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The production of muons from heavy-flavour hadron decays in p–Pb collisions at √
sNN = 5.02 TeV

was studied for 2 < pT < 16 GeV/c with the ALICE detector at the CERN LHC. The measurement was 
performed at forward (p-going direction) and backward (Pb-going direction) rapidity, in the ranges of 
rapidity in the centre-of-mass system (cms) 2.03 < ycms < 3.53 and −4.46 < ycms < −2.96, respectively. 
The production cross sections and nuclear modification factors are presented as a function of transverse 
momentum (pT). At forward rapidity, the nuclear modification factor is compatible with unity while 
at backward rapidity, in the interval 2.5 < pT < 3.5 GeV/c, it is above unity by more than 2σ . The 
ratio of the forward-to-backward production cross sections is also measured in the overlapping interval 
2.96 < |ycms| < 3.53 and is smaller than unity by 3.7σ in 2.5 < pT < 3.5 GeV/c. The data are described 
by model calculations including cold nuclear matter effects.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The study of ultra-relativistic heavy-ion collisions aims at in-
vestigating the properties of strongly-interacting matter under ex-
treme conditions of temperature and energy density. Under these 
conditions, Quantum Chromodynamics (QCD) calculations on the 
lattice predict a transition to a Quark–Gluon Plasma (QGP) in 
which colour confinement vanishes and chiral symmetry is par-
tially restored [1,2]. Heavy quarks (charm and beauty) are essential 
probes of the properties of the QGP since they are produced in 
hard scattering processes in the early stage of the collision and, 
while propagating through the medium, interact with the QGP 
constituents. The nuclear modification factor RAA is commonly 
used to characterise heavy-quark interaction with the medium 
constituents. It is defined as the ratio between the particle yield in 
nucleus–nucleus (AA) collisions and a reference obtained by scaling 
the yield measured in proton–proton (pp) collisions by the number 
of binary nucleon–nucleon collisions, calculated with the Glauber 
model [3]. Heavy-quark production in pp collisions at various ener-
gies is described within uncertainties by perturbative QCD (pQCD) 
calculations [4–11]. In central Pb–Pb collisions (

√
sNN = 2.76 TeV), 

a suppression of D mesons and leptons from heavy-flavour hadron 
decays by a factor of about 3–5 was measured for transverse mo-
menta pT > 4 GeV/c [5,12–14]. Further insights into the QGP evo-
lution and the in-medium interactions can be gained from the 

� E-mail address: alice-publications@cern.ch.

study of the particle azimuthal anisotropy expressed in terms of 
Fourier series, where the second order coefficient v2 is the ellip-
tic flow. A positive v2 was observed at low and/or intermediate 
pT in semi-central Pb–Pb collisions for D mesons and electrons 
from heavy-flavour hadron decays at mid-rapidity [15–17] and for 
muons from heavy-flavour hadron decays at forward rapidity [18], 
confirming the significant interaction of heavy quarks with the 
medium constituents.

Although the suppression of high-pT particle yield suggests 
that heavy quarks lose a significant amount of their initial energy 
[19–25], this suppression cannot be, a priori, exclusively attributed 
to the interaction of quarks with the hot and dense medium 
formed in the collision. Indeed, for a comprehensive understand-
ing of Pb–Pb results, it is fundamental to quantify Cold Nuclear 
Matter (CNM) effects, which can modify the pT spectra in nu-
clear collisions independently from the formation of a QGP. Cold 
nuclear matter effects include the modification of the Parton Dis-
tribution Functions (PDFs) of the nuclei with respect to a super-
position of nucleon PDFs, addressed by nuclear shadowing models 
[26,27] or gluon saturation models as the Colour Glass Conden-
sate (CGC) effective theory [28,29]. Other CNM effects are Cronin 
enhancement through kT broadening [30–32] and energy loss in 
the initial [33] and final stages of the collision. These effects can 
be assessed by studying p–Pb collisions, where the formation of 
an extended hot and dense system is not expected. A possible 
presence of final-state effects in small systems at RHIC and LHC 
energies is suggested by measurements of long-range correlations 
[34–38] consistent with the presence of collective effects. This is 
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further supported by the measurements of the species-dependent 
nuclear modification factors of identified particles in d–Au colli-
sions [39], multiplicity dependence of π± , K± , p and � produc-
tion in p–Pb collisions [40], and a significant suppression of ψ (2S) 
yields in comparison to those of J/ψ [41,42].

Cold nuclear matter effects on heavy-flavour production have 
been thoroughly investigated at RHIC by the PHENIX and STAR 
Collaborations through the measurement of the production of 
leptons from heavy-flavour hadron decays in d–Au collisions at √

sNN = 200 GeV. An enhancement of the yields of electrons from 
heavy-flavour hadron decays, with respect to a binary-scaled pp 
reference, was observed at mid-rapidity [43,44]. An enhancement 
(suppression) of muons from heavy-flavour hadron decays was 
measured at backward (forward) rapidity [45]. The differences ob-
served between forward and backward rapidity are not reproduced 
by models based only on modifications of the initial parton den-
sities [27]. Finally, the recent measurement of azimuthal correla-
tions between electrons from heavy-flavour hadron decays at mid-
rapidity and muons from heavy-flavour hadron decays at forward 
rapidity [46] shows a suppression of the yield of electron–muon 
pairs with �φ = π , suggesting that CNM effects modify the cc̄
correlations. An experimental effort to quantify CNM effects on 
heavy-flavour production is underway also at the LHC. The mea-
surement of the pT-integrated nuclear modification factor of J/ψ
from B-hadron decays in p–Pb collisions at 

√
sNN = 5.02 TeV by 

the LHCb Collaboration [47] indicates a suppression by about 20% 
at forward rapidity and no suppression at backward rapidity. The 
measurements of the nuclear modification factors of B+ , B0 and B0

s
by the CMS Collaboration [48] and of the forward-to-backward ra-
tio of J/ψ from B-hadron decays by the ATLAS Collaboration [49] at 
high pT are also compatible with unity. The mid-rapidity nuclear 
modification factors of prompt D mesons [50] and electrons from 
heavy-flavour hadron and beauty-hadron decays [51,52] measured 
by the ALICE Collaboration are found consistent with unity.

This Letter presents differential measurements of the produc-
tion of muons from heavy-flavour hadron decays for 2 < pT <

16 GeV/c in p–Pb collisions at 
√

sNN = 5.02 TeV at forward and 
backward rapidity performed by the ALICE Collaboration at the 
LHC. Comparisons with model calculations to extract relevant in-
formation concerning CNM effects are also discussed. These mea-
surements cover forward (2.03 < ycms < 3.53, p-going direction) 
and backward (−4.46 < ycms < −2.96, Pb-going direction) rapidity 
regions. The Bjorken-x values of gluons in the Pb nucleus probed 
by measurements of muons from heavy-flavour hadron decays 
have been estimated with PYTHIA 8 (Tune 4C) [53] considering 
Leading Order (pair creation) and Next-to-Leading Order (flavour 
excitation and gluon splitting) processes. At forward rapidity, they 
are located in the range from about 5 · 10−6 to 10−2 and the me-
dian of the distribution is about 10−4. At backward rapidity, the 
Bjorken-x values are expected to vary from about 10−3 to 10−1

and the median is of the order of 10−2.
The Letter is structured as follows. Section 2 describes the ap-

paratus with an emphasis on the detectors used in the analysis and 
the data taking conditions. Section 3 addresses the analysis details. 
Section 4 presents the results, namely the pT-differential cross sec-
tions and nuclear modification factors at forward and backward 
rapidity and the forward-to-backward ratio in a smaller overlap-
ping rapidity interval (2.96 < |ycms| < 3.53). Finally, the results are 
compared with model calculations which include CNM effects.

2. Experimental apparatus and data samples

A detailed description of the ALICE detector is available in [54]
and its performance is discussed in [55]. Muons are detected in 
ALICE using the muon spectrometer in the pseudo-rapidity interval 

−4 < ηlab < −2.5. The muon spectrometer consists of i) a front ab-
sorber made of carbon, concrete and steel of 10 interaction lengths 
(λI) located between the interaction point (IP) and the spectrome-
ter that filters out hadrons, ii) a beam shield throughout its en-
tire length, iii) a dipole magnet with a field integral of 3 T·m, 
iv) five tracking stations, each composed of two planes of cath-
ode pad chambers, v) two trigger stations, each equipped with two 
planes of resistive plate chambers and vi) an iron wall of 7.2 λI
placed between the tracking and trigger systems. The following 
detectors are also involved in the analysis. The Silicon Pixel De-
tector (SPD), which constitutes the two innermost layers of the 
Inner Tracking System (with pseudo-rapidity coverage |ηlab| < 2
and |ηlab| < 1.4 for the inner and outer layer, respectively), is used 
for reconstructing the position of the collision point. Two scintilla-
tor arrays (V0) placed on each side of the IP (with pseudo-rapidity 
coverage 2.8 < ηlab < 5.1 and −3.7 < ηlab < −1.7) are used for 
triggering purposes and to reject offline beam-induced background 
events. The V0 as well as the two T0 arrays, made of quartz 
Cherenkov counters and covering the acceptance 4.6 < ηlab < 4.9
and −3.3 < ηlab < −3.0, are employed to determine the luminos-
ity. The Zero Degree Calorimeters (ZDC) located at 112.5 m on both 
sides of the IP are also used in the offline event selection.

The results presented in this Letter are based on the data sam-
ples recorded by ALICE during the 2013 p–Pb run. Due to the 
different energy per nucleon of the colliding beams (Ep = 4 TeV, 
EPb = 1.58 TeV), the centre-of-mass of the nucleon–nucleon col-
lisions is shifted in rapidity by �y = 0.465 with respect to the 
laboratory frame in the direction of the proton beam. Data were 
collected with two beam configurations by reversing the rotation 
direction of the p and Pb beams. This allowed us to measure 
muon production in the rapidity intervals 2.03 < ycms < 3.53 and 
−4.46 < ycms < −2.96, the positive rapidities corresponding to the 
proton beam traveling in the direction of the muon spectrome-
ter (p–Pb configuration) and the negative rapidities to the opposite 
case (Pb–p configuration).

The data samples used for the analysis consist of muon-
triggered events, requiring in addition to the minimum bias (MB) 
trigger condition the presence of one candidate track with a 
pT above a threshold value in the muon trigger system. The 
MB trigger is formed by a coincidence between signals in the 
two V0 arrays (> 99% efficiency for the selection of non-single 
diffractive collisions). Data were collected using two different trig-
ger pT thresholds, of about 0.5 GeV/c and 4.2 GeV/c, defined 
as the pT value for which the muon trigger probability is 50%. 
In the following, the low- and high-pT trigger threshold sam-
ples are referred to as MSL and MSH, respectively. The beam-
induced background events were removed by using the timing 
information from the V0 arrays. Collisions outside the nominal 
timing of the LHC bunches were rejected using the information 
from the ZDC. The maximum instantaneous luminosity at the 
ALICE IP during data-taking was 1029 Hz/cm2, and the probabil-
ity for multiple interactions in a bunch crossing (pile-up) was at 
most 2%. The integrated luminosities for the used data samples are 
196 ± 7 μb−1 (4.9 · 103 ± 0.2 · 103 μb−1) in the p–Pb configuration 
and 254 ± 9 μb−1 (5.8 · 103 ± 0.2 · 103 μb−1) in the Pb–p config-
uration for MSL- (MSH-) triggered events. The calculation of the 
integrated luminosities and associated uncertainties is discussed in 
Section 3.

3. Data analysis

3.1. Muon candidate selection

The offline selection criteria of muon candidates are similar to 
those described in [4,5]. Tracks were required to be reconstructed 
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in the kinematic region −4 < ηlab < −2.5 and 170◦ < θabs < 178◦
(θabs is the polar angle at the end of the absorber). In addition, 
tracks in the tracking system were required to match track seg-
ments in the trigger system. This results in a very effective re-
jection of the hadronic background that is absorbed in the iron 
wall. A selection on the Distance of Closest Approach (DCA) to 
the primary vertex of each track weighted with its momentum 
(p) was also applied. The maximum value is set to 6σp·DCA, where 
σp·DCA is the resolution on this quantity. This latter further reduces 
the contribution from fake tracks coming from the association of 
uncorrelated clusters in the tracking chambers and beam-induced 
background tracks. The measurement of muons from heavy-flavour 
hadron decays is performed in the interval 2 < pT < 16 GeV/c by 
combining MSL-triggered and MSH-triggered events. The former 
are used up to pT = 7 GeV/c, the latter at higher pT. The large yield 
of muons from secondary light-hadron decays produced inside the 
front absorber prevents the measurement below pT = 2 GeV/c. In 
the pT interval of the measurement, the background contribution 
consists mainly of muons from decays of primary charged pions 
and charged kaons produced at the interaction point. The compo-
nent of muons from J/ψ decays, found to be less than 1–3% of the 
inclusive muon yield, depending on rapidity and pT, was not sub-
tracted. Moreover, the background contribution of muons from W 
and Z/γ � is also small in the pT interval of interest [56] (less than 
2–3% at pT = 16 GeV/c).

3.2. Analysis strategy

Nuclear matter effects on the production of muons from heavy-
flavour hadron decays can be quantified by means of the nuclear 
modification factor, Rμ±←HF

pPb , which can be written as:

Rμ±←HF
pPb (pT) = 1

A
· dσ

μ±←HF
pPb /dpT

dσ
μ±←HF
pp /dpT

, (1)

where A is the mass number of the Pb nucleus, dσ
μ±←HF
pp /dpT and 

dσ
μ±←HF
pPb /dpT are the pT-differential production cross sections of 

muons from heavy-flavour hadron decays in pp and p–Pb colli-
sions, respectively.

The latter is evaluated as:

dσ
μ±←HF
pPb

dpT
=

⎛
⎝dNμ±

pPb

dpT
− dNμ±←π,K

pPb

dpT

⎞
⎠ · 1

Lint
, (2)

where dNμ±
/dpT and dNμ±←π,K/dpT are the pT-differential 

yields of inclusive muons and of muons from charged-pion and 
charged-kaon decays, respectively. The integrated luminosity Lint
is computed as NMB/σMB, where NMB and σMB are the number of 
MB collisions and the MB trigger cross section, respectively. The 
latter was measured in van der Meer scans and is 2.09 ± 0.07 b 
(2.12 ± 0.07 b) for the p–Pb (Pb–p) configuration [57]. Since 
the analysis is based on muon-triggered events, the number of 
equivalent MB events is evaluated as NMB = FMSL(MSH) · NMSL(MSH) , 
where NMSL(MSH) is the number of analysed MSL- (MSH-) triggered 
events, and FMSL(MSH) is a normalisation factor. The number of 
MSL- and MSH-triggered events amounts to 1.45 · 107(2.63 · 107)

and 107(1.53 · 107) for the p–Pb (Pb–p) samples, respectively. The 
normalisation factor is determined with two different procedures 
described hereafter. The first procedure is based on the offline se-
lection of muon-triggered events in the MB data sample. In this 
approach, FMSL is the inverse of the probability of meeting the 
MSL trigger condition in an MB event. The normalisation factor 

FMSH is obtained as the inverse of the product of the probabil-
ity of meeting the MSH trigger condition in a MSL event and that 
of meeting the MSL trigger condition in a MB event. The second 
procedure is based on the run-averaged ratio of the MB trigger 
rate to that of muon triggers (MSL or MSH), each corrected by the 
fraction of events passing the event-selection criteria. Note that in 
both procedures, the number of MB events is corrected for pile-
up. Finally, the weighted average of the results obtained with the 
two approaches is computed, using the statistical uncertainty as 
weight. The results are FMSL = 28.20 ± 0.08 (20.50 ± 0.04) and 
FMSH = 1032.8 ± 7.2 (798.3 ± 4.8) at forward (backward) rapidity. 
The quoted uncertainties are statistical.

The measured pT-differential muon yield is corrected for ac-
ceptance and for the tracking and trigger efficiencies using the 
same procedure as for the analysis of pp collisions at 

√
s = 2.76

and 7 TeV [4,5]. This procedure is based on a Monte Carlo sim-
ulation using as input the pT and rapidity distributions of muons 
from beauty-hadron decays predicted by Fixed Order Next To Lead-
ing Log (FONLL) calculations [58].1 The detector description and its 
response are modelled using the GEANT3 transport package [59]
taking into account the time evolution of the detector configura-
tion. For pT > 2 GeV/c, the product of acceptance and efficiency in 
MSL-triggered events tends to saturate at a value close to 85% and 
75% at forward (p–Pb configuration) and backward rapidity (Pb–p 
configuration), respectively. The lower value obtained for the Pb–p 
system is mainly due to a lower efficiency of the tracking chambers 
in the corresponding data taking period. The MSH trigger efficiency 
plateau is only just reached at pT = 16 GeV/c, which leads to val-
ues of the acceptance times efficiency slightly lower than those 
obtained for the MSL trigger, even in the high pT region.

The subtraction of background muons from charged-pion and 
charged-kaon decays is based on a data-tuned Monte Carlo cock-
tail. First, the contribution of muons from charged-pion and 
charged-kaon decays in 2.03 < ycms < 3.53 is estimated by extrap-
olating to forward rapidity the pT-differential yields per minimum-
bias event of charged pions and kaons measured by the ALICE 
Collaboration in the rapidity region −0.5 < ycms < 0 for pT values 
up to pT = 20 GeV/c [60]. A further pT extrapolation, by means of 
a power-law fit, was performed to extend the pT coverage to the 
charged-pion and charged-kaon momentum range, which is rele-
vant to estimate the contribution of muons from charged-pion and 
charged-kaon decays up to pT = 16 GeV/c.

The rapidity extrapolation of the [d2Nπ±,K ±
/dpTdy]mid−ycms

mid-rapidity charged-pion and charged-kaon yields to forward ra-
pidity is performed according to:

d2Nπ±,K ±

dpTdy
= Fextrap(pT, y) ·

[
d2Nπ±,K ±

dpTdy

]
mid−ycms

(3)

where the pT- and y-dependent extrapolation factor Fextrap(pT, y)

is obtained by means of the DPMJET event generator [61], which 
describes the pseudo-rapidity distribution of charged particles in 
−2 < ηlab < 2 reasonably well [62]. The HIJING 2.1 generator [63]
is employed to estimate the systematic uncertainty (Section 3.3). 
It was also checked that compatible results are obtained with the 
AMPT model [64]. Then, the (pT, y) distributions of muons from 
charged-pion and charged-kaon decays in the acceptance of the 
muon spectrometer are generated with a simulation, using as input 
the charged-pion and charged-kaon distributions obtained with the 
extrapolation procedure described above. The absorber effect is ac-
counted for by rejecting charged pions and charged kaons that do 

1 The sensitivity of the product of acceptance and efficiency on the input distri-
butions was estimated by comparing the results with those from a simulation using 
muons from charm decays. The differences are negligible (less than 1%).
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not decay within a distance corresponding to one hadronic inter-
action length in the absorber. The charged-pion and charged-kaon 
distributions at backward rapidity, for −4.46 < ycms < −2.96, are 
estimated by using the distributions extrapolated at forward ra-
pidity with DPMJET as a starting point, as discussed above. These 
pT and y distributions are scaled by the pT-dependent charged-
particle asymmetry factor measured by the CMS Collaboration for 
1.3 < |ηcms| < 1.8 [65]. The systematic uncertainty resulting from 
the different rapidity coverage is discussed in Section 3.3. Finally, 
the distributions of muons from charged-pion and charged-kaon 
decays at backward rapidity are obtained with the fast simula-
tion procedure described above for the forward rapidity region. 
The obtained yields per event of muons from charged-pion and 
charged-kaon decays at forward and backward rapidities are then 
scaled by NMB and subtracted from the inclusive muon yields.

The relative contribution to the inclusive muon yield due to 
muons from charged-pion and charged-kaon decays decreases with 
increasing pT from about 27% (35%) at pT = 2 GeV/c to 2% (2%) at 
pT = 16 GeV/c, at forward (backward) rapidity. In the smaller over-
lapping acceptance 2.96 < |ycms| < 3.53 used for the measurement 
of the forward-to-backward ratio Rμ±←HF

FB , the background fraction 
decreases from about 19% (41%) at pT = 2 GeV/c to 1% (3%) at 
pT = 16 GeV/c, at forward (backward) rapidity.

The pT-differential cross sections of muons from heavy-flavour 
hadron decays in pp collisions at 

√
s = 5.02 TeV, needed for 

the computation of RpPb at forward and backward rapidity, are 
obtained by applying a pQCD-driven energy and rapidity scal-
ing to the measured pT-differential cross sections in pp colli-
sions at 

√
s = 7 TeV in the kinematic region 2.5 < ycms < 4.0

and 2 < pT < 12 GeV/c [4]. The scaling factor and its uncertainty 
are evaluated using FONLL calculations [58] with different sets of 
factorisation and renormalisation scales and quark masses, as de-
tailed in [66]. The current measurement of the pp pT-differential 
cross section at 

√
s = 7 TeV is limited to pT < 12 GeV/c. There-

fore, the pT-differential cross sections in 12 < pT < 16 GeV/c at √
s = 5.02 TeV are obtained from FONLL calculations at 

√
s =

5.02 TeV, rescaled to match the result of the data-driven pro-
cedure in 6 < pT < 12 GeV/c. Note that in the limited interval 
2 < pT < 10 GeV/c, the pT-differential cross section of muons from 
heavy-flavour hadron decays was also measured in pp collisions at √

s = 2.76 TeV. As a cross-check, it was verified that when using 
this measurement in the procedure for scaling to 

√
s = 5.02 TeV, 

compatible results are obtained with respect to those from the √
s = 7 TeV case, although with larger uncertainties.2

The forward-to-backward ratio, Rμ±←HF
FB , defined as the ratio of 

the cross section of muons from heavy-flavour hadron decays at 
forward rapidity to that at backward rapidity in a rapidity interval 
symmetric with respect to ycms = 0,

Rμ±←HF
FB (pT) = [dσ

μ±←HF
pPb /dpT]2.96<ycms<3.53

[dσ
μ±←HF
pPb /dpT]−3.53<ycms<−2.96

, (4)

is also a sensitive observable for the study of CNM effects. This ra-
tio can be computed only in the restricted overlapping y interval 
2.96 < |ycms| < 3.53 covered at both forward and backward rapid-
ity.

3.3. Systematic uncertainties

The measurement of the pT-differential cross sections of muons 
from heavy-flavour hadron decays is affected by systematic uncer-

2 This results from larger uncertainties and a larger energy gap at √s = 2.76 TeV
compared to √s = 7 TeV.

Table 1
Systematic uncertainties affecting the measurement of the pT-differential cross sec-
tion and nuclear modification factor of muons from heavy-flavour hadron decays 
at forward rapidity (2.03 < ycms < 3.53) and backward rapidity (−4.46 < ycms <

−2.96). See the text for details. For the pT-dependent uncertainties, the minimum 
and maximum values are given. They are given at pT = 2 GeV/c and pT = 16 GeV/c, 
except for the background subtraction where the first (last) value corresponds to 
pT = 16 (2) GeV/c. The systematic uncertainties of the pp reference (σμ±←HF

pp
pT-dependent and global) contribute only to the systematic uncertainty on the nu-
clear modification factors.

Source Forward rapidity Backward rapidity

Tracking efficiency 2% 3%
Trigger efficiency 1% (4%) for MSL (MSH) 1% (4%) for MSL (MSH)
Matching efficiency 0.5% 0.5%
Mis-alignment 0.5% · pT 0.5% · pT

Background subtraction 1–7% 1–15%
Integrated luminosity 3.8% 3.5%

σ
μ±←HF
pp (pT-dependent) 9–26% 9–30%

σ
μ±←HF
pp (global) 3.5% 3.5%

tainties of the inclusive muon yield, the background subtraction 
and the determination of the integrated luminosity. For the nu-
clear modification factor, also the systematic uncertainty on the pp 
reference cross section must be considered.

The systematic uncertainty affecting the yield of inclusive 
muons contains the 2% (3%) systematic uncertainty on the muon 
tracking efficiency at forward (backward) rapidity [67,68] and the 
systematic uncertainty associated with the muon trigger efficiency 
of 1% with the MSL trigger and 4% with the MSH trigger. A detailed 
description of the procedure used to evaluate these uncertainties 
is found in [55,67,68]. A 0.5% systematic uncertainty due to the ef-
ficiency of the matching between tracking and trigger information 
is also added. A conservative pT-dependent systematic uncertainty 
of 0.5% · pT (in GeV/c) is assigned to take into account the differ-
ence between the true (unknown) residual mis-alignment of the 
spectrometer and the simulated one.

The systematic uncertainty of the estimate of the yield of 
muons from charged-pion and charged-kaon decays contains con-
tributions from the uncertainty on i) the measured mid-rapidity 
pT distributions of charged pions and kaons and their pT extrapo-
lation, of 5–8%, ii) the rapidity extrapolation, of 7–26% (2–27%) at 
forward (backward) rapidity, depending on pT, estimated by com-
paring the results from DPMJET and HIJING generators and iii) the 
absorber effect, of 15%, obtained by varying the interaction length 
in the absorber within reasonable limits. At backward rapidity, in 
addition to previous systematic uncertainties a systematic uncer-
tainty arises from the procedure that makes use of the asymmetry 
factor measured by the CMS Collaboration [65] in different rapidity 
intervals with respect to our measurement. This uncertainty, about 
15–18%, is calculated by varying the asymmetry factor between 
unity and two times the measured value for charged particles. An 
additional 15% uncertainty is included to account for the varia-
tions with pT of the measured asymmetry factor with respect to 
a uniform distribution in the high pT region. All the aforemen-
tioned uncertainties are added in quadrature to obtain the total 
uncertainty on the background subtraction, which results in an 
uncertainty on the pT-differential cross section and nuclear modi-
fication factor of muons from heavy-flavour hadron decays of 1–7% 
(1–15%) at forward (backward) rapidity (Table 1).

The systematic uncertainty of the measurement of the inte-
grated luminosity includes contributions from σMB and NMB. The 
systematic uncertainty of NMB of about 1% reflects the difference 
between the normalisation factor FMSL(MSH) values obtained with 
the two different procedures described in Section 3.2. The system-
atic uncertainty of σMB amounts to 3.5% (3.2%) for the p–Pb (Pb–p) 
configuration, with a total correlated uncertainty between these 



ALICE Collaboration / Physics Letters B 770 (2017) 459–472 463

two configurations of 1.6%. The luminosity measurement was per-
formed independently by using a second reference cross section, 
based on particle detection by the T0 detector [57]. The lumi-
nosities measured with the two detectors differ by at most 1% 
throughout the whole data-taking period. This value is combined 
quadratically with the systematic uncertainties on σMB and NMB, 
leading to a total uncertainty on the integrated luminosity of 3.8% 
(3.5%) for the p–Pb (Pb–p) configuration.

The systematic uncertainty of the pp reference at 
√

s = 5.02 TeV
accounts for the uncertainties of i) the measurement of the 
pT-differential cross section of muons from heavy-flavour hadron 
decays at 

√
s = 7 TeV, of 8–14%, plus a global uncertainty of 3.5% 

from the luminosity measurement [69] quoted separately, ii) the 
energy scaling factor, obtained by considering different sets of fac-
torisation and renormalisation scales and quark masses in FONLL 
as detailed in [66], of 3% (7%) at pT = 2 GeV/c and 2% (4%) at 
pT = 12 GeV/c at forward (backward) rapidity, iii) the procedure 
based on FONLL predictions for 12 < pT < 16 GeV/c, of 26% (30%) 
at forward (backward) rapidity, and iv) the rapidity extrapolation. 
The uncertainty on the latter amounts to 2% at forward rapidity 
and is negligible at backward rapidity. It is estimated from the pp 
cross sections at 

√
s = 7 TeV measured in the full acceptance and 

in various rapidity sub-intervals [4]. These rapidity sub-intervals 
are combined in order to mimic the rapidity intervals investigated 
in the p–Pb and Pb–p configurations (Section 2), scaled with FONLL 
to the full rapidity coverage and compared with the measurement.

A summary of the systematic uncertainty sources previously 
discussed, after propagation to the measurements of dσ

μ±←HF
pPb /dpT

and Rμ±←HF
pPb , is presented in Table 1. The main contribution to the 

Rμ±←HF
pPb systematic uncertainty comes from the pp reference, in 

particular in the high pT region (pT > 12 GeV/c). Most of the sys-
tematic uncertainties are uncorrelated as a function of pT, with 
the exception of the systematic uncertainties of mis-alignment in 
pp and p–Pb collisions which are correlated bin-to-bin in pT, of 
the detector response which is partially correlated, and of the lu-
minosity which is fully correlated. The total systematic uncertainty 
on Rμ±←HF

pPb varies within about 12–28% (18–31%) at forward (back-
ward) rapidity.

All systematic uncertainties entering the dσ
μ±←HF
pPb /dpT mea-

surement at forward and backward rapidity affect the Rμ±←HF
FB

measurement, with the exception of the 1.6% contribution from the 
uncertainty on the luminosity, which is fully correlated between 
the results at forward and backward rapidity. The main contribu-

tion to the Rμ±←HF
FB systematic uncertainty comes from the muon 

background at low pT (pT < 4 GeV/c) as well as the detector 
response and mis-alignment in the high-pT region. The total sys-

tematic uncertainty on Rμ±←HF
FB decreases with increasing pT, from 

about 20% (pT = 2 GeV/c) to 10% (pT = 16 GeV/c).

4. Results and comparison to model predictions

The pT-differential cross sections of muons from heavy-flavour 
hadron decays measured in p–Pb collisions at 

√
sNN = 5.02 TeV

at forward rapidity (2.03 < ycms < 3.53) and backward rapidity 
(−4.46 < ycms < 2.96) in the interval 2 < pT < 16 GeV/c are dis-
played in Fig. 1. They are further used to compute the nuclear 
modification factor RpPb. Vertical bars represent the statistical un-
certainties and empty boxes, smaller than the symbols, the system-
atic uncertainties that include all sources discussed in Section 3, 
except the normalisation uncertainties. These conventions related 
to the drawing of uncertainties apply also to the figures discussed 
in the following.

Fig. 1. Production cross sections of muons from heavy-flavour hadron decays as a 
function of pT for p–Pb collisions at √sNN = 5.02 TeV at forward rapidity (2.03 <
ycms < 3.53) and backward rapidity (−4.46 < ycms < −2.96). Statistical uncertain-
ties (bars) and systematic uncertainties (boxes) are shown.

Fig. 2 shows the pT-differential nuclear modification factor, 
Rμ±←HF

pPb , in p–Pb collisions at 
√

sNN = 5.02 TeV at forward rapidity 
(top panel) and backward rapidity (bottom panel). Besides statis-
tical and systematic uncertainties, also the normalisation is shown 
as a filled box at Rμ±←HF

pPb = 1. The significantly smaller statistical 
(and larger systematic) uncertainties for pT > 12 GeV/c compared 
to the interval 7 < pT < 12 GeV/c reflect the different procedure 
used for the determination of the pp reference, described in Sec-

tion 3.2. The pT-differential Rμ±←HF
pPb at forward rapidity is compat-

ible with unity within uncertainties over the whole pT range. At 
backward rapidity, Rμ±←HF

pPb is larger than unity with a maximum 
significance of 2.2σ for the interval 2.5 < pT < 3.5 GeV/c, as calcu-
lated from the combined statistical and systematic uncertainties. At 
higher pT, it is compatible with unity. The measurements indicate 
that CNM effects are small and that the strong suppression of the 
yields of muons from heavy-flavour hadron decays observed in the 
10% most central Pb–Pb collisions [5] should result from final-state 
effects, e.g. the heavy-quark in-medium energy loss. The trends 
measured by ALICE in p–Pb collisions, including the hint for an en-
hancement at backward rapidity, are similar to those observed by 
the PHENIX Collaboration at RHIC for muons from heavy-flavour 
hadron decays measured in d–Au collisions at 

√
sNN = 200 GeV at 

forward (1.4 < ycms < 2.0) and backward (−2.0 < ycms < −1.4) ra-
pidity [45].

As shown in Fig. 2, Next-to-Leading Order (NLO) perturba-
tive QCD calculations by Mangano, Nason and Ridolfi (MNR) [70], 
which make use of the EPS09 [26] parameterization of nuclear 
PDFs (CTEQ6M [73]) and do not include any final-state effect, de-
scribe the measurements in the two rapidity regions reasonably 
well within experimental and theoretical uncertainties. The data at 
forward rapidity are also well described by calculations including 
nuclear shadowing, kT broadening and energy loss in cold nuclear 
matter [71], which predict RpPb very close to unity over the whole 
momentum range of the measurement. An agreement with these 
calculations was also reported by ALICE for D mesons and electrons 
from heavy-flavour hadron decays measured at mid-rapidity [50,

51]. The pT-differential Rμ±←HF
pPb at backward rapidity is also com-

pared with predictions from a model including incoherent multiple 
scattering effects of hard partons in the Pb nucleus both in initial-
state and final-state interactions [72]. This model expects also a 
small enhancement at low values of transverse momentum and 
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Fig. 2. Nuclear modification factor of muons from heavy-flavour hadron decays as a 
function of pT for p–Pb collisions at √sNN = 5.02 TeV at forward rapidity (2.03 <
ycms < 3.53, top) and backward rapidity (−4.46 < ycms < −2.96, bottom) compared 
to model predictions [70–72]. Statistical uncertainties (bars), systematic uncertain-

ties (open boxes), and normalisation uncertainties (filled box at Rμ±←HF
pPb = 1) are 

shown. Filled (open) symbols refer to the pp reference obtained from an energy 
and rapidity scaling to the measurement at √s = 7 TeV (an extrapolation based on 
FONLL calculations).

describes the measurement fairly well over the whole pT range. 
The same model is able to describe both the pT-differential RpPb
of electrons from heavy-flavour hadron decays measured at mid-
rapidity with ALICE, which is also consistent with unity within un-
certainties [51], and the enhancement seen at backward rapidity in 
d–Au collisions at 

√
sNN = 200 GeV for muons from heavy-flavour 

hadron decays [72]. Theoretical calculations based on the Colour
Glass Condensate model [74] predict that for the rapidity interval 
2.5 < ycms < 3.53, the RpPb of muons from charm-hadron decays 
for the interval 0 < pT < 4 GeV/c increases with increasing pT from 
about 0.6 to 0.85. This predicted RpPb is slightly smaller than that 
reported here for muons from heavy-flavour hadron decays,3 al-
though for a slightly different rapidity interval.

The pT-differential nuclear modification factors of muons from 
heavy-flavour hadron decays were also studied as a function of ra-
pidity, by dividing each of the two intervals in two sub-intervals. 
The results are presented in Fig. 3. In both the forward (top panel) 

3 For the interval 0 < pT < 4 GeV/c the component of muons from charm-hadron 
decays dominates according to FONLL calculations [58].

Fig. 3. Nuclear modification factors of muons from heavy-flavour hadron decays 
as a function of pT for p–Pb collisions at √sNN = 5.02 TeV in two rapidity sub-
intervals at forward (top) and backward (bottom) rapidity. Statistical uncertainties 
(bars), systematic uncertainties (open boxes), and normalisation uncertainties (filled 
box at Rμ±←HF

pPb = 1) are shown. For visibility, the points for the rapidity inter-
vals 2.79 < ycms < 3.53 and −3.71 < ycms < −2.96 are slightly shifted horizontally. 
Filled (open) symbols refer to the pp reference obtained from an energy and rapid-
ity scaling to the measurement at √s = 7 TeV (an extrapolation based on FONLL 
calculations).

and backward (bottom panel) rapidity regions, no significant dif-
ference is observed between the nuclear modification factors mea-
sured in the two rapidity sub-intervals.4

Fig. 4 shows Rμ±←HF
FB for muons from heavy-flavour hadron 

decays for the rapidity region 2.96 < |ycms| < 3.53 function of 
pT (Eq. (4)). The forward-to-backward ratio is found to be smaller 
than unity at intermediate pT, with a significance of 3.7σ for 
2.5 < pT < 3.5 GeV/c, and it rises gradually towards unity with 
increasing pT. This observable is also well described by NLO pQCD 
calculations with the EPS09 modification of the CTEQ6M PDFs.

5. Conclusion

In summary, the production of muons from heavy-flavour 
hadron decays has been measured in p–Pb collisions at 

√
sNN =

5.02 TeV for 2 < pT < 16 GeV/c with the ALICE detector at the 

4 It cannot be excluded that a degree of correlation between the two rapidity 
sub-intervals, difficult to quantify, is present in the various systematic uncertainty 
sources.
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Fig. 4. Forward-to-backward ratio of muons from heavy-flavour hadron decays as a 
function of pT for p–Pb collisions at √sNN = 5.02 TeV compared to model predic-
tions [70]. Statistical uncertainties (bars), systematic uncertainties (open boxes) and 
normalisation uncertainties (filled box at Rμ±←HF

FB = 1) are shown.

CERN LHC. Measurements of the production cross sections and nu-
clear modification factors have been presented as a function of pT
at forward (2.03 < ycms < 3.53, p-going direction) and backward 
(−4.46 < ycms < −2.96, Pb-going direction) rapidity. Moreover, the 
pT-differential forward-to-backward ratio has been also studied in 
the smaller overlapping interval 2.96 < |ycms| < 3.53. At forward 
rapidity, the nuclear modification factor is compatible with unity 
over the whole pT range. At backward rapidity, a deviation from bi-
nary scaling is suggested in the interval 2.5 < pT < 3.5 GeV/c with 
a significance of about 2σ . The observed trends in the Rμ←HF

pPb
measurements are reflected in the forward-to-backward ratio, 
which shows a clear tendency to be below unity, with a deviation 
of 3.7σ for 2.5 < pT < 3.5 GeV/c. The measured nuclear modifi-
cation factors and the forward-to-backward ratio are reproduced 
within uncertainties by NLO pQCD calculations including nuclear 
modification of the PDFs. The nuclear modification factor at for-
ward rapidity is in agreement with a model calculation including 
CNM effects based on a nuclear shadowing scenario, kT broaden-
ing and energy loss in cold nuclear matter. The data at backward 
rapidity are also reproduced by a model including incoherent mul-
tiple scattering effects. The results indicate that the suppression of 
the production of high-pT muons from heavy-flavour hadron de-
cays in the 0–10% most central Pb–Pb collisions measured by ALICE 
is due to final-state effects induced by the hot and dense medium 
formed in these collisions.
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