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THE COSMOS2015 CATALOG: EXPLORING THE 1< z <6 UNIVERSE WITH HALF A MILLION GALAXIES
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ABSTRACT

We present the COSMOS201524 catalog, which contains precise photometric redshifts and stellar masses for more
than half a million objects over the 2deg2 COSMOS field. Including newYJHKs images from the UltraVISTA-DR2
survey, Y-band images from Subaru/Hyper-Suprime-Cam, and infrared data from the Spitzer Large Area Survey
with the Hyper-Suprime-Cam Spitzer legacy program, this near-infrared-selected catalog is highly optimized for
the study of galaxy evolution and environments in the early universe. To maximize catalog completeness for bluer
objects and at higher redshifts, objects have been detected on a χ2 sum of the YJHKs and z++ images. The catalog
contains ~ ´6 105 objects in the 1.5 deg2 UltraVISTA-DR2 region and ~ ´1.5 105 objects are detected in the
“ultra-deep stripes” (0.62 deg2) at K 24.7s (3σ, 3″, AB magnitude). Through a comparison with the zCOSMOS-
bright spectroscopic redshifts, we measure a photometric redshift precision of ( )sD +z z1 s = 0.007 and a catastrophic
failure fraction of h = 0.5%. At < <z3 6, using the unique database of spectroscopic redshifts in COSMOS, we
find ( )sD +z z1 s = 0.021 and h = 13.2%. The deepest regions reach a 90% completeness limit of M1010 to z= 4.
Detailed comparisons of the color distributions, number counts, and clustering show excellent agreement with the
literature in the same mass ranges. COSMOS2015 represents a unique, publicly available, valuable resource with
which to investigate the evolution of galaxies within their environment back to the earliest stages of the history of
the universe. The COSMOS2015 catalog is distributed via anonymous ftp and through the usual astronomical
archive systems (CDS, ESO Phase 3, IRSA).

Key words: catalogs – galaxies: evolution – galaxies: high-redshift – galaxies: photometry – methods:
observational – techniques: photometric

1. INTRODUCTION

Our understanding of the formation, evolution, and large-
scale distribution of galaxies has been revolutionized in the past
decade by the availability of large, multi-wavelength data sets
accurately calibrated with densely sampled spectroscopic
training sets. In parallel, the availability of exponentially

increasing computing power has led to the development of
ab initio cosmological simulations which can now include most
of the known baryonic physics processes down to relatively
small scales (approximately kiloparsecs or less, e.g., Dubois
et al. 2014; Vogelsberger et al. 2014; Khandai et al. 2015;
Schaye et al. 2015), raising the possibility of detailed
comparison with observational surveys. Such simulations can
now reproduce the rich diversity of observed colors, morphol-
ogies, and star formation activity though a complex combina-
tion of internal and external processes (such as feedback,
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24 Based on data obtained with the European Southern Observatory Very
Large Telescope, Paranal, Chile, under Large Programs 175.A-0839 (zCOS-
MOS), 179.A-2005 (UltraVista) and 185.A-0791 (VUDS).
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turbulence, smooth accretion, dry minor mergers, and mergers)
occurring at different scales and times. However, the exact
balance between all of these processes and how they affect
galaxy evolution and shape galaxy properties is still actively
debated.

Observationally, it is now clear that by ~z 1 most of the
mass has already assembled into galaxies. At high redshifts,
star formation occurs vigorously in blue, massive galaxies and
with the passage of cosmic time the peak of star formation
activity shifts to progressively lower-mass objects at lower
redshifts (e.g., Cowie et al. 1996; Arnouts et al. 2007; Noeske
et al. 2007; Pozzetti et al. 2007). However, despite the success
of phenomenological models in reproducing at least some of
these observational trends (Peng et al. 2010), the precise
physical mechanisms of this “quenching” process remain a
topic of debate. Since cold gas is the basic fuel for galaxies to
form stars, a better understanding of how gas accretion feeds
galaxies and of the effect of possible outflows—which could
stop the gas supply in galaxies—are crucial to explain both the
peak of star formation at high redshift and its quenching at
lower redshifts.

The small dispersion in the galaxy “main sequence” (the
observed proportionality between star formation rate (SFR) and
stellar mass) found at < <z0 2 (e.g., Daddi et al. 2007) is
reproduced in hydrodynamical simulations and is now shown
to exist up to ~z 6.5 (e.g., Steinhardt et al. 2014; Salmon
et al. 2015) and down to ~M Mlog 9.4 (Kochiashvili
et al. 2015), although the different methods used to compute
the stellar mass and SFR, in addition to sample selection
effects, are still producing partially inconsistent results at high
redshift (Lee et al. 2012). This SFR-stellar mass relation
nonetheless clearly suggests that mass assembly should be
smooth compared to clumpy accretion driven by mergers.
However, the privileged mode of smooth gas accretion remains
unclear.

The conventional model relied on the “hot mode” accretion
scenario, in which the infalling gas is shock-heated at the virial
radius and then radiatively cools starting from the central part
and forming centrifugally supported disk (e.g., Rees &
Ostriker 1977; White & Rees 1978). However, recent
hydrodynamical simulations now suggest that most of the gas
is accreted directly from cold dense filaments without being
shock-heated (Katz et al. 2003; Kereš et al. 2005; Ocvirk
et al. 2008; Dekel et al. 2009), at least for lower-mass haloes at
high redshift. In this context, the anisotropic large-scale
environment of galaxies is therefore likely to play an important
role as it literally drives such cold flow accretion.

Most observational analyses define “environment” as well-
defined structures (clusters/groups/pairs and field galaxies,
e.g., Lin et al. 2014) or using isotropic galaxy-density
estimators (such as nearest neighbors, e.g., Dressler 1980;
Elbaz et al. 2007). Galaxies are found to be more massive and
much less star-forming in high-density regions relative to low-
density regions (e.g., Kauffmann et al. 2004), which is
consistent with the clustering measurements of ultraviolet-
selected galaxies (Heinis et al 2007; Milliard et al 2007). Using
local samples, Peng et al. (2010) have demonstrated that
quenching of star formation activity can be separated into
environmental (density dependent) and internal (galaxy mass
related) effects, suggesting that nature and nurture both act in
shaping galaxy properties.

Recent theoretical works have also predicted that there is a
significant connection between the dynamics within the
intrinsically anisotropic large-scale structures on the one hand,
and the physical properties of the galaxies embedded in them
on the other hand. In particular, the vorticity-rich filaments
(Libeskind et al. 2013; Laigle et al. 2015) are where low-mass
galaxies steadily grow in mass via quasi-polar cold gas
accretion, while their angular momentum (spin) is aligned
with host filaments (Codis et al. 2012, 2015). Mergers are
responsible for the spin flip along the filaments (Welker
et al. 2014), so that the flip should, in principle, be traced in the
distribution of the galaxy properties (morphology, SFR) along
the “cosmic web” (Pogosyan et al. 1996). Correlations have
already been found in hydrodynamical simulations between the
evolution of the physical properties of galaxies (SFR, stellar
mass, colors, metallicity) as a function of the galaxy-spin
alignment within the filaments (Dubois et al. 2014).
Notwithstanding some observational studies (see also, e.g.,

Scoville et al. 2013; Tempel & Libeskind 2013; Darvish
et al. 2014), accurately tracing the cosmic web remains
challenging as long as we do not observe a sufficiently large
area (at least on the scale of a few typical void sizes) with
sufficiently precise galaxy redshifts to trace the structures.
Therefore, one of the outstanding challenges for the next
generation of deep multi-band surveys over wide fields is to
enable environmental studies while at the same time probing
different epochs of cosmic evolution to leverage their relative
importance in building up galaxies and also to detect the
transition between different accretion modes.
A method that could be more robust for constraining galaxy

mass assembly would be to investigate the relationship between
the integrated stellar properties of galaxies (in particular, stellar
mass, star formation rate, and star formation history (SFH)) and
their dark matter environment over a range masses and
redshifts. The gas accretion mode is expected to be intimately
connected to the halo mass and, depending on the dominant
scenario, the SFHs of galaxies will be different due to the
cooling delay implied by the “hot mode” accretion. In practice,
the stellar-to-halo mass relation is derived statistically by
comparing the galaxy clustering measurement with predictions
from the phenomenological halo model (e.g., Cooray &
Sheth 2002). Already extensively studied up to ~z 2 (e.g.,
Béthermin et al. 2014; Coupon et al 2015; McCracken et al.
2015), this relationship is worth extending at higher redshift
and for lower-mass galaxies, which requires sufficiently large
and deep data sets. Moreover, other halo-mass-dependent
effects play a non-negligible, if not crucial role in regulating
star formation, especially feedback from active galactic nuclei
(AGNs), either in a negative sense (e.g., Croton et al 2006;
Hopkins et al. 2006) or a positive (e.g., Gaibler et al. 2012;
Bieri et al. 2015). This makes it difficult to disentangle all of
the different mass-dependent processes that affect star forma-
tion, unless robust observations of the AGN population are
available in the same field.
Taking these considerations into account, it is clear that new

observational studies will require deep, near-infrared (NIR)-
and infrared (IR)-selected data. This will allow us to extend
stellar mass measurements and photometric redshift catalogs to
higher redshifts and lower stellar masses over the largest
possible redshift ranges. In particular, the challenge is to cover
simultaneously in the same data set the low-mass and high-
redshift ranges of the galaxy population. Especially the redshift
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range < <z1 4 where galaxies are most actively forming
stars. As most spectral features move into the rest-frame optical
in these redshift ranges, NIR data is essential for accurate
photometric redshift and stellar mass estimates. Covering a
large area is also essential to derive robust statistical N-point
functions or count in cells, to probe a variety of galaxy
environments, to trace accurately the large-scale structure, and
to minimize the effect of cosmic variance. In addition,
providing large numbers of bright, rare objects is essential
for ground-based follow-up spectroscopy.

The COSMOS project has already pioneered the study of
galactic structures at intermediate to high redshifts as well as
the evolution of the galaxy and AGN populations, thanks to the
unique combination of a large area and precise photometric
redshifts. However, early COSMOS catalogs were primarily
optically selected (Capak et al. 2007; although a subset of the
COSMOS bands have been combined with WIRCAM data;
McCracken et al. 2010). In Ilbert et al. (2013), the first
UltraVISTA data release (McCracken et al. 2012) was used to
derive an NIR-selected photometric redshift catalog (see also
Muzzin et al. 2013). In contrast to this earlier work, we now
add the optical z++-band data to our object NIR-detection
image, which increases the catalog completeness for bluer
objects. In addition, this paper uses the deeper UltraVISTA-
DR2 data release, a superior method for homogenizing the
optical point-spread functions, much deeper IR data from the
Spitzer Large Area Survey with Hyper-Suprime-Cam
(SPLASH) project, and new optical data from the Hyper-
Suprime-Cam.

These improvements to the COSMOS catalog make it
possible to create, for the first time, highly complete mass-
selected samples to high or very high redshifts subtending an
area of 542 Mpc h2 2 near ~z 1. In particular, we are able to
extend the stellar-mass–halo-mass relationship to high redshifts
and to carefully study the connection between galaxies and
their large-scale environment throughout the transitional epoch
of mass accretion. This will be addressed in future works.
Finally, this catalog will also be invaluable in the preparation of
simulated catalogs for the Euclid satellite mission and for
defining what kind of spectroscopic catalogs it will require.

The paper is organized as follows. Section 2 describes the
data set and the preparation of the images. Section 3 details the
galaxy detection and the photometric measurements. Section 4
describes the computation of the photometric redshift and the
extraction of the physical parameters. Section 5 summarizes the
main characteristics of the catalog. Section 6 presents our
summary and outlines future data sets.

We use a standard ΛCDM cosmology with Hubble constant
=H 700 km s−1 Mpc−1, total matter density W = 0.3m , and

dark energy density W =L 0.7. All magnitudes are expressed
in the AB (Oke 1974) system.

2. OBSERVATIONS AND DATA REDUCTION

2.1. Overview of Included Data

The COSMOS field (Scoville et al. 2007) offers a unique
combination of deep ( –~AB 25 26), multi-wavelength data
( m m0.25 m 24 m) covering a relatively large area of 2 deg2.
The main improvement compared to previous COSMOS
catalog releases is the addition of new, deeper NIR and IR
data from the UltraVISTA and SPLASH projects.

As in previous COSMOS catalog papers, all of the images
and noise maps have been resampled to the same tangent point
R.A., decl.= (150.1163213, 2.20973097). The entire catalog
covers a square of 2 deg2 centered on this tangent point. When
the images were delivered as tiles, all of the data were
assembled into a series of 48096×48096 images with an
identical pixel scale of 0 15. Figure 1 shows the footprint of all
of the observations. Figure 2 shows the transmission curves of
all of the filters25 (filter, atmosphere, and detector). COSMOS
NIR data come from several sources: WIRCam data
(McCracken et al. 2010), covering the entire field, and
UltraVISTA (McCracken et al. 2012) data, covering the central
1.5 deg2. The UltraVISTA data includes the DR2 “deep” and
“ultra-deep” stripes. Note that this implies that the depth and
completeness in our final catalog are not the same over the
whole COSMOS field because they are derived in part from
these data. The COSMOS2015 catalog26 also offers a match
with X-ray, near ultraviolet (NUV), IR, and Far-IR data,
coming, respectively, from Chandra, GALEX, MIPS/Spitzer,
PACS/Herschel, and SPIRE/Herschel. In this paper, we limit
ourselves to the inner, deep part covered by both UltraVISTA-
DR2 and the z++ band (which is flagged accordingly in our
catalog). We denote as UD the part of the field covered by the
“ultra-deep stripes” ( =K 24.7s at 3σ in a 3″ diameter

Figure 1. Schematic of the COSMOS field showing all of the optical (dark blue
and turquoise) and NIR (green and orange) observations used. The background
image corresponds to the χ2 YKHKs–z

++ detection image (as described in
Section 3). For reference, the region covered by the COSMOS-Advanced
Camera for Surveys (ACS) HST data (Koekemoer et al. 2007) is shown in
cyan.COSMOS defines the 2 deg2 COSMOS square (dark blue).Uvista (orange
area) is the region covered by the UltraVISTA-DR2 observations. We define
UD as the light green area, corresponding to the ultra-deep stripes in the
UltraVISTA-DR2 observations. Deep is the difference between UVista and
UD. In our analysis of the performance of the catalog, we limit ourselves to the
intersection between UD with COSMOS and Deep with COSMOS, after
removing the masked objects in the optical bands ( !OPT, not shown on this
figure). The effective areas are given in Table 7.

25 www.astro.caltech.edu/∼capak/filters/index.html
26 ftp://ftp.iap.fr:/pub/from_users/hjmcc/COSMOS2015
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aperture) and asUVista the full region covered by UltraVISTA-
DR2 ( =K 24.0s at 3σ in a 3″ diameter aperture). Deep is the
difference between UVista and UD. In our analysis, we limit
ourselves to the intersection of UD andDeep within the 2deg2

COSMOS area after removing the masked area in the optical.
The effective areas corresponding to these intersections are
0.46 deg2 for UD and 0.92 deg2 for Deep. Details of these
flagged regions can be found in Table 7 (Appendix A.1) and in
Figure 1. All of the input data are summarized in Table 1. The
limiting magnitudes can be observed in Figure 3.

2.1.1. Optical-Ultraviolet Data

The optical-ultraviolet data set used here is similar to those
used in previous releases (Capak et al. 2007; Ilbert et al. 2009).
It includes near-UV ( m0.23 m) observations from GALEX
(Zamojski et al. 2007), u*-band data from the Canada–France–
Hawaii Telescope (CFHT/MegaCam), and the COSMOS-20
survey, which is composed of 6 broad bands (B, V, g, r, i, +z ),
12 medium bands (IA427, IA464, IA484, IA505, IA527, IA574,
IA624, IA679, IA709, IA738, IA767, and IA827), and two
narrow bands (NB711, NB816), taken with Subaru Suprime-
Cam (Taniguchi et al. 2007, 2015). We have discarded poor
seeing (~ 1. 3) g-band data. Finally, the initial COSMOS z-
band data were replaced by deeper z++ band data taken with
thinned upgraded CCDs and a slightly different filter. At this
stage, in each band, image point-spread functions (PSFs) were
homogenized to minimize tile-to-tile variations (Capak
et al. 2007). At the same time, RMS_MAP and FLAG_MAP
images were also generated, and saturated pixels and bad areas
were flagged. This release also contains new Y-band data taken
with Hyper-Suprime-Cam (HSC) Subaru (Miyazaki
et al. 2012). The average exposure time per pixel is 2.1 hr.
This data set is described fully in G. Hasinger et al. (2016, in
preparation). The addition of the Y-band data is intended to
improve our stellar mass and redshift estimates in the important
< <z1 1.5 range because it is slightly bluer than the Y filter

from VIRCAM (see Figure 2), but it is also intended to serve as
a “pilot program” to assess the utility of HSC data and to
prepare for future COSMOS data sets which will include much
more HSC imaging.

2.1.2. NIR Data

The YJHKs-band data used here were taken between 2009
December and 2012 May with the VIRCAM instrument on the
VISTA telescope as part of the UltraVISTA survey program
and constitute the DR2 UltraVISTA release.27 The Ultra-
VISTA-DR2 processing steps are the same as those in the DR1
release (McCracken et al. 2012). Compared to DR1, the
exposure time has been increased significantly in the ultra-deep
stripes, as shown in yellow in Figure 1; these cover an area of
0.62 deg2. An important consequence of this is that the signal-
to-noise ratio for an object of a given magnitude is not constant
across the image. To provide NIR photometry in zones not
covered by UltraVISTA, we include H and K WIRCAM data
(McCracken et al. 2010) in our photometric catalog. However,
this paper does not discuss the performance of photometric
redshifts and physical parameters in these WIRCAM-only
areas.

2.1.3. Mid-Infrared Data

The m3.6 m, m4.5 m, m5.8 m, and m8.0 m (respectively,
channels 1, 2, 3, and 4) IRAC data used in this paper consist of
the first two-thirds of the SPLASH COSMOS data set together
with S-COSMOS (Sanders et al. 2007), the Spitzer Extended
Mission Deep Survey, the Spitzer-Candels survey data, along
with several smaller programs that observed the COSMOS
field. The final processing is described in a companion paper
(P. Capak et al. 2016, in preparation). The average exposure
time per pixel is 3.8 hr, increasing to 50 hr in the central
S-CANDELS coverage. Before processing, a median image
was created for each AOR (observing block) and subtracted
from the frames to remove residual bias in the frames and
persistence from previous observations. For the S-CANDELS
data, a secondary median was subtracted from the observations
taken with repeats to remove the “first frame effect” residual
bias. The resulting median-subtracted images have a mean
background near zero, and so no overlap correction was
applied. The median-subtracted frames were then combined
with the MOPEX mosaic pipeline.28 The outlier and box-
outlier modules were used to reject cosmic rays, transients, and

Figure 2. Transmission curves for the photometric bands used. The effect of atmosphere, telescope, camera optics, filter, and detector are included. Note that for
clarity the profiles are normalized to a maximum throughput of one; therefore, the relative efficiencies of each telescope and detector system are not shown.
Intermediate and narrow bands are not represented, but the region of the spectrum covered by these bands is marked by dashed lines.

27 www.eso.org/sci/observing/phase3/data_releases/uvista_dr2.pdf
28 http://irsa.ipac.caltech.edu/data/SPITZER/docs/dataanalysistools/tools/
mopex/
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moving objects. The data were then drizzled onto a 0. 6 pixel
scale using a “pixfrac” of 0.65 and combined with an exposure
time weighted mean combination. Mean, median, coverage,
uncertainty, standard deviation, and color-term mosaics were
also created. Obviously, this variation as a function of position
can be expected to influence the precision of the photometric

redshifts and stellar masses for the very highest-redshift
( >z 4) objects.

2.2. Image Homogenization

In this paper, the variation of the PSF across individual
images in a given band is neglected. This is reasonable because
band-to-band variations are almost always greater than the
variation within a single band. The residual impact of the PSF
variation across the field is discussed in Appendix A.3. From u
to Ks, the FWHM of the PSF has a range of values between
~ 0. 5 and 1. 02 (corresponding to a Moffat fit). Therefore, the
fraction of the total flux falling in a fixed aperture is band-
dependent. One way to address this problem is to “homo-
genize” the PSF so that it is the same in all of the bands
(GALEX and IRAC bands are not homogenized, their
photometry are extracted with a source-fitting technique, as
detailed in Section 3). In the first step in our homogenization
process, SEXTRACTOR (Bertin & Arnouts 1996) is used to
extract a catalog of bright objects. Stars are identified by cross-
matching with point sources in the COSMOS-Advanced
Camera for Surveys (ACS) Hubble Space Telescope (HST)
catalog (Koekemoer et al. 2007; Leauthaud et al. 2007).
Saturated or faint stars are removed by considering the position
of each object in the FWHM versus mAB diagram. For each
star, we extract a postage stamp using SEXTRACTOR. The PSF is
modeled in pixel space using PSFEX (Bertin 2013) as a linear
combination of a limited number of known basis functions:

( )å yY = c , 1c
b

b b

where the c index reflects the dependance of Ψ on the set of
coefficients cb. Given a basis, this PSF model can be entirely
determined knowing the coefficients cb of the linear combina-
tion. The pixel basis is the most “natural” basis but requires as

Table 1
Summary of Available Data in Each Band and the Average Limiting

Magnitudes Computed from Variance Map in 2″ and 3″ Diameter Apertures on
the PSF-homogenized Images

Instrument Filter Central Width 3σ deptha

/Telescope λ (Å) (Å) (3″/2″)
(Survey) ±0.1

GALEX NUV 2313.9 748 25.5b

MegaCam/CFHT u* 3823.3 670 26.6/27.2

Suprime-Cam B 4458.3 946 27.0/27.6
/Subaru V 5477.8 955 26.2/26.9

r 6288.7 1382 26.5/27.0
+i 7683.9 1497 26.2/26.9

z++ 9105.7 1370 25.9/26.4
IA427 4263.4 206.5 25.9/26.5
IA464 4635.1 218.0 25.9 /26.5
IA484 4849.2 228.5 25.9/26.5
IA505 5062.5 230.5 25.7/26.2
IA527 5261.1 242.0 26.1/26.6
IA574 5764.8 271.5 25.5/26.0
IA624 6233.1 300.5 25.9/26.4
IA679 6781.1 336.0 25.4/26.0
IA709 7073.6 315.5 25.7/26.2
IA738 7361.6 323.5 25.6/26.1
IA767 7684.9 364.0 25.3/25.8
IA827 8244.5 343.5 25.2/25.8
NB711 7119.9 72.5 25.1/25.7
NB816 8149.4 119.5 25.2/25.8

HSC/Subaru Y 9791.4 820 24.4/24.9

VIRCAM YUD 10214.2 970 25.3/25.8
/VISTA YDeep 24.8/25.3
(UltraVISTA-DR2) JUD 12534.6 1720 24.9/25.4

JDeep 24.7/25.2
HUD 16453.4 2900 24.6/25.0
HDeep 24.3/24.9
Ks

UD 21539.9 3090 24.7/25.2
Ks

Deep 24.0/24.5

WIRCam Ks 21590.4 3120 23.4/23.9
/CFHT H 16311.4 3000 23.5/24.1

IRAC/Spitzer ch1 35634.3 7460 25.5/oc

(SPLASH) ch2 45110.1 10110 25.5/oc

ch3 57593.4 14140 23.0/oc

ch4 79594.9 28760 22.9/oc

Notes.
The central wavelength is the median wavelength weighted by transmission
and the widths are defined using the half-maximum transmission points.
a s3 depth in mAB computed on PSF-matched images from around 800
apertures at 2 and 3 .
b Value given in Zamojski et al. (2007) corresponding to a 3σ depth.
c s3 depth in mAB computed from the rms maps, after masking the area
containing an objects based on the segmentation map.

Figure 3. Limiting magnitude at 3σ in a 3 diameter aperture computed from
empty aperture measurements for each band in COSMOS2015, with the
exception for NUV filter (value from Zamojski et al. 2007). The length of each
segment is the FWHM of the filter curves. For the Y, J, H, Ks bands; the
limiting magnitudes that are specified correspond to UD.
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many coefficients as the number of pixels on the image postage
stamp. We can then make some assumptions to simplify the
basis and to reduce the number of coefficients. The adopted
basis is the “polar shapelet” basis (Massey & Refregier 2005),
for which the components have useful explicit rotational
symmetries. We assume that the PSF is constant over the field.
The global PSF of one band is then expressed as a function of
the coefficients cb at each pixel position xi on the postage stamp
image, which are derived by minimizing the χ2 sum over all of
the sources:

( )
( ( ) ( ))

( )å åc
s

=
- Y

c
p x f x

, 2
s i

s i s c i

i

2

sources pixels

2

2

where fs is the total flux of the source s, si is the variance
estimate of pixel i of the source s, ( )p xs i is the intensity of the
pixel i, andc refers to the set of PSF coefficients. Once the
global PSF has been determined in each band, we then decide
on the “target PSF,” corresponding to the desired PSF of all of
the bands after homogenization. This is chosen so as to
minimize the applied convolutions. We use a Moffat profile to
represent the PSF (Moffat 1969); this provides a better
description of the inner and outer regions of the profile than
a simple Gaussian. The stellar radial light profile is

[ ( ) ] ( )a= + b-I I r1 3r 0
2

with ( )a q= -b2 2 1 ,1 ( )( )b pa= - -I 10
2 1, and θ is

the FWHM. Our target PSF is defined as a Moffat profile
with [ ] [ ] q b = , 0. 8, 2.5 .

The required convolution kernel is calculated in each band
by finding the kernel that minimizes the difference between the
target PSF and the convolution product of this kernel with the
current PSF. The images are then convolved with this kernel.

To estimate the precision of our PSF matching procedure,
the photometry of the stars is extracted at 14 fixed apertures of
radii rk, logarithmically spaced between 0. 25 and 2 5. In each
band, the difference between the magnitude of the stars
extracted in the aperture rk and the total magnitude (computed
from the 4″ diameter aperture) is plotted in Figure 4 as a
function of aperture. For comparison, the difference that would
be obtained with the target profile [ ] 0. 8, 2.5 is overplotted
as a red dashed line. The agreement is excellent up to a 2
radius on the plot.
The flux obtained with the best-fitting PSF in each band is

normalized to the target profile and is also plotted in Figure 4
(left panel), before and after homogenization. For perfect
homogenization, this ratio should be one, independent of
aperture. For the 3″ diameter aperture, the relative photo-
metric error for point-source objects after homogenization is
below 5% (or equivalently a difference of ∼0.05 in
magnitude). Unfortunately, despite previous attempts at PSF
homogenization inside each field (Capak et al. 2007;
McCracken et al. 2012), residual variations remain across
the field. These are shown in Figure 5, which shows the
distribution of the stellar FWHM and the median FWHM for
two representative bands. While the PSF is relatively
homogenous across the field for most of the bands (e.g.,
uband), there is larger scatter for some bands (e.g., IA464). In
Appendix A.3, we discuss the effect of these variations on the
aperture magnitude.
Concerning the cosmetic quality of the image, the convolu-

tion operation produces several undesirable effects. First, it
induces a covariance in the background noise which can lead to
photometric errors being underestimated. Second, since the
homogenization process acts both on the FWHM and the
profile slope (α and β parameters), the convolution kernel may
contains negative components. In some bands it can lead to
artefacts (such as rings) around saturated objects. We mask
these saturated objects in the final catalog. We deal with the

Figure 4. Left: best-fitting stellar PSFs for all bands before and after homogenization (left upper and lower panels respectively), normalized to the target PSF T . The
vertical black solid line corresponds to the 3″ diameter aperture used for photometric redshifts. The horizontal dashed lines show the 5% relative error. The color map
reflects the increase in seeing before homogenization. Right: Median curves of growth (the difference between the magnitude in the kth aperture rk with the total
magnitude for point-like sources, estimated from the 4″ diameter aperture) as a function of aperture after homogenization for each band. The target Moffat profile with
(θ, β) = (0.8, 2.5) is shown in red. The vertical dark dashed lines are the apertures provided in the final public catalog (2″ and 3″ diameters).
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correlation of the background by multiplying in each band the
photometric errors derived from SEXTRACTOR by a correction
factor (see Section 3.2 for more details).

3. CATALOG EXTRACTION

3.1. Photometric Measurements

3.1.1. Optical and NIR Data

Object photometry is carried out using SEXTRACTOR in “dual
image” mode. The χ2 zY JHKs detection image (Szalay
et al. 1999) is produced using SWARP (Bertin et al. 2002)
starting with the non-homogenized images. Since the main
objective of our new catalog is to probe the high-redshift
universe and to provide a catalog containing UV-luminous
sources at >z 2, we create a detection image by combining
NIR images of UltraVISTA (YJHKs) with the optical z++-band
data from Subaru. We do not use +i -band data since compact
objects in the +i image saturate around i= 21.

We extract fluxes from 2″ to 3″ diameter apertures on PSF-
homogenized images in each band. The well-known difficulty
in source extraction from astronomical images is that objects
have ill-defined, potentially overlapping boundaries, making
flux measurements challenging. The two main parameters that
control extraction are the deblending threshold and the flux
threshold. Therefore, a reasonable balance must be found
between deblending too much (splitting objects) and not
deblending enough (leading to merging). Simliar problems
occur with the choice of the detection threshold: a low
detection threshold can create too many spurious objects, and
one that is too high may miss objects. This can be mitigated in
part by a judicious choice of detection threshold and the
minimal number of contiguous pixels which constitute an
object. The solution we adopt is to set a low deblending and
detection threshold while increasing the number of contiguous
pixels to reject false detections. We validated this choice
through careful inspection of catalogs superimposed on the
detection and measurement images, which is feasible in the
case of a single-field survey like COSMOS.

The background is estimated locally within a rectangular
annulus (30 pixels thick) around the objects, delimited by their
isophotal limits. Additionally, object mask flags indicating bad
regions in the optical and NIR bands were included and
saturated pixels in the optical bands were flagged using the
appropriate FLAG_MAPs. Our chosen parameters are given in
Table 9.
In the last step, catalogs from each band are merged together

into a single FITS table and galactic extinction values are

Figure 5. Distribution of the difference local seeing and the median image seeing for the selected stars in the u and IA464 bands as a function of the position. Note that
for these seeing estimates, we did not fit each star individually with a Moffat profile, but we used the Gaussian-profile-based FWHM_WORLD parameter from
SEXTRACTOR. While the u band is relatively homogenous across the field, IA464 shows large positional variations. This is the most extreme case in our catalog.

Table 2
Ks-band-selected Galaxy Number Counts

Magnitude Bin Deep Regions Ultra-deep Regions

[ – ]16.0 16.5 2.24 2.19
[ – ]16.5 17.0 2.28 2.33
[ – ]17.0 17.5 2.58 2.60
[ – ]17.5 18.0 2.72 2.80
[ – ]18.0 18.5 2.94 3.00
[ – ]18.5 19.0 3.19 3.24
[ – ]19.0 19.5 3.39 3.42
[ – ]19.5 20.0 3.57 3.62
[ – ]20.0 20.5 3.73 3.76
[ – ]20.5 21.0 3.87 3.89
[ – ]21.0 21.5 3.99 4.01
[ – ]21.5 22.0 4.11 4.14
[ – ]22.0 22.5 4.23 4.23
[ – ]22.5 23.0 4.35 4.36
[ – ]23.0 23.5 4.48 4.46
[ – ]23.5 24.0 4.59 4.55
[ – ]24.0 24.5 4.65 4.64
[ – ]24.5 25.0 4.63 4.69
[ – ]25.0 25.5 4.49 4.68
[ – ]25.5 26.0 4.27 4.54

Note. Logarithmic galaxy number counts are in units of galaxies per 0.5 mag
per square degree.
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computed at each object position using the Schlegel et al.
(1998) values. These reddening values have to be multiplied by
a factor computed for each band, derived from the filter
response function and integrated against the galactic extinction
curve (Bolzonella et al. 2000; Allen 1976). These factors are
shown in Table 3.

3.1.2. GALEX Photometry

As in Ilbert et al. (2009), GALEX photometry (Zamojski
et al. 2007) for each object was derived by cross-matching our

catalog with the publicly available photometric +i -selected
catalog described in Capak et al. (2007).29 GALEX fluxes were
measured using a PSF fitting method with the u*-band image
used as a prior.

3.1.3. IRAC Photometry

The SPLASH data exceed the confusion limits in IRAC
channel 1 and channel 2; better deblending techniques are
necessary to estimate fluxes in these crowded, low-resolution
images. We use IRACLEAN (Hsieh et al. 2012) to derive the
SPLASH photometry. This makes use of the positional and
morphological characteristics of objects detected in a high-
resolution image in a different waveband to deblend objects
and derive more accurate fluxes in low-resolution images.
Unlike other similar methods assuming that the intrinsic
morphology of an object is identical in the two wavebands
(i.e., there is no morphological k-correction), IRACLEAN is
essentially the same as CLEAN deconvolution in radio imaging
with nearly no morphological restrictions, except for the
locations where CLEAN can opperate. This scheme minimizes
the effect of morphological k-correction when a high-resolution
image (i.e., the prior) and its low-resolution counterpart are
taken in very different wavebands. However, there is a
limitation for this scheme. If the separation of two objects is
less than ∼1 FWHM, then the flux of the brighter object can be
overestimated while the flux of the fainter one can be
underestimated, as discussed in Hsieh et al. (2012). To solve
this issue, we improve IRACLEAN by taking the surface
brightness information in the prior into account. The new
IRACLEAN uses the surface brightness of the prior to weight
where CLEAN occurs for each object. The weighting strength
is determined by the power of the surface brightness, i.e.,
(surface brightness of the prior)n, where n is the weighting
parameter. If n is zero, then the surface brightness of the prior is
ignored, and so the new IRACLEAN behaves like the original
IRACLEAN. When n is greater than zero, the higher n is, the
more heavily weighted the surface brightness is. If the
wavebands of the prior and the target images are very different,
then n can be set to a lower value, e.g., 0.1–0.3. If the
wavebands of the prior and the target images are very similar,
then n can be set to a higher value, e.g., 0.3–0.5. In general,
n= 0.3 is sufficiently good for most cases.
In this paper, the UltraVISTA zY JHKs χ

2 image is used as
the prior for the SPLASH images in IRACLEAN. To accelerate
the process, both the UltraVISTA zY JHKs χ2 image and the
SPLASH images are broken up into the 144 tiles that are used
for the COSMOS Subaru/ACS data, making parallel proces-
sing easier. The tiles overlap by 14. 4 around the edges to avoid
flux underestimation for those objects close to the edges of the
tiles. The SPLASH PSFs in each tile are generated using the
point sources in that tile. The aperture size used to measure the
flux ratios between sources and PSFs for the CLEAN
procedure is  ´ 1. 8 1. 8 and the weighting parameter n is 0.3.
After the CLEAN procedure is completed, a residual map is
generated which is used to estimate the flux errors. The flux
error of each object is estimated based on the fluctuations in the
local area around that object in the residual map. The
IRACLEAN procedure is described fully in Hsieh et al. (2012).

Table 3
Photometric Corrections, Including Multiplicative Error Factors for

SEXTRACTOR (see Section 3.2), Systematic Offsets (sf) Derived from the
Spectroscopic Sample (see Section 4.2), and Factors F for the Foreground

Extinction (Allen 1976)

Band Error Error sf F
Fact. (2″) Fact. (3″)

HSC Y 2.2 2.7 −0.014 1.298

YUD 3.2 3.7 0.001 1.211
YDeep 2.8 3.2 0.001 1.211

UVista JUD 3.0 3.3 0.017 0.871
UVista JDeep 2.6 2.9 0.017 0.871

HUD 2.9 3.1 0.055 0.563
HDeep 2.4 2.9 0.055 0.563
Ks

UD 2.7 3.1 −0.001 0.364

Ks
Deep 2.3 2.6 −0.001 0.364

WIRCam Ks 2.1 3.4 0.068 0.364
H 2.1 3.2 −0.031 0.563

CFHT u 2.3 3.3 0.010 4.660

B 1.6 1.8 0.146 4.020
V 1.7 1.9 −0.117 3.117
r 1.4 1.7 −0.012 2.660
+i 1.3 1.7 0.020 1.991

z++ 2.0 2.9 −0.084 1.461
IA427 1.7 2.5 0.050 4.260
IA464 1.7 2.4 −0.014 3.843
IA484 1.7 2.5 −0.002 3.621
IA505 1.6 2.3 −0.013 3.425
IA527 1.5 2.2 0.025 3.264

SUBARU IA574 1.9 2.8 0.065 2.937
IA624 1.4 2.0 −0.010 2.694
IA679 2.0 2.8 −0.194 2.430
IA709 1.7 2.4 0.017 2.289
IA738 1.5 2.1 0.020 2.150
IA767 1.8 2.6 0.024 1.996
IA827 2.2 3.1 −0.005 1.747
NB711 1.2 1.8 0.040 2.268
NB816 2.5 3.5 −0.035 1.787

ch1 K K −0.025 0.162
IRAC ch2 K K −0.005 0.111

ch3 K K −0.061 0.075
ch4 K K −0.025 0.045

GALEX NUV K K 0.128 8.621

Note. sf values have to be subtracted to the apparent magnitudes.

29 The version of the catalog used is available at http://irsa.ipac.caltech.edu/
data/COSMOS/tables/photometry/. This catalog supersedes that of Capak
et al. (2007) with improved source detection and photometry.
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3.1.4. X-Ray Photometry

The Chandra COSMOS-Legacy Survey (Civano et al. 2016;
Marchesi et al. 2016) contains 4016 X-ray sources down to a
flux limit of f 2X × 10−16 erg s−1 cm−2 in the 0.5–2 keV
band: 3755 of these sources lie inside the UltraVISTA field of
view. The Chandra COSMOS-Legacy catalog was matched
with the UltraVISTA catalog using the Likelihood Ratio (LR)
ratio technique (Sutherland & Saunders 1992). This method
provides a much more statistically accurate result than simple
positional match, taking into account the following: (i) the
separation between the X-ray source and the candidate
UltraVISTA counterpart; (ii) the counterpart K-band magnitude
with respect to the overall magnitude distribution of sources in
the field. Of the 3755 Chandra COSMOS-Legacy sources,
3459 (;92%) have an UltraVISTA counterpart. In the catalog,
we also added the match with the X-ray detected sources from
XMM-COSMOS (Cappelluti et al. 2007; Hasinger et al. 2007;
Brusa et al. 2010) and the previous Chandra COSMOS catalog
(Elvis et al. 2009; Civano et al. 2012).

3.1.5. Far-IR Photometry

Photometry at 24 μm was obtained for a total of 42,633
sources using an updated version of the COSMOS MIPS-
selected band-merged catalog published by Le Floc’h et al.
(2009). In this catalog, 90% of the 24 μm-selected sources
were securely matched to their Ks-band counterpart using the
WIRCAM COSMOS map of McCracken et al. (2010),
assuming a matching radius of 2″. Counterparts to another
5% of the sample were found using the IRAC-3.6 μm
COSMOS catalog of Sanders et al. (2007), while the rest of
the 24 μm source population remained unidentified at shorter
wavelengths. We thus considered the coordinates of the
WIRCAM K-band or IRAC counterparts (or the initial 24 μm
coordinates for the unidentified MIPS sources), and cross-
correlated these positions with the VISTA catalog using a
matching radius of 1″. VISTA counterparts were found for all
of the previously identified 24 μm sources and for an additional
set of 117 objects detected by MIPS which had no previous
identification.

We also provide Far-IR photometry obtained at 100, 160,
250, 350, and 500 μm using the PACS (Poglitsch et al. 2010)
and SPIRE (Griffin et al. 2010) observations of the COSMOS
field with the Herschel Space Observatory. The PACS data
were obtained as part of the PEP guaranteed time program
(Lutz et al. 2011), while the SPIRE observations were carried
out by the HERMES consortium (Oliver et al. 2012). For each
band observed with Herschel, source extraction was performed
by a PSF fitting algorithm using the 24 μm source catalog as
priors. Hence, far-IR matches to VISTA were unambiguously
obtained from the 24 μm source counterparts described above,
leading to a total of 6608 sources with a PACS detection and
17,923 sources detected with SPIRE. Total uncertainties in the
SPIRE bands include the contribution from confusion. Flux
density measurements with a signal to noise smaller than 3 in
the initial SPIRE COSMOS catalog published by Oliver et al.
(2012) are not considered in our present work.

3.2. Computation of Photometric Errors and Upper Limits

Precise photometric error measurements are essential for
accurate photometric redshifts. For each Subaru band, we use
effective gain values (Capak et al. 2007) for the non-convolved

data to compute the magnitude errors. This is particularly
important for the Subaru bands because of the long exposure
times used for each individual exposure. However, because
SEXTRACTOR errors are underestimated in data with correlated
noise, we multiply the magnitude and flux errors with a
correction factor computed for each band from empty apertures
(based on the segmentation map, apertures that contain an
object have been discarded). Following Bielby et al. (2012),
this factor is computed in each band for the 2″ and 3″ apertures
and taken at the ratio between the standard deviation of the flux
extracted in empty apertures on the field and the median of the
SEXTRACTOR errors. For UltraVISTA, we compute separate
values for the Ultra-deep (UD) and deep (Deep) regions. The
corrections are given in Table 3.
In some bands, a source may be below the measurement

threshold while at the same time be detected in the combined
zY JHKs χ2 image. In this case, in the measurement band,
SEXTRACTOR may not report consistent magnitudes or magni-
tude errors, and we report upper limits on the source
magnitudes in each band where they are too faint to be
detected. To compute the magnitude limits, we run SEXTRAC-

TOR on each individual image using the same detection
parameters. All of the pixels belonging to objects are flagged.
Fluxes are measured from PSF-homogenized images in empty
apertures of 2″ and 3″, discarding all of the apertures
containing an object. The magnitude limit is then computed
from the standard deviation of fluxes in each aperture.
This method is not always appropriate since the values of the

upper limits may vary over the field, as shown in Figure 6. This
is why we use a local estimate for the upper limits in the six
broad bands of optical data (u, B, V, r, +i , z++). In these bands,
upper limits are calculated for each object from the variance
map and are defined as being the square root of the variance per
pixel integrated over the aperture. The magnitude of the object
is set to the 3σ magnitude limit if the flux is below the 3σ flux
limit, or if the flux is below the flux error. The averaged values
of these upper limits are consistent with the value computed
with the first method and are displayed in Table 1. The upper
limits in these bands are important because young, star-forming
objects at high redshift will have apparent magnitudes in the
optical bands of the order of the limiting magnitude. The
computation of the photometric redshift uses fluxes and so does
not use the upper limits which are only applied to the
magnitudes, but it may be useful when working with
magnitudes to know whether or not the object is within the
upper limit.

3.3. Catalog Validation

3.3.1. Number Counts

In Figure 7, we plot the number of galaxies per square
degree per magnitude as a function of Ks magnitude for objects
in both the Deep and UD regions (details of the star-galaxy
separations can be found in Section 4.5). The corresponding
values are presented in Table 2.
Our counts are in excellent agreement with the literature. We

reach more than one magnitude deeper compared to the
previous UltraVISTA-DR1 (McCracken et al. 2012). In
addition, our counts are in good agreement with the much
deeper Hawk-I survey (Fontana et al. 2014) up to at
least ~K 24.5s .
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At the s3 limit in Ks, we detect almost twice as many objects
per square degree in UD than in Deep. Furthermore, our
catalog contains ~ ´1.5 105 objects with <K 24.7s in UD

compared to ~ ´0.8 105 found with UltraVista-DR1
(McCracken et al. 2012) in the same region at the detection
limit in Ks. In Deep, the difference is less significant since the
depths are comparable, with ~ ´0.9 105 objects compared to
~ ´0.7 105 found in UltraVista-DR1.

Compared with the previous publicly available photometric
+i -selected catalog (described in footnote 4) at the detection
limit <+i 26.1 (limiting magnitude at 5σ in a 3″ diameter
aperture from Capak et al. 2007), we find that 16.1% of sources
are not present in COSMOS2015, as shown on Figure 8. Many
of these missing sources are blue, faint ( < <+i25.5 26.1),
low-mass, star-forming galaxies. This difference is to be
expected, since an NIR-only selection and a pure +i -selection
are not expected to sample the same galaxy populations.

However, we have mitigated this difference by including the
z++ band in our detection image; this percentage is smaller than
in Ilbert et al. (2013) where the detection image was shallower
and did not include any optical bands. Furthermore, the
previous +i -selected catalog also contained spurious objects
near the detection limit, and therefore the fraction of missed
genuine objects can be expected to be lower.

3.3.2. Astrometric Accuracy

We compared the astrometric positions of bright, non-
saturated objects in COSMOS2015 with those in the COSMOS
reference catalog from Leauthaud et al. (2007) and the publicly
available +i -selected photometric catalog (footnote 4) described
in Capak et al. (2007). This is illustrated in Figure 9. There is
good agreement between COSMOS2015 and the Leauthaud
et al. (2007) catalog. The shift between the +i -selected catalog
and Leauthaud et al. (2007) is no longer present in

Figure 6. The locally computed magnitude limits computed from the variance map as a function of R.A. and decl. for u, B, and +i bands in a 2″ diameter aperture.

Figure 7. Ks-selected galaxy number counts of the ++YJHK zs -detected
galaxies in UD (yellow circles) and Deep (pink circles) compared to a
selection of literature measurements. The Ilbert et al. (2013) and McCracken
et al. (2010) points show previous measurements in COSMOS.

Figure 8. Cumulative distribution of the number of galaxies over the total
number of galaxies in a magnitude-limited sample ( <+i 26.1) as a function of
magnitude in the +i band from Capak et al. (2007) which are not recovered in
Ilbert et al. (2013; orange line) and this catalog (blue line).
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COSMOS2015. This shift occurs below a pixel size of 0 15.
These comparisons show that our astrometry is accurate to at
least one pixel.

We note that the COSMOS astrometric reference catalog
used in McCracken et al. (2010, 2012) and this paper is based
on a reference catalog extracted from a Megacam i-band (data
taken in 2004) image covering the full COSMOS field. The
astrometric zero point of this catalog was set using radio
interferometric observations (Schinnerer et al. 2004). At
scales smaller than the size of the resampled pixels, it has
been challenging to test the astrometric accuracy for our
catalog given the lack of availability of sufficiently dense
astrometric catalogs. However, we have compared the
positions between our catalog and the catalogs extracted from
the independently reduced Hyper Suprime-Cam images
described here, and this has confirmed that our astrometric
solutions are good at the level of one pixel. For future data
releases, we intend to improve our overall astrometric
precision by using densely sampled catalogs based on either
Hyper Suprime-Cam or Pann-Starrs data, which are tied to
2MASS.

4. PHOTOMETRIC REDSHIFT AND PHYSICAL
PARAMETERS

4.1. Input Catalog

We use fluxes rather than magnitudes for our photometric
measurements to deal robustly with faint or non-detected
objects. Faint objects may have a physically meaningful flux
measurement, whereas their magnitudes and magnitude errors
may be undetermined (for example, if the flux is negative).
Consequently, when using magnitudes, we must set an upper
limit: for flux measurements with correct flux errors, this is no

longer necessary. There is no loss of information when using
flux measurements. This leads to a better determination of the
photometric redshift and a lower number of catastrophic
failures at >z 2.
Photometric redshifts are computed using 3″ aperture fluxes.

The fixed-aperture magnitude estimate is expected to be less
noisy for faint sources than the pseudo-total Kron (Kron 1980)
magnitudes MAG_AUTO. This is because MAG_AUTOʼs variable
aperture is derived from the detection image, which means that
fainter objects can potentially have noisier colors (Hildebrandt
et al. 2012, Moutard et al. 2016). This magnitude measurement
is also susceptible to blended sources. We find that the 3″
aperture photometry gives slightly better photometric redshifts
than the 2″ aperture at low redshift (below z 1) and we adopt
this aperture over the entire redshift range of our survey. We
suspect that the photometric redshift precision is lower in the 2″
apertures due to small-scale residual astrometric errors. This is
being investigated for the upcoming DR3 UltraVISTA release.
Photometric redshift computations use colors, and conse-

quently, should not be sensitive to a systematic magnitude
calibration offset. However, in contrast to optical and NIR data,
GALEX and IRAC data provide total magnitudes or fluxes,
which require an estimate of the total flux from the corrected 3
aperture fluxes to be consistent over the full wavelength range.
This is also needed to derive stellar masses. For each object, we
compute a single offset o (the same for all the bands) which
allows for the the conversion from aperture to total magnitude.
The offset is computed following Moutard et al. (2016,
submitted):

( ) ( )
å å= ´ - ´o

w
w

1
MAG MAG 4

i i i
i i

filters filters
AUTO APER

where we have:

( )
( )

s s
=

+
w

1
5i

iAUTO
2

APER
2

This leads to the assumption that the PSF profile is the same
in all of the bands. As it is averaged over all of the broad bands,
i.e., u, B, V, r, +i , z++, Y, J, H, and Ks, this offset is more robust
than the one which would have been computed by band. These
offsets are given in the final catalog.

4.2. Method

To compute the photometric redshifts, we use LEPHARE
(Arnouts et al. 2002; Ilbert et al. 2006) with the same method as
used in Ilbert et al. (2013). Our aim is to compute precise
photometric redshifts over a wide redshift range for many
object types with minimum bias. Obviously, a single set of
recipes will not perform as well as several configurations, with
each one tuned to optimize the fit at different redshifts. That is
why we use a set of 31 templates including spiral and elliptical
galaxies from Polletta et al. (2007) and a set of 12 templates of
young blue star-forming galaxies using Bruzual & Charlot
(2003) models (BC03). Extinction is added as a free parameter
( ( )- <E B V 0.5) and several extinction laws are considered:
those of Calzetti et al. (2000), Prevot et al. (1984), and a
modified version of the Calzetti laws including a “bump” at
2175Å(Fitzpatrick & Massa 1986). Using a spectroscopic
sample of quiescent galaxies, Onodera et al. (2012) showed
that the estimate of the photometric redshift for the quiescent
galaxies in Ilbert et al. (2009) were underestimated at

Figure 9. Astrometric comparison for bright objects between our catalog, the
catalog from Leauthaud et al. (2007), and the publicly available COSMOS
+i -selected catalog (Capak et al. 2007). Black arrows show the shift between
Capak et al. and COSMOS2015, red arrows between Leauthaud et al. (2007)
and COSMOS2015. Finally, green arrows show the shift between the two
previous catalogs. All of these shifts occur below one pixel.
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< <z1.5 2. Following Ilbert et al. (2013), we improved the
photometric redshift for this specific population by adding two
new BC03 templates assuming an exponentially declining SFR
with a short timescale t = 0.3 Gyr and extinction-free
templates.

Finally, we compute the predicted fluxes in every band for
each template and follow a redshift grid with a step of 0.01 and
a maximum redshift of 6. The computation of the fluxes also
takes into account the contribution of emission lines using an
empirical relation between the UV light and the emission line
fluxes as described in Ilbert et al. (2009).

The code performs the c2 analysis between the fluxes
predicted by the templates and the observed fluxes of each
galaxy. At each redshift, zstep, and for each template of the
library, the c2 is computed as

( )
( ( ))

( )åc
a

s
=

-
z

F F z T,
, 6

i

i

i

2
step

filters

obs SED i step
2

obs
2

where ( )F z T,iSED step is the flux predicted for a template T at
zstep and α is the normalization factor. Then, the c2 is

converted to a probability of = c-p exp 22
. All of the

probability values are summed up at each redshift zstep to
produce the probability distribution function (PDF). We then
determine the photometric redshift solution from the median
of this distribution. The 1σ uncertainties given in the catalog
are derived directly from the PDF and enclose 68% of the area
around the median.

An important aspect of the method is the computation of
systematic offsets which are applied to match the predicted
magnitudes and the observed ones (Ilbert et al. 2006). We
measure these offsets using the spectroscopic sample. For each
object, we search for the template which minimizes the c2 at
fixed redshift. Then, we measure the systematic offset that

minimizes the difference between the predicted and observed
magnitudes. This procedure iterates until convergence.
The photometric redshift distribution for the +i - and

Ks-selected samples is given in Figure 10. Magnitudes are
measured in corrected 3″ aperture magnitudes with the
derived systematic offset applied. Several interesting trends
are apparent. In general, the median redshift of our Ks sample
is higher than our +i -selected samples. Also, the fraction of
sources at higher redshifts is greater for the NIR-selected
samples. These effects are largely due to the well-known
positive evolutionary corrections and k-corrections for NIR-
selected samples. Optically selected samples at higher
redshifts move progressively to shorter rest-frame UV
wavelengths, which are strongly attenuated by dust and the
intergalactic medium. We compare these distributions with a
simple three-component galaxy population model generated
with the PEGASE.2 code (Fioc & Rocca-Volmer-
ange 1997, 1999). Each population starts forming at z= 8
via the infall of pristine gas on a specific timescale and gas is
converted into stars at a specific rate. The corresponding star
formation histories peak at z 4, 2, and 0, and the z= 0
predicted optical-NIR colors correspond to those of local Sa,
Sbc, and Sd galaxies, respectively. The total baryonic mass
(gas, stars, and hot halo-gas) of each galaxy is assumed to be
constant, and the mass function of each population is tuned so
that the sum of the three populations matches simultaneously
the local luminosity function in the B band, the deep galaxy
counts in the B, V, I, and Ks bands, as well as the cosmic star
formation rate density and the stellar mass density observed at

= -z 0 6. The agreement between the data and this simple
three-component model is quite good. This success lies in the
differential contributions of the three galaxy populations to
the counts. Indeed, our modeled counts at =K 24s are the
sums of the almost equal contributions of Sd progenitors at z
∼ 0.7, Sb progenitors at ~z 1.2s, and Sab progenitors at z ∼
2. In contrast, a simpler modeling of the galaxy populations

Figure 10. Photometric redshift distributions for +i (left)- and Ks(right)-selected samplesfor the full sample, compared with a model prediction (red dashed line) from
PEGASE.2 (Fioc & Rocca-Volmerange 1997, 1999). Plotted errorbars are uncertainties estimated from jacknife errors, splitting the field into 25 sub-fields.
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using a single scenario with an SFH proportional to SFRD(z)
(star formation rate density) and a unique mass function leads
to very good agreement between the integrated counts in the
+i and Ks bands, as well as a good match between SFRD(z)
and ( )

*
r z , but it completely overshoots the mean redshift of

the ~K 24s or ~+i 24.5 sources (z ∼ 2, whereas the
COSMOS data shows it is peaked at z�1). Other choices
of modeling that we explored also lead to a high level of
tension in the SFRD(z), ( )

*
r z , or in the counts in the +i , Ks, or

B bands.

4.3. Photometric Redshift Accuracy Measured using
Spectroscopic Samples

The COSMOS field is unique in its unparalleled spectro-
scopic data set. These spectroscopic samples, derived from
many hundreds of hours of telescope time in many different
observing programs, are a key ingredient in allowing us to
characterize the precision of our photometric redshifts.

From the COSMOS spectroscopic master catalog (M. Salvato
et al. 2016, in preparation), we retain only the highly reliable
97% confidence-level spectroscopic redshifts (Lilly et al. 2007).
We estimate the precision of the photometric redshift using the
normalized median absolute deviation (Hoaglin et al. 1983)
defined as (∣ ∣ ( ))´ - +z z z1.48 median 1 .p s s This dispersion
measurement, denoted by σ, is not affected by the fraction

of catastrophic errors (denoted by η), i.e., objects
with ∣ ∣ ( )- + >z z z1 0.15p s s .
The photometric redshift precision of the COSMOS2015

catalog is described in Tables 4 and 5 as well as Figures 11 and
12. In Table 4, we compare the photometric redshift precision
in COSMOS2015 with that of the catalog of Ilbert et al. (2013)
by cross-matching the two catalogs and considering the same
sources in both cases. Compared to Ilbert et al. (2013), the
number of catastrophic failures are reduced and the photometric
redshift precision is either increased or is unchanged. It should
be recalled, however, that the main gain of COSMOS2015 is
the considerable increase in catalog size compared to Ilbert
et al. (2013).
The left and right panels of Figure 11 show thw photometric

redshift precision as a function of the i-band magnitude for star-
forming and quiescent galaxies, respectively (classified using
the NUV− r/r− J diagram, Figure 16). Very bright, low-
redshift, star-forming galaxies have the most precise photo-
metric redshifts (s = 0.007, h = 0.5% for < <+i16 21).
Moreover, even at >z 3, the accuracy is still very good
(0.021), with only 13.2% of catastrophic failures.
We now describe the photometric redshift precision and

outlier fraction for each spectroscopic sample. In all of the
cases, the numbers correspond to the fraction of secure
spectroscopic redshifts not falling in masked regions in our

Table 4
Performance of the Catalog as A Function of Magnitude and Galaxy Types for Galaxies Detected Both in COSMOS2015 and Ilbert et al. (2013) Compared to

Spectroscopic Samples

Star-forming Galaxies Quiescent Galaxies

+i s15 h15 s13 h13 s15 h15 s13 h13
(%) (%) (%) (%)

[16, 21] 0.007 0.5 0.008 0.5 0.005 0.0 0.005 0.0
[21, 22] 0.008 0.6 0.008 0.6 0.007 0.3 0.006 0.4
[22, 23] 0.01 1.7 0.01 1.9 0.01 0.6 0.011 0.6
[23, 24] 0.022 6.7 0.022 7.2 0.027 6.0 0.030 4.4
[24, 25] 0.034 10.2 0.037 15.0 0.054 18.9 0.062 16.7
[25, 26] 0.057 22.0 0.058 24.2 L L L L

Note. In almost all cases, photometric redshift precision (s13 and s15) increases and the number of catastrophic failures (h13 and h15) fall compared to Ilbert et al.
(2013) for a selection common to both catalogs.

Table 5
Characteristics of the Spectroscopic Redshift Samples and Photometric Redshift Accuracy for the Objects in A Clean (Non-flagged) Regions

Spectroscopic Survey /Reference Instrument/ Nb zmed zrange
+imed ( )sD +z z1 η

Telescope spec-z (%)

zCOSMOS-bright (Lilly et al. 2007) VIMOS/VLT 8608 0.48 [0.02, 1.19] 21.6 0.007 0.51
Comparat et al. (2015) FORS2/VLT 788 0.89 [0.07, 3.65] 22.6 0.009 2.03
P. Capak et al. (2016, in preparation), Kartaltepe

et al. (2010)
DEIMOS/KeckII 2022 0.93 [0.02, 5.87] 23.2 0.014 7.96

Roseboom et al. (2012) FMOS/Subaru 26 1.21 [0.82, 1.50] 22.5 0.009 7.69
Onodera et al. (2012) MOIRCS/Subaru 10 1.41 [1.24, 2.09] 23.9 0.017 0.00
FMOS-COSMOS (Silverman et al. 2015) FMOS/Subaru 178 1.56 [1.34, 1.73] 23.5 0.022 1.12
WFC3-grism (Krogager et al. 2014) WFC3/HST 11 2.03 [1.88, 2.54] 25.1 0.069 0.00
zCOSMOS-faint (S. Lilly et al. 2016, in preparation) VIMOS/VLT 767 2.11 [1.50, 2.50] 23.8 0.032 7.95
MOSDEF (Kriek et al. 2015) MOSFIRE/Keck I 80 2.15 [0.80, 3.71] 24.2 0.042 10.0
M. Stockmann et al. (2016, in preparation), Zabl (2015) XSHOOTER/VLT 14 2.19 [1.98, 2.48] 22.2 0.061 7.14
VUDS (Le Fevre & Tasca 2015) VIMOS/VLT 998 2.70 [0.10, 4.93] 24.6 0.028 13.13

Note. Only the most secure spectroscopic redshifts are considered (those with a flag between 3 and 4). The redshift range, median redshift, and apparent magnitude in
the +i band are provided for each selected sample.
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survey. These results are also summarized in Table 5 and
plotted in Figure 12.

zCosmos bright at <z 1.2 (Lilly et al. 2007). This sample
from the zCOSMOS-bright survey includes 8608 galaxies
selected with +i 22.5AB (3σ, 3″) observed with VIMOS at the
VLT. We find s = 0.007 and h = 0.51%.

FORS2 sample at <z 3.7 (Comparat et al. 2015). This
color-selected sample includes 788 objects and targets emission
lines galaxies with 20 minute integration times with FORS2 at
the VLT. We find s = 0.009 and h = 2.03%.

The Keck follow-up reaching ~z 6 (Kartaltepe et al. 2010,
P. Capak et al. 2016, in preparation).This sample comprises

spectroscopic redshifts of 2022 objects, some of which are
>z 4 sub-populations selected in IR, and measured with

DEIMOS at Keck II. We find s = 0.014 and h = 7.96%.
FMOS sample of IR luminous galaxies at < <z0.8 1.5

(Roseboom et al. 2012). We compare our results with 26
Herschel SPIRE and Spitzer MIPS-selected galaxies observed
with FMOS at Subaru. We find s = 0.009 and h = 7.69%.
A faint sample of quiescent galaxies at < <z1.2 2.1

(Onodera et al. 2012). This sample contains 10 faint, quiescent
galaxies at <z 2 obtained with MOIRCS at Subaru. We find
s = 0.017, with no catastrophic failures.

Figure 11. Comparison between photometric and spectroscopic redshifts as a function of iAB magnitude and type: star-forming galaxies (Left) and quiescent galaxies
(Right), keeping only non-flagged galaxies. The dashed and dashed–dot lines show ( )=  +z z z0.05 1p s s and ( )=  +z z z0.15 1p s s , respectively.

Figure 12. Left: comparison between photometric and spectroscopic redshifts for the different samples summarized in Table 5. Right: a magnified view of the high-
redshift region. The number of galaxies, accuracy σ, and numbers of catastrophic failures η and hlim are computed from the zCOSMOS-faint, VUDS, DEIMOS,
FMOS, and MOSDEF spectroscopic surveys taken together, keeping only non-flagged galaxies with a spectroscopic redshift greater than 2.9. The dashed and dashed–
dot lines show ( )=  +z z z0.05 1p s s and ( )=  +z z z0.15 1p s s , respectively. Note that the given value for the precision and the percentage of catastrophic
failures strongly depend on the spectroscopic sample. These values are detailed in Table 5.
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FMOS-COSMOS survey at < <z1.4 1.8 (Silverman
et al. 2015). These 178 FMOS at Subaru spectroscopic
redshifts were selected from the Ilbert et al. (2009) catalog,
which implies that the fraction of catastrophic failures (1.12%)
will be underestimated. We find s = 0.022 and h = 1.12%.

A faint sample of quiescent galaxies at < <z1.9 2.5
Krogager et al. (2014). This sample contains 11 faint quiescent
galaxies obtained with the WFC3-grism observations from the
3D-HST survey. We find s = 0.069, with no catastrophic
failures.

zCosmos faint sample at < <z1.5 2.5 (S. Lilly et al. 2016,
in preparation). This sample includes 767 galaxies color-
selected to lie in the range  z1.5 2.5 observed with
VIMOS at theVLT. This redshift range is the least constrained
in photometric redshift and the median magnitude +iAB is as faint
as 23.8 (3σ, 3″). Nevertheless, we find s = 0.032
and h = 7.95%.

MOSDEF survey (Kriek et al. 2015). This sample includes
80 galaxies observed with MOSFIRE at Keck I. We find
s = 0.042 and h = 10.0%.

A sample of galaxies obtained with X-Shooter at VLT (M.
Stockmann et al. 2016, in preparation, Zabl 2015). This sample
contains eight massive quenched galaxies around ~z 2 (M.
Stockmann et al. 2016, in preparation) and six narrow-band
selected emission line galaxies at ~z 2.2 (Zabl 2015): five of
the galaxies have been selected based on [O II]ll3726, 3729
emission in the VISTA NB118 data (Milvang-Jensen
et al. 2013) using previous COSMOS photometric redshift,
and one of them through Lyα emission from the sample of
Nilsson et al. (2009). We find s = 0.061 and h = 7.14%.

VUDS at < <z0.1 4 (Le Fevre & Tasca 2015). The
VIMOS Ultra-Deep Survey targeted >z 2.4 galaxies using
color–color and photometric redshift selections. The VUDS
sample includes extremely faint galaxies with a median
magnitude of ~+i 24.6AB (3σ, 3″) with a total exposure times
of 40 hr per spectra. This sample contains a larger number of
catastrophic failures, mostly because of the misidentification
between the Lyman and Balmer break features. This is because
some of the objects do not have associated NIR data. Such data
are extremely important at >z 1.5. We find s = 0.028
and h = 13.13%.

Note that the X-ray detected sources from XMM-COSMOS
(Cappelluti et al. 2007; Hasinger et al. 2007; Brusa et al. 2010)
and Chandra COSMOS (Elvis et al. 2009; Civano et al. 2012)
are flagged and are not used here. For those sources, the
photometric redshift are computed with a specific tuning and
are presented in Salvato et al. (2011).

4.4. Photometric Redshift Accuracy Based on the Probability
Distribution Function

We also assess the photometric redshift accuracy using the
1σ uncertainty derived from the photometric redshift prob-
ability distribution function (PDFz). The advantage of this
method is that we can investigate the photometric redshift
accuracy in any redshift-magnitude range. However, it requires
an accurate estimate of the PDFz.

In Figure 13, we show the cumulative distribution of the
ratio ∣ ∣ s-z z 1p s . The s1 error given by LEPHARE is defined as
the value enclosing 68% of the probability distribution function
of the photometric redshift. Assuming that zs is the true
redshift, 68% of the time it should fall within the s1 error. This
comparison shows that the s1 uncertainties enclose less than

the 68% of the expected value. This is confirmed when we split
the spectroscopic sample per magnitude and redshift bin. It
appears that our errors on photometric redshift are under-
estimated by a factor which depends on the magnitude. We
consequently chose to correct these errors by applying the
following magnitude-dependent correction: errors are multi-
plied by a factor of 1.2 for bright objects ( <+i 20) and by a
factor of ( )´ -+i0.1 0.8 for faint objects ( >+i 20). This
issue was already present in previous COSMOS photometric

Figure 13. Cumulative distribution of ∣ ∣ s-z z 1phot spec . Of the spectroscopic
redshifts 58% have their photometric redshift within the 1σ error; this implies
that photometric errors are slightly underestimated. This plot is made with the
high-confidence spectroscopic redshift catalog.

Figure 14. Bottom and top panels: 1σ photometric redshift error as a function
of redshift for different magnitude bins on Deep and on UD.
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redshift catalogs derived with LEPHARE, and we have not been
able to determine why photometric redshift errors are under-
estimated; one reason could be the lack of representativity of
our set of templates, while another reason could be that we do
not include the intrinsic template uncertainties. Another reason
might be that the flux uncertainties in the photometric catalog
are still underestimated. With this magnitude-dependent
correction, there is no consequence on the computation of the
physical parameters. However, the PDFz remains system-
atically too peaky around the median values.

Figure 14 shows the 1σ negative and positive uncertainties
as a function of redshift for different bins of apparent
magnitude. The magnitude-dependent correction described
above has been applied to this plot. Several clear conclusions
emerge: first, the photometric precision is lower for galaxies
with fainter apparent magnitudes at all redshifts; second, the
photometric redshifts have significantly lower uncertainties at
z 1.4. This is easy to understand because here the Balmer

break is redshifted within the wavelength range covered by the
medium bands. At  z1.4 2.5, the redshift uncertainty
increases by a factor of two. Such a trend is to be expected: the
accuracy of the photometric redshift is mainly driven by
accurate knowledge of the Balmer break position. Specifically,
at >z 1.5, the Balmer break moves outside the medium bands
into the NIR range. Moreover, the absolute photometric
precision is lower for a given signal-to-noise object in the
near-infrared bands than in the optical. Additionally, the
position of the Balmer break is less precisely determined using
broadband rather than medium-band photometry. This is
reflected in the redshift uncertainty which rises at >z 1.5.
For the same reason, we observe a difference in the redshift
uncertainties which are lower in UD regions compared to
Deep regions, which is not the case at <z 1.4: the photometric
accuracy is higher in UD regions. At ~z 2.5, the Lyman-
break enters the optical bands and consequently the photo-
metric redshift precision increases. In general, at bright

magnitudes and lower redshifts, the dominant sources of error
are probably related to photometric calibrations and spectral
energy distribution (SED) fitting.

4.5. Star/Galaxy Classification

We use LEPHARE with both galaxy and stellar templates. We
compare the best-fitting c2 for the galaxy templates cgal

2

and those derived for the stellar templates cstars
2 to determine

the star-galaxy classification. We flag as stars all those
objects for which c c- > 0gal

2
stars
2 , but only if the object

is detected in NIR or IRAC ( mm 25.53.6 m or
<K 24.7s ) and is not too far from the BzK stellar

sequence ( ( )- < - * -++ ++z K B z 0.3 0.2s ).
Figure 15 shows a BzK color–color diagram for all of the

sources including stars and galaxies. Symbols are colored
according to their photometric redshifts. As expected, -B drop-
outs occur predominately at >z 4, and galaxies with bluer

-++z K color are at lower redshifts. Stars selected using the
above classification are shown in black. In the UVISTA region,
24,074 objects are classified as stars. A cross-match with the
ACS stellar catalog Leauthaud et al. 2007 shows that 77% of
the stars with <+i 24 from ACS are classified as stars with this
method. However, 15% are misclassified as galaxies but are in
masked areas. Finally, 0.6% of the extended sources are
misclassified as stars.

4.6. Absolute Magnitudes and Stellar Masses

An estimate of the k-correction term (Oke & Sandage 1968)
relies on the best-fitting template. This component is one of the
main sources of systematic error in the absolute magnitude and
rest-frame color estimate. To estimate these quantities, we
follow the method outlined in Appendix A of Ilbert et al.
(2005). In order to minimize the k-correction-induced uncer-
tainties, the rest-frame luminosity at a given wavelength λ is
derived from the apparent magnitude mobs observed at the

Figure 15. Color–color diagram -++z Ks/ -B Ks for all sources. Sources
classified as stars are represented in black. Colors represent redshift. Right-
pointing arrows are the upper limits in the B band.

Figure 16. NUV−r/r−J galaxy distributions. Quiescent galaxies lie in the
top-left corner. The objects fainter than limiting magnitudes are not used.
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nearest filter to ( )l + z1 . Using this procedure, the absolute
magnitudes are less dependent on the best-fit SED, but are
more dependent on any observational problem affecting mobs.
Therefore, we constrain the code to consider only the broad
bands for mobs and those bands with a systematic offset lower
than 0.1 mag derived for the photometric redshift.

We derive the stellar mass using LEPHARE following exactly
the same method as in Ilbert et al. (2015). We derive the galaxy
stellar masses using a library of synthetic spectra generated
using the Stellar Population Synthesis model of Bruzual &
Charlot (2003). We assume a Chabrier (2003) initial mass
function. We combine the exponentially declining SFH and
delayed SFH (t t- -te t2 ). Two metallicities (solar and half-
solar) are considered. Emission lines are added following Ilbert
et al. (2009). We include two attenuation curves: the starburst
curve of Calzetti et al. (2000) and a curve with a slope of l0.9

(Appendix A of Arnouts et al. 2013). The ( )-E B V values are
allowed to take values as high as 0.7. We assign the mass using
the median of the marginalized probability distribution function

(PDF). Given the uncertainties on the SFR based on template
fitting (Ilbert et al. 2015; Lee et al. 2015), we do not include the
SFRs estimated from template fitting in our distributed
catalogs.

5. CHARACTERISTICS OF THE GLOBAL SAMPLE

5.1. Galaxy Classification

Quiescent galaxies can be identified using the locations of
galaxies in the color–color plane NUV-r/r-J (Williams
et al. 2009). Quiescent objects are those with - >M MrNUV

( )- +M M3 1r J and - >M M 3.1rNUV . This technique is
described in more detail in Ilbert et al. (2013); in particular, this
technique avoids mixing the red dusty galaxies and quiescent
galaxies. In our catalog, galaxies with a flag of 0 are quiescent
galaxies and the others are star-forming galaxies. The redshift-
dependent evolution of this distribution is presented in
Figure 16. The rapid build-up of quiescent galaxies at low

Table 6
Mass Limits of COSMOS2015 for the Full, Quiescent, and Star-forming Samples in the Deep and UD Regions

Deep UD

Bin Ngal
full

Mlim
full Ngal

quies
Mlim

quies Ngal
SF

Mlim
SF Ngal

full
Mlim

full Ngal
quies

Mlim
quies Ngal

SF
Mlim

SF

< <z0.00 0.35 8.6 8.1 11.3 8.4 8.3 8.1 9.0 7.9 13.8 8.1 8.7 7.8
< <z0.35 0.65 14.1 8.7 18.4 9.0 13.7 8.6 13.5 8.4 19.2 8.7 13.0 8.4
< <z0.65 0.95 17.4 9.1 27.4 9.4 16.7 9.0 17.5 8.9 27.4 9.1 16.7 8.7
< <z0.95 1.30 16.4 9.3 20.5 9.6 16.1 9.2 16.3 9.1 18.9 9.3 16.1 9.0
< <z1.30 1.75 14.2 9.7 12.5 9.9 14.4 9.6 14.9 9.4 11.8 9.6 15.2 9.3
< <z1.75 2.25 12.0 9.9 4.9 10.1 12.5 9.8 11.0 9.6 4.0 9.8 11.5 9.6
< <z2.25 2.75 6.8 10.0 2.4 10.3 7.1 10.0 6.5 9.8 2.2 10.0 6.8 9.8
< <z2.75 3.50 6.4 10.1 1.4 10.4 6.8 10.1 7.1 9.9 1.5 10.2 7.5 9.9
< <z3.50 4.00 1.9 10.1 0.5 10.5 2.0 10.5 2.0 10.0 0.4 10.3 2.1 10.0
< <z4.00 4.80 1.4 10.1 L L 1.5 10.8 1.5 10.2 L L 1.6 10.1

Note. Ngal
full, Ngal

quies, and Ngal
SF are the percentages of galaxies in each redshift bin for the full, quiescent, and star-forming populations. Mlim

full, Mlim
quies, and Mlim

SF are the

logarithms of the limiting mass in units of solar masses.

Figure 17. Stellar mass-redshift histogram (the grayscale corresponds to the the number of galaxies in each cell) onUVISTA
Deep (left) and UVISTA

Ultra (right) regions for the
full catalog (top) and for the quiescent sample (bottom). Orange lines shows the mass limit for the full catalog and red lines for the quiescent ones. These values are
reported in Table 6. The solid green line is the mass limit in COSMOS as given in Ilbert et al. (2013).
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redshift inside the box is evident, as is the relative decrease in
bright, star-forming galaxies outside the box.

5.2. Stellar Mass Completeness

We empirically estimate the stellar mass completeness
(Pozzetti et al. 2010; Davidzon et al 2013; Ilbert et al. 2013;
Moustakas et al. 2013). We first determine the magnitude limit
Ks lim . For each galaxy, we then determine the mass it would
need to have to be observed, at that redshift, at the magnitude
limit:

( ) ( )= - -M M K Klog log 0.4 . 7lim s lim s

Next, in each redshift bin, we estimate the stellar mass
completeness Mlim within which 90% of the galaxies lie. We
independently estimate the mass limits on Deep and UD. We
compute these mass limits using the 3σ limiting magnitude,
which is 24.0 forDeep and 24.7 forUD. These mass limits are
given in Table 6 and are shown in Figure 17. In UD, the mass
limits reach a factor of two lower compared Ilbert et al. 2013.
As expected, the mass limit is lower in UD compared to Deep

because UD reaches 0.7 magnitudes fainter in the Ks band.
This estimate is robust to ~z 4 because the observed Ks
magnitude correlates well with stellar mass in this redshift
range. However, these estimates should be treated cautiously at
>z 4. Above this redshift, the rest-frame Ks band lies below

the Balmer break and the Ks flux does not correspond precisely
to the stellar mass. It is then better traced by mid-IR bands. We

will estimate the mass limit at high redshift for an IRAC-
selected sample in future work (I. Davidzon et al. 2016, in
preparation).

5.3. Galaxy Clustering Measurements

We estimate the projected galaxy clustering in our sample by
computing the angular two-point auto-correlation function

( )qw . The angular correlation function ( )qw measures the
excess probability of finding two objects separated by an angle
θ compared to a random distribution in a series of angular bins.
This measurement is an excellent test of the uniformity of our
photometric catalog as w is very sensitive to large-scale
photometric systematic errors. Adding cuts in stellar mass and
photometric redshift allows for an independent check of our
photometric redshift procedures. We use w to compute this
using ATHENA,30 which uses the usual Landy & Szalay
(1993) estimator:

( ) ( )
( )

( )q = ´
-
-

- +
⎛
⎝⎜

⎞
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N N
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where Nr and Nd are the numbers of points in the random and
galaxy samples, and RR, RD, and DD are the numbers of pairs
in the random catalog, between the random and galaxy catalog,
and in the galaxy catalog. Our random catalog contains

Figure 18. Angular correlation function w as a function of angular scale θ in degrees at < <z0.5 1 for several bins in stellar mass. The solid line shows the analytic
predictions of Coupon et al (2015).

30 www.cosmostat.org/software/athena/
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500,000 objects. Our measurements are corrected for the
“integral constraint” (Groth & Peebles 1977), a systematic
effect arising from using a clustered sample to estimate the
mean background density in a finite area.

Figure 18 shows w in < <z0.5 1 in six mass bins
compared to the best-fitting occupation distribution (HOD)
model derived by Coupon et al (2015) in the MIRACLES/
CFHTLS field. Our measurements are in excellent agreement
with the predictions of Coupon et al.ʼs best-fitting HOD model,
computed from a larger 25 deg2 field. This suggests that, at
these redshift ranges and masses, cosmic variance is not an
important issue in the COSMOS field. Only at high stellar
masses and small scales is there a systematic offset from the
models, which may indicate the limitations of the halo model in
this mass regime.

Finally, we note that, in contrast to this result, some works
have noted that there is a clear excess in the number of galaxies
in COSMOS compared to other fields (see, e.g., Figure 33 in
Molino et al. 2014) due to the presence of large structures at
~z 1 and below, which could influence our correlation

function measurements (McCracken et al. 2007). The measure-
ments presented above cover quite a large redshift range and
consequently probe a lare volume, and are therefore less
susceptible to the effects of cosmic variance. In smaller redshift
slices and at higher redshifts, the effect of cosmic variance
becomes more pronounced, especially when these redshift
ranges overlap with several of the large structures known to
exist in the COSMOS field, for example, at < <z1 1.3 (see
also the discussion in McCracken et al. 2015).

6. CONCLUSION

Using the unique combination of deep multi-wavelength
data and spectroscopic redshifts on the COSMOS field, we
have computed a new catalog containing precise photometric
redshifts and 30-band photometry. COSMOS2015 contains
more than half a million secure objects over two square
degrees. Including new YJHKs images from the UltraVISTA-

DR2 survey, Y-band images from Hyper Suprime-Cam, and IR
data from the SPLASH Spitzer legacy program, this NIR-
selected catalog is highly optimized for the study of galaxy
evolution and environment in the early universe. To maximize
catalog completeness to the highest redshifts, objects have been
detected and selected using an ultra-deep χ2 sum of the YJHKs

and z++ images.
The main improvements of the catalog compared with

previous versions are as follows.

1. A greater number of sources thanks to the combination of
deeper data (UltraVISTA-DR2) and an improved extrac-
tion image. This image now contains the bluer z++ band
in addition to the redder NIR bands. There are now
~ ´6 105 objects in the 1.5 deg2 UltraVISTA-DR2 area
and ~ ´1.5 105 in the “ultra-deep stripes” sub-region at
the limiting magnitude in Ks. This represents more than
twice as many objects per square degree compared to
Ilbert et al. (2013).

2. More precise photometric redshifts. Based on compar-
isons with the unique spectroscopic redshift sample in the
COSMOS field, we measure ( )sD +z z1 s = 0.021 for
< <z3 6 with 13.2% of outliers. At lower redshifts,

the precision is better than 0.01, with only a few percent
of catastrophic failures. The precision at low redshifts is
consistent with Ilbert et al. (2013), while it improves
significantly at high redshift.

3. The characteristic mass limits are much lower. The
deepest regions reach a completeness limit of M1010 to
z= 4, which is more than 0.3 dex better compared to
Ilbert et al. (2013) for the full sample.

Detailed comparisons of the color distributions, number
counts, and clustering show good agreement with the literature
in the mass ranges where these previous studies overlap with
ours. In particular, our mass-selected clustering measurements
at < <z0.5 1 are in excellent agreement with Coupon et al.ʼs
halo model calibrated using 25 deg2 of the CFHTLS.

Table 7
Names, Effective Area, Number of Objects, and Coordinates of the Regions Flagged in the Catalog and Plotted in Figure 1

Name Area Nbr of Coordinates or Description
deg2 Objects

COSMOS 2 773118 poly(148.70, 0.79, 151.53, 3.620)
!OPT & COSMOS 1.77 694478 not flagged regions in the optical bands inside the COSMOS 2deg2 field
UD 0.62 247203 poly(150.58, 2.71, 150.42, 2.72, 150.41, 2.43, 150.42,

1.871, 150.50, 1.88, 150.49, 1.99, 150.59, 1.99)
poly(150.21, 2.71, 150.05, 2.71, 150.06, 1.71, 150.22, 1.70, 150.2, 2.66)
poly(149.84, 2.71, 149.68, 2.71, 149.68, 1.71, 149.85, 1.70, 149.84, 2.66)
poly(149.48, 2.71, 149.33, 2.72, 149.32, 1.71, 149.49, 1.71, 149.48, 2.66)

UVISTA 1.70 646939 poly(150.77, 2.81, 149.31, 2.81, 149.32, 1.61, 150.41, 1.61, 150.41, 1.66,
150.51, 1.66, 150.51, 1.88, 150.54, 1.91, 150.58,
1.88, 150.59, 1.65, 150.68, 1.66, 150.70, 1.88, 150.79, 1.88)

UD & COSMOS 0.53 213716 Ultra-Deep area inside the COSMOS 2deg2 field
UD & !OPT & COSMOS 0.46 190650 Ultra-Deep area inside the COSMOS 2deg2 field,

after removing flagged regions in the optical bands
UVISTA & COSMOS 1.58 604265 UVISTA area inside the COSMOS 2deg2 field
UVISTA & !OPT & COSMOS 1.38 536077 UVISTA area inside the COSMOS 2deg2 field,

after removing flagged regions in the optical bands

Note. The region files are distributed with the catalog (same url).
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The COSMOS2015 catalog represents an invaluable
resource which can be used to investigate the evolution of
galaxies and structures back to the earliest stages of the
universe. Sampling the galaxy population out to ~z 4 at
degree scales will allow us to study the connection between

galaxies, their host dark matter haloes, and their large-scale
environment, back to the earliest epochs of cosmic time.

C.L. is supported by the ILP LABEX (under reference ANR-
10-LABX-63 and ANR-11-IDEX-0004-02). This work is

Table 8
Summary of the Main Photometric and z-phot Catalog Columns

General Parameters
ID K identifiant
ALPHA_2000, BETA_2000 deg Ra and Dec
X_IMAGE, Y_IMAGE pix pixel position
ERRX2_IMAGE, ERRY2_IMAGE, ERRXY_IMAGE pix variances and covariance on positional measurements
FLAGS_#[ ]Name of flag K flags as described in Table 7
EBV Galactic extinction (Schlegel et al. 1998)

optical and NIR photometry
#[ ]band _FLUX_APER2, #[ ]band _FLUXERR_APER2 μJy flux and flux error measured in a 2 aperture
#[ ]band _FLUX_APER3, #[ ]band _FLUXERR_APER3 μJy flux and flux error measured in a 3 aperture
#[ ]band _MAG_APER2, #[ ]band _MAGERR_APER2 mag magnitude and magnitude error measured in a 2 aperture
#[ ]band _MAG_APER3, #[ ]band _MAGERR_APER3 mag magnitude and magnitude error measured in a 3 aperture
#[ ]band _MAG_AUTO, #[ ]band _MAGERR_AUTO mag automatic aperture magnitude and magnitude error
#[ ]band _MAG_ISO, #[ ]band _MAGERR_ISO mag isophotal magnitude and magnitude error
#[ ]band _FLAGS flags from SEXTRACTOR

Match with the 24 μm MIPS catalog (Le Floc’h et al. 2009)
24_FLUX, 24_FLUXERR mJy total flux and flux error

Match with the PACS/PEP catalog (Lutz et al. 2011)
100_FLUX, 100_FLUXERR mJy total 100 μm flux and flux error
160_FLUX, 160_FLUXERR mJy total 160 μm flux and flux error

Match with the SPIRE/HerMES catalog (Oliver et al. 2012)
250_FLUX, 250_FLUXERR mJy total 250 μm flux and flux error
350_FLUX, 350_FLUXERR mJy total 350 μm flux and flux error
500_FLUX, 500_FLUXERR mJy total 500 μm flux and flux error

GALEX photometry (Capak et al. 2007)
FLUX_GALEX_FUV, FLUXERR_GALEX_FUV μJy total flux and flux error
FLUX_GALEX_NUV, FLUXERR_GALEX_NUV mag total mag and mag error

Match with the Chandra COSMOS-Legacy survey (Elvis et al. 2009; Civano et al. 2012, 2016; Marchesi et al. 2016)
IDChandra K corresponding identifiant in the Chandra catalog

Match with ACS (Leauthaud et al. 2007)
814W_FLUX, 814W_FLUXERR μJy flux and flux error for automatic aperture

Match with previous multi-bands catalog
ID2006 K identifiant in the 1st version of the catalog from Capak et al. (2007)
ID2008 K identifiant in the 2nd version of the catalog from Capak et al. (2007)
ID2013 K corresponding identifiant in the catalog from Ilbert et al. (2013)

Parameters computed with LEPHARE
total_off mag weighted offset from MAG_APER3 to total mag
type K 0 if galaxy, 1 if star, 2 if X-ray source, −9 if failure in the fit
zPDF K median of the likelihood distribution
zPDF_l68, zPDF_u68 K lower and upper limits (68% confidence level)
zMinChi2 K photo-z defines as the minimum of the c2 distribution.
chi2best K reduced chi2 (−99 if less than 3 filters) for zMinChi2
zp_2 K 2nd photo-z solution if a second peak is detected with P > 5% in the PDF
chi2_2 K reduced chi2 for the second photo-z solution
NbFilt K number of filters used in the fit
zq, modq, chiq K z for the AGN library, best-fit template and associated reduced c2

mods, chis K model for the star library and associated reduced c2

model, age, extinction K best-fit BC03 model at zPDF
M_#[ ]band mag absolute magnitudes in NUV, u, B, r, +i , z++, Y, J, H, Ks

M_NUV-M_R mag color corrected from dust-extinction
mass_med dex log stellar mass from BC03 best-fit template (median)
mass_med_min68, mass_med_max68 dex lower and upper limits (68% confidence level)
mass_best dex log stellar mass from BC03 best-fit template (minimum c2)
L_#[ ]band dex luminosities in NUV, r, Ks filters

Note. Matches with publicly available radio catalogs on COSMOS field are also provided. Please refer to the README file distributed with the catalog for more
information.
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Figure 19.Magnitude difference (measured in 3 diameter apertures) between a point-like object convolved with the target PSF [ ] 0. 8, 2.5 and with [ ] q b, in the
2D parameter space [ ]q b, . The black and white contours represent the regions which enclose 68% and 95% of the β-θ stellar distribution for two representative
bands: u (Left), which is relatively homogenous across the field, and IA464, which is not.

Figure 20. Magnitude difference for a point-like object (green), an elliptical
galaxy (red), and a spiral galaxy (blue) convolved with a PSF [ ] q, 2.5 as a
function of the seeing θ and for two different effective radii, 0 5 (solid line)
and 0 8 (dashed line), when the extraction is performed in 3″ diameter
apertures.

Table 9
SEXTRACTOR Parameters Used for Dual-mode χ2 Detection and Photometry

Name Value

ANALYS_THRESH 1.5
FILTER_NAME Gauss_4.0_7×7.conv
CATALOG_TYPE FITS_1.0
DETECT_TYPE CCD
THRESH_TYPE ABSOLUTE
DETECT_MINAREA 10
DETECT_MAXAREA 100 000
DETECT_THRESH 1.51
FILTER Y
DEBLEND_NTHRESH 32
DEBLEND_MINCONT 0.00001
CLEAN Y
CLEAN_PARAM 1.0
MASK_TYPE CORRECT
PHOT_APERTURES 13.33, 20.00, 47.33
PHOT_AUTOPARAMS 2.5, 3.5
PHOT_FLUXFRAC 0.2, 0.5, 0.8
PHOT_AUTOAPERS 13.3, 13.3
SATUR_LEVEL 30000.
MAG_ZEROPOINT depends on the band
GAIN depends on the band
PIXEL_SCALE ´ -4.16666 10 5

BACK_SIZE 128
BACK_FILTERSIZE 3
BACKPHOTO_TYPE LOCAL
BACKPHOTO_THICK 30
WEIGHT_GAIN N
RESCALE_WEIGHTS N
WEIGHT_TYPE depends on the band
GAIN_KEY DUMMY
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APPENDIX

A.1. Catalog Description

The details of the regions flagged in the catalog are presented
in Table 7. We perform COSMOS2015 quality checks only in
the inner part of the field covered by UltraVISTA-DR2. On the
part of the field not covered by UltraVISTA, source extraction
is performed only on the z++-band data and using the same
parameters. This part of the field has a higher fraction of
spurious sources and must be exploited carefully, particularly
when selecting a mass-selected sample. The area referred to
asDeep above is the region covered by UVISTA not contain-
ing UD.

The parameters for the extraction of the photometry in dual
mode with SEXTRACTOR are presented in Table 9.

Each column in the catalog is fully described by a README
file distributed with the catalog. We summarize the main
content of our data products in Table 8.

A.2. From Aperture Magnitudes to Total Magnitudes

Finally, we emphasize that to compute the total magnitudes,
one should use 3″ diameter apertures corrected for the
photometric offsets (oi, cf. Equation (4)) and systematic
offsets (sf, cf. Table 3) according to the formula

( )= + -o sMAG_TOTAL MAG_APER3 , 9i f i f i f, ,

where i is the object identifier and f the filter identifier. A
similar procedure should be followed for the flux measure-
ments. Magnitudes should also be corrected for foreground
galactic extinction using reddenning values EBV given in the
catalog and the extinction factors (Ff ) mentioned in Table 3
according to

( )*= - EBV FMAG_TOTAL MAG_TOTAL 10i f i f f, , i

A.3. Effect of Seeing on the Aperture Magnitude

As discussed in Section 2.2, there is a variation of the PSF
within the field which is not taken into account in our
homogenization. For this reason, it is important to estimate the
magnitude differences arising from this variation. To achieve
this, we present here a toy model to estimate the effect of the
seeing variation on the aperture magnitude for point-like
objects. We denote Dstars(θ, β, r) as the difference of the
aperture magnitudes for a PSF represented by a Moffat profile

[ ] q b, and with a PSF [ ] 0. 8, 2.5 . Dstars is a function of θ
and β, the two parameters which define the Moffat profile, and
r, which is the aperture diameter. We present in
Figure 19 Dstars(θ, β, 3″) in the two-dimensional (2D) parameter
space [ ]q b, . We overplotted on this 2D distribution the
contours which enclose 68% and 95% of the [θ, β] distribution
for the two bands u and IA464. For the purpose of this figure,
each star seeing is individually computed from a fit with a
Moffat profile on the PSF-homogenized star profiles (recon-
structed from the flux extracted at 14 fixed apertures,
logarithmically spaced between 0 25 and 2 5). Note that
since the Moffat Profile is fitted on individual stars from 14
discrete apertures and not on all of the point sources at the same
time, the precision of the fit is limited. However, this
immediately provides a qualitative insight as to the bias
generated by internal PSF variation when extracting the star

photometry within a 3″ aperture. For the worst band, IA464,
this bias is expected to remain below 0.1 mag. We also estimate
that the median of the magnitude difference is below 0.05 mag,
which is in agreement with Figure 4. We then estimate this bias
in the photometry for extended objects. We chose two different
galaxy luminosity profiles, namely, a de Vaucouleurs profile
(1948, 1959), to model a typical elliptical galaxy profile,

( ) ( )µ -
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥F R r

r

R
, exp 7.67 , 11e

e
elliptical

1
4

and an exponential profile to model a spiral galaxy profile,

( ) ( )µ -
⎡
⎣⎢

⎤
⎦⎥F R r

r

R
, exp . 12e

e
spiral

Here, Re is the effective radius such that half of the total flux is
within Re. We then convolved the luminosity profiles with the
Moffat profile, and integrate them in a circular aperture of 3″.
For this exercise, we keep β constant and equal to 2.5 and we
allow θ to vary. In Figure 20, we present the difference
Dspiral(θ, 2.5, 1 5) and Delliptical(θ, 2.5, 1 5) for two effective
radii ( =Re 0.5 and 0 8). We note that for FWHM differences
below 0 1, the induced magnitude discrepancies are always
lower than 0.05, regardless of the galaxy profile.
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