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The multi-strange baryon yields in Pb–Pb collisions have been shown to exhibit an enhancement 
relative to pp reactions. In this work, � and � production rates have been measured with the ALICE 
experiment as a function of transverse momentum, pT, in p–Pb collisions at a centre-of-mass energy of √

sNN = 5.02 TeV. The results cover the kinematic ranges 0.6 GeV/c < pT < 7.2 GeV/c and 0.8 GeV/c <

pT < 5 GeV/c, for � and � respectively, in the common rapidity interval −0.5 < yCMS < 0. Multi-strange 
baryons have been identified by reconstructing their weak decays into charged particles. The pT spectra 
are analysed as a function of event charged-particle multiplicity, which in p–Pb collisions ranges over 
one order of magnitude and lies between those observed in pp and Pb–Pb collisions. The measured 
pT distributions are compared to the expectations from a Blast-Wave model. The parameters which 
describe the production of lighter hadron species also describe the hyperon spectra in high multiplicity 
p–Pb collisions. The yield of hyperons relative to charged pions is studied and compared with results 
from pp and Pb–Pb collisions. A continuous increase in the yield ratios as a function of multiplicity is 
observed in p–Pb data, the values of which range from those measured in minimum bias pp to the 
ones in Pb–Pb collisions. A statistical model qualitatively describes this multiplicity dependence using 
a canonical suppression mechanism, in which the small volume causes a relative reduction of hadron 
production dependent on the strangeness content of the hyperon.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Collisions of heavy nuclei at ultra-relativistic energies allow the 
study of a deconfined state of matter, the Quark–Gluon Plasma, in 
which the degrees of freedom are partonic, rather than hadronic. 
The role of strange hadron yields in searching for this state was 
pointed out at an early stage [1]. It was subsequently found that 
in high energy nucleus–nucleus (A–A) collisions at the Super Pro-
ton Synchrotron (SPS), the Relativistic Heavy Ion Collider (RHIC) 
and the Large Hadron Collider (LHC) the abundances of strange 
and multi-strange baryons are compatible with those from ther-
mal statistical model calculations [2–10].

In smaller collision systems at the same centre-of-mass ener-
gies, in particular proton–proton (pp) collisions, the relative abun-
dance of multi-strange baryons is lower with respect to A–A col-
lisions, whether normalised to participant nucleons or produced 
particles (pions or charged hadrons). This led to the interpre-
tation that strangeness enhancement is observed in A–A colli-
sions. Attempts to explain this phenomenon include the applica-
tion of a canonical formalism in the statistical model, replacing the 
grand canonical approach, in which the requirement to conserve 

� E-mail address: alice-publications@cern.ch.

the strangeness quantum number when producing (multi-)strange 
baryons in small systems is imposed [11]. This means that strange 
hadrons are produced with a lower relative abundance in small 
systems, an effect known as canonical suppression. Such a theoret-
ical framework has been used to make predictions for LHC energies 
[12]. Further complications in the interpretation arise when the 
produced system, although small, is formed in peripheral A–A col-
lisions where the particle production may not be from a contigu-
ous volume due to core-corona effects [13,14]. Evidence for this 
effect was seen at RHIC where a canonical suppression calculation 
based on the estimated number of participant nucleons could not 
successfully reproduce the data [15]. A cleaner way to investigate 
canonical suppression effects is provided by proton–nucleus (p–A) 
collisions.

Proton–nucleus collisions provide an opportunity to study the 
pT-dependence of the particle spectra created in a system with 
a different, more compact, initial geometry than A–A collisions 
where a similar number of charged particles are produced. Study-
ing this dependence is important in determining the applicability 
of hydrodynamics [16] which has been successful in describing the 
particle spectra in A–A collisions [17–19].

At the LHC the combination of the rise in particle production 
per nucleon–nucleon collision with increasing 

√
s and a dedicated 

p–Pb data-taking period have enabled the ALICE experiment to 
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collect a large sample of �± and �± . In this Letter, we set out 
the methods for these studies, present the results obtained and 
discuss how they fit into a theoretical picture.

2. Sample and data analysis

The results presented in this Letter were obtained from a sam-
ple of the data collected with the ALICE detector [20] during the 
LHC p–Pb run at 

√
sNN = 5.02 TeV in the beginning of 2013. The 

two scintillator arrays V0A (direction of Pb beam), and V0C (direc-
tion of p beam), covering pseudo-rapidity ranges of 2.8 < η < 5.1
and −3.7 < η < −1.7, respectively, served both as triggering de-
tectors and for determining the event multiplicity class [21]. The 
tracking of particles in the central barrel, covering |η| < 0.9, takes 
place in the Inner Tracking System (ITS), which consists of the two 
innermost silicon pixel layers, surrounded by two silicon drift and 
two silicon strip layers, all placed within a radius of 43 cm, and 
the Time Projection Chamber (TPC), a large cylindrical drift cham-
ber filled with a Ne–CO2 gas mixture [20]. Measurements of the 
energy loss by charged particles in the gas allow particles to be 
identified with this detector.

A trigger requiring a coincidence within less than 1 ns in the 
V0 detectors selected around 100 million events, which are mainly 
non-single diffractive (NSD) events and contain a negligible con-
tribution from single diffractive (SD) and electromagnetic (EM) 
processes [22]. A dedicated radiator-quartz detector (T0) provided 
a measurement of the event time of the collisions. The V0 and 
T0 time resolutions allowed discrimination of beam–beam inter-
actions from background events in the interaction region. Further 
background suppression was applied in the offline analysis using 
time information from the neutron Zero Degree Calorimeter on the 
Pb-going side. Primary vertices (PVs) were selected if their posi-
tion along the beam axis was reconstructed within 10 cm of the 
geometrical centre of the detector. In Monte Carlo (MC) studies an 
efficiency of 99.2% for this trigger was obtained, while the joint 
trigger and primary vertex reconstruction efficiency lies at 97.8% 
[22]. The estimated mean number of interactions per bunch cross-
ing was below 1% in the sample chosen for this analysis.

The analysed events were divided into seven multiplicity per-
centile classes according to the total number of particles mea-
sured in the forward V0A detector. The efficiency-corrected mean 
number of charged primary particles per unit rapidity (〈dNch/dη〉) 
within −0.5 < η < 0.5 in the laboratory reference frame for each 
of these multiplicity bins were published in [23].

Due to the asymmetric energies of the proton and lead ion 
beams, a consequence of the 2-in-1 magnet design of the LHC, 
the nucleon–nucleon centre-of-mass system is shifted by 0.465 
units of rapidity in the direction of the proton beam with respect 
to the laboratory frame. The measurements reported in this Let-
ter were performed in the central rapidity window defined in the 
centre-of-mass frame within −0.5 < y < 0, where negative rapid-
ity corresponds to the side of the detector into which the Pb beam 
travels.

The identification of multi-strange baryons was based on the 
topology of their weak decays through the reconstruction of the 
tracks left behind by the decay products, referred to as the daugh-
ter particles. The daughters of the �− → �π− (BR: 99.9%), �− →
�K − (BR: 67.8%) and the subsequent � → pπ− (BR: 63.9%) weak 
decays [24], as well as the corresponding decays of the �+

and 
�

+
, were reconstructed by combining track information from the 

TPC and the ITS [25]. Proton, anti-proton and charged π and K 
tracks were identified in the TPC via their measured energy depo-
sition, which was compared with a mass-dependent parameterisa-
tion of ionisation loss in the TPC gas as a function of momentum 
[26]. All daughter candidates were required to lie within 4σ of 

Table 1
The parameters for V 0 (� and �̄) and cascades (�± and 
�±) selection criteria. Where a criterion for �± and �±
finding differs, the value for the �± case is in parentheses. 
DCA represents “distance of closest approach,” PV the pri-
mary vertex, θ is the angle between the momentum vector 
of the reconstructed V 0 or cascade, and the displacement 
vector between the decay and primary vertices. The curva-
ture of the cascade particle’s trajectory is neglected.

V 0 finding criteria

DCA: h± to PV > 0.04 (0.03) cm
DCA: h− to h+ < 1.5 standard deviations
� mass (mV0) 1.108 < mV0 < 1.124 GeV/c2

Fiducial volume (R2D) R2D > 1.1 (1.2) cm
V 0 pointing angle cos θV0 > 0.97

Cascade finding criteria

Proper decay length < 3× mean decay length
DCA: π± (K ±) to PV > 0.04 cm
DCA: V 0 to PV > 0.06 cm
DCA: π± (K ±) to V 0 < 1.3 cm
Fiducial volume (R2D) R2D > 0.5(0.6) cm
Cascade pointing angle cos θcasc > 0.97

their characteristic Bethe–Bloch energy loss curve. Multi-strange 
candidates were selected through the geometrical association of 
the V 0 component (� or �̄ decay) to a further secondary, ‘bach-
elor’ track (identified as π± or K±). In this process, several geo-
metrical variables were measured for each candidate, and criteria 
were set on them in order to purify the selected sample: numer-
ical values for the selection cuts applied are reported in Table 1. 
These selections are similar to those in the pp measurements [25], 
a consequence of the low multiplicities present in the detector in 
the p–Pb collisions. As a result the correction factors for the ef-
ficiency are also similar. In addition to the settings on topological 
variables, a cut has been applied on the V 0 invariant mass window 
of ±8 MeV/c2 from the nominal � mass [24]. Further restrictions 
were set on the proper lifetime of the �± and �± . By requir-
ing this variable to be less than 3 times the mean decay length 
(4.91 cm and 2.46 cm, respectively), we discarded low-momentum 
secondary particles and false multi-strange candidates, the daugh-
ter tracks of which originated from interactions with detector ma-
terial.

The invariant mass of the � and � hyperons was calculated 
by assuming the known masses [24] of the � and of the bachelor 
track. The mass was reconstructed twice for each cascade candi-
date, once assuming the bachelor to be a π and once a K. This 
allowed the removal of an important fraction of the � background, 
which contained a large contribution from the � candidates that 
pass the � selection criteria. Most of these false � were removed 
discarding all candidates that could be reconstructed as � with a 
mass within 10 MeV/c2 of the known mass [24] of the � baryon. 
Fig. 1 shows the invariant mass distributions for the �− and �−
hadrons in well populated pT bins for the lowest and highest mul-
tiplicity classes.

For the signal extraction, a peak region was defined within 4σ
of the mean of a Gaussian invariant mass peak for every mea-
sured pT interval. Adjacent background bands, covering an equal 
combined mass interval as the peak region, were defined on both 
sides of that central region. This is illustrated in Fig. 1 with the 
shaded bands on either side of the peak. The number of bin en-
tries inside the side-bands was subtracted from the number of 
candidates within the peak region, assuming the background to be 
linear across the mass range considered.

The pT distributions were corrected for detector acceptance and 
reconstruction efficiencies. These were estimated with the use of 
DPMJet [27] simulated Monte Carlo (MC) events, which were prop-
agated through the detector with GEANT3 [28].
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Fig. 1. Invariant mass distributions of the �− and �− in the 1.1–1.2 GeV/c and 1.2–1.6 GeV/c pT bins respectively, fitted with a Gaussian peak and linear background (dashed 
red curves). The distributions for highest (left) and lowest (right) multiplicity classes are shown. The fits only serve to illustrate the peak position with respect to which the 
bands were defined and the linear background assumption for the applied signal extraction method.
2.1. Systematic uncertainties

Systematic uncertainties due to the choice of selection crite-
ria were examined separately in each pT interval of the measured 
spectra. Individual settings were loosened and tightened, in order 
to measure changes in the signal loss correction. For the � hyper-
ons, the signal extraction accounts for an uncertainty of around 2% 
but reaches 5% at low-pT and in high multiplicity events, while for 
the �, uncertainties of 3–5% were measured. The uncertainty due 
to the topological selections is around 2(3)% for the main pT re-
gion, and up to 3(5)% at low momentum for �(�). The constraint 
on the V 0 mass window contributes to the total uncertainty with 
around 0.5(1)% and both the TPC tracking and identification cuts 
with 2(3)%. The proper decay length cut gives another 3(5)% uncer-
tainty at low pT. A 4% error was added due to the material budget, 
and for the �± only, an additional 3% due to the mass hypothe-

sis cut. All these individual error contributions, which are listed in 
Table 2, are added in quadrature. Apart from the low momentum 
region, no pT dependence is observed in the total uncertainty. The 
total systematic error lies between 5–6(8)% across the whole spec-
trum, reaching up to 8(14)% in the lowest pT bins for the �(�) 
baryons.

The fraction of the systematic error that is uncorrelated across 
multiplicity was calculated by using the same method applied in 
[23], in which spectra deviations in specific multiplicity classes 
were compared to those observed in the integrated data sample. 
The choice of the topological parameter values and the applied sig-
nal extraction method generates the dominant contribution to the 
uncorrelated uncertainties across multiplicity. These uncertainties 
were measured to be within 2% in the case of the � and 3% in the 
case of the �, which constitutes a fraction that lies between 20 
and 40% of the total systematic uncertainties.
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Table 2
Contributions to the total systematic uncertainties for the �± and �± spec-
tra measurements. The values in brackets indicate the maximum uncertain-
ties measured for low-pT cascades (see text).

Source �± �±

Material budget 4% 4%
Competing mass hypothesis – 3%
Topological variables 2–3(5)% 3–5%
Signal extraction 2(5)% 3(5)%
Particle identification 2% 3%
Track selection 2% 3%
Proper decay length 1(3)% 2(5)%
V 0 mass window 0.5% 1%

Fig. 2. (Colour online.) Invariant pT-differential yields of (�− + �
+
)/2 and (�− + �

+
)/2 in different multiplicity classes. Data have been scaled by successive factors of 2 

for better visibility. Statistical (bars), full systematic (boxes) and uncorrelated across multiplicity (transparent boxes) uncertainties are plotted. The dashed curves represent 
Blast-Wave fits to each individual distribution.
3. Results

3.1. Transverse momentum spectra

The pT distributions of �− , �+
, �− and �+

in −0.5 < y < 0
are shown in Fig. 2 for different multiplicity intervals, as defined 
in [23]. Since antiparticle and particle spectra are identical within 
uncertainties, the average of the two is shown. The spectra exhibit 
a progressive flattening with increasing multiplicity, which is qual-
itatively reminiscent of what is observed in Pb–Pb collisions [10].

The calculation of pT-integrated yields can be performed by 
using data in the measured region and a parametrisation-based ex-
trapolation elsewhere. The Boltzmann–Gibbs Blast-Wave (BG–BW) 
model [16] gives a good description of each pT spectrum and has 
been used as a tool for this extrapolation. Other alternatives, such 
as the Levy–Tsallis [29] and Boltzmann distributions, were used for 
estimating the systematic uncertainty due to the extrapolation.

The extrapolation in the unmeasured �± (�±) low-pT re-
gion grows progressively with decreasing multiplicity, from around 
16%(19%) of the total yield in the 0–5% multiplicity class to around 
27%(40%) in the 80–100% class. The systematic uncertainty as-
signed to the yield due to the extrapolation technique is 2.8%(7.8%) 
for high multiplicities and rises to 5.2%(14.5%) in the case where 
the fraction of the extrapolated yield is highest.

3.2. Comparison to Blast-Wave model

In order to investigate whether the observed spectral shapes 
are consistent with a system that exhibits hydrodynamical radial 

expansion, the measured distributions have been further stud-
ied in the context of the BG–BW model [16]. This model as-
sumes a locally thermalised medium that expands collectively with 
a common velocity field and then undergoes an instantaneous 
freeze-out. In this framework, a simultaneous fit to identified par-
ticle spectra allows for the determination of common freeze-out 
parameters. These can be used to predict the pT distribution for 
other particle species in a collective expansion picture. It should 
be noted that such a simultaneous fit differs from the individual 
fits mentioned in the previous section and used only for extrapo-
lating the spectra.

The �− , �+
, �− and �+

pT spectra in the 0–5% and 80–100% 
multiplicity classes are compared to predictions from the BG–BW 
model with parameters acquired from a simultaneous fit to π± , 
K± , p(p) and �(�̄) in Fig. 3 [23]. The model describes the mea-
sured shapes within uncertainties up to a pT of approximately 
4 GeV/c for � and 5 GeV/c for � in the highest multiplicity class. 
This indicates that multi-strange hadrons also follow a common 
motion with the lighter hadrons and is suggestive of the presence 
of radial flow in p–Pb collisions. However, it is worth noting that 
some final state effects could also modify the spectra in a simi-
lar manner to radial flow. For example, PYTHIA [30] implements 
the colour reconnection mechanism, which fuses strings originat-
ing from independent parton interactions, leading to fewer but 
more energetic hadrons, which has been shown to mimic radial 
flow [31].

Applying the same technique to results from the lower mul-
tiplicity classes reveals that the agreement of the data with the 
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Fig. 3. (Colour online.) (�− +�
+
)/2 and (�− +�

+
)/2 pT spectra in the 0–5% (left) and 80–100% (right) multiplicity classes compared to predictions from the BG–BW model 

(upper panels) with the ratios on a linear scale (lower panels). The parameters are based on simultaneous fits to lighter hadrons [23]. See text for details.

Table 3
The mid-rapidity 〈dNch/dη〉 values for each of the 7 multiplicity classes and the �− + �

+
and �− + �

+
inte-

grated yields per unit rapidity normalised to the visible cross section. The statistical uncertainty on the yields is 
followed by the systematic uncertainty.

Event class 〈dNch/dη〉
|ηlab| < 0.5

dN/dy(�− + �
+

) dN/dy(�− + �
+

)

0–5% 45 ± 1 0.2354 ± 0.0020 ± 0.0161 0.0260 ± 0.0011 ± 0.0034

5–10% 36.2 ± 0.8 0.1861 ± 0.0016 ± 0.0138 0.0215 ± 0.0008 ± 0.0029

10–20% 30.5 ± 0.7 0.1500 ± 0.0010 ± 0.0112 0.0167 ± 0.0006 ± 0.0022

20–40% 23.2 ± 0.5 0.1100 ± 0.0006 ± 0.0085 0.0120 ± 0.0005 ± 0.0016

40–60% 16.1 ± 0.4 0.0726 ± 0.0006 ± 0.0065 0.0072 ± 0.0003 ± 0.0010

60–80% 9.8 ± 0.24 0.0398 ± 0.0004 ± 0.0031 0.0042 ± 0.0002 ± 0.0006

80–100% 4.3 ± 0.1 0.0143 ± 0.0003 ± 0.0015 0.0013 ± 0.0003 ± 0.0003
Blast-Wave predictions become progressively worse. The compari-
son between lowest and highest multiplicity cases can be seen in 
Fig. 3, where their respective ratios to the model predictions are 
shown in the lower panels. These observations indicate that com-
mon kinetic freeze-out conditions are able to better describe the 
spectra in high multiplicity p–Pb collisions.

The multi-strange baryon spectra in central Pb–Pb collisions 
[10] have also been investigated in a common freeze-out scenario 
[17,18] and similar studies were performed for Au–Au collisions 
[19]. In contrast to high multiplicity p–Pb collisions, where all sta-
ble and long-lived hadron spectra are compatible with a single 
set of kinetic freeze-out conditions (the temperature Tfo and the 
mean transverse flow velocity 〈βT〉), multi-strange particles in cen-
tral heavy-ion collisions seem to experience less transverse flow 
and may freeze out earlier in the evolution of the system when 
compared to most of the other hadrons.

3.3. Hyperon to pion ratios

The measured integrated yields in the seven multiplicity classes 
are given in Table 3. To study the relative production of strangeness 
and compare it with results in pp and Pb–Pb collisions, the yield 
ratios to pions were calculated as a function of charged par-
ticle multiplicity. Both the (�− + �

+
)/(π+ + π−) and (�− +

�
+
)/(π+ + π−) ratios are observed to increase as a function of 

multiplicity, as seen in Fig. 4. The relative increase is more pro-
nounced for the �− and �+

than for �− and �+
, being approx-

imately 100% for the former and 60% for the latter. These relative 
increases are larger than the 30% increase observed for the �/π
ratio [23], indicating that strangeness content may control the rate 
of increase with multiplicity.

These ratios are further compared to measurements performed 
in the pp [25,34] and Pb–Pb [10] collision systems. The (�− +
�

+
)/(π+ + π−) ratio for the highest p–Pb multiplicity is compat-

ible with the Pb–Pb measurements in the Pb–Pb 0–60% centrality 
range and the (�− + �

+
)/(π+ + π−) reaches a value slightly be-

low its Pb–Pb equivalent in this centrality range, although the error 
bars still overlap. It is also noteworthy that the values obtained for 
the p–Pb 80–100% multiplicity event class are similar to the ones 
measured in minimum bias pp collisions.

Finally, the hyperon to pion ratios can also be compared with 
the values in the Grand Canonical (GC) limit obtained from global 
fits to Pb–Pb data. Two different implementations of the thermal 
model are shown in Fig. 4, where the dashed lines represent the 
values from the THERMUS 2.3 model [36] and the solid lines repre-
sent predictions from the GSI-Heidelberg model [35]. Both models 
provide values that are consistent with the most central Pb–Pb
measurements.
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Fig. 4. (Colour online.) (�− + �
+
)/(π+ + π−) (left) and (�− + �

+
)/(π+ + π−) (right) ratios as a function of 〈dNch/dη〉 for all three colliding systems. The ratios for the 

seven multiplicity classes in p–Pb data lie between the Minimum Bias pp (
√

s = 900 GeV [32,33] and √s = 7 TeV [25,34]) and peripheral Pb–Pb results. The Pb–Pb points 
[10] represent, from left to right, the 60–80%, 40–60%, 20–40% and 10–20% and 0–10% centrality classes. The chemical equilibrium predictions by the GSI-Heidelberg [35]
and the THERMUS 2.3 [36] models are represented by the horizontal lines.
In small multiplicity environments such as those produced in 
p–Pb collisions, a grand canonical statistical description may not 
be appropriate. Instead, local conservation laws might play an im-
portant role. The evolution of hyperon to pion ratios in terms of 
the event multiplicity can be calculated with a Strangeness Canon-
ical (SC) model implemented in THERMUS [36]. This model ap-
plies a local conservation law to the strangeness quantum num-
ber within a correlation volume V c while treating the baryon 
and charge quantum numbers grand-canonically within the fire-
ball volume V . This implies a decrease of the strangeness yields 
with respect to the pion yields with a shrinking system size. To 
model this canonical suppression effect as a function of pion ra-
pidity density, yield calculations were repeated for varying sys-
tem sizes. Strangeness conservation was imposed within the size 
of the fireball (V c = V ), and the strangeness saturation parame-
ter γS was fixed to 1, thus changes in the hadron to pion ratios 
were due to the variations of the restraints on the system size 
only. The chemical potentials (μ) of the conserved strangeness, 
baryon and electric charge quantum numbers were set to zero. 
The obtained suppression curves for �, � and � are shown in 
Fig. 5 for a temperature of 155 MeV, the value extracted from a 
GC global fit to high multiplicity Pb–Pb data, with a variation of 
±10 MeV (solid lines). Both the data and model points were nor-
malised to the high multiplicity limit. For the data, this limit is 
the mean hyperon to pion ratio in the 0–60% most central Pb–Pb
events, whereas for the model it corresponds to the GC limit. 
The theoretical curves for strangeness suppression computed with 
THERMUS are in qualitative agreement with the effect observed in 
the data.

4. Conclusions

In summary, a measurement of the pT spectra of �− , �
+

, 
�− and �

+
for seven multiplicity classes in p–Pb collisions at √

sNN = 5.02 TeV at the LHC has been presented. These measure-
ments represent an important contribution to the understanding 
of strangeness production, as hyperon production rates are now 
measured at LHC energies over a large range in charged–particle 
multiplicity, from pp to central Pb–Pb collisions.

The multi-strange baryon spectra exhibit a progressive flatten-
ing with increasing multiplicity suggesting the presence of radial 

Fig. 5. (Colour online.) Hyperon to pion ratios as a function of pion yields for pp, 
p–Pb and Pb–Pb colliding systems compared to the THERMUS [36] strangeness sup-
pression model prediction, in which only the system size is varied. The h/π are 
the ratios of the particle and antiparticle sums, except for the 2�/(π− + π+) data 
points in pp [33], p–Pb [23] and Pb–Pb [37]. All values are normalised to the high 
multiplicity limit, which is given by the mean of the 0–60% highest multiplicity 
Pb–Pb measurements for the data and by the GC limit for the model.

flow. A comparison with the Boltzmann–Gibbs Blast-Wave model 
indicates a common kinetic freeze-out with lighter hadrons in the 
highest multiplicity p–Pb collisions. This is in contrast to higher 
multiplicity heavy-ion collisions where there is an indication for 
an earlier freeze-out of these particles.

For the first time, the lifting of strangeness suppression with 
system size has been observed with measurements in a single col-
lision system. Hyperon to pion ratios are shown to increase with 
multiplicity in p–Pb collisions from the values measured in pp 
to those observed in Pb–Pb. The rate of increase is more pro-
nounced for particles with higher strangeness content. Compar-
ing these results to the trends observed in statistical hadroni-
sation models that conserve strangeness across the created sys-
tem indicates that the behaviour is qualitatively consistent with 
the lifting of canonical suppression with increasing multiplic-
ity.
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398 ALICE Collaboration / Physics Letters B 758 (2016) 389–401

N. Mohammadi 57, B. Mohanty 79,132, L. Molnar 55,113, L. Montaño Zetina 11, E. Montes 10, 
D.A. Moreira De Godoy 54,113, L.A.P. Moreno 2, S. Moretto 30, A. Morreale 113, A. Morsch 36, 
V. Muccifora 72, E. Mudnic 116, D. Mühlheim 54, S. Muhuri 132, M. Mukherjee 132, J.D. Mulligan 136, 
M.G. Munhoz 120, R.H. Munzer 93,37, H. Murakami 127, S. Murray 65, L. Musa 36, J. Musinsky 59, B. Naik 48, 
R. Nair 77, B.K. Nandi 48, R. Nania 104, E. Nappi 103, M.U. Naru 16, H. Natal da Luz 120, C. Nattrass 125, 
S.R. Navarro 2, K. Nayak 79, R. Nayak 48, T.K. Nayak 132, S. Nazarenko 99, A. Nedosekin 58, L. Nellen 63, 
F. Ng 122, M. Nicassio 97, M. Niculescu 62, J. Niedziela 36, B.S. Nielsen 81, S. Nikolaev 80, S. Nikulin 80, 
V. Nikulin 86, F. Noferini 104,12, P. Nomokonov 66, G. Nooren 57, J.C.C. Noris 2, J. Norman 124, A. Nyanin 80, 
J. Nystrand 18, H. Oeschler 94, S. Oh 136, S.K. Oh 67, A. Ohlson 36, A. Okatan 69, T. Okubo 47, L. Olah 135, 
J. Oleniacz 133, A.C. Oliveira Da Silva 120, M.H. Oliver 136, J. Onderwaater 97, C. Oppedisano 110, R. Orava 46, 
A. Ortiz Velasquez 63, A. Oskarsson 34, J. Otwinowski 117, K. Oyama 94,76, M. Ozdemir 53, Y. Pachmayer 94, 
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