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Relativistic self-consistent mean-field (SCMF) models naturally account for the coupling of the nucleon spin to
its orbital motion, whereas nonrelativistic SCMF methods necessitate a phenomenological ansatz for the effective
spin-orbit potential. Recent experimental studies aim to explore the isospin properties of the effective spin-orbit
interaction in nuclei. SCMF models are very useful in the interpretation of the corresponding data; however,
standard relativistic mean-field and nonrelativistic Hartree-Fock models use effective spin-orbit potentials with
different isovector properties, mainly because exchange contributions are not treated explicitly in the former. The
impact of exchange terms on the effective spin-orbit potential in relativistic mean-field models is analyzed, and
it is shown that it leads to an isovector structure similar to the one used in standard nonrelativistic Hartree-Fock
models. Data on the isospin dependence of spin-orbit splittings in spherical nuclei could be used to constrain the
isovector-scalar channel of relativistic mean-field models. The reproduction of the empirical kink in the isotope
shifts of even Pb nuclei by relativistic effective interactions points to the occurrence of pseudospin symmetry in
the single-neutron spectra in these nuclei.

DOI: 10.1103/PhysRevC.94.024304

I. INTRODUCTION

Self-consistent mean-field models based on relativistic
energy density functionals (EDFs) with density-dependent
strength parameters [1] have been successfully applied to
studies of a broad variety of nuclear phenomena such as radii,
masses, collective modes, fission, and shape coexistence (see,
e.g., [2,3]). Remarkable results have been obtained both in
the relativistic mean-field (RMF) framework [2,4] and more
recently using the relativistic Hartree-Fock (RHF) scheme [5–
7], even though RHF applications have mostly been restricted
to spherical nuclei. One of the basic advantages of using
functionals with manifest covariance is the natural inclusion
of the nucleon spin degree of freedom, and the resulting
nuclear spin-orbit potential which emerges automatically with
the empirical strength in a covariant formulation [8].

Nonrelativistic EDFs such as, for instance, Skyrme [9]
or the Gogny [10] functionals must, of course, also include
a spin-orbit term. In this case, however, the strength of the
phenomenological spin-orbit term has to be adjusted to data
on the energy spacing between spin-orbit partner states. This
approach has been extensively applied and refined over the last
four decades [11–13], and it provides an effective description
of spin-orbit effects in nuclei.

The omission of an explicit treatment of exchange terms in
the RMF approach may have an impact on the description
of the isovector channel, in particular for the energy gap
between spin-orbit partner states when the ratio between
neutrons and protons becomes very large. The modification of
spin-orbit splittings predicted by RMF-based models differs
from that obtained with nonrelativistic, e.g., Skyrme models
[2,14]. Empirical constraints can be obtained by studying
the changes in neutron spin-orbit splittings when the number
of protons change and vice versa, as in the recent study of
spectroscopic properties of 35Si and 37S [15]. This task is,

however, not straightforward because single-particle energies
and occupation factors are not direct observables [16].

On the theoretical side, the difference between the isospin
dependence of RMF and nonrelativistic spin-orbit interactions
can be analyzed by performing a nonrelativistic reduction of
the Dirac equation. Such a study was reported, for instance, by
Sulaksono et al. [17] with the goal to compare in a global way
the magnitude of spin-orbit terms in these two approaches. In
this work we focus on the isospin dependence of the spin-orbit
effect using relativistic EDFs with density-dependent strength
parameters, and we evaluate the effect of explicit treatment of
exchange terms in relativistic structure models.

II. SPIN-ORBIT TERM IN RELATIVISTIC
EFFECTIVE INTERACTIONS

A. RMF case

Most SCMF models based on the relativistic mean-field
approximation have been formulated using the finite-range
meson-exchange representation, in which the nucleus is
described as a system of Dirac nucleons coupled to meson
fields through an effective Lagrangian. The isoscalar scalar σ
meson, the isoscalar vector ω meson, and the isovector-vector
ρ meson build the minimal set of meson fields that, together
with the electromagnetic field, is necessary for a description of
bulk and single-particle nuclear properties. The corresponding
Lagrangian density reads

L = �̄(iγ μ∂μ − m)� + 1
2

(
∂μσ∂μσ − m2

σ σ 2
)

− 1
2

(
1
2�μν�μν − m2

ωωμωμ
)

− 1
2

(
1
2 Rμν · Rμν − m2

ρρμ · ρμ
) − gσ (ρB(�r))�̄σ�

− gω(ρB(�r))�̄γμωμ� − gρ(ρB(�r))�̄γμρμ · τ�, (1)

2469-9985/2016/94(2)/024304(7) 024304-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.94.024304


J.-P. EBRAN, A. MUTSCHLER, E. KHAN, AND D. VRETENAR PHYSICAL REVIEW C 94, 024304 (2016)

where, for simplicity, we omit the Coulomb term which
is not relevant to the present discussion. � denotes the
nucleon spinor, m is the nucleon bare mass, and mσ , mω,
and mρ denote the meson masses. �μν ≡ ∂μων − ∂νωμ and
Rμν ≡ ∂μρν − ∂νρμ are the ω and ρ meson field tensors.
Boldface symbols denote vectors and tensors in isospin space.
The meson-nucleon couplings are assumed to be functions
of the nucleon density (time-like component of the nucleon
4-current) ρB(�r), and this density dependence in principle
encodes all in-medium many-body correlations.

In the self-consistent RMF framework the dynamics of
independent nucleons is determined by local scalar and vector
self-energies. For simplicity, spherical nuclei are considered
and time-reversal symmetry is assumed (pairwise occupied
states with Kramers degeneracy), which ensures that the
only nonvanishing components of the 4-vector fields are the
time-like ones and thus there is no net contribution from
nucleon currents. Because of charge conservation only the
third component of the vectors in isospin space gives a
nonvanishing contribution. The single-nucleon equation of
motion is then the Dirac equation

[�α · �p + V + β(m + S)]ψi = Eiψi, (2)

where �α = γ0 �γ , β = γ0, with γ0 and �γ the Dirac matrices
in Dirac representation, and ψi denotes the self-consistent
solution for the ith Dirac state of energy Ei(

φi

χi

)
(3)

with φi and χi denoting the large and small component,
respectively. The scalar and time-like vector self-energies read

S(�r) = gσ (ρB(�r))σ (�r), (4)

V (�r) = gω(ρB(�r))ω(�r) + gρ(ρB(�r))τ 3ρ(�r)

+ dgσ

dρB

∑
i

ψ̄i(�r)σ (�r)ψi(�r) (5)

+ dgω

dρB

∑
i

ψ̄i(�r)γ0ω(�r)ψi(�r)

+ dgρ

dρB

∑
i

ψ̄i(�r)γ0ρ(�r)τ 3ψi(�r). (6)

The explicit dependence of the coupling functions on the
baryon density ρB produces rearrangement contributions to
the vector nucleon self-energy. The rearrangement terms result
from the variation of the couplings with respect to the baryon
density.

In applications to nuclear matter and finite nuclei, relativis-
tic models are used in the no-sea approximation: the Dirac
sea of states with negative energies does not contribute to the
densities and currents. In the nuclear ground state, A nucleons
occupy the lowest single-nucleon orbitals, determined self-
consistently by the iterative solution of the Dirac equation (2).
Expressing the single-nucleon energy as Ei = m + εi , where
m is the nucleon mass, and rewriting the Dirac equation as a
system of two equations for φi and χi , then, noticing that for
bound states εi � m, the equation for the upper component

φi of the Dirac spinor reduces to the Schrödinger-like form
[18–20] [

�p 1

2M(r)
�p + U (r) + Vso(r)

]
φi = εiφi (7)

for a nucleon with effective mass

M(r) ≡ m + 1
2 [S(r) − V (r)], (8)

in the potential U (r) ≡ V (r) + S(r). The resulting additional
spin-orbit potential [18–20]

Vso = 1

2rM2(r)

d

dr
(V − S)�l · �s (9)

plays a crucial role in reproducing the empirical nuclear magic
numbers. The nonrelativistic limit corresponds to a 1

2M(�r)
expansion. In the lowest order the isoscalar density ρs(�r) can
be approximated by the nonrelativistic nucleon density ρB(�r).
At the energy scale characteristic for nuclear binding, meson
exchange (σ , ω, ρ, . . .) is just a convenient representation
of the effective nuclear interaction. The exchange of heavy
mesons is associated with short-distance dynamics that cannot
be resolved at low energies, and therefore in each channel,
meson exchange can be replaced by the corresponding lo-
cal four-point (contact) interactions between nucleons. The
relation between the two representations finite-range (meson
exchange) and zero-range (point coupling), is straightforward
in nuclear matter because of constant nucleon scalar and
vector densities. The Klein-Gordon equations of the meson-
exchange model with meson masses mφ and density-dependent
couplings gφ(ρ) are replaced by the corresponding point-
coupling interaction terms with strength parameters g2

φ/m2
φ .

In finite nuclei, however, because of the radial dependence of
the densities, the expansion of the meson propagator in terms
of 1/m2

φ leads to a series of gradient terms [21]. For the purpose
of our discussion it suffices to consider only the lowest order,
in which the self-energies S(�r) [Eq. (4)] and V (�r) [Eq. (6)]
read

S(�r) = −g2
σ (ρB(�r))

m2
σ

ρB(�r), (10)

V (�r) = g2
ω

m2
ω

ρB(�r) + τ 3
g2

ρ

m2
ρ

ρτ (�r) − gσg′
σ

m2
σ

ρ2
B(�r)

+ gωg′
ω

m2
ω

ρ2
B(�r) + gρg

′
ρ

m2
ρ

ρ2
τ (�r), (11)

where ρB is the nucleon density and ρτ = ρ
(n)
B − ρ

(p)
B is the

isovector nucleon density. Introducing the notation

αi ≡ g2
i

m2
i

, (12)

α′
i ≡ dαi

dρB

= 2gig
′
i

m2
i

, (13)

α′′
i ≡ d2αi

dρ2
B

= 2
(g′

i)
2 + gig

′′
i

m2
i

, (14)
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for i = {σ,ω,ρ}, and explicitly writing the neutron and proton contributions (q = {n,p}) with ρ
(q−q ′)
B ≡ ρ

(q)
B − ρ

(q ′)
B , from

Eqs. (9)–(11) one derives

V (q)
so = ασ + αω + αρ + 2α′

ωρB + 2α′
ρρ

(q−q ′)
B + −α′′

σ +α′′
ω

2 ρ2
B + α′′

ρ

2

(
ρ

(q−q ′)
B

)2

2r
{
m − 1

2

[
(ασ + αω)ρB + αρρ

(q−q ′)
B + −α′

σ +α′
ω

2 ρ2
B + α′

ρ

2

(
ρ

(q−q ′)
B

)2]}2

dρ
(q)
B

dr
�l · �s

+ ασ + αω − αρ + 2α′
ωρB + −α′′

σ +α′′
ω

2 ρ2
B + α′′

ρ

2

(
ρ

(q−q ′)
B

)2

2r
{
m − 1

2

[
(ασ + αω)ρB + αρρ

(q−q ′)
B + −α′

σ +α′
ω

2 ρ2
B + α′

ρ

2

(
ρ

(q−q ′)
B

)2]}2

dρ
(q ′ �=q)
B

dr
�l · �s. (15)

This expression can be rewritten as

V (q)
so =

[
W1

dρ
(q)
B

dr
+ W2

dρ
(q ′ �=q)
B

dr

]
�l · �s, (16)

and the relevant ratio that determines the isospin dependence of the spin-orbit potential reads

W1

W2

(q)

(ασ ,αω,αρ) ≡ Aq(ασ ,αω,αρ) + Bq
(
αρ,ρ

(q−q ′)
B

)
Aq(ασ ,αω,αρ) − Bq(αρ,0)

, (17)

with

Aq(ασ ,αω,αρ) ≡ ασ + αω + 2α′
ωρB

+ −α′′
σ + α′′

ω

2
ρ2

B + α′′
ρ

2

(
ρ

(q−q ′)
B

)2
(18)

and

Bq
(
αρ,ρ

(q−q ′)
B

) ≡ αρ + 2α′
ρρ

(q−q ′)
B . (19)

Equation (17) shows that the ratio W1/W2 differs from unity
because of the isovector contribution (19) and is larger than
unity for Bq > 0.

B. RHF case

In the relativistic Hartree-Fock case in which exchange
terms are treated explicitly, because of nonlocality it is
not possible to derive a simple analytic expression for the
nonrelativistic spin-orbit potential. For a direct comparison
with the RMF case, one can first consider the point-coupling
approximation to the meson-exchange RHF Lagrangian, and
further perform a Fierz transformation to obtain a correspond-
ing RMF Lagrangian [22]. The interacting part of the RHF
Lagrangian reads

Lint = −gσ (ρB)�̄σ� − gω(ρB)�̄γμωμ�

− gρ(ρB)�̄γμρμ · τ�. (20)

In the lowest-order point-coupling approximation [23] the
mesons fields can be expressed as

σ = −gσ (ρB(�r))
m2

σ

�̄�.

ωμ = gω(ρB(�r))
m2

ω

�̄γ μ�.

ρμ = gρ(ρB(�r))
m2

ρ

�̄γ μτ�, (21)

and for the equivalent Lagrangian in the point-coupling
approximation

LPC
int = − 1

2ασ (�̄�)(�̄�) − 1
2αω(�̄γμ�)(�̄γ μ�)

− 1
2αρ(�̄γμτ�) · (�̄γ μτ�), (22)

one obtains the ground-state expectation value

〈LPC
int

〉 = − 1
2ασρ2

s − 1
2αωρ2

B − 1
2αρρ

2
τ + 1

2ασρ2
s,exch

+ 1
2αωρ2

v,exch + 1
2αρρ

2
τ,exch. (23)

Using the Fierz transformation, the couplings α̃i of the
corresponding RMF Lagrangian are expressed in terms of
those of LPC

int [22]:

α̃S = 7
8ασ + 1

2αω + 3
2αρ, (24)

α̃V = 1
8ασ + 5

4αω + 3
4αρ, (25)

α̃tV = 1
8ασ + 1

4αω + 3
4αρ, (26)

α̃tS = − 1
8ασ + 1

2αω − 1
2αρ. (27)

The resulting Fierz Lagrangian

〈LFierz
int

〉 = − 1
2 α̃Sρ

2
s − 1

2 α̃V ρ2
B − 1

2 α̃tV ρ2
τ − 1

2 α̃tSρ
2
tS (28)

is then equivalent to the RMF Lagrangian of the previous
section but, in addition, an isovector-scalar term appears
because of the Fierz transformation. Additional terms in the
pseudoscalar and pseudovector channels do not contribute
to the self-consistent ground-state solution. Using this ex-

pression in Eq. (17) yields the ratio W1
W2

(q)
for the Fierz

Lagrangian

W1

W2

(q)

≡ W1

W2

(q)

(α̃S,α̃V ,α̃tV + α̃tS), (29)
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with the explicit functional dependence

W1

W2

(q)

= α̃S + α̃V + α̃tV + α̃tS + 2α̃′
V ρB + 2(α̃′

tV + α̃′
tS)ρ(q−q ′)

B

α̃S + α̃V − α̃tV − α̃tS + 2α̃′
V ρB + −α̃′′

S+α̃′′
V

2 ρ2
B + α̃′′

tV +α̃′′
tS

2

(
ρ

(q−q ′)
B

)2

+
−α̃′′

S+α̃′′
V

2 ρ2
B + α̃′′

tV +α̃′′
tS

2

(
ρ

(q−q ′)
B

)2

α̃S + α̃V − α̃tV − α̃tS + 2α̃′
V ρB + −α̃′′

S+α̃′′
V

2 ρ2
B + α̃′′

tV +α̃′′
tS

2

(
ρ

(q−q ′)
B

)2 . (30)

The structure of Eq. (30) is similar to that of Eq. (17)
but, in addition to the isovector vector, it contains also an
isovector-scalar contribution but the strength parameter α̃tS

of this channel is not independent. In the meson-exchange
representation this channel corresponds to the exchange of
a δ meson. The isovector-scalar meson δ can be, of course,
explicitly included in the model Lagrangian but, as it has been
often argued in the literature, it is difficult to determine its
coupling strength from available data on finite nuclei. In the
RMF meson-exchange model DD-MEδ developed and tested
in Ref. [24], for instance, the isovector effective mass m∗

p −
m∗

n derived from relativistic Brueckner theory was used to
determine the coupling strength of the δ meson and its density
dependence. It was noted, however, that the explicit inclusion
of the isovector-scalar meson does not improve the accuracy of
calculated properties of finite nuclei such as masses and radii.

III. RESULTS AND DISCUSSION

Conventional nonrelativistic Hartree-Fock mean-field cal-
culations based on the Skyrme or Gogny force use a spin-orbit
potential without explicit isospin dependence and with a
constant strength parameter. The explicit treatment of the
exchange term constrains the ratio of the resulting constants in
the expression of Eq. (16) to W1/W2 = 2 [11,14]. In some
cases this choice is too restrictive, but it can be relaxed
if the effective interaction is interpreted as resulting from
an energy density functional in the sense of Kohn-Sham
density functional theory [12,13]. In the relativistic mean-field
approximation (cf. Sec. II A) a weak isospin dependence of the
effective spin-orbit potential arises because of the ρ-meson
contribution (in meson-exchange models) or the isovector-
vector term of the interaction Lagrangian (in point-coupling
models). Exchange terms are not computed explicitly and
because of the way the spin-orbit potential Eq. (16) emerges
in the nonrelativistic reduction of the single-nucleon Dirac
equation, the ratio W1/W2 in Eq. (17) explicitly depends on
proton and neutron densities.

Figure 1 displays the radial dependence of the proton
and neutron ratio W1/W2 of parameters of the spin-orbit
potential in Eq. (17), for the self-consistent ground states
of 16O, 34Si, and 208Pb, calculated with two of the most
successful RMF effective interactions DD-ME2 [1] (meson-
exchange) and DD-PC1 [23] (point-coupling). It should be
noted that, in contrast to the value of the ratio W1/W2 = 2
used in standard nonrelativistic Hartree-Fock calculations, in
the RMF case the ratio W1/W2 is close to unity. The absolute
deviation from unity can be attributed to the contribution of
the ρ-meson exchange, that is, the explicit contribution of

the isovector-vector channel: in the absence of the isovector
degree of freedom in the interaction Lagrangian, Eq. (17)
gives W1 = W2. The isovector contribution is, of course, also
responsible for the difference between the effective proton and
neutron single-particle potentials, while the radial (density)
profiles depend on the shell structure of occupied orbitals in
the self-consistent solution for a particular nucleus. In this
respect, especially interesting is the case of 34Si, for which
a possible central depletion of the proton density distribution
has been analyzed using a variety of theoretical approaches
[25,26], and experimental constraints on the strength of the
two-body spin-orbit interaction have been reported [15,27].
For the effective interaction DD-MEδ that explicitly includes
contributions from both ρ- and δ-meson exchange in the
direct term, the isovector channel of the spin-orbit potential
is enhanced when compared to DD-ME2, although in both
models the total isovector part of the spin-orbit potential is an
order of magnitude weaker than the isoscalar contribution [24].

To illustrate the effect of the exchange terms in the RHF
approximation on the single-nucleon spin-orbit potential, the
radial dependence of the ratio W1/W2 for protons and neutrons
for the same nuclei are plotted in Fig. 2 using Eq. (30). This
corresponds to using the RMF Lagrangian [Eq. (28)] obtained
by performing the Fierz transformation on the interaction terms
of the point-coupling RHF Lagrangian [Eq. (22)]. The effective
RHF interaction is PKO2 [28] which includes the σ -, ω-, and
ρ-meson exchanges, but not the pion or the δ meson. The most

1.06
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1.1
1.12
1.14
1.16
1.18

1.06

1.08

1.1

1.12

1.06
1.08

1.1
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1.16

W
1 / 

W
2

1.06

1.08
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1.12
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r (fm)

1.06
1.08

1.1
1.12
1.14
1.16

0 2 4 6 8 10
r (fm)

1.06

1.08

1.1

1.12

16O 16O

34Si34Si

208Pb 208Pb

FIG. 1. Radial dependence of the proton (solid) and neutron
(dashed) ratio ( W1

W2
) of parameters of the spin-orbit potential [Eq. (17)],

for the ground states of 16O, 34Si, and 208Pb, calculated with the RMF
effective interactions DD-ME2 (left) and DD-PC1 (right).
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1.6
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1.8
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W
1 

/ W
2
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1.6

1.7

1.8

16O

34Si

208Pb

FIG. 2. Same as Fig. 1, but the ratio of the parameters is given
by Eq. (30) for the case of the relativistic Hartree-Fock effective
interaction PKO2.

important result is that in this case the overall value of the ratio
W1/W2 is around 1.8. This is significantly larger than in the
simple RMF approach based on the Hartree approximation,
and much closer to the value 2 which characterizes standard
nonrelativistic HF calculations based on Skyrme forces. The
difference with respect to the latter is due to the fact that
there is already an isovector dependence of the effective spin-
orbit potential for the Lagrangian PKO2 which arises because
of the ρ-meson exchange contribution, and also due to the
nonrelativistic reduction of the single-nucleon Dirac equation
to the Schrödinger-like form of Eq. (7) that explicitly includes
the effective spin-orbit potential.

An effect that has been attributed to the isospin dependence
of the effective spin-orbit potential is the change (kink) of
charge isotope shifts across the N = 126 shell gap [29,30]. The
charge isotope shift is the difference between the charge radius
〈r2

ch〉 of a given isotope with respect to the reference nucleus.
The best known example is the kink in the isotope shifts of
even Pb nuclei and, more recently, a similar effect has also been
observed in polonium isotopes [30]. Numerous calculations
over the last 20 years have shown that all relativistic mean-field
effective interactions, both at the RMF level (without or with
inclusion of the isovector-scalar δ meson) and in the RHF
approach, reproduce the empirical kink in the isotope shifts
of even Pb isotopes [2,7,14,24,31]. This was explained by a
relatively weak isospin dependence of the corresponding spin-
orbit potentials. Conventional Skyrme HF parametrizations
with W1/W2 = 2 were unable to reproduce the kink and,
therefore, in Ref. [31] the Skyrme framework was extended
with an additional degree of freedom in the spin-orbit channel
which allows us to modify the value of the ratio W1/W2. This
simple modification of the Skyrme functional, in which the
relative weights of the neutron and proton contributions to the
spin-orbit potential can be freely adjusted, produces values for
the isotope shifts of Pb in reasonable agreement with data.

In Fig. 3 we plot the experimental isotope shifts for even-A
Pb nuclei with respect to the reference nucleus 208Pb, in
comparison with results obtained in the RMF calculation

FIG. 3. Isotope shifts for even-A Pb nuclei with respect to the
reference nucleus 208Pb. Experimental values [29,30] are shown in
comparison with theoretical results obtained in the RMF calcula-
tion with the effective interaction DD-PC1, using the relativistic
Hartree-Fock effective interaction PKO2, and with the RMF model
obtained by performing the Fierz transformation of the point-coupling
approximation of PKO2.

with the effective interaction DD-PC1, using the relativistic
Hartree-Fock effective interaction PKO2, and with the RMF
model obtained by performing the Fierz transformation of
the equivalent point-coupling approximation of PKO2. In all
three cases the theoretical values reproduce the empirical kink
at N = 126 and, in particular, the kink is most pronounced
in the RMF calculation with the Fierz-transformed effective
interaction PKO2, even though W1/W2 ≈ 1.8 for this model.
This result is consistent with a more recent interpretation of
the change of charge isotope shifts across the N = 126 shell
gap [32], in which the kink is attributed to the occupation of
the 1i11/2 neutron orbital and the resulting overlap between
neutron and proton orbitals with the same principal quantum
number, n = 1. It was noted that effective forces for which
the 1i11/2 neutron orbital has a significant occupation above
N = 126 display an increase in the isotope shift of the
n = 1 proton states. This is because when neutrons gradually
occupy the 1i11/2 orbital, proton states expand to larger radii
to maximally overlap with the additional neutrons [32]. In
the present calculation, both for DD-PC1 and PKO2, the
neutron orbitals 1i11/2 and 2g9/2 are almost degenerate above
N = 126, and this leads to significant occupation of 1i11/2

and the resulting sudden increase in the isotope shifts. In fact,
the quasidegeneracy of 2g9/2 and 1i11/2 corresponds to an
approximate realization of pseudospin symmetry of single-
nucleon states with (n,l,j = l + 1/2) and (n − 1,l + 2,j =
l + 3/2). When the Fierz transformation is performed on the
point-coupling approximation of PKO2, the equivalent RMF
Lagrangian leads to the lowering of the orbital 1i11/2 below
2g9/2. Although it cannot directly be compared to data [16],
this discrepancy with the experimental spectra of 209Pb and
211Pb is probably caused by the fact that the parameters of
the equivalent Lagrangian are not fine-tuned after performing
the point-coupling approximation. Nevertheless, it leads to
the pronounced kink shown in Fig. 3. In fact we note that
the best agreement with the empirical kink is obtained with
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those interactions for which pseudospin symmetry is realized
in the single-neutron spectra (here DD-PC1 and PKO2, but
also other relativistic interactions). If this symmetry is broken
by further lowering 1i11/2, below 2g9/2, the kink in the isotope
shifts becomes too strong compared to data (see Fig. 3). The
presence of the kink in the isotope shifts and the relativistic
models that reproduce the data thus provide evidence for the
occurrence of pseudospin symmetry in neutron-rich Pb nuclei.

IV. CONCLUSION

In conclusion, we have analyzed the isospin dependence of
the effective spin-orbit potential in standard relativistic meson-
exchange or point-coupling (contact) effective interactions,
when used in the mean-field (Hartree) or Hartree-Fock ap-
proximations. By performing a nonrelativistic reduction of the
single-nucleon Dirac equation to a Schrödinger-like form that
explicitly exhibits the spin-orbit potential, the corresponding
isospin dependence can be directly compared to that of the non-
relativistic Hartree-Fock models based on effective Skyrme
forces. This isospin dependence can be characterized by the
ratio W1/W2 of the two parameters in the expression for the
effective spin-orbit potential of Eq. (16). In conventional non-
relativistic Hartree-Fock mean-field calculations based on the
Skyrme force, W1/W2 = 2, whereas in standard RMF models
this ratio is close to 1. The deviation from 1 arises because of
the explicit isovector contribution to the spin-orbit potential.
It should be noted that because of the medium dependence of
the effective coupling parameters, either through an explicit
density dependence or higher-order self-interaction terms, the
ratio W1/W2 is density dependent in the relativistic approach.

In the case of relativistic Hartree-Fock models, to evaluate
the effect of exchange terms we have performed a Fierz
transformation of the point-coupling RHF Lagrangian and
derived an equivalent RMF Lagrangian that, in addition to the
isovector-vector contribution of the original RHF Lagrangian
(ρ-meson exchange), contains also an isovector-scalar term.
As a result, the ratio W1/W2 ≈ 1.8 is much closer to the value
that characterizes standard Skyrme Hartree-Fock models. This
result is important in view of recent experimental efforts to
explore the isospin dependence of spin-orbit forces in nuclei.
It shows that, when comparing with results obtained using
conventional Skyrme HF models, Fock terms should also be
treated explicitly in relativistic mean-field models or, if one
wants to preserve the advantage of local density functionals,
the isovector-scalar channel has to be taken into account
in addition to the usual isovector-vector contribution. Of
course, this channel has been considered before in relativistic
structure models; however, the standard data (masses, radii)
could not be used to discern between the two isovector
channels. Information on the isospin dependence of the energy
spacings between spin-orbit partner states could thus be used to
determine the isovector-scalar channel contribution. We have
also shown that the reproduction of the empirical kink in
the isotope shifts of even Pb nuclei by relativistic effective
interactions points to the occurrence of pseudospin symmetry
in the single-neutron spectra in these nuclei.
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