

1 state of the
boson core, gB = μ(2+

1 )/2, and the Schmidt values are used
for gF

j , with the spin g factor quenched by 30%. Data are
available for E2 and M1 transitions between low-lying states
of positive-parity bands.

Table II collects the results for the E2 and M1 transition
strengths, spectroscopic quadrupole moments, and magnetic
moments. In general, with only a few exceptions, the present
study reproduces available data [31–33], and is consistent
with the results obtained in Ref. [23]. In this calculation
rather strong in-band E2 and M1 transitions for the bands
built on the 5/2+

1 and 3/2+
1 states are predicted for 153,155Eu.

Because of the pronounced mixing between the 2d5/2 and 1g7/2

configurations, the calculated interband transitions are rather
large in all considered isotopes, and overestimate the data
such as, the 7/2+

1 → 5/2+
1 and 3/2+

1 → 5/2+
1 E2 transitions

in 151Eu and 153Eu, respectively. Note that, except for 153Eu,
the data on B(E2) and B(M1) values are rather scarce. The
calculated spectroscopic quadrupole and magnetic moments
for low-lying states are in good agreement with the available
experimental values [31,35].
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IV. SUMMARY

In conclusion, we have introduced an advanced method
for calculating spectroscopic properties of medium-mass and
heavy nuclei with odd N and/or Z. The IBFM Hamiltonian
used to describe the coupled system of the unpaired particle(s)
plus boson core is based on the microscopic framework of
nuclear energy density functional theory. The deformation
energy surface of the even-even core, as well as the spherical
single-particle energies and occupation probabilities of the odd
particle(s), are obtained in a SCMF calculation determined
by the choice of the energy density functional and pairing
interaction. Only the strength parameter(s) of the boson-
fermion interaction Hamiltonian are specifically adjusted to
data for each nucleus. As an illustrative example, the low-
energy excitation spectra and transition rates of 151–155Eu have

been analyzed, and a very good agreement with data has been
obtained. The microscopic approach in which the even-even
core is described in terms of boson degrees of freedom, and
only the fermion degrees of freedom of the unpaired particle(s)
are treated explicitly, enables an accurate, computationally
feasible, and systematic description of a wealth of new data on
isotopes with an odd number of protons and/or neutrons.
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