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Abstract We present the charged-particle multiplicity dis-
tributions over a wide pseudorapidity range (−3.4<η<5.0)
for pp collisions at

√
s = 0.9, 7, and 8 TeV at the LHC.

Results are based on information from the Silicon Pixel
Detector and the Forward Multiplicity Detector of ALICE,
extending the pseudorapidity coverage of the earlier publi-
cations and the high-multiplicity reach. The measurements
are compared to results from the CMS experiment and to
PYTHIA, PHOJET and EPOS LHC event generators, as well
as IP-Glasma calculations.

1 Introduction

The multiplicity of charged particles produced in high-energy
pp collisions is one of the key observables to describe the
global properties of the interactions and has been the subject
of long standing experimental and theoretical investigations.
The pp multiplicity distributions of primary-charged parti-
cles have been measured for five increasingly wider pseu-
dorapidity ranges. A primary-charged particle is a charged
particle with a mean proper lifetime τ larger than 1 cm/c,
which is either produced directly in the interaction, or from
decays of particles with τ smaller than 1 cm/c, excluding par-
ticles produced in interactions with material [1]. The results
are determined using both the Silicon Pixel Detector (SPD)
and the Forward Multiplicity Detector (FMD) in ALICE to
widen the pseudorapidity coverage with respect to previous
ALICE results [2–4], which made exclusive use of the SPD.
The extension of the pseudorapidity coverage allows us to
increase the high-multiplicity reach of the distributions by
around 70–90% with respect to the previous ALICE publi-
cation [4], exploring a wider phase space.

The multiplicity distribution of charged particles produced
in high-energy pp collisions is sensitive to the number of
interactions between quarks and gluons contained in the pro-

� e-mail: alice-publications@cern.ch

tons and to underlying mechanisms of particle production.
At LHC energies, the particle production is dominated by
soft QCD processes, which cannot be treated perturbatively
and can only be modeled phenomenologically. On the other
hand, as the colliding energy grows, the particle production
receives increased contributions from hard scattering, which
can be treated perturbatively.

We have compared directly our data to previous measure-
ments from CMS [5]. ATLAS and LHCb use different pT

and η ranges [6,7], making the direct comparison impossible.
This manuscript presents also an overview of the parameters
obtained when fitting multiplicity distributions with the sum
of two Negative Binomial Distributions (NBDs). Addition-
ally, the results have been compared to simulations regularly
used at LHC [8–11] and calculations based on saturation
density of gluons in the colliding hadrons [12,13].

The manuscript is organized in the following way: Sect. 2
describes the detectors used to measure the charged-particle
multiplicity distributions. Section 3 explains the analysis pro-
cedure in detail. The systematic uncertainties are described
in Sect. 4 and the results along with comparisons to models
are presented in Sect. 5, which contains also the analysis of
the NBD fits. A brief summary and conclusions are finally
given in Sect. 6.

2 Experimental setup

Full details of the sub-detectors are given elsewhere [14].
ALICE is designed to measure particles over a wide kine-
matic range − 3.4 < η < 5.0. Only the sub-detectors used
in this analysis are described, namely the V0 scintillation
counters, the SPD, and the FMD.

2.1 V0 detector

The V0 detector [15] is composed of two arrays of 32 scin-
tillators positioned at 330 cm (V0-A) and −90 cm (V0-C)

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-5412-6&domain=pdf
mailto:alice-publications@cern.ch


852 Page 2 of 23 Eur. Phys. J. C (2017) 77 :852

from the nominal interaction point (IP) along the beam axis.
Each array has a ring structure segmented into 4 radial and
8 azimuthal sectors. The detector has full azimuthal cov-
erage in the pseudorapidity ranges 2.8 < η < 5.1 and
− 3.7 < η < − 1.7. The signal amplitudes and times are
recorded for each of the 64 scintillators. The V0 is appro-
priate for triggering, thanks to the good timing resolution of
each scintillator (1 ns) along with its large acceptance for
detecting charged particles. Different V0 trigger settings are
used in the analysis.

2.2 Silicon pixel detector

The SPD are the two innermost cylindrical layers of the
ALICE Inner Tracking System (ITS) [14] surrounding the
beam line. The layers have full azimuthal coverage and radii
of 3.9 and 7.6 cm with 9.8 × 106 silicon diodes, each of
size 50 × 425 µm2. The first layer of the SPD has the largest
pseudorapidity coverage of the ITS (|η| < 1.98 for collisions
at the nominal IP). Besides the readout of individual pixels
with signals above a certain threshold, each SPD chip pro-
vides a fast signal every 100 ns, indicating a presence of fired
pixels (FastOR), making it suitable for triggering. Charged
particles can deposit energy in more than one pixel of the
SPD. The offline reconstruction combines such neighboring
signals into a a single cluster. The charged-particle multiplic-
ity can then be estimated by counting the number of clusters
detected in a SPD layer. This analysis uses only clusters from
the inner layer of the SPD to provide the largest pseudora-
pidity coverage for particle detection. Alternatively, clusters
from the two SPD layers together with the primary vertex can
be combined to form tracklets [4], allowing to select primary
particles with very high efficiency. The charged-particle mul-
tiplicity is then estimated by counting the number of tracklets.

2.3 Forward multiplicity detector

The purpose of the FMD is to extend, with high spatial reso-
lution, the charged-particle detection acceptance beyond the
reach of the SPD and central detectors in ALICE [16]. The
FMD is a silicon strip detector and consists of three sub-
detectors placed at 320 cm (FMD1), 79 cm (FMD2), and
− 69 cm (FMD3) from the nominal IP along the beam pipe.
FMD2 and FMD3 contain both inner and outer rings of sil-
icon strips. FMD1 is located farther from the IP and has
only one inner ring. Inner rings consist of 10 sensors, each
with two azimuthal sectors and 512 strips with radii from 4.2
to 17.2 cm. Outer rings contain 20 sensors each again with
two azimuthal sectors, but with 256 strips, with radii from
15.4 to 28.4 cm. Each ring (inner or outer), therefore, con-
tains 10,240 strips giving in total 51,200 strips. The FMD
has full azimuthal coverage in the pseudorapidity ranges
− 3.4 < η < − 1.7 and 1.7 < η < 5.0.

The FMD records, for each strip, the energy deposited
by charged particles traversing the detector. Various selec-
tion criteria, see [17,18] for details, are applied to the energy
measured in each strip to determine if the signal corresponds
to a single particle traversing only this strip or also a neigh-
boring strip. The number of particles traversing the FMD
is determined taking into account only the signals which
pass these selection criteria. The majority of the particles
which reach the FMD, however, are secondary particles pro-
duced in interactions with the beam pipe, the material of the
ITS, cables and support structures [17]. Therefore, a detailed
Monte Carlo simulation is needed to determine the number
of primary particles produced in the collision.

3 Analysis procedure

The multiplicity distribution of the primary particles is
affected by many detector effects, such as dead detector
regions and secondary particle production. These detector
effects must be minimized and corrected for as they have
increasing effects when determining accurately the probabil-
ity of progressively higher-multiplicity events. The unfolding
method is used to correct for the detector effects, as will be
described in the following.

3.1 Event selection

Collisions at three different center of mass energies (0.9, 7,
and 8 TeV) are analyzed. The data used for the analysis were
collected at low beam currents and low pileup during three
data taking periods: the 0.9 and 7 TeV samples were acquired
in 2010, while the 8 TeV sample was collected in 2012. The
last sample is the most affected by the pileup contamination.
For this reason we selected few specific runs with low con-
tamination from pileup events for this energy, and used data
taken with interaction rate not exceeding 1 kHz. A pileup
is defined as more than one collision occurring during the
readout time of the detector (300 ns, for the SPD, and 2 µs
sampling time, for the FMD). Such events produce a bias
towards larger multiplicity that enhance mostly the tail of
the multiplicity distribution. Table 1 shows the number of
selected events at each energy and the average number of
interactions per bunch crossing, 〈μ〉, measured by the exper-
iment [19]. This parameter is determined experimentally and
for this measurements, in which 〈μ〉 � 1, the average prob-
ability of having more than one interaction in a single bunch
crossing, where at least one interaction occurs, is around
1 − 2% (〈μ〉/2).

Inelastic non-diffractive scatterings are the dominant pro-
cesses in pp collisions, for which most of the hadrons are
produced as a consequence of an exchange of color charge.
On the contrary, diffractive events can be single-, double-, or
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Table 1 Data samples used in this analysis. For each center-of-mass
energy, the total number of selected minimum-bias (MB) events along
with the average number of interactions per bunch crossing, 〈μ〉, are
listed
√
s (TeV) Selected MB events 〈μ〉

0.9 7.4 × 106 0.04 ± 0.01

7 61 × 106 0.04 ± 0.01

8 26 × 106 0.02 ± 0.01

central-diffractive. In Regge theory [20], diffraction occurs
when the Pomeron interacts with the proton and produces a
system of particles, called the diffractive system. The case
in which only one of the protons dissociates is called single-
diffractive.

The signals of the V0 and SPD are used to select events
where at least one interaction occurred, which are triggered
by requiring the detection of at least one particle in either the
V0-A, V0-C, or SPD (MBOR). Events are divided into three
classes depending on further requirements. The first class
includes all inelastic events (the INEL class), which is the
same condition as used to select events where an interaction
occurred (MBOR trigger). The second class (the INEL > 0)
requires the presence of at least one charged particle (tracklet)
in the region |η| < 1.0 in addition to the INEL condition. This
class has higher trigger efficiency and, therefore, reduced
corrections relative to the INEL event class. The third class
requires charged particles to be detected in both the V0-A and
the V0-C (MBAND). This class is used to remove the majority
of the single-diffractive events and is, therefore, called the
non-single-diffractive (NSD) event class.

To remove interactions of the beam with residual gas in
the beam pipe, further selection criteria are applied to the
event sample. Since these interactions can occur anywhere
along the beam line, the most efficient way to reject them is
to require that the interaction occurs close to the expected
bunch-crossing position. The position of the collision along
the beam pipe is determined from the vertex position recon-
structed correlating SPD tracklets, with a precision of about
0.2 cm. Beam-gas interactions far from the IP are vetoed by
the time difference in the V0-A and V0-C detectors. The ver-
tex is required to be within 4 cm of the nominal IP position
to reduce the contribution from beam-gas interactions and
to remove acceptance gaps in the pseudorapidity coverage
of the SPD and FMD, since the acceptance depends on the
vertex position.

Even though runs with very low 〈μ〉 (average 0.04) were
chosen, a residual background from pileup events remains.
The majority of pileup events are identified and removed
by searching for additional vertices in the same event. It is
required that the uncertainty on the measurement of the lon-
gitudinal vertex position is less than 0.2 cm to have the most

accurate determination of the vertex. Events with an addi-
tional vertex separated by more than 0.8 cm from the main
one and containing at least three attached tracklets are tagged
as pileup and removed from the analysis. Dedicated simula-
tions show that the probability for the pileup event to pass
this selection criteria is at most 10% and the residual pileup
does not exceed 10% up to the highest multiplicities kept in
this analysis. Therefore, the overall pileup contribution does
not exceed 0.2% for 〈μ〉 = 0.04 and, because it is covered by
systematic uncertainties for all multiplicities, no correction
is applied for this bias.

3.2 Unfolding

The FMD had nearly 100% azimuthal acceptance, but the
SPD had a significant number of modules excluded from
read-out that must be accounted for. On the other hand, inter-
actions in detector material increase the detected number of
charged particles, in particular in the FMD. A good under-
standing of the detector acceptance and of the number of
secondary particles which hit the FMD and the SPD is cru-
cial.

The main ingredients necessary to evaluate the primary
multiplicity distributions are the raw (detected) multiplicity
distributions and a matrix, which maps the measured mul-
tiplicity to the number of charged-primary particles distri-
butions, called true. The raw multiplicity distributions are
determined by counting the number of clusters in the SPD
acceptance, the number of signals passing selection criteria
in the FMD, or the average between the two if the acceptance
of the SPD and FMD overlaps. The response of the detector
is determined by the matrix Rmt , which corresponds to the
probability that an event with true multiplicity t and mea-
sured multiplicity m occurs. This matrix is obtained using
PYTHIA ATLAS-CSC flat tune [21] simulations in which the
generated particles are transported through the experimental
setup using the GEANT3 [22] software package. The same
reconstruction algorithm is used for simulations of real data.
Experimental conditions and detector settings at the time of
data-taking at a center-of-mass energy of

√
s = 0.9, 7, and

8 TeV are simulated when evaluating the response matrices.
Figure 1 shows two different response matrices for differ-
ent pseudorapidity ranges. The left panel of Fig. 1 shows the
response matrix obtained for the |η| < 2.0. In this range, the
unfolding increases the multiplicity on average because of
the acceptance gaps in the SPD. When the extended pseu-
dorapidity range, |η| < 3.4, is used, the number of detected
counts exceeds on average the number of true counts as the
secondary particles in the FMD dominate the bias. This is
shown in the right panel of Fig. 1.

A method based on Bayes’ Theorem [23] is used to derive
the final multiplicity distributions. Bayes’ Theorem states
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Fig. 1 Response matrices obtained propagating Monte Carlo gener-
ated events, in this case with the PYTHIA ATLAS-CSC flat tune [21]
for the non-single-diffractive event class selection. Left: Matrix includ-

ing the overlap region between SPD and FMD. Right: Matrix for the
region where the majority of the counts are from the FMD. The diagonal
(generated=reconstructed) is plotted as a black dotted line

that the conditional probability P(A|B) (probability of A if
B is true) can be written as

P(A|B) = P(B|A)P(A)

P(B)
, (1)

in which P(A) and P(B) are the independent probabilities of
A and B, and P(B|A) is the probability of B if A is true. A can
be identified as a certain true multiplicity, while B is the mea-
sured multiplicity. The conditional probability P(B|A) is the
response matrix of the detector, and can then be computed.

Equation 1 is restated as

˜Rtm = RmtPt
∑

t’ Rmt ′Pt ′
, (2)

where Pt is an a priori guess of the true distribution and
˜Rtm is the matrix of probabilities that allows one to compute
the true multiplicity distribution from the measured one. The
unfolded distribution, Ut , is then obtained from

Ut =
∑

m

˜RtmMm, (3)

in which Mm is the measured distribution. The obtainedUt is
used as a priori probability for the next iteration. The number
of iterations is fixed to 10. This parameter has been chosen by
examining the optimal performance obtained from simula-
tion studies, performing closure tests using different number
of iterations.

3.3 Event selection efficiency

The probability that an event is triggered depends on the
multiplicity of charged particles. At high multiplicities, it

is more probable that one of the trigger detectors is fired.
At low multiplicities large trigger inefficiencies for finding
events exist and must be corrected for. The event selection
efficiency, εTRIG, is defined via simulations as

εTRIG = Nev,reco(TRIG & |vz,reco| < 4 cm)

Nev,gen(TRIG & |vz,gen| < 4 cm)
, (4)

where the numerator is the number of reconstructed events
with the selected hardware trigger condition (MBAND or
MBOR) and with the reconstructed vertex less than 4 cm from
the nominal IP, in longitudinal direction. There is a depen-
dence in the z vertex distribution and selecting vz,reco intro-
duces a bias in the efficiency. The effect is visible only for nar-
row vertex selections, and it is not relevant for |vz| < 4 cm.
The denominator is a similar quantity, but for the gener-
ated sample (inelastic or non-single-diffractive events). The
unfolded distribution is corrected for the vertex and trigger
inefficiency by dividing each multiplicity bin by its εTRIG

value.
The efficiencies used are shown in Fig. 2 for 0.9 and 7 TeV

for the range |η| < 3.0. Both the INEL and NSD efficien-
cies are displayed. The points are obtained by averaging the
efficiencies found with the PYTHIA Perugia 0 [8] and the
PHOJET [9] diffraction tuned event generators. Diffraction
was accounted for using the Kaidalov–Poghosyan model [24]
to tune the diffractive processes. The event generators are
adjusted to reproduce the measured diffraction cross-sections
and the shapes of the diffractive masses. The cross-section
ratios are σSD/σINEL � 0.20 for upper diffractive mass limit
of MX < 200 GeV/c2, and σDD/σINEL � 0.11 for a pseu-
dorapidity gap of �η > 3, as measured at the LHC [25].
The uncertainties are estimated by evaluating the difference
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Fig. 2 Event selection efficiencies for 0.9 and 7 TeV for both INEL and NSD event samples as a function of the number of primary-charged
particles for the |η| < 3.0 range

Table 2 Systematic
uncertainties (in percent) for the
efficiency correction, for the
INEL, NSD and INEL> 0 event
classes. Numbers are given for
multiplicity 0, 1, and 2

η range Event class
√
s (TeV)

0.9 7 8

Nch

0 1 2 0 1 2 0 1 2

Efficiency uncertainty

|η| < 2.0 INEL 15.3 6.2 3.0 27.0 11.5 5.0 28.0 12.7 8.7

NSD 5.3 2.7 0.5 9.8 6.9 0.5 9.8 8.8 7.1

INEL > 0 – 6.2 3.1 – 11.5 5.0 – 12.7 8.7

|η| < 2.4 INEL 19.9 14.1 8.5 26.9 20.6 12.0 28.1 22.5 16.6

NSD 8.1 10.7 5.7 14.4 17.6 8.5 14.6 19.8 14.2

INEL > 0 – 14.1 8.5 – 20.6 12.0 – 22.5 16.6

|η| < 3.0 INEL 25.8 24.4 20.7 30.4 33.5 26.0 32.1 35.2 28.9

NSD 15.4 22.2 18.4 19.3 29.1 25.1 18.8 31.0 28.1

INEL > 0 – 24.4 20.7 – 33.5 26.0 – 35.2 28.9

|η| < 3.4 INEL 31.2 34.5 29.6 50.4 40.3 35.4 53.4 41.4 37.2

NSD 17.3 35.1 27.7 22.4 39.0 32.0 21.0 40.2 33.9

INEL > 0 – 34.4 29.6 – 40.3 35.4 – 41.4 37.2

− 3.4 < η < + 5.0 INEL 48.3 45.1 36.7 71.1 43.1 44.3 75.4 45.7 47.7

NSD 35.3 64.9 34.8 55.5 31.4 39.8 50.9 34.9 43.5

INEL > 0 – 45.1 36.7 – 43.1 44.3 – 45.7 47.7

between the two event generators and are only relevant at low
multiplicity. The efficiency of NSD trigger requiring signal
in V0-A and V0-C detectors, on both sides of the IP, is lower
at low multiplicities than that of INEL trigger, which requires
response of at least one V0. For Nch � 20 at the widest pseu-
dorapidity ranges probed, both efficiencies reach 100% and
the corresponding systematic uncertainty becomes negligi-
ble.

4 Systematic uncertainties

The steps involved in the analysis depend on the knowledge
of the detector response to charged particles. The uncertain-

ties in Table 2 are purely model dependent and related to how
diffraction, and soft QCD in general, are processed in the two
generators used to determine the efficiency uncertainty. The
difference between PYTHIA Perugia 0 and PHOJET diffrac-
tion tuned generators, used to determine this uncertainty, is
larger for small values of Nch. Therefore, the uncertainty
mostly influences the first bins of the multiplicity distribu-
tions. Table 2 reports the values for charged-multiplicity of 0,
1, and 2. In general, the Lorentz boost of the diffracted system
increases with increasing center-of-mass energies, and single
and double diffraction contributions are smaller when going
to higher energies. At wider pseudorapidity ranges there are
higher chances of including diffractive events in the distri-
bution. We observe that the uncertainty for NSD events at
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Table 3 Total systematic
uncertainties (in percent), for
the INEL, NSD and INEL> 0
event classes. Numbers are
given at multiplicity values of 0,
the mean 〈m〉, and when
P(Nch) = 10−4

η range Event class
√
s (TeV)

0.9 7 8

Nch Nch P(Nch)

0 〈m〉 10−4 0 〈m〉 10−4 0 〈m〉 10−4

Total uncertainty

|η| < 2.0 INEL 16.6 2.0 12.2 27.4 2.5 28.8 27.1 2.9 17.6

NSD 7.6 1.3 12.3 11.0 4.4 30.2 9.8 4.6 19.0

INEL >0 – 1.9 12.9 – 4.0 30.2 – 4.2 17.9

|η| < 2.4 INEL 20.8 2.3 21.2 27.3 2.9 37.7 28.1 2.2 34.6

NSD 10.0 3.1 18.0 15.1 4.4 39.2 14.6 7.4 36.9

INEL >0 – 2.7 22.2 – 4.6 40.1 – 7.4 35.8

|η| < 3.0 INEL 26.2 1.8 26.1 30.8 4.9 43.9 32.1 4.8 43.6

NSD 16.1 2.6 26.8 19.9 5.6 44.2 18.8 7.0 43.8

INEL >0 – 2.7 26.9 – 5.9 52.8 – 6.7 45.0

|η| < 3.4 INEL 31.5 2.2 27.3 50.8 6.1 51.9 53.4 5.3 50.1

NSD 17.8 2.4 28.6 23.1 6.1 53.5 21.1 6.1 52.9

INEL >0 – 2.4 28.7 – 5.9 52.8 – 5.9 51.5

− 3.4 < η < + 5.0 INEL 48.4 1.3 29.8 71.5 5.4 60.5 75.4 3.9 57.4

NSD 35.6 2.1 30.7 56.0 6.9 63.8 50.9 7.0 61.5

INEL >0 – 2.4 30.8 – 5.7 63.4 – 5.7 59.9

− 3.4 < η < + 5.0 is higher for lower energy in one mul-
tiplicity bin, where the description of diffraction differs the
most among PYTHIA and PHOJET.

Systematic effects from different sources related to run
conditions could produce biases in the number of detected
particles. To investigate such effects, the fluctuations in the
results are examined for all three energies by splitting the
data set into two separate samples with similar beam condi-
tions, which are then unfolded with two different response
matrices. The response matrices are calculated from simu-
lations relative to the conditions of the runs that are used
to unfold. The two resulting unfolded distributions are then
averaged bin by bin. For

√
s = 0.9 and 8 TeV, the run-to-run

fluctuations are found to be negligible up to the value of Nch

in which statistical uncertainties become large. For
√
s = 7

TeV, however, run-to-run fluctuations of around 10–15% in
the low Nch bins are found.

As discussed in Sect. 3.2, an accurate detector descrip-
tion is crucial in determining the number of particles created
in interactions with detector material in order to retrieve the
primary distribution. For the SPD, little material (besides the
beam pipe) exists between the detector and the interaction
point, whereas a significant amount of material is present
between the FMD and the interaction point. An estimate of
the amount of material versus η was done using special satel-
lite collisions [18], which occur away from the nominal IP
and thereby reduce the amount of traversed material. The
result was that for − 3.4 < η < − 1.7 the material was
underestimated in the simulations of the experiment by a

maximum value of 14%. For 1.7 < η < 5.0, the material
was estimated with ± 7% precision. It is possible to correct
for the measurements of the first moment of the distribu-
tion (pseudorapidity density [18]). On the contrary, higher
order effects are non-trivial, making it impossible to directly
correct in this case for the amount of material. Instead, the
entire raw distribution was unfolded with two response matri-
ces, one which increases the material by 14% and the other
which decreases the material by 7%. The difference between
the results using the two different matrices determined the
maximum systematic error contribution from the material
budget.

The last uncertainty was determined by varying the selec-
tion criteria used to determine which signals correspond to
single particles in the FMD (described in Sect. 2.3) by 5%.
This value is the maximum variation of the fit parameters
to the energy distributions [17] within each of the three data
taking periods.

The systematic uncertainties from the three sources
described along with the one from the efficiency correction
are summed in quadrature (see Table 3). The methods to
determine the systematic uncertainties from material bud-
get give the largest possible variations. To convert the vari-
ations to a root-mean-square value, they have been divided
by

√
3 considering that the variation is flat and was taken

from the mean bin-by-bin value as the reference, not the full
spread. Three particular multiplicities are considered when
reporting the systematic uncertainties in Table 3: the 0-bin,
the mean value 〈m〉, and the value in which the probabil-
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Fig. 3 Charged-particle multiplicity distributions for NSD (top left),
INEL (top right) and INEL >0 (bottom) pp collisions at

√
s = 0.9 TeV.

The lines show fits to double NBDs. Ratios of the data to the fits are also

presented. Combined systematic and statistical uncertainties are shown
as bands
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Fig. 4 Charged-particle multiplicity distributions for NSD (top left),
INEL (top right) and INEL >0 (bottom) pp collisions at

√
s = 7 TeV.

The lines show fits to double NBDs. Ratios of the data to the fits are also

presented. Combined systematic and statistical uncertainties are shown
as bands

ity is very low (P(Nch) = 10−4). For P(Nch) < 10−4 the
uncertainties grow rapidly and the level of the systematic
uncertainty depends strongly on the multiplicity. The P(Nch)

region with lowest uncertainty is near the mean of the distri-
bution.

5 Results

The multiplicity distributions have been measured for the
three event classes (INEL >0, INEL, and NSD) for pp col-
lisions at

√
s = 0.9, 7, and 8 TeV. To extract the relative
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Fig. 5 Charged-particle multiplicity distributions for NSD (top left),
INEL (top right) and INEL >0 (bottom) pp collisions at

√
s = 8 TeV.

The lines show fits to double NBDs. Ratios of the data to the fits are also

presented. Combined systematic and statistical uncertainties are shown
as bands

contributions from hard and soft processes, the distributions
are fitted with double Negative Binomial Distributions. The
results are also compared with the LHC measurements done
by CMS and with distributions obtained from models includ-
ing the IP-Glasma, which is based on the Color Glass Con-
densate (CGC) [26].

5.1 Multiplicity distributions

In Figs. 3, 4 and 5, the obtained multiplicity distributions
for 0.9, 7, and 8 TeV with NSD, INEL and INEL >0 trig-
gers are shown for five pseudorapidity ranges, |η| < 2.0,
|η| < 2.4, |η| < 3.0, |η| < 3.4 and − 3.4 < η < + 5.0.
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Fig. 6 Comparison of the multiplicity distributions for NSD pp collisions at
√
s = 0.9 TeV (left) and 7 TeV (right) with CMS [5] measurements

in the same pseudorapidity ranges and previous ALICE measurements [4]. Combined systematic and statistical uncertainties are shown as bands
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Fig. 7 Comparison of multiplicity distributions for INEL events to PYTHIA 6 Perugia 0, PYTHIA 8 Monash, PHOJET and EPOS LHC at 0.9
(left) and 7 TeV (right). Combined systematic and statistical uncertainties are shown as bands
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Fig. 8 Charged-particle multiplicity distributions for pp collisions at√
s = 7 TeV compared to distributions from the IP-Glasma model with

the ratio between Qs and the color charge density either fixed (green

stars), allowed to fluctuate with a Gaussian (blue squares) [12] or with
additional fluctuations of proton saturation scale (black diamonds) [13]

The colored bands represent the combined systematic and
statistical uncertainties. The distributions are scaled by pow-
ers of 10 for clarity. The lines show fits to double NBDs,
explained in Sect. 5.2. Extending the pseudorapidity cover-
age with respect to the previous ALICE publications [2–4]
allows to extend the high-multiplicity reach.

In Fig. 6 (left panel), the comparison to published CMS
data [5] is shown for the NSD event class at

√
s = 0.9 TeV in

three η ranges. Discrepancies are observed in the comparison
with CMS, both in the first bins and, especially, in the tails.
Differences in the first bins can be attributed presumably to
the different models used to describe the diffraction masses.
In particular, CMS is not using any diffraction tuned simula-
tion. Moreover, in this paper, single-diffractive events include
a cut on diffractive mass [24], which is different from what
CMS has used. In the tails, the CMS data are systematically
lower, due to normalization. This behavior was also observed
when comparing CMS distributions to those obtained in a
narrower pseudorapidity range where only SPD tracklets are
used [4] as shown in the distribution for |η| < 1.0 in Fig. 6.

In the right panel of Fig. 6, the comparison to CMS at 7
TeV [5] is shown. Good agreement with CMS is observed
except in the very first bins presumably due to the different
treatment of diffraction masses. The measurement reported
in this manuscript, performed with the SPD clusters, agrees
with the analysis performed on SPD tracklets [4] within
systematic uncertainties.

In Fig. 7, comparisons with distributions obtained with
the PYTHIA 6 Perugia 0 tune [8], PHOJET [9], PYTHIA 8
Monash tune [10] and EPOS LHC [11] models are shown
for INEL events at 0.9 TeV (left plot) and 7 TeV (right plot).
At 0.9 TeV, PHOJET, PYTHIA 8 Monash tune and EPOS
LHC cannot reproduce the tails, and the lowest values of the

multiplicity distributions, while PYTHIA 6 Perugia 0 tune
does not reproduce the data at all. At 7 TeV, both PHOJET and
PYTHIA 6 strongly underestimate the tails of the multiplicity
distributions. PYTHIA 8, with the Monash tune that uses
LHC data, reproduces the tails for the wider pseudorapidity
range, but shows an enhancement in the peak region. EPOS
LHC models the distributions well, both in the first bins,
which are dominated by diffractive events, and in the tails.

The evolution of the multiplicity distributions with the
center-of-mass energy

√
s can be studied using the KNO

variable Nch/〈Nch〉 [27]. KNO scaling violation is observed
if the tails of the distributions increase with increasing energy.
The violation increases when going to larger pseudorapidity
ranges. This behavior was already observed at central rapidi-
ties [4], and, therefore, it is not investigated any further.

The multiplicity distributions at 7 TeV are compared to
those from the IP-Glasma model [12]. This model is based
on the Color Glass Condensate (CGC) [26]. It has been shown
that particle multiplicities are generated following an NBD
within the CGC framework [28]. Moreover, the multiplic-
ity distribution generated by the decay of the Glasma flux
tubes [29] is a NBD with parameter k (see following Sec-
tion) ∝ Q2

s S⊥, in which Qs is the gluon saturation scale
and S⊥ is the transverse overlap area of the collision [12].
The CGC based IP-Glasma model, therefore, has a built-in
source of multiplicity fluctuations. In Fig. 8, the distribution
for |η| < 2.0 is shown together with the IP-Glasma model
distributions as a function of the KNO variable Nch/〈Nch〉.
The IP-Glasma distribution, shown in green stars, generated
with a fixed ratio between Qs and density of color charge,
thus introducing no fluctuations. The blue squares distribu-
tion is generated with fluctuations of the color charge den-
sity around the mean value following a Gaussian distribution
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Table 4 Double NBD fit parameters for multiplicity distributions, NSD events. The central values of the parameters are printed in bold with their
relative uncertainty, while the top row shows the upper bound fit parameters, and the bottom row the lower bound ones
√
s (TeV) η range λ α 〈n〉1 k1 〈n〉2 k2

0.9 |η| < 2.0 0.95 0.49 10.16 3.60 24.86 3.83

0.94 ± 0.01 0.52 ± 0.05 10.28 ± 0.69 3.49 ± 0.30 25.08 ± 1.96 3.96 ± 0.63

0.94 0.55 10.42 3.38 25.37 4.13

|η| < 2.4 0.95 0.38 11.76 4.12 28.00 3.27

0.95 ± 0.01 0.27 ± 0.12 10.94 ± 1.14 4.76 ± 2.91 25.35 ± 4.40 2.80 ± 0.96

0.95 0.09 10.75 25.98 21.79 2.20

|η| < 3.0 0.94 0.27 14.41 5.85 33.00 2.99

0.94 ± 0.01 0.17 ± 0.06 13.68 ± 0.32 9.81 ± 9.82 29.62 ± 2.85 2.54 ± 0.51

0.95 0.11 13.48 21.75 27.58 2.35

|η| < 3.4 0.94 0.37 17.09 4.74 38.94 3.43

0.94 ± 0.01 0.26 ± 0.09 15.80 ± 0.95 5.95 ± 2.96 35.26 ± 4.35 2.98 ± 0.77

0.94 0.20 14.99 18.98 32.83 2.78

− 3.4 < η < + 5.0 0.95 0.42 20.31 5.17 46.55 4.21

0.95 ± 0.01 0.36 ± 0.07 19.27 ± 1.45 5.48 ± 1.18 43.41 ± 4.93 3.85 ± 1.03

0.94 0.16 18.09 15.32 36.64 2.91

7 |η| < 2.0 0.96 0.36 10.72 2.92 37.66 2.53

0.94 ± 0.01 0.37 ± 0.02 10.63 ± 0.43 2.91 ± 0.22 36.84 ± 1.41 2.51 ± 0.20

0.93 0.38 10.56 2.89 36.05 2.51

|η| < 2.4 0.97 0.36 13.19 3.13 45.86 2.61

0.95 ± 0.01 0.35 ± 0.03 12.73 ± 0.68 3.17 ± 0.40 43.05 ± 2.21 2.47 ± 0.27

0.92 0.34 12.25 3.25 40.12 2.36

|η| < 3.0 0.97 0.36 16.73 3.22 57.56 2.75

0.94 ± 0.01 0.32 ± 0.03 15.55 ± 0.94 3.52 ± 0.58 52.08 ± 2.93 2.45 ± 0.29

0.91 0.26 14.28 4.36 45.78 2.15

|η| < 3.4 0.97 0.38 19.45 3.15 65.72 2.89

0.94 ± 0.01 0.31 ± 0.03 17.43 ± 1.05 3.68 ± 0.65 57.38 ± 3.33 2.43 ± 0.30

0.91 0.21 15.48 5.83 48.46 2.02

− 3.4 < η < + 5.0 0.98 0.37 23.17 3.52 77.02 3.11

0.94 ± 0.01 0.30 ± 0.03 20.74 ± 1.28 4.18 ± 0.77 66.40 ± 4.08 2.54 ± 0.34

0.90 0.16 18.52 9.63 53.51 1.97

8 |η| < 2.0 0.96 0.44 12.58 2.38 42.18 2.97

0.94 ± 0.01 0.45 ± 0.03 12.37 ± 0.79 2.38 ± 0.15 41.16 ± 2.01 2.93 ± 0.29

0.93 0.46 12.21 2.38 40.20 2.91

|η| < 2.4 0.96 0.37 14.18 2.77 48.59 2.70

0.94 ± 0.01 0.37 ± 0.04 13.71 ± 1.10 2.75 ± 0.34 45.73 ± 3.15 2.56 ± 0.37

0.91 0.36 13.20 2.76 42.69 2.47

|η| < 3.0 0.97 0.31 16.77 3.22 57.63 2.49

0.94 ± 0.01 0.26 ± 0.03 15.50 ± 0.99 3.63 ± 0.78 51.58 ± 3.25 2.19 ± 0.29

0.90 0.19 14.20 5.01 44.90 2.92

|η| < 3.4 0.97 0.33 19.54 3.21 66.21 2.64

0.93 ± 0.01 0.26 ± 0.03 17.57 ± 0.91 3.84 ± 0.75 57.55 ± 3.17 2.22 ± 0.27

0.90 0.18 15.93 5.73 49.51 1.95

− 3.4 < η < + 5.0 0.99 0.26 21.79 4.33 73.60 2.47

0.94 ± 0.01 0.17 ± 0.03 20.11 ± 0.56 6.65 ± 2.45 62.60 ± 3.03 2.00 ± 0.21

0.90 0.14 19.22 9.96 55.01 1.92
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Table 5 Double NBD fit parameters for multiplicity distributions, INEL events. The central values of the parameters are printed in bold with their
relative uncertainty, while the top row shows the upper bound fit parameters, and the bottom row the lower bound ones
√
s (TeV) η range λ α 〈n〉1 k1 〈n〉2 k2

0.9 |η| < 2.0 0.81 0.61 10.25 2.77 26.59 4.24

0.81 ± 0.01 0.64 ± 0.05 10.44 ± 0.97 2.69 ± 0.20 27.03 ± 2.71 4.45 ± 0.91

0.81 0.68 10.67 2.61 27.62 4.73

|η| < 2.4 0.80 0.39 10.72 3.75 27.34 3.07

0.81 ± 0.01 0.33 ± 0.05 10.12 ± 0.61 4.00 ± 0.93 25.48 ± 2.11 2.80 ± 0.47

0.81 0.26 9.51 4.72 23.52 2.52

|η| < 3.0 0.80 0.38 13.81 4.14 34.33 3.20

0.80 ± 0.01 0.31 ± 0.05 12.91 ± 0.66 4.83 ± 1.39 31.45 ± 2.67 2.83 ± 0.50

0.80 0.24 12.23 6.29 28.96 2.56

|η| < 3.4 0.80 0.46 16.52 3.73 40.48 3.67

0.80 ± 0.01 0.40 ± 0.05 15.30 ± 0.95 4.10 ± 0.63 37.39 ± 2.97 3.33 ± 0.56

0.80 0.36 14.46 4.54 35.52 3.24

− 3.4 < η < + 5.0 0.80 0.50 19.87 4.20 48.17 4.49

0.80 ± 0.01 0.46 ± 0.04 18.83 ± 1.08 4.32 ± 0.45 45.16 ± 3.18 4.16 ± 0.69

0.80 0.43 17.86 4.53 42.56 3.97

7 |η| < 2.0 0.80 0.42 10.51 2.44 38.31 2.64

0.79 ± 0.01 0.43 ± 0.02 10.42 ± 0.49 2.43 ± 0.17 37.54 ± 1.56 2.63 ± 0.23

0.78 0.44 10.35 2.41 36.81 2.64

|η| < 2.4 0.80 0.39 12.61 2.77 45.69 2.63

0.79 ± 0.01 0.38 ± 0.03 12.12 ± 0.71 2.79 ± 0.38 42.87 ± 2.36 2.48 ± 0.28

0.77 0.37 11.62 2.85 39.92 2.37

|η| < 3.0 0.80 0.40 16.17 2.77 57.70 2.82

0.78 ± 0.01 0.35 ± 0.03 14.75 ± 1.01 3.13 ± 0.63 51.55 ± 3.28 2.45 ± 0.32

0.75 0.28 13.38 4.47 44.74 2.11

|η| < 3.4 0.80 0.35 19.04 2.67 66.42 3.03

0.78 ± 0.01 0.35 ± 0.03 16.69 ± 1.14 3.15 ± 0.57 57.31 ± 3.63 2.48 ± 0.33

0.75 0.26 14.82 4.47 48.93 2.11

− 3.4 < η < + 5.0 0.81 0.41 22.34 3.03 77.02 3.20

0.78 ± 0.01 0.33 ± 0.03 19.54 ± 1.21 3.75 ± 0.77 65.47 ± 4.01 2.53 ± 0.33

0.75 0.24 17.57 5.70 54.79 2.12

8 |η| < 2.0 0.81 0.51 11.13 1.89 41.16 3.04

0.80 ± 0.01 0.52 ± 0.03 10.87 ± 0.84 1.93 ± 0.25 40.01 ± 2.39 2.98 ± 0.35

0.79 0.52 10.67 1.96 38.95 2.94

|η| < 2.4 0.80 0.43 12.58 2.38 47.19 2.73

0.79 ± 0.01 0.42 ± 0.04 12.08 ± 0.98 2.37 ± 0.38 44.39 ± 3.12 2.58 ± 0.37

0.77 0.43 11.54 2.39 41.38 2.47

|η| < 3.0 0.80 0.37 15.25 2.72 56.72 2.57

0.78 ± 0.01 0.32 ± 0.03 13.94 ± 0.85 3.10 ± 0.64 50.50 ± 3.16 2.23 ± 0.29

0.75 0.26 12.78 4.06 43.94 1.94

|η| < 3.4 0.80 0.41 18.01 2.65 65.78 2.78

0.78 ± 0.01 0.34 ± 0.03 16.03 ± 0.86 3.08 ± 0.49 57.14 ± 3.15 2.32 ± 0.28

0.75 0.27 14.56 3.98 49.55 2.05

− 3.4 < η < + 5.0 0.82 0.37 20.95 3.16 75.52 2.78

0.78 ± 0.01 0.30 ± 0.03 19.03 ± 0.86 3.78 ± 0.74 65.08 ± 3.74 2.29 ± 0.29

0.75 0.23 17.61 5.20 55.11 1.99

123



852 Page 14 of 23 Eur. Phys. J. C (2017) 77 :852

Table 6 Double NBD fit parameters for multiplicity distributions, INEL >0 events. The central values of the parameters are printed in bold with
their relative uncertainty, while the top row shows the upper bound fit parameters, and the bottom row the lower bound ones
√
s (TeV) η range λ α 〈n〉1 k1 〈n〉2 k2

0.9 |η| < 2.0 1.00 0.53 10.43 3.40 25.55 3.94

1.00 ± 0.01 0.56 ± 0.04 10.54 ± 0.69 3.31 ± 0.21 25.78 ± 2.04 4.08 ± 0.65

1.00 0.59 10.67 3.23 26.00 4.26

|η| < 2.4 1.00 0.49 12.35 3.40 30.27 3.75

1.00 ± 0.01 0.45 ± 0.06 11.84 ± 1.11 3.37 ± 0.37 28.64 ± 2.93 3.49 ± 0.73

0.99 0.11 10.56 19.63 22.06 2.23

|η| < 3.0 0.97 0.32 14.35 4.81 33.95 3.13

0.97 ± 0.01 0.23 ± 0.07 13.42 ± 0.56 6.30 ± 3.33 30.77 ± 3.00 2.71 ± 0.55

0.97 0.14 12.99 12.54 28.07 2.41

|η| < 3.4 0.95 0.40 16.98 4.26 39.78 3.55

0.95 ± 0.01 0.33 ± 0.05 15.76 ± 0.90 4.80 ± 0.98 36.74 ± 2.96 3.22 ± 0.55

0.95 0.29 14.88 5.50 34.84 3.11

−3.4 < η < +5.0 0.93 0.46 20.45 4.61 47.77 4.41

0.92 ± 0.01 0.41 ± 0.05 19.37 ± 1.10 4.77 ± 0.54 44.72 ± 3.20 4.07 ± 0.68

0.92 0.37 18.35 5.06 42.06 3.87

7 |η| < 2.0 1.02 0.37 10.96 3.04 37.57 2.55

1.00 ± 0.01 0.37 ± 0.02 10.88 ± 0.42 3.03 ± 0.22 36.77 ± 1.41 2.53 ± 0.21

0.99 0.38 10.81 3.01 36.01 2.53

|η| < 2.4 1.02 0.36 13.31 3.18 45.58 2.62

1.00 ± 0.01 0.35 ± 0.03 12.87 ± 0.69 3.21 ± 0.41 42.83 ± 2.27 2.48 ± 0.27

0.97 0.34 12.41 3.28 39.97 2.38

|η| < 3.0 1.01 0.36 16.88 3.19 57.27 2.78

0.98 ± 0.01 0.32 ± 0.03 15.58 ± 1.00 3.56 ± 0.67 51.50 ± 3.09 2.44 ± 0.30

0.94 0.24 14.14 4.81 44.68 2.10

|η| < 3.4 0.99 0.39 19.79 3.06 65.81 2.97

0.96 ± 0.01 0.31 ± 0.03 17.53 ± 1.15 3.63 ± 0.69 57.02 ± 3.52 2.45 ± 0.32

0.93 0.20 15.45 6.03 48.00 2.01

−3.4 < η < +5.0 0.98 0.39 23.40 3.31 77.14 3.21

0.94 ± 0.01 0.31 ± 0.03 20.70 ± 1.37 3.94 ± 0.72 66.27 ± 4.07 2.60 ± 0.34

0.90 0.17 18.24 8.39 53.51 2.02

8 |η| < 2.0 1.01 0.43 10.99 2.54 39.09 2.77

1.00 ± 0.01 0.43 ± 0.02 10.83 ± 0.52 2.54 ± 0.18 38.14 ± 1.48 2.73 ± 0.21

0.99 0.44 10.70 2.55 37.24 2.71

|η| < 2.4 1.01 0.38 12.92 2.91 46.16 2.61

0.99 ± 0.01 0.37 ± 0.03 12.45 ± 0.81 2.93 ± 0.39 43.33 ± 2.62 2.47 ± 0.31

0.96 0.35 11.94 2.99 40.32 2.36

|η| < 3.0 1.00 0.33 15.78 3.24 55.92 2.50

0.97 ± 0.01 0.28 ± 0.03 14.61 ± 0.77 3.73 ± 0.80 50.01 ± 2.90 2.19 ± 0.27

0.94 0.22 13.55 5.02 43.78 1.93

|η| < 3.4 0.99 0.37 18.60 3.08 64.94 2.71

0.95 ± 0.01 0.30 ± 0.03 16.79 ± 0.80 3.61 ± 0.60 56.72 ± 2.97 2.28 ± 0.26

0.92 0.23 15.34 4.83 49.25 2.03

−3.4 < η < +5.0 0.98 0.34 21.85 3.47 75.56 2.79

0.93 ± 0.01 0.28 ± 0.03 20.00 ± 0.92 4.08 ± 0.77 65.51 ± 3.77 2.32 ± 0.30

0.89 0.19 18.43 6.23 54.67 1.96
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with a width of σ = 0.09. The black diamonds distribu-
tion includes an additional source of fluctuations, dominantly
of non-perturbative origin, from stochastic splitting of color
dipoles that is not accounted for in the conventional frame-
works of CGC [13]. In the IP-Glasma model shown, the evo-
lution of color charges in the rapidity direction still needs to
be implemented and in the present model the low multiplic-
ity bins are not reproduced for the wide pseudorapidity range
presented.

5.2 Double NBD fits

Already at 0.9 TeV for |η| < 1.3 in NSD events, ALICE
observed that the distributions are not well described by a
single NBD parameterization [2]. For this reason, a parame-
terization with the sum of two NBDs has been performed for
the NSD, INEL and INEL > 0 event samples. The fits are
plotted together with the results in Figs. 3, 4, 5, and parame-
ters are given in Table 4 for the NSD event sample, in Table 5
for the INEL event sample and in Table 6 for the INEL >0
event sample.

The distributions have been fitted using the function

P(n) = λ [αPNBD(n, 〈n〉1, k1)+(1 − α)PNBD(n, 〈n〉2, k2)] ,

(5)

where

PNBD(n, 〈n〉, k) = 
(n + k)


(k)
(n + 1)

( 〈n〉
k + 〈n〉

)n( k

k + 〈n〉
)k

.

(6)

NBDs do not describe the bin with Nch = 0 and the first
bins for the wider pseudorapidities, in which there is a rise
in the number of events measured due to diffractive events
(bins removed from the fit). To account for this a normal-
ization factor λ is introduced [4]. The systematic uncer-
tainty for the efficiency correction produces a fully correlated
shift of the distribution, and therefore is omitted in the fit-
ted data sample. The other sources of uncertainty are kept in
the data. From fitting with the above uncertainties included,
one obtains the parameters in bold. The parameters of two
extreme cases are printed as well in Tables 4, 5 and 6 to allow
the reader to have an estimate on how much the fit param-
eters change due to the remaining correlations present. The
upper and lower case correspond to fitting the distribution
obtained adding and subtracting material in the detector. The
behavior of the fit parameters is consistent with what was
observed by CMS [5,30]. The average multiplicity of the
soft (first) component, 〈n〉1, increases with increasing energy
and pseudorapidity range. The parameter k1 increases with
increasing pseudorapidity range and decreases with center-
of-mass energy. For the semi-hard (second) component, the

〈n〉2 parameter behaves similarly to 〈n〉1. Moreover, it is
noted that 〈n〉2 	 3〈n〉1. The parameter α reflects the frac-
tion of the soft events. The percentage of soft events decreases
with increasing pseudorapidity range and energy indicating
that a higher percentage of semi-hard events is then present.

For KNO scaling to hold, the parameter k must be constant
with energy. This means that KNO scaling is violated for all
pseudorapidity ranges for both the soft and semi-hard compo-
nents in the NSD, INEL and INEL >0 event samples. Three
possible scenarios are proposed in the model by Ugoccioni
and Giovannini [31] concerning KNO scaling in the semi-
hard component. Parameter k2 can be constant, decrease lin-
early with increasing energy showing violation, or decrease
with energy asymptotically to a constant value showing weak
violation. The last scenario appears to be in agreement with
the values obtained for k2, since the decrease from 0.9 to 7
TeV is very strong, while the values are compatible for 7 and
8 TeV. The analysis of 13 TeV data will reveal if the values
will be compatible also in that case, or if it is only due to the
vicinity of the 7 and 8 TeV energies.

6 Summary and conclusions

Data from the SPD and the FMD were used to access a
uniquely wide pseudorapidity coverage at the LHC of more
than eight units in pseudorapidity, from − 3.4 < η < 5.0.
The charged-particle multiplicity distributions obtained from
these data were presented for three pp collision energies,√
s = 0.9, 7, and 8 TeV, and for three different event classes,

INEL, INEL > 0, and NSD. The results shown extend the
pseudorapidity coverage of the earlier results published by
ALICE and CMS, and, consequently, the high-multiplicity
reach. The extension of pseudorapidity coverage has higher
systematic uncertainties due to the unknown fraction of the
material budget in front of the FMD, estimated to be up to
14%.

The multiplicity distributions for 7 TeV collisions mea-
sured for NSD events are in agreement with those from CMS.
For 0.9 TeV, the results shown are systematically lower in the
low-multiplicity bins when compared to the CMS measure-
ment. This is most probably due to a different estimation of
the diffractive masses distribution used to tune the simula-
tions for the efficiency correction between CMS and ALICE.
At 0.9 TeV, PYTHIA, PHOJET and EPOS LHC cannot
reproduce the multiplicity distributions, although PHOJET
is closer to the results being tuned using LHC data. At 7 TeV,
PYTHIA 6 and PHOJET strongly underestimate the frac-
tion of high multiplicity events. PYTHIA 8 slightly under-
estimates the tails of the distributions, while EPOS LHC
reproduces both the low and the high multiplicity events,
showing better capabilities to model diffraction. The Color
Glass Condensate based IP-Glasma model produces distribu-
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tions, which underestimate the fraction of high multiplicity
events, but introducing fluctuations in the saturation momen-
tum allows to reproduce the measurements better. Double
Negative Binomial distributions composed of a soft and hard
component are fitted to the measured distributions. The frac-
tion of soft events decreases with increasing pseudorapidity
range and with the increasing collision energy. KNO scal-
ing is violated for the three considered event classes, at all
the collision energies probed. The 13 TeV data analysis will
help delving into the description of the components of the
multiplicity distributions.
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