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We report the measurements of correlations between event-by-event fluctuations of amplitudes of
anisotropic flow harmonics in nucleus-nucleus collisions, obtained for the first time using a new analysis
method based on multiparticle cumulants in mixed harmonics. This novel method is robust against
systematic biases originating from nonflow effects and by construction any dependence on symmetry
planes is eliminated. We demonstrate that correlations of flow harmonics exhibit a better sensitivity to
medium properties than the individual flow harmonics. The new measurements are performed in Pb-Pb
collisions at the center-of-mass energy per nucleon pair of

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV by the ALICE experiment at
the Large Hadron Collider. The centrality dependence of correlation between event-by-event fluctuations of
the elliptic v2 and quadrangular v4 flow harmonics, as well as of anticorrelation between v2 and triangular
v3 flow harmonics are presented. The results cover two different regimes of the initial state configurations:
geometry dominated (in midcentral collisions) and fluctuation dominated (in the most central collisions).
Comparisons are made to predictions from Monte Carlo Glauber, viscous hydrodynamics, AMPT, and
HIJING models. Together with the existing measurements of the individual flow harmonics the presented
results provide further constraints on the initial conditions and the transport properties of the system
produced in heavy-ion collisions.

DOI: 10.1103/PhysRevLett.117.182301

The properties of an extreme state of matter, the
quark-gluon plasma (QGP), are studied by colliding
heavy ions at BNL’s Relativistic Heavy Ion Collider
(RHIC) and at CERN’s Large Hadron Collider (LHC).
One of the most widely utilized physical phenomena in
the exploration of QGP properties is collective aniso-
tropic flow [1,2]. The large elliptic flow discovered at
RHIC energies [3], which at the LHC energy of
2.76 TeV is 30% larger [4] and is recently reported in
Ref. [5] to increase even further at 5.02 TeV, demon-
strated that the QGP behaves like a strongly coupled
liquid with a very small ratio of the shear viscosity to
entropy density, η=s, which is close to a universal lower
bound of 1=4π [6].
Anisotropic flow is traditionally quantified with

harmonics vn and corresponding symmetry plane angles
ψn in the Fourier series decomposition of the particle
azimuthal distribution (parametrized with azimuthal angle
φ) in the plane transverse to the beam direction [7]:

dN
dφ

∝ 1þ 2
X∞

n¼1

vn cos½nðφ − ψnÞ�: ð1Þ

The shape of the intersecting zone of two identical heavy
ions in noncentral collisions is approximately ellipsoidal.
This initial anisotropy is transferred via interactions among
constituents and the pressure gradients developed in the
QGP medium to an observable final-state anisotropic
emission of particles with respect to the symmetry plane(s)
of the intersecting zone. The resulting anisotropic flow for
such an idealized ellipsoidal geometry is determined solely
by even Fourier harmonics v2n, and only one symmetry
plane (the reaction plane) exists. Recently, the importance
of flow fluctuations and related additional observables has
been identified. This has led to new concepts such as
nonvanishing odd harmonics v2n−1 at midrapidity [8],
nonidentical symmetry plane angles ψn and their inter-
correlations [9–14], the stochastic nature of the harmonic
vn and its probability density function PðvnÞ [15–20],
and, finally, the importance of higher order flow moments
hvkni (where the angular brackets denote an average over
all events, and k ≥ 2) [21]. Two distinct regimes for
anisotropic flow development are nowadays scrutinized
separately: geometry dominated (in midcentral collisions)
and fluctuation dominated (in the most central colli-
sions) [11].
Anisotropic flow is generated by the initial anisotropic

geometry and its fluctuations coupled with an expansion of
the produced medium. The initial coordinate space
anisotropy can be quantified in terms of the eccentricity
coefficients εn and the corresponding symmetry plane
angles Φn [8,15,22]. A great deal of effort is being invested
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to understand the relations between the momentum space
Fourier harmonics vn and the symmetry planes ψn on one
side, and their spatial counterparts εn and Φn on the other
side. These relations describe the response of the pro-
duced system to the initial coordinate space anisotropies,
and therefore provide a rich repository of constraints for
the system properties. In the early studies it was regularly
assumed that, for small eccentricities, the harmonics vn
respond linearly to the eccentricities εn of the same order,
vn ∝ εn, and that ψn ≃ Φn [8,10,23,24]. However, for
sizable eccentricities recent studies argue that the anisot-
ropies in momentum and coordinate space are related
instead with the matrix equation connecting a set of
anisotropic flow harmonics fvng and a set of eccentricity
coefficients fεng; it was demonstrated that the hydro-
dynamic response is both nondiagonal and nonlinear, and
that in general ψn ≠ Φn [9,11,25,26]. The first realization
led to the conclusion that a relationship between event-
by-event fluctuations of the amplitudes of two different
flow harmonics vm and vn can exist. This is hardly
surprising for even flow harmonics in noncentral colli-
sions because the ellipsoidal shape generates nonvanish-
ing values for all even harmonics v2n [27], not only for
elliptic flow. However, this simple geometrical argument
cannot explain the possible relation between the even and

odd flow harmonics in noncentral collisions, and the
argument is not applicable in the central collisions, where
all initial shapes are equally probable since they originate
solely from fluctuations. Recently a linear correlation
coefficient cða; bÞ was defined in this context, which
becomes 1 (−1) if observables a and b are fully linearly
(antilinearly) correlated and zero in the absence of
correlation [25]. Model calculations of this new observ-
able showed that neither v2 and v3 nor v2 and v4 are
linearly correlated in noncentral collisions. Most impor-
tantly, it was demonstrated that cðv2; v4Þ depends
strongly both on η=s of the QGP and on the value of
cðε2; ε4Þ, which quantifies the relationship between cor-
responding eccentricities in the initial state [25].
Therefore, it was concluded that new observables
cðvn; vmÞ, depending on the choice of flow harmonics
vn and vm, are sensitive both to the fluctuations of the
initial conditions and to the transport properties of the
QGP, with the potential to discriminate between the two
respective contributions when combined with a measure-
ment of individual flow harmonics [25].
In this Letter we study the relationship between event-

by-event fluctuations of magnitudes of two different flow
harmonics of order n and m by using a recently proposed
four-particle observable [28]:

⟪cosðmφ1 þ nφ2 −mφ3 − nφ4Þ⟫c ¼ ⟪cosðmφ1 þ nφ2 −mφ3 − nφ4Þ⟫
− ⟪cos½mðφ1 − φ2Þ�⟫⟪cos½nðφ1 − φ2Þ�⟫

¼ hv2mv2ni − hv2mihv2ni ð2Þ

with the condition m ≠ n for two positive integers m and n.
We refer to these new observables as the symmetric two-
harmonic four-particle cumulant, and use the notation
SCðm; nÞ, or just SC. The double angular brackets indicate
that the averaging procedure has been performed in two
steps—first, averaging over all distinct particle quadruplets in
an event, and then in the second step weighting the single-
event averages with the “number of combinations.” The latter
for single-event average four-particle correlations is math-
ematically equivalent to a unit weight for each individual
quadrupletwhen themultiplicitydiffers eventbyevent [29]. In
both two-particle correlators above all distinct particle pairs
are considered in each case. The four-particle cumulant in
Eq. (2) is less sensitive to nonflow correlations than any two-
or four-particle correlator on the right-hand side taken
individually [30,31]. The last equality is true only in the
absence of nonflow effects [32]. The observable in Eq. (2) is
zero in the absenceof flow fluctuations, or if themagnitudesof
the harmonics vm and vn are uncorrelated [28]. It is also
unaffected by the relationship between the symmetry plane
angles ψm and ψn. The four-particle cumulant in Eq. (2) is
proportional to the linear correlation coefficient cða; bÞ

introduced in Ref. [25] and discussed above, with a ¼ v2m
and b ¼ v2n. Experimentally, it is more reliable tomeasure the
higher order moments of the flow harmonics vknðk ≥ 2Þ with
two- and multiparticle correlation techniques [31,33,34],
than to measure the first moments vn with the event plane
method, due to the systematic uncertainties involved in the
event-by-event estimation of the symmetry planes [35,36].
Therefore, we have used the new multiparticle observable
in Eq. (2) as meant to be the least biased measure of the
correlation between event-by-event fluctuations of magni-
tudes of the two different harmonics vm and vn [28].
The two- and four-particle correlations in Eq. (2) were

evaluated in terms of Q vectors [33]. The Q vector (or flow
vector) in harmonic n for a set of M particles, where
throughout this Letter M is the multiplicity of an event, is
definedasQn ≡P

M
k¼1 e

inφk [7,37].Wehaveused for a single-
event average two-particle correlation hcosðnðφ1 − φ2ÞÞi the
following definition and analytic result in terms ofQ vectors:

1

ðM
2
Þ2!

XM

i;j¼1
ði≠jÞ

einðφi−φjÞ ¼ 1

ðM
2
Þ2! ½jQnj2 −M�: ð3Þ
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For four-particle correlation hcosðmφ1 þ nφ2 −mφ3 − nφ4Þi we used
1

ðM
4
Þ4!

XM

i;j;k;l¼1
ði≠j≠k≠lÞ

eiðmφiþnφj−mφk−nφlÞ ¼ 1

ðM
4
Þ4! fjQmj2jQnj2 − 2Re½QmþnQ�

mQ�
n� − 2Re½QmQ�

m−nQ�
n�

þ jQmþnj2 þ jQm−nj2 − ðM − 4ÞðjQmj2 þ jQnj2Þ þMðM − 6Þg: ð4Þ

In order to obtain the all-event average correlations,
denoted by ⟪ � � �⟫ in Eq. (2), we have weighted single-
event expressions in Eqs. (3) and (4) with weights
MðM−1Þ andMðM−1ÞðM−2ÞðM−3Þ, respectively [29].
The data used in this analysis were obtained with the

ALICE detector [38,39]. They consist of minimum-bias
Pb-Pb collisions recorded during the 2010 LHC Pb-Pb run
at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV. With the default event and track
selection criteria described below, we have obtained in total
about 1.8 × 105 events per 1% centrality bin width. All
individual systematic variations were combined in quad-
rature to obtain the final uncertainty.
The centrality was determined with the V0 detector

[40–42]. As a part of systematic checks the centrality was
determined independently with the time projection cham-
ber (TPC) [43] and the silicon pixel detector [44,45], which
have slightly worse resolution [42]. A systematic difference
of up to 3% was observed in the SCðm; nÞ results when
using different centrality estimations. Charged particles
were reconstructed with the TPC and the inner tracking
system [44,45] immersed in a 0.5 T solenoidal field. The
TPC is capable of detecting charged particles in the
transverse momentum range 0.1 < pT < 100 GeV=c, with
a pT resolution of less than 6% for tracks below 20 GeV=c.
Because of TPC dead zones between neighboring sectors,
the track finding efficiency is about 75% for pT ¼
200 MeV=c and then it saturates at about 85% for pT >
1 GeV=c in Pb-Pb collisions. The TPC covers the full
azimuth and has a pseudorapidity coverage of jηj < 0.9.
Tracks reconstructed using the TPC and inner tracking
system are referred to as global, while tracks reconstructed
only with the TPC are referred to as TPC only.
For online triggering, the V0 and silicon pixel detectors

were used [39]. The reconstructed primary vertex is
required to lie within �10 cm of the nominal interaction
point in the longitudinal direction along the beam axis. The
cut on the position of the primary vertex along the beam
axis was varied from �12 to �6 cm; the resulting SC
measurements are consistent with those obtained with the
default cut.
The main analysis was performed with global tracks

selected in the transverse momentum interval 0.2 < pT <
5.0 GeV=c and the pseudorapidity region jηj < 0.8. With
this choice of a low pT cutoff we are reducing event-by-
event biases from a smaller reconstruction efficiency at
lower pT, while the high pT cutoff was introduced to
reduce the contribution to the anisotropies from the jets.

Reconstructed tracks were required to have at least 70 TPC
space points (out of a maximum of 159). Only tracks with a
transverse distance of closest approach (DCA) to the
primary vertex less than 3 mm are accepted to reduce
the contamination from secondary tracks. Tracks with
kinks (the tracks that appear to change direction due to
multiple scattering, K� decays) were rejected.
An independent analysis was performed with TPC-only

and hybrid tracks (see below). For TPC-only tracks, the
DCA cut was relaxed to 3 cm, providing a different
sensitivity to contamination from the secondary tracks.
Both the azimuthal acceptance and the reconstruction
efficiency as a function of transverse momentum differ
between the TPC-only and global tracks. The resulting
difference between independent analyses with global and
TPC-only tracks was found to be 1%–5% in all the
centrality ranges studied, both for SC(3,2) and SC(4,2).
In another independent analysis with hybrid tracks, three
different types of tracks were combined, in order to
overcome the nonuniform azimuthal acceptance due to
dead zones in the silicon pixel detector, and to achieve the
best transverse momentum resolution [39]. In this analysis
the DCA cut was set to 3.2 cm in the longitudinal and to
2.4 cm in the transverse direction. The results between the
global and hybrid tracks differ by 3% to 5%, depending on
the observable considered.
One of the largest contributions to the systematic

uncertainty originates from the nonuniform reconstruction
efficiency as a function of transverse momentum. For the
observables SC(3,2) and SC(4,2) the uncertainty is 7% and
8%, respectively. In order to correct the measurements of
these azimuthal correlators for various detector inefficien-
cies, we have constructed the particle weights as a function
of azimuthal angle φ and transverse momentum pT , and
used the prescription outlined in Ref. [28]. In particular, pT
weights were constructed as a ratio of the transverse
momentum distribution obtained from Monte Carlo gen-
erated tracks and from tracks reconstructed after they have
passed through the detector simulated with GEANT3 [46].
We have used four Monte Carlo models in this Letter.

The HIJING model [47,48] was utilized to obtain the pT
weights [28]. Second, the HIJING model was used to
estimate the strength of the nonflow correlations (typically
few-particle correlations insensitive to the collision geom-
etry). We have evaluated the observables of interest in
coordinate space by modeling the initial conditions with a
Monte Carlo Glauber model [49]. We have compared the

PRL 117, 182301 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

28 OCTOBER 2016

182301-3



centrality dependence of our observables with the theo-
retical model from Ref. [50], where the initial energy
density profiles are calculated using a next-to-leading order
perturbative-QCD+saturation model [51,52]. The sub-
sequent spacetime evolution is described by relativistic
dissipative fluid dynamics with different parametrizations
for the temperature dependence of the shear viscosity to
entropy density ratio η=sðTÞ. Each of the η=sðTÞ para-
metrizations is adjusted to reproduce the measured vn from
central to midperipheral collisions. Finally, we provide an
independent estimate of the centrality dependence of our
observables by utilizing the AMPT model [53].
The centrality dependence of SC(4,2) (red squares) and

SC(3,2) (blue circles) is presented in Fig. 1. Positive values
of SC(4,2) are observed for all centralities. This suggests a
correlation between the event-by-event fluctuations of v2
and v4, which indicates that finding v2 larger than hv2i in
an event enhances the probability of finding v4 larger than
hv4i in that event. On the other hand, the negative results of
SC(3,2) show the anticorrelation between the v2 and v3
magnitudes, which further imply that finding v2 larger than
hv2i enhances the probability of finding v3 smaller than
hv3i. We have calculated the SC observables using HIJING,
which does not include anisotropic collectivity but, e.g.,
azimuthal correlations due to jet production [47,48]. It is
found that in HIJING both ⟪cosðmφ1þnφ2−mφ3 −nφ4Þ⟫
and ⟪cos½mðφ1−φ2Þ�⟫⟪cos½nðφ1−φ2Þ�⟫ are nonzero.
However, the calculated SC observables from HIJING are
compatible with zero for all centralities, which suggests
that the SC measurements are nearly insensitive to nonflow
correlations. We have also performed a study using the like-
sign technique, which is another powerful approach to
estimate the nonflow effects [4]. It was found that the
difference between the correlations for like-sign and all
charged combinations is within 10%. This demonstrates

that nonzero values of SC measurements cannot be
explained by nonflow effects.
A study based on the AMPT model showed that the

observed (anti)correlations are also sensitive to the trans-
port properties, e.g., the partonic and hadronic interactions
[20,28]. Figure 2 shows the comparison of SC(3,2) and
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FIG. 1. Centrality dependence of the observables SC(4,2) (red
filled squares) and SC(3,2) (blue filled circles) in Pb-Pb collisions
at 2.76 TeV. Systematic errors are represented with boxes. The
results for the HIJING model are shown with hollow markers.
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FIG. 2. AMPT model predictions are shown as hollow symbols
in the (top) and (middle) panels. Top: comparison of the
observables SC(4,2) (red filled squares) and SC(3,2) (blue filled
circles) to the theoretical model from Ref. [50]. The solid lines
indicate the predictions with constant η=s, while the dashed lines
indicate predictions for different parametrizations of the η=s
temperature dependence (labeled in the same way as in Fig. 1 in
Ref. [50]). Middle: results divided by hv2mihv2ni. Bottom: com-
parison to the Monte Carlo Glauber model using wounded
nucleon (WN) and binary collision (BC) weights.
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SC(4,2) to the AMPT calculations, which generally predict
the correct sign but underestimate their magnitude. The
comparison between experimental data and the theoretical
calculations [50], which incorporate both the initial con-
ditions and the system evolution, is shown in Fig. 2 (top).
The model captures qualitatively the centrality dependence,
but not quantitatively. Most notably, there is no single
centrality for which a given η=sðTÞ parametrization
describes simultaneously both SC(4,2) and SC(3,2). On
the other hand, the same theoretical model captures
quantitatively the centrality dependence of the individual
v2, v3, and v4 harmonics with a precision better than 10%
in the central and midcentral collisions [50]. We therefore
conclude that the individual flow harmonics vn and new
SCðm; nÞ observables together provide a better handle on
the initial conditions and η=sðTÞ than each of them alone.
This is emphasized in Fig. 2 (middle), where the SC(3,2)
and SC(4,2) observables were divided with the products
hv23ihv22i and hv24ihv22i, respectively, in order to obtain the
normalized SC observables (the result for 60%–70% is
omitted due to the large statistical uncertainty). These
products were obtained with two-particle correlations
and using a pseudorapidity gap of jΔηj > 1.0 to suppress
biases from few-particle nonflow correlations. We have
found that the normalized SC(4,2) observable exhibits
much better sensitivity to different η=sðTÞ parametrizations
than the normalized SC(3,2) observable, see Fig. 2
(middle), and than the individual flow harmonics [50].
These findings indicate that the normalized SC(3,2) observ-
able is sensitive mainly to the initial conditions, while the
normalized SC(4,2) observable is sensitive to both the
initial conditions and the system properties, which is
consistent with the prediction from Ref. [25].
It can be seen in Fig. 1 that SC(4,2) and SC(3,2) increase

nonlinearly up to centrality 60%. Assuming only a linear
response, vn ∝ εn, we expect that the normalized SCðm; nÞ
evaluated in coordinate space can capture the measurement
of the centrality dependence of the normalized SCðm; nÞ in
the momentum space. The correlations between the nth
and mth order harmonics were estimated with calculations
of ðhε2nε2mi − hε2nihε2miÞ=hε2nihε2mi, i.e., a normalized SC
observable in the coordinate space, which we denote
SCðm; nÞε=hε2nihε2mi. Here, εn (εm) is the nth (mth) order
coordinate space anisotropy, following the definition in
Ref. [8]. Different scenarios of the Monte Carlo Glauber
model, named the wounded nucleon and binary collision
weights, have been used. An increasing trend from central
to peripheral collisions with different sign has been
observed in Fig. 2 (bottom) for SC(4,2) and SC(3,2).
A dramatic deviation of SC(4,2) between data and the
model calculation is observed for noncentral collisions.
This deviation increases from midcentral to peripheral,
which could be understood as the contribution of the
nonlinear response (ε2 contributes to v4) increasing as a
function of centrality, which is consistent with that reported

in Ref. [54]. Since the normalized SC(3,2) appears to be
sensitive only to the initial conditions and not to η=sðTÞ,
see Fig. 2 (middle), the Monte Carlo Glauber model
captures better its centrality dependence than it does for
the normalized SC(4,2) observable, see Fig. 2 (bottom).
The relationship between the flow harmonics v2, v3, v4

has also been investigated by the ATLAS Collaboration
using the event shape engineering technique [54–56]. For
events with a larger v2, the ATLAS Collaboration showed
these have a smaller than average v3, and a larger than
average v4. For events with a smaller v2, the opposite trend
occurred. These observations are consistent with the
patterns observed via the SC measurements presented in
this Letter. The SC observables, however, provide a
compact quantitative measure of these correlations, without
fitting correlations between vn and vm. This simplifies the
quantitative comparison of the SC observables with hydro-
dynamical calculations as shown in Fig. 2.
In the most central collisions the anisotropies originate

mainly from fluctuations; i.e., the initial ellipsoidal
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FIG. 3. Top: correlated and anticorrelated event-by-event fluc-
tuations in coordinate (Monte Carlo Glauber model) and mo-
mentum space (data). Bottom: normalized SC observables, where
the pseudorapidity gap jΔηj > 1.0 was applied in both two-
particle correlations in the denominator used to estimate the
individual flow harmonics.
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geometry characteristic for midcentral collisions plays little
role in this regime. Therefore, we have performed a
separate analysis for the centrality range 0%–10% in
centrality bins of 1%. The results are presented in
Fig. 3. We observe that event-by-event fluctuations of v2
and v4 remain correlated, and of v2 and v3 anticorrelated,
also in this regime. However, the strength of the (anti)
correlations exhibits a different centrality dependence than
for the wider centrality range shown in Fig. 1. As seen in
Fig. 3 (top) the centrality dependence cannot be linearly
extrapolated from the 0%–10% region to the full centrality
range. Comparison with the two different parametrizations
of the Monte Carlo Glauber initial conditions for the
normalized SC observables presented in Fig. 3 (bottom)
suggests that the binary collision parametrization (binary
collision weights) is favored by the data in most central
collisions. This agreement may suggest the scaling with the
number of quark participants [57–61] in central collisions
at the LHC energies.
In summary, we have measured for the first time the new

multiparticle observables, the symmetric two-harmonic
four-particle cumulants, which quantify the relationship
between the event-by-event fluctuations of two different
flow harmonics. We have found that the fluctuations of v2
and v3 are anticorrelated in all centralities; however, the
details of the centrality dependence differ in the fluctuta-
tion-dominated (most central) and the geometry-dominated
(midcentral) regimes. The fluctuations of v2 and v4 are
correlated for all centralities. The SC observables were
used to discriminate between the state-of-the-art hydro
model calculations with different parametrizations of the
temperature dependence of η=s, for all of which the
centrality dependence of elliptic, triangular, and quadran-
gular flow has a weaker sensitivity at the LHC. In
particular, the centrality dependence of SC(4,2) cannot
be captured with the constant η=s. We have also used our
results to discriminate between two different parametriza-
tions of the initial conditions and have demonstrated that in
the fluctuation-dominated regime (in central collisions) the
Monte Carlo Glauber initial conditions with binary colli-
sion weights are favored over wounded nucleon weights.

The ALICE Collaboration would like to thank Harri
Niemi for providing the latest predictions from the state-of-
the-art hydrodynamic model. The ALICE Collaboration
would like to thank all its engineers and technicians for
their invaluable contributions to the construction of the
experiment and the CERN accelerator teams for the out-
standing performance of the LHC complex. The ALICE
Collaboration gratefully acknowledges the resources and
support provided by all Grid centers and the Worldwide
LHC Computing Grid (WLCG) Collaboration. The ALICE
Collaboration acknowledges the following funding agen-
cies for their support in building and running the ALICE
detector: State Committee of Science, World Federation of
Scientists (WFS) and Swiss Fonds Kidagan, Armenia;

Conselho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq), Financiadora de Estudos e Projetos
(FINEP), Fundação de Amparo à Pesquisa do Estado de
São Paulo (FAPESP); Ministry of Science and Technology
of China (MSTC), National Natural Science Foundation of
China (NSFC) and Ministry of Education of China
(MOEC); Ministry of Science, Education and Sports of
Croatia and Unity through Knowledge Fund, Croatia;
Ministry of Education and Youth of the Czech Republic;
Danish Natural Science Research Council, the Carlsberg
Foundation and the Danish National Research Foundation;
The European Research Council under the European
Community’s Seventh Framework Programme; the
Helsinki Institute of Physics and the Academy of
Finland; the French Centre national de la recherche
scientifique-Institut national de physique nucléaire et de
physique des particules (CNRS-IN2P3), the “Region Pays
de Loire,” “Region Alsace,” “Region Auvergne” and CEA,
France; German Bundesministerium fur Bildung,
Wissenschaft, Forschung und Technologie (BMBF) and
the Helmholtz Association; General Secretariat for
Research and Technology, Ministry of Development,
Greece; National Research, Development and Innovation
Office (NKFIH), Hungary; Council of Scientific and
Industrial Research (CSIR), New Delhi; Department of
Atomic Energy and Department of Science and Technology
of the Government of India; Istituto Nazionale di Fisica
Nucleare (INFN) and Centro Fermi—Museo Storico della
Fisica e Centro Studi e Ricerche “Enrico Fermi,” Italy;
Japan Society for the Promotion of Science (JSPS)
KAKENHI and MEXT, Japan; National Research
Foundation of Korea (NRF); Consejo Nacional de
Cienca y Tecnologia (CONACYT), Direccion General de
Asuntos del Personal Academico (DGAPA), México,
Amerique Latine Formation academique—European
Commission (ALFA-EC) and the EPLANET Program
(European Particle Physics Latin American Network);
Stichting voor Fundamenteel Onderzoek der Materie
(FOM) and the Nederlandse Organisatie voor
Wetenschappelijk Onderzoek (NWO), Netherlands;
Research Council of Norway (NFR); Pontificia
Universidad Católica del Perú; National Science Centre,
Poland; Ministry of National Education/Institute for
Atomic Physics and National Council of Scientific
Research in Higher Education (CNCSI-UEFISCDI),
Romania; Joint Institute for Nuclear Research, Dubna;
Ministry of Education and Science of Russian Federation,
Russian Academy of Sciences, Russian Federal Agency of
Atomic Energy, Russian Federal Agency for Science and
Innovations and The Russian Foundation for Basic
Research; Ministry of Education of Slovakia;
Department of Science and Technology, South Africa;
Centro de Investigaciones Energeticas, Medioambientales
y Tecnologicas (CIEMAT), E-Infrastructure shared
between Europe and Latin America (EELA), Ministerio

PRL 117, 182301 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

28 OCTOBER 2016

182301-6



de Economía y Competitividad (MINECO) of Spain,
Xunta de Galicia (Consellería de Educación), Centro
de Aplicaciones Tecnológicas y Desarrollo Nuclear
(CEADEN), Cubaenergía, Cuba, and IAEA
(International Atomic Energy Agency); Swedish
Research Council (VR) and Knut & Alice Wallenberg
Foundation (KAW); National Science and Technology
Development Agency (NSDTA), Suranaree University of
Technology (SUT) and Office of the Higher Education
Commission under NRU project of Thailand; Ukraine
Ministry of Education and Science; United Kingdom
Science and Technology Facilities Council (STFC); the
United States Department of Energy, the United States
National Science Foundation, the State of Texas, and the
State of Ohio.

[1] J.-Y. Ollitrault, Anisotropy as a signature of transverse
collective flow, Phys. Rev. D 46. 229 (1992).

[2] S. A. Voloshin, A. M. Poskanzer, and R. Snellings,
Collective phenomena in noncentral nuclear collisions,
arXiv:0809.2949.

[3] K. H. Ackermann et al. (STAR Collaboration), Elliptic Flow
in Auþ Au Collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 130 GeV, Phys. Rev.
Lett. 86, 402 (2001).

[4] K. Aamodt et al. (ALICE Collaboration), Elliptic Flow
of Charged Particles in Pb-Pb Collisions at 2.76 TeV,
Phys. Rev. Lett. 105, 252302 (2010).

[5] J. Adam et al. (ALICE Collaboration), Anisotropic Flow of
Charged Particles in Pb-Pb Collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV,
Phys. Rev. Lett. 116, 132302 (2016).

[6] P. K. Kovtun, D. T. Son, and A. O. Starinets, Viscosity in
Strongly Interacting Quantum Field Theories from Black
Hole Physics, Phys. Rev. Lett. 94, 111601 (2005).

[7] S. Voloshin and Y. Zhang, Flow study in relativistic nuclear
collisions by Fourier expansion of azimuthal particle dis-
tributions, Z. Phys. C 70, 665 (1996).

[8] B. Alver and G. Roland, Collision geometry fluctuations
and triangular flow in heavy-ion collisions, Phys. Rev. C 81,
054905 (2010); 82, 039903(E) (2010).

[9] G.-Y. Qin, H. Petersen, S. A. Bass, and B. Muller, Trans-
lation of collision geometry fluctuations into momentum
anisotropies in relativistic heavy-ion collisions, Phys. Rev.
C 82, 064903 (2010).

[10] D. Teaney and L. Yan, Triangularity and dipole asymmetry
in heavy ion collisions, Phys. Rev. C 83, 064904 (2011).

[11] Z. Qiu and U.W. Heinz, Event-by-event shape and flow
fluctuations of relativistic heavy-ion collision fireballs,
Phys. Rev. C 84, 024911 (2011).

[12] K. Aamodt et al. (ALICE Collaboration), Higher Harmonic
Anisotropic Flow Measurements of Charged Particles in
Pb-Pb Collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV, Phys. Rev. Lett.
107, 032301 (2011).

[13] A. Adare et al. (PHENIX Collaboration), Measurements of
Higher-Order Flow Harmonics in Auþ Au Collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, Phys. Rev. Lett. 107, 252301 (2011).

[14] G. Aad et al. (ATLAS Collaboration), Measurement of
event-plane correlations in

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV lead-lead
collisions with the ATLAS detector, Phys. Rev. C 90,
024905 (2014).

[15] S. A. Voloshin, A. M. Poskanzer, A. Tang, and G. Wang,
Elliptic flow in the Gaussian model of eccentricity fluctua-
tions, Phys. Lett. B 659, 537 (2008).

[16] C. Gale, S. Jeon, B. Schenke, P. Tribedy, and R.
Venugopalan, Initial state fluctuations and higher harmonic
flow in heavy-ion collisions, Nucl. Phys. A904–905, 409c
(2013).

[17] G. Aad et al. (ATLAS Collaboration), Measurement of the
distributions of event-by-event flow harmonics in lead-lead
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV with the ATLAS detector at
the LHC, J. High Energy Phys. 11 (2013) 183.

[18] L. Yan and J.-Y. Ollitrault, Universal Fluctuation-Driven
Eccentricities in Proton-Proton, Proton-Nucleus and
Nucleus-Nucleus Collisions, Phys. Rev. Lett. 112, 082301
(2014).

[19] L. Yan, J.-Y. Ollitrault, and A.M. Poskanzer, Eccentricity
distributions in nucleus-nucleus collisions, Phys. Rev. C 90,
024903 (2014).

[20] Y. Zhou, K. Xiao, Z. Feng, F. Liu, and R. Snellings,
Anisotropic distributions in a multi-phase transport model,
Phys. Rev. C 93, 034909 (2016).

[21] R. S. Bhalerao, J.-Y. Ollitrault, and S. Pal, Characterizing
flow fluctuations with moments, Phys. Lett. B 742, 94
(2015).

[22] B. Alver et al. (PHOBOS Collaboration), System Size,
Energy, Pseudorapidity, and Centrality Dependence of
Elliptic Flow, Phys. Rev. Lett. 98, 242302 (2007).

[23] B. H. Alver, C. Gombeaud, M. Luzum, and J.-Y. Ollitrault,
Triangular flow in hydrodynamics and transport theory,
Phys. Rev. C 82, 034913 (2010).

[24] R. A. Lacey, D. Reynolds, A. Taranenko, N. N. Ajitanand,
J. M. Alexander, F.-H. Liu, Y. Gu, and A. Mwai, Acoustic
scaling of anisotropic flow in shape-engineered events:
Implications for extraction of the specific shear viscosity
of the quark gluon plasma, arXiv:1311.1728.

[25] H. Niemi, G. S. Denicol, H. Holopainen, and P. Huovinen,
Event-by-event distributions of azimuthal asymmetries in
ultrarelativistic heavy-ion collisions, Phys. Rev. C 87,
054901 (2013).

[26] L. Yan and J.-Y. Ollitrault, ν4, ν5, ν6, ν7: Nonlinear hydro-
dynamic response versus LHC data, Phys. Lett. B 744, 82
(2015).

[27] P. F. Kolb, v4: A Small, but sensitive observable for heavy
ion collisions, Phys. Rev. C 68, 031902 (2003).

[28] A. Bilandzic, C. H. Christensen, K. Gulbrandsen, A.
Hansen, and Y. Zhou, Generic framework for anisotropic
flow analyses with multiparticle azimuthal correlations,
Phys. Rev. C 89, 064904 (2014).

[29] A. Bilandzic, Ph.D. thesis, Utrecht U., 2012, https://
inspirehep.net/record/1186272/files/CERN‑THESIS‑2012‑
018.pdf.

[30] N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, A new method
for measuring azimuthal distributions in nucleus-nucleus
collisions, Phys. Rev. C 63, 054906 (2001).

[31] N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, Flow analysis
from multiparticle azimuthal correlations, Phys. Rev. C 64,
054901 (2001).

PRL 117, 182301 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

28 OCTOBER 2016

182301-7

http://dx.doi.org/10.1103/PhysRevD.46.229
http://arXiv.org/abs/0809.2949
http://dx.doi.org/10.1103/PhysRevLett.86.402
http://dx.doi.org/10.1103/PhysRevLett.86.402
http://dx.doi.org/10.1103/PhysRevLett.105.252302
http://dx.doi.org/10.1103/PhysRevLett.116.132302
http://dx.doi.org/10.1103/PhysRevLett.94.111601
http://dx.doi.org/10.1007/s002880050141
http://dx.doi.org/10.1103/PhysRevC.81.054905
http://dx.doi.org/10.1103/PhysRevC.81.054905
http://dx.doi.org/10.1103/PhysRevC.82.039903
http://dx.doi.org/10.1103/PhysRevC.82.064903
http://dx.doi.org/10.1103/PhysRevC.82.064903
http://dx.doi.org/10.1103/PhysRevC.83.064904
http://dx.doi.org/10.1103/PhysRevC.84.024911
http://dx.doi.org/10.1103/PhysRevLett.107.032301
http://dx.doi.org/10.1103/PhysRevLett.107.032301
http://dx.doi.org/10.1103/PhysRevLett.107.252301
http://dx.doi.org/10.1103/PhysRevC.90.024905
http://dx.doi.org/10.1103/PhysRevC.90.024905
http://dx.doi.org/10.1016/j.physletb.2007.11.043
http://dx.doi.org/10.1016/j.nuclphysa.2013.02.037
http://dx.doi.org/10.1016/j.nuclphysa.2013.02.037
http://dx.doi.org/10.1007/JHEP11(2013)183
http://dx.doi.org/10.1103/PhysRevLett.112.082301
http://dx.doi.org/10.1103/PhysRevLett.112.082301
http://dx.doi.org/10.1103/PhysRevC.90.024903
http://dx.doi.org/10.1103/PhysRevC.90.024903
http://dx.doi.org/10.1103/PhysRevC.93.034909
http://dx.doi.org/10.1016/j.physletb.2015.01.019
http://dx.doi.org/10.1016/j.physletb.2015.01.019
http://dx.doi.org/10.1103/PhysRevLett.98.242302
http://dx.doi.org/10.1103/PhysRevC.82.034913
http://arXiv.org/abs/1311.1728
http://dx.doi.org/10.1103/PhysRevC.87.054901
http://dx.doi.org/10.1103/PhysRevC.87.054901
http://dx.doi.org/10.1016/j.physletb.2015.03.040
http://dx.doi.org/10.1016/j.physletb.2015.03.040
http://dx.doi.org/10.1103/PhysRevC.68.031902
http://dx.doi.org/10.1103/PhysRevC.89.064904
https://inspirehep.net/record/1186272/files/CERN-THESIS-2012-018.pdf
https://inspirehep.net/record/1186272/files/CERN-THESIS-2012-018.pdf
https://inspirehep.net/record/1186272/files/CERN-THESIS-2012-018.pdf
https://inspirehep.net/record/1186272/files/CERN-THESIS-2012-018.pdf
https://inspirehep.net/record/1186272/files/CERN-THESIS-2012-018.pdf
http://dx.doi.org/10.1103/PhysRevC.63.054906
http://dx.doi.org/10.1103/PhysRevC.64.054901
http://dx.doi.org/10.1103/PhysRevC.64.054901


[32] R. S. Bhalerao, M. Luzum, and J.-Y. Ollitrault, Determining
initial-state fluctuations from flow measurements in heavy-
ion collisions, Phys. Rev. C 84, 034910 (2011).

[33] A. Bilandzic, R. Snellings, and S. Voloshin, Flow analysis
with cumulants: Direct calculations, Phys. Rev. C 83,
044913 (2011).

[34] S. Wang, Y. Z. Jiang, Y. M. Liu, D. Keane, D. Beavis, S. Y.
Chu, S. Y. Fung, M. Vient, C. Hartnack, and H. Stocker,
Measurement of collective flow in heavy ion collisions
using particle pair correlations, Phys. Rev. C 44, 1091
(1991).

[35] A. M. Poskanzer and S. A. Voloshin, Methods for analyzing
anisotropic flow in relativistic nuclear collisions, Phys. Rev.
C 58, 1671 (1998).

[36] M. Luzum and J.-Y. Ollitrault, Eliminating experimental
bias in anisotropic-flow measurements of high-energy
nuclear collisions, Phys. Rev. C 87, 044907 (2013).

[37] J. Barrette et al. (E877 Collaboration), Observation
of Anisotropic Event Shapes and Transverse Flow in
Auþ Au Collisions at AGS Energy, Phys. Rev. Lett. 73,
2532 (1994).

[38] K. Aamodt et al. (ALICE Collaboration), The ALICE
experiment at the CERN LHC, J. Instrum. 3, S08002 (2008).

[39] B. B. Abelev et al. (ALICE Collaboration), Performance of
the ALICE Experiment at the CERN LHC, Int. J. Mod.
Phys. A 29, 1430044 (2014).

[40] P. Cortese et al. (ALICE Collaboration), Report No. CERN-
LHCC-2004-025, https://cds.cern.ch/record/781854/files/
lhcc‑2004‑025.pdf.

[41] E. Abbas et al. (ALICE Collaboration), Performance of the
ALICE VZERO system, J. Instrum. 8, P10016 (2013).

[42] B. Abelev et al. (ALICE Collaboration), Centrality deter-
mination of Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV with
ALICE, Phys. Rev. C 88, 044909 (2013).

[43] J. Alme et al., The ALICE TPC, a large 3-dimensional
tracking device with fast readout for ultra-high multiplicity
events, Nucl. Instrum. Methods Phys. Res., Sect. A 622, 316
(2010).

[44] G.Dellacasa et al. (ALICECollaboration), ReportNo.CERN-
LHCC-99-12, https://cds.cern.ch/record/391175?ln=en.

[45] K. Aamodt et al. (ALICE Collaboration), Alignment of
the ALICE Inner Tracking System with cosmic-ray tracks,
J. Instrum. 5, P03003 (2010).

[46] R. Brun, F. Carminati, and S. Giani, Report No. CERN-
W5013, 1994, https://cds.cern.ch/record/1082634/files/
geantall_CERN‑W5013.pdf.

[47] X.-N. Wang and M. Gyulassy, HIJING: A Monte Carlo
model for multiple jet production in pp, pA and AA
collisions, Phys. Rev. D 44, 3501 (1991).

[48] M. Gyulassy and X.-N. Wang, HIJING 1.0: A Monte Carlo
program for parton and particle production in high-energy
hadronic and nuclear collisions, Comput. Phys. Commun.
83, 307 (1994).

[49] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg,
Glauber modeling in high energy nuclear collisions,
Annu. Rev. Nucl. Part. Sci. 57, 205 (2007).

[50] H. Niemi, K. J. Eskola, and R. Paatelainen, Event-by-event
fluctuations in perturbative QCDþ saturation þ hydro
model: pinning down QCD matter shear viscosity in ultra-
relativistic heavy-ion collisions, Phys. Rev. C 93, 024907
(2016).

[51] R. Paatelainen, K. J. Eskola, H. Holopainen, and K.
Tuominen, Multiplicities and pT spectra in ultrarelativistic
heavy ion collisions from a next-to-leading order improved
perturbative QCD þ saturationþ hydrodynamics model,
Phys. Rev. C 87, 044904 (2013).

[52] R. Paatelainen, K. J. Eskola, H. Niemi, and K. Tuominen,
Fluid dynamics with saturated minijet initial conditions in
ultrarelativistic heavy-ion collisions, Phys. Lett. B 731, 126
(2014).

[53] Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang, and S. Pal, A
Multi-phase transport model for relativistic heavy ion
collisions, Phys. Rev. C 72, 064901 (2005).

[54] G. Aad et al. (ATLAS Collaboration), Measurement of the
correlation between flow harmonics of different order in
lead-lead collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV with the ATLAS
detector, Phys. Rev. C 92, 034903 (2015).

[55] J. Schukraft, A. Timmins, and S. A. Voloshin, Ultra-
relativistic nuclear collisions: Event shape engineering,
Phys. Lett. B 719, 394 (2013).

[56] H. Petersen and B. Muller, Possibility of event shape
selection in relativistic heavy ion collisions, Phys. Rev. C
88, 044918 (2013).

[57] S. Eremin and S. Voloshin, Nucleon participants or quark
participants?, Phys. Rev. C 67, 064905 (2003).

[58] M. Miller and R. Snellings, Eccentricity fluctuations and
its possible effect on elliptic flow measurements, arXiv:
nucl-ex/0312008.

[59] L. Adamczyk et al. (STAR Collaboration), Azimuthal
anisotropy in Uþ U and Auþ Au collisions at RHIC,
Phys. Rev. Lett. 115, 222301 (2015).

[60] A. Adare et al. (PHENIX Collaboration), Transverse
energy production and charged-particle multiplicity at
midrapidity in various systems from

ffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7 to
200 GeV, Phys. Rev. C 93, 024901 (2016).

[61] C. Loizides, Glauber modeling of high-energy nuclear
collisions at sub-nucleon level, Phys. Rev. C 94, 024914
(2016).

J. Adam,39 D. Adamová,85 M.M. Aggarwal,89 G. Aglieri Rinella,35 M. Agnello,111 N. Agrawal,48 Z. Ahammed,134

S. Ahmad,18 S. U. Ahn,69 S. Aiola,138 A. Akindinov,55 S. N. Alam,134 D. S. D. Albuquerque,122 D. Aleksandrov,81

B. Alessandro,111 D. Alexandre,102 R. Alfaro Molina,64 A. Alici,12,105 A. Alkin,3 J. R. M. Almaraz,120 J. Alme,22,37 T. Alt,42

S. Altinpinar,22 I. Altsybeev,133 C. Alves Garcia Prado,121 C. Andrei,79 A. Andronic,98 V. Anguelov,94 T. Antičić,99

F. Antinori,108 P. Antonioli,105 L. Aphecetche,114 H. Appelshäuser,61 S. Arcelli,27 R. Arnaldi,111 O.W. Arnold,36,95

PRL 117, 182301 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

28 OCTOBER 2016

182301-8

http://dx.doi.org/10.1103/PhysRevC.84.034910
http://dx.doi.org/10.1103/PhysRevC.83.044913
http://dx.doi.org/10.1103/PhysRevC.83.044913
http://dx.doi.org/10.1103/PhysRevC.44.1091
http://dx.doi.org/10.1103/PhysRevC.44.1091
http://dx.doi.org/10.1103/PhysRevC.58.1671
http://dx.doi.org/10.1103/PhysRevC.58.1671
http://dx.doi.org/10.1103/PhysRevC.87.044907
http://dx.doi.org/10.1103/PhysRevLett.73.2532
http://dx.doi.org/10.1103/PhysRevLett.73.2532
http://dx.doi.org/10.1088/1748-0221/3/08/S08002
http://dx.doi.org/10.1142/S0217751X14300440
http://dx.doi.org/10.1142/S0217751X14300440
https://cds.cern.ch/record/781854/files/lhcc-2004-025.pdf
https://cds.cern.ch/record/781854/files/lhcc-2004-025.pdf
https://cds.cern.ch/record/781854/files/lhcc-2004-025.pdf
https://cds.cern.ch/record/781854/files/lhcc-2004-025.pdf
https://cds.cern.ch/record/781854/files/lhcc-2004-025.pdf
http://dx.doi.org/10.1088/1748-0221/8/10/P10016
http://dx.doi.org/10.1103/PhysRevC.88.044909
http://dx.doi.org/10.1016/j.nima.2010.04.042
http://dx.doi.org/10.1016/j.nima.2010.04.042
https://cds.cern.ch/record/391175?ln=en
https://cds.cern.ch/record/391175?ln=en
https://cds.cern.ch/record/391175?ln=en
http://dx.doi.org/10.1088/1748-0221/5/03/P03003
https://cds.cern.ch/record/1082634/files/geantall_CERN-W5013.pdf
https://cds.cern.ch/record/1082634/files/geantall_CERN-W5013.pdf
https://cds.cern.ch/record/1082634/files/geantall_CERN-W5013.pdf
https://cds.cern.ch/record/1082634/files/geantall_CERN-W5013.pdf
https://cds.cern.ch/record/1082634/files/geantall_CERN-W5013.pdf
http://dx.doi.org/10.1103/PhysRevD.44.3501
http://dx.doi.org/10.1016/0010-4655(94)90057-4
http://dx.doi.org/10.1016/0010-4655(94)90057-4
http://dx.doi.org/10.1146/annurev.nucl.57.090506.123020
http://dx.doi.org/10.1103/PhysRevC.93.024907
http://dx.doi.org/10.1103/PhysRevC.93.024907
http://dx.doi.org/10.1103/PhysRevC.87.044904
http://dx.doi.org/10.1016/j.physletb.2014.02.018
http://dx.doi.org/10.1016/j.physletb.2014.02.018
http://dx.doi.org/10.1103/PhysRevC.72.064901
http://dx.doi.org/10.1103/PhysRevC.92.034903
http://dx.doi.org/10.1016/j.physletb.2013.01.045
http://dx.doi.org/10.1103/PhysRevC.88.044918
http://dx.doi.org/10.1103/PhysRevC.88.044918
http://dx.doi.org/10.1103/PhysRevC.67.064905
http://arXiv.org/abs/nucl-ex/0312008
http://arXiv.org/abs/nucl-ex/0312008
http://dx.doi.org/10.1103/PhysRevLett.115.222301
http://dx.doi.org/10.1103/PhysRevC.93.024901
http://dx.doi.org/10.1103/PhysRevC.94.024914
http://dx.doi.org/10.1103/PhysRevC.94.024914


I. C. Arsene,21 M. Arslandok,61 B. Audurier,114 A. Augustinus,35 R. Averbeck,98 M. D. Azmi,18 A. Badalà,107 Y.W. Baek,68

S. Bagnasco,111 R. Bailhache,61 R. Bala,92 S. Balasubramanian,138 A. Baldisseri,15 R. C. Baral,58 A. M. Barbano,26

R. Barbera,28 F. Barile,32 G. G. Barnaföldi,137 L. S. Barnby,35,102 V. Barret,71 P. Bartalini,7 K. Barth,35 J. Bartke,118,†

E. Bartsch,61 M. Basile,27 N. Bastid,71 S. Basu,134 B. Bathen,62 G. Batigne,114 A. Batista Camejo,71 B. Batyunya,67

P. C. Batzing,21 I. G. Bearden,82 H. Beck,61,94 C. Bedda,111 N. K. Behera,49,51 I. Belikov,65 F. Bellini,27 H. Bello Martinez,2

R. Bellwied,123 R. Belmont,136 E. Belmont-Moreno,64 L. G. E. Beltran,120 V. Belyaev,76 G. Bencedi,137 S. Beole,26

I. Berceanu,79 A. Bercuci,79 Y. Berdnikov,87 D. Berenyi,137 R. A. Bertens,54 D. Berzano,35 L. Betev,35 A. Bhasin,92

I. R. Bhat,92 A. K. Bhati,89 B. Bhattacharjee,44 J. Bhom,118,129 L. Bianchi,123 N. Bianchi,73 C. Bianchin,136 J. Bielčík,39

J. Bielčíková,85 A. Bilandzic,36,82,95 G. Biro,137 R. Biswas,4 S. Biswas,4,80 S. Bjelogrlic,54 J. T. Blair,119 D. Blau,81

C. Blume,61 F. Bock,75,94 A. Bogdanov,76 H. Bøggild,82 L. Boldizsár,137 M. Bombara,40 J. Book,61 H. Borel,15 A. Borissov,97

M. Borri,84,125 F. Bossú,66 E. Botta,26 C. Bourjau,82 P. Braun-Munzinger,98 M. Bregant,121 T. Breitner,60 T. A. Broker,61

T. A. Browning,96 M. Broz,39 E. J. Brucken,46 E. Bruna,111 G. E. Bruno,32 D. Budnikov,100 H. Buesching,61 S. Bufalino,26,35

P. Buncic,35 O. Busch,129 Z. Buthelezi,66 J. B. Butt,16 J. T. Buxton,19 J. Cabala,116 D. Caffarri,35 X. Cai,7 H. Caines,138

L. Calero Diaz,73 A. Caliva,54 E. Calvo Villar,103 P. Camerini,25 F. Carena,35 W. Carena,35 F. Carnesecchi,27

J. Castillo Castellanos,15 A. J. Castro,126 E. A. R. Casula,24 C. Ceballos Sanchez,9 J. Cepila,39 P. Cerello,111 J. Cerkala,116

B. Chang,124 S. Chapeland,35 M. Chartier,125 J. L. Charvet,15 S. Chattopadhyay,134 S. Chattopadhyay,101 A. Chauvin,36,95

V. Chelnokov,3 M. Cherney,88 C. Cheshkov,131 B. Cheynis,131 V. Chibante Barroso,35 D. D. Chinellato,122 S. Cho,51

P. Chochula,35 K. Choi,97 M. Chojnacki,82 S. Choudhury,134 P. Christakoglou,83 C. H. Christensen,82 P. Christiansen,33

T. Chujo,129 S. U. Chung,97 C. Cicalo,106 L. Cifarelli,12,27 F. Cindolo,105 J. Cleymans,91 F. Colamaria,32 D. Colella,35,56

A. Collu,75 M. Colocci,27 G. Conesa Balbastre,72 Z. Conesa del Valle,52 M. E. Connors,138,‡ J. G. Contreras,39

T. M. Cormier,86 Y. Corrales Morales,26,111 I. Cortés Maldonado,2 P. Cortese,31 M. R. Cosentino,121 F. Costa,35 P. Crochet,71

R. Cruz Albino,11 E. Cuautle,63 L. Cunqueiro,35,62 T. Dahms,36,95 A. Dainese,108 M. C. Danisch,94 A. Danu,59 D. Das,101

I. Das,101 S. Das,4 A. Dash,80 S. Dash,48 S. De,121 A. De Caro,12,30 G. de Cataldo,104 C. de Conti,121 J. de Cuveland,42

A. De Falco,24 D. De Gruttola,12,30 N. De Marco,111 S. De Pasquale,30 R. D. De Souza,122 A. Deisting,94,98 A. Deloff,78

E. Dénes,137,† C. Deplano,83 P. Dhankher,48 D. Di Bari,32 A. Di Mauro,35 P. Di Nezza,73 B. Di Ruzza,108

M. A. Diaz Corchero,10 T. Dietel,91 P. Dillenseger,61 R. Divià,35 Ø. Djuvsland,22 A. Dobrin,59,83 D. Domenicis Gimenez,121

B. Dönigus,61 O. Dordic,21 T. Drozhzhova,61 A. K. Dubey,134 A. Dubla,54 L. Ducroux,131 P. Dupieux,71 R. J. Ehlers,138

D. Elia,104 E. Endress,103 H. Engel,60 E. Epple,36,95,138 B. Erazmus,114 I. Erdemir,61 F. Erhardt,130 B. Espagnon,52

M. Estienne,114 S. Esumi,129 J. Eum,97 D. Evans,102 S. Evdokimov,112 G. Eyyubova,39 L. Fabbietti,36,95 D. Fabris,108

J. Faivre,72 A. Fantoni,73 M. Fasel,75 L. Feldkamp,62 A. Feliciello,111 G. Feofilov,133 J. Ferencei,85 A. Fernández Téllez,2

E. G. Ferreiro,17 A. Ferretti,26 A. Festanti,29 V. J. G. Feuillard,15,71 J. Figiel,118 M. A. S. Figueredo,121,125 S. Filchagin,100

D. Finogeev,53 F. M. Fionda,24 E. M. Fiore,32 M. G. Fleck,94 M. Floris,35 S. Foertsch,66 P. Foka,98 S. Fokin,81

E. Fragiacomo,110 A. Francescon,29,35 A. Francisco,114 U. Frankenfeld,98 G. G. Fronze,26 U. Fuchs,35 C. Furget,72 A. Furs,53

M. Fusco Girard,30 J. J. Gaardhøje,82 M. Gagliardi,26 A. M. Gago,103 K. Gajdosova,82 M. Gallio,26 C. D. Galvan,120

D. R. Gangadharan,75 P. Ganoti,90 C. Gao,7 C. Garabatos,98 E. Garcia-Solis,13 C. Gargiulo,35 P. Gasik,36,95 E. F. Gauger,119

M. Germain,114 M. Gheata,35,59 P. Ghosh,134 S. K. Ghosh,4 P. Gianotti,73 P. Giubellino,35,111 P. Giubilato,29

E. Gladysz-Dziadus,118 P. Glässel,94 D. M. Goméz Coral,64 A. Gomez Ramirez,60 A. S. Gonzalez,35 V. Gonzalez,10

P. González-Zamora,10 S. Gorbunov,42 L. Görlich,118 S. Gotovac,117 V. Grabski,64 O. A. Grachov,138 L. K. Graczykowski,135

K. L. Graham,102 A. Grelli,54 A. Grigoras,35 C. Grigoras,35 V. Grigoriev,76 A. Grigoryan,1 S. Grigoryan,67 B. Grinyov,3

N. Grion,110 J. M. Gronefeld,98 J. F. Grosse-Oetringhaus,35 R. Grosso,98 L. Gruber,113 F. Guber,53 R. Guernane,72

B. Guerzoni,27 K. Gulbrandsen,82 T. Gunji,128 A. Gupta,92 R. Gupta,92 R. Haake,35 Ø. Haaland,22 C. Hadjidakis,52

M. Haiduc,59 H. Hamagaki,128 G. Hamar,137 J. C. Hamon,65 J. W. Harris,138 A. Harton,13 D. Hatzifotiadou,105 S. Hayashi,128

S. T. Heckel,61 E. Hellbär,61 H. Helstrup,37 A. Herghelegiu,79 G. Herrera Corral,11 B. A. Hess,34 K. F. Hetland,37

H. Hillemanns,35 B. Hippolyte,65 D. Horak,39 R. Hosokawa,129 P. Hristov,35 C. Hughes,126 T. J. Humanic,19 N. Hussain,44

T. Hussain,18 D. Hutter,42 D. S. Hwang,20 R. Ilkaev,100 M. Inaba,129 E. Incani,24 M. Ippolitov,76,81 M. Irfan,18 M. Ivanov,98

V. Ivanov,87 V. Izucheev,112 B. Jacak,75 N. Jacazio,27 P. M. Jacobs,75 M. B. Jadhav,48 S. Jadlovska,116 J. Jadlovsky,56,116

C. Jahnke,121 M. J. Jakubowska,135 H. J. Jang,69 M. A. Janik,135 P. H. S. Y. Jayarathna,123 C. Jena,29 S. Jena,123

R. T. Jimenez Bustamante,98 P. G. Jones,102 A. Jusko,102 P. Kalinak,56 A. Kalweit,35 J. Kamin,61 J. H. Kang,139 V. Kaplin,76

S. Kar,134 A. Karasu Uysal,70 O. Karavichev,53 T. Karavicheva,53 L. Karayan,94,98 E. Karpechev,53 U. Kebschull,60

PRL 117, 182301 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

28 OCTOBER 2016

182301-9



R. Keidel,140 D. L. D. Keijdener,54 M. Keil,35 M. Mohisin Khan,18,§ P. Khan,101 S. A. Khan,134 A. Khanzadeev,87

Y. Kharlov,112 B. Kileng,37 D.W. Kim,43 D. J. Kim,124 D. Kim,139 H. Kim,139 J. S. Kim,43 J. Kim,94 M. Kim,139 S. Kim,20

T. Kim,139 S. Kirsch,42 I. Kisel,42 S. Kiselev,55 A. Kisiel,135 G. Kiss,137 J. L. Klay,6 C. Klein,61 J. Klein,35 C. Klein-Bösing,62

S. Klewin,94 A. Kluge,35 M. L. Knichel,94 A. G. Knospe,119,123 C. Kobdaj,115 M. Kofarago,35 T. Kollegger,98 A. Kolojvari,133

V. Kondratiev,133 N. Kondratyeva,76 E. Kondratyuk,112 A. Konevskikh,53 M. Kopcik,116 M. Kour,92 C. Kouzinopoulos,35

O. Kovalenko,78 V. Kovalenko,133 M. Kowalski,118 G. Koyithatta Meethaleveedu,48 I. Králik,56 A. Kravčáková,40

M. Krivda,56,102 F. Krizek,85 E. Kryshen,35,87 M. Krzewicki,42 A. M. Kubera,19 V. Kučera,85 C. Kuhn,65 P. G. Kuijer,83

A. Kumar,92 J. Kumar,48 L. Kumar,89 S. Kumar,48 P. Kurashvili,78 A. Kurepin,53 A. B. Kurepin,53 A. Kuryakin,100

M. J. Kweon,51 Y. Kwon,139 S. L. La Pointe,111 P. La Rocca,28 P. Ladron de Guevara,11 C. Lagana Fernandes,121

I. Lakomov,35 R. Langoy,41 K. Lapidus,36,95 C. Lara,60 A. Lardeux,15 A. Lattuca,26 E. Laudi,35 R. Lea,25 L. Leardini,94

G. R. Lee,102 S. Lee,139 F. Lehas,83 S. Lehner,113 R. C. Lemmon,84 V. Lenti,104 E. Leogrande,54 I. León Monzón,120

H. León Vargas,64 M. Leoncino,26 P. Lévai,137 S. Li,7,71 X. Li,14 J. Lien,41 R. Lietava,102 S. Lindal,21 V. Lindenstruth,42

C. Lippmann,98 M. A. Lisa,19 H. M. Ljunggren,33 D. F. Lodato,54 P. I. Loenne,22 V. Loginov,76 C. Loizides,75 X. Lopez,71

E. López Torres,9 A. Lowe,137 P. Luettig,61 M. Lunardon,29 G. Luparello,25 T. H. Lutz,138 A. Maevskaya,53 M. Mager,35

S. Mahajan,92 S. M. Mahmood,21 A. Maire,65 R. D. Majka,138 M. Malaev,87 I. Maldonado Cervantes,63 L. Malinina,67,∥

D. Mal’Kevich,55 P. Malzacher,98 A. Mamonov,100 V. Manko,81 F. Manso,71 V. Manzari,35,104 M. Marchisone,26,66,127

J. Mareš,57 G. V. Margagliotti,25 A. Margotti,105 J. Margutti,54 A. Marín,98 C. Markert,119 M. Marquard,61 N. A. Martin,98

J. Martin Blanco,114 P. Martinengo,35 M. I. Martínez,2 G. Martínez García,114 M. Martinez Pedreira,35 A. Mas,121

S. Masciocchi,98 M. Masera,26 A. Masoni,106 A. Mastroserio,32 A. Matyja,118 C. Mayer,118 J. Mazer,126 M. A. Mazzoni,109

D. Mcdonald,123 F. Meddi,23 Y. Melikyan,76 A. Menchaca-Rocha,64 E. Meninno,30 J. Mercado Pérez,94 M. Meres,38

Y. Miake,129 M. M. Mieskolainen,46 K. Mikhaylov,55,67 L. Milano,35,75 J. Milosevic,21 A. Mischke,54 A. N. Mishra,49

D. Miśkowiec,98 J. Mitra,134 C. M. Mitu,59 N. Mohammadi,54 B. Mohanty,80 L. Molnar,65 L. Montaño Zetina,11 E. Montes,10

D. A. Moreira De Godoy,62 L. A. P. Moreno,2 S. Moretto,29 A. Morreale,114 A. Morsch,35 V. Muccifora,73 E. Mudnic,117

D. Mühlheim,62 S. Muhuri,134 M. Mukherjee,134 J. D. Mulligan,138 M. G. Munhoz,121 K. Münning,45 R. H. Munzer,36,61,95

H. Murakami,128 S. Murray,66 L. Musa,35 J. Musinsky,56 B. Naik,48 R. Nair,78 B. K. Nandi,48 R. Nania,105 E. Nappi,104

M. U. Naru,16 H. Natal da Luz,121 C. Nattrass,126 S. R. Navarro,2 K. Nayak,80 R. Nayak,48 T. K. Nayak,134 S. Nazarenko,100

A. Nedosekin,55 L. Nellen,63 F. Ng,123 M. Nicassio,98 M. Niculescu,59 J. Niedziela,35 B. S. Nielsen,82 S. Nikolaev,81

S. Nikulin,81 V. Nikulin,87 F. Noferini,12,105 P. Nomokonov,67 G. Nooren,54 J. C. C. Noris,2 J. Norman,125 A. Nyanin,81

J. Nystrand,22 H. Oeschler,94 S. Oh,138 S. K. Oh,68 A. Ohlson,35 A. Okatan,70 T. Okubo,47 J. Oleniacz,135

A. C. Oliveira Da Silva,121 M. H. Oliver,138 J. Onderwaater,98 C. Oppedisano,111 R. Orava,46 M. Oravec,116

A. Ortiz Velasquez,63 A. Oskarsson,33 J. Otwinowski,118 K. Oyama,77,94 M. Ozdemir,61 Y. Pachmayer,94 D. Pagano,132

P. Pagano,30 G. Paić,63 S. K. Pal,134 J. Pan,136 A. K. Pandey,48 V. Papikyan,1 G. S. Pappalardo,107 P. Pareek,49 W. J. Park,98

S. Parmar,89 A. Passfeld,62 V. Paticchio,104 R. N. Patra,134 B. Paul,101,111 H. Pei,7 T. Peitzmann,54 X. Peng,7

H. Pereira Da Costa,15 D. Peresunko,76,81 E. Perez Lezama,61 V. Peskov,61 Y. Pestov,5 V. Petráček,39 V. Petrov,112

M. Petrovici,79 C. Petta,28 S. Piano,110 M. Pikna,38 P. Pillot,114 L. O. D. L. Pimentel,82 O. Pinazza,35,105 L. Pinsky,123

D. B. Piyarathna,123 M. Płoskoń,75 M. Planinic,130 J. Pluta,135 S. Pochybova,137 P. L. M. Podesta-Lerma,120

M. G. Poghosyan,86,88 B. Polichtchouk,112 N. Poljak,130 W. Poonsawat,115 A. Pop,79 H. Poppenborg,62

S. Porteboeuf-Houssais,71 J. Porter,75 J. Pospisil,85 S. K. Prasad,4 R. Preghenella,35,105 F. Prino,111 C. A. Pruneau,136

I. Pshenichnov,53 M. Puccio,26 G. Puddu,24 P. Pujahari,136 V. Punin,100 J. Putschke,136 H. Qvigstad,21 A. Rachevski,110

S. Raha,4 S. Rajput,92 J. Rak,124 A. Rakotozafindrabe,15 L. Ramello,31 F. Rami,65 R. Raniwala,93 S. Raniwala,93

S. S. Räsänen,46 B. T. Rascanu,61 D. Rathee,89 K. F. Read,86,126 K. Redlich,78 R. J. Reed,136 A. Rehman,22 P. Reichelt,61

F. Reidt,35,94 X. Ren,7 R. Renfordt,61 A. R. Reolon,73 A. Reshetin,53 K. Reygers,94 V. Riabov,87 R. A. Ricci,74 T. Richert,33

M. Richter,21 P. Riedler,35 W. Riegler,35 F. Riggi,28 C. Ristea,59 E. Rocco,54 M. Rodríguez Cahuantzi,2

A. Rodriguez Manso,83 K. Røed,21 E. Rogochaya,67 D. Rohr,42 D. Röhrich,22 F. Ronchetti,35,73 L. Ronflette,114 P. Rosnet,71

A. Rossi,29 F. Roukoutakis,90 A. Roy,49 C. Roy,65 P. Roy,101 A. J. Rubio Montero,10 R. Rui,25 R. Russo,26 E. Ryabinkin,81

Y. Ryabov,87 A. Rybicki,118 S. Saarinen,46 S. Sadhu,134 S. Sadovsky,112 K. Šafařík,35 B. Sahlmuller,61 P. Sahoo,49
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