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We present the first ever measurements of femtoscopic correlations between the K0
S and K± particles. The 

analysis was performed on the data from Pb–Pb collisions at √sNN = 2.76 TeV measured by the ALICE 
experiment. The observed femtoscopic correlations are consistent with final-state interactions proceeding 
via the a0(980) resonance. The extracted kaon source radius and correlation strength parameters for 
K0

SK− are found to be equal within the experimental uncertainties to those for K0
S K+. Comparing the 

results of the present study with those from published identical-kaon femtoscopic studies by ALICE, 
mass and coupling parameters for the a0 resonance are tested. Our results are also compatible with 
the interpretation of the a0 having a tetraquark structure instead of that of a diquark.

© 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Identical boson femtoscopy, especially of identical charged pi-
ons, has been used extensively over the years to study experi-
mentally the space–time geometry of the collision region in high-
energy particle and heavy-ion collisions [1]. Identical-kaon fem-
toscopy studies have also been carried out, recent examples of 
which are the ones with Au–Au collisions at 

√
sNN = 200 GeV 

by the STAR Collaboration [2] (K0
SK0

S ) and with pp at 
√

s = 7 TeV 
and Pb–Pb collisions at 

√
sNN = 2.76 TeV by the ALICE Collabora-

tion [3–5] (K0
SK0

S and K±K±). The pair-wise interactions between 
the identical kaons that form the basis for femtoscopy are for 
K±K± quantum statistics and the Coulomb interaction, and for 
K0

SK0
S quantum statistics and the final-state interaction through the 

f0(980)/a0(980) threshold resonances.
One can also consider the case of non-identical kaon pairs, 

e.g. K0
SK± pairs. Besides the non-resonant channels which may be 

present, e.g. non-resonant elastic scattering or free-streaming of 
the kaons from their freeze-out positions to the detector, the other 
only pair-wise interaction allowed for a K0

S K± pair at freeze out 
from the collision system is a final-state interaction (FSI) through 
the a0(980) resonance. The other pair-wise interactions present 
for identical-kaon pairs are not present for K0

S K± pairs because: 
a) there is no quantum statistics enhancement since the kaons are 
not identical, b) there is no Coulomb effect since one of the kaons 
is uncharged, and c) there is no strong FSI through the f0 reso-

� E-mail address: alice-publications@cern.ch.

nance since the kaon pair is in an I = 1 isospin state, as is the a0, 
whereas the f0 is an I = 0 state.

Another feature of the K0
SK± FSI through the a0 resonance is, 

due to the a0 having strangeness S = 0 and the K0
S being a linear 

combination of the K0 and K0,

∣∣∣K0
S

〉
= 1√

2

(∣∣∣K0
〉
+

∣∣∣K0
〉)

, (1)

only the K0K+ pair from K0
SK+ and the K0K− pair from K0

SK− have 
S = 0 and thus can form the a0 resonance. This allows the pos-
sibility to study the K0 and K0 sources separately since they are 
individually selected by studying K0

SK− and K0
SK+ pairs, respec-

tively. An additional consequence of this feature is that only 50%
of either the K0

SK− or K0
SK+ detected pairs will pass through the 

a0 resonance. This is taken into account in the expression for the 
model used to fit the correlation functions.

On the other hand, the natural requirement that the source 
sizes extracted from the K0

SK± femtoscopy agree with those ob-
tained for the K0

SK0
S and K±K± systems allows one to study the 

properties of the a0 resonance itself. This is interesting in its own 
right since many studies discuss the possibility that the a0, listed 
by the Particle Data Group as a diquark light unflavored meson 
state [6], could be a four-quark state, i.e. a tetraquark, or a “K–K 
molecule” [7–12]. For example, the production cross section of the 
a0 resonance in a reaction channel such as K0K− → a−

0 should de-
pend on whether the a−

0 is composed of du or dssu quarks, the 
former requiring the annihilation of the ss pair and the latter be-
ing a direct transfer of the quarks in the kaons to the a−

0 . The 

http://dx.doi.org/10.1016/j.physletb.2017.09.009
0370-2693/© 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.
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results from K0
SK− femtoscopy might be sensitive to these two dif-

ferent scenarios.
In this Letter, results from the first study of K0

S K± femtoscopy 
are presented. This has been done for Pb–Pb collisions at 

√
sNN =

2.76 TeV measured by the ALICE experiment at the LHC [13]. The 
physics goals of the present K0

SK± femtoscopy study are the fol-
lowing: 1) show to what extent the FSI through the a0 resonance 
describes the correlation functions, 2) study the K0 and K0 sources 
to see if there are differences in the source parameters, and 3) test 
published a0 mass and coupling parameters by comparisons with 
published identical kaon results [5].

2. Description of experiment and data selection

The ALICE experiment and its performance in the LHC Run 1 
(2009–2013) are described in Ref. [13] and Ref. [14,15], respec-
tively. About 22 ×106 Pb–Pb collision events with 0–10% centrality 
class taken in 2011 were used in this analysis (the average cen-
trality in this range is 4.9% due to a slight trigger inefficiency in 
the 8–10% range). Events were classified according to their cen-
trality using the measured amplitudes in the V0 detectors, which 
consist of two arrays of scintillators located along the beamline 
and covering the full azimuth [16]. Charged particles were recon-
structed and identified with the central barrel detectors located 
within a solenoid magnet with a field strength of B = 0.5 T. 
Charged particle tracking was performed using the Time Projection 
Chamber (TPC) [17] and the Inner Tracking System (ITS) [13]. The 
ITS allowed for high spatial resolution in determining the primary 
(collision) vertex. Tracks were reconstructed and their momenta 
were obtained with the TPC. A momentum resolution of less than 
10 MeV/c was typically obtained for the charged tracks of inter-
est in this analysis. The primary vertex was obtained from the 
ITS, the position of the primary vertex being constrained along the 
beam direction (the “z-position”) to be within ±10 cm of the cen-
ter of the ALICE detector. In addition to the standard track quality 
selections, the track selections based on the quality of track re-
construction fit and the number of detected tracking points in the 
TPC were used to ensure that only well-reconstructed tracks were 
taken in the analysis [14,15].

Particle identification (PID) for reconstructed tracks was car-
ried out using both the TPC and the Time-of-Flight (TOF) detec-
tor in the pseudorapidity range |η| < 0.8 [14,15]. For each PID 
method, a value was assigned to each track denoting the number 
of standard deviations between the measured track information 
and calculated values (Nσ ) [5,14,15]. For TPC PID, a parametrized 
Bethe–Bloch formula was used to calculate the specific energy loss 
〈dE/dx〉 in the detector expected for a particle with a given mass 
and momentum. For PID with TOF, the particle mass was used to 
calculate the expected time-of-flight as a function of track length 
and momentum. This procedure was repeated for four “particle 
species hypotheses”—electron, pion, kaon and proton—, and, for 
each hypothesis, a different Nσ value was obtained per detector.

2.1. Kaon selection

The methods used to select and identify individual K0
S and K±

particles are the same as those used for the ALICE Pb–Pb K0
S K0

S and 
K±K± analyses [5]. These are now described below.

2.1.1. K0
S selection

The K0
S particles were reconstructed from the decay K0

S →
π+π− , with the daughter π+ and π− tracks detected in the 
TPC and TOF detectors. Pions with pT > 0.15 GeV/c were accepted 
(since for lower pT track finding efficiency drops rapidly) and the 
distance of closest approach to the primary vertex (DCA) of the 

reconstructed K0
S was required to be less than 0.3 cm in all di-

rections. The required Nσ values for the pions were Nσ T P C < 3
and Nσ T O F < 3 for p > 0.8 GeV/c. An invariant mass distribu-
tion for the π+π− pairs was produced and the K0

S was defined 
to be resulting from a pair that fell into the invariant mass range 
0.480 < mπ+π− < 0.515 GeV/c2.

2.1.2. K± selection
Charged kaon tracks were also detected using the TPC and 

TOF detectors, and were accepted if they were within the range 
0.14 < pT < 1.5 GeV/c. In order to reduce the number of secon-
daries (for instance the charged particles produced in the detector 
material, particles from weak decays, etc.) the primary charged 
kaon tracks were selected based on the DCA, such that the DCA 
transverse to the beam direction was less than 2.4 cm and the 
DCA along the beam direction was less than 3.2 cm. If the TOF 
signal were not available, the required Nσ values for the charged 
kaons were Nσ T P C < 2 for pT < 0.5 GeV/c, and the track was re-
jected for pT > 0.5 GeV/c. If the TOF signal were also available and 
pT > 0.5 GeV/c: Nσ T P C < 3 and Nσ T O F < 2 (0.5 < pT < 0.8 GeV/c), 
Nσ T O F < 1.5 (0.8 < pT < 1.0 GeV/c), Nσ T O F < 1 (1.0 < pT <

1.5 GeV/c).
K0

SK± experimental pair purity was estimated from a Monte 
Carlo (MC) study based on HIJING [18] simulations using GEANT3 
[19] to model particle transport through the ALICE detectors. The 
purity was determined from the fraction of the reconstructed MC 
simulated pairs that were identified as actual K0

SK± pairs input 
from HIJING. The pair purity was estimated to be 88% for all kine-
matic regions studied in this analysis.

3. Analysis methods

3.1. Experimental correlation functions

This analysis studies the momentum correlations of K0
S K± pairs 

using the two-particle correlation function, defined as

C(k∗) = A(k∗)/B(k∗) (2)

where A(k∗) is the measured distribution of pairs from the same 
event, B(k∗) is the reference distribution of pairs from mixed 
events, and k∗ is the magnitude of the momentum of each of the 
particles in the pair rest frame (PRF),

k∗ =
√

(s − m2
K0 − m2

K±)2 − 4m2
K0m2

K±

4s
(3)

where,

s = m2
K0 + m2

K± + 2EK0 EK± − 2�pK0 · �pK± (4)

and mK0 (EK0 ) and mK± (EK± ) are the rest masses (total energies) 
of the K0

S and K± , respectively.
The denominator B(k∗) was formed by mixing K0

S and K± par-
ticles from each event with particles from ten other events. The 
vertexes of the mixed events were constrained to be within 2 cm 
of each other in the z-direction. A centrality constraint on the 
mixed events was found not to be necessary for the narrow cen-
trality range, i.e. 0–10%, used in this analysis. Correlation functions 
were obtained separately for two different magnetic field orienta-
tions in the experiment and then either averaged or fit separately, 
depending on the fitting method used (see below).

Correlation functions were measured for three overlapping/non-
exclusive pair transverse momentum (kT = |pT,1 + pT,2|/2) bins: 
all kT, kT < 0.675 and kT > 0.675 GeV/c. The mean kT values for 
these three bins were 0.675, 0.425 and 0.970 GeV/c, respectively. 
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Fig. 1. Examples of raw K0K+ correlation functions for the three kT bins with linear fits to the baseline at large k∗ . Statistical uncertainties are shown.
S

Fig. 1 shows sample raw K0
S K+ correlation functions for these three 

bins for one of the magnetic field orientations. One can see the 
main feature of the femtoscopic correlation function: the suppres-
sion due to the strong final-state interactions for small k∗ . In the 
higher k∗ region, the effects of the a0 appear to not be present and 
thus could be used as a reference, i.e. “baseline”, for the a0-based 
model fitted to C(k∗) in order to extract the source parameters. 
Also shown in the figure are linear fits to the baseline for large k∗ . 
The effects on C(k∗) by the a0 resonance are mostly seen in the 
k∗ < 0.2 GeV/c region, where the width of the a0 region reflects 
the size of the kaon source (see equations below).

Correlation functions were corrected for momentum resolution 
effects using HIJING calculations. HIJING was used to create two 
correlation functions: one in terms of the generator-level k∗ and 
one in terms of the simulated detector-level k∗ . Because HIJING 
does not incorporate final-state interactions, weights were calcu-
lated using a 9th-order polynomial fit in k∗ to an experimental 
correlation function and were used when filling the same-event 
distributions. These weights were calculated using k∗ . Then, the 
ratio of the “ideal” correlation function to the “measured” one (for 
each k∗ bin) was multiplied to the data correlation functions be-
fore the fit procedure. This correction mostly affected the lowest 
k∗ bins, increasing the extracted source parameters by several per-
cent.

3.2. Final-state interaction model

The K0
SK± correlation functions were fit with functions that 

include a parameterization which incorporates strong FSI. It was 
assumed that the FSI arises in the K0

SK± channels due to the 
near-threshold resonance, a0(980). This parameterization was in-
troduced by R. Lednicky and is based on the model by R. Lednicky 
and V.L. Lyuboshitz [20,21] (see also Ref. [2] for more details on 
this parameterization).

Using an equal emission time approximation in the PRF [20], 
the elastic K0

SK± transition is written as a stationary solution 
�−�k∗ (�r∗) of the scattering problem in the PRF. The quantity �r∗ rep-

resents the emission separation of the pair in the PRF, and the −�k∗
subscript refers to a reversal of time from the emission process. At 
large distances this has the asymptotic form of a superposition of 
a plane wave and an outgoing spherical wave,

�−�k∗(�r∗) = e−i�k∗·�r∗ + f (k∗)eik∗r∗

r∗ , (5)

where f (k∗) is the s-wave K0K− or K0K+ scattering amplitude 
whose contribution is the s-wave isovector a0 resonance (see 
Eq. (11) in Ref. [2]),

Table 1
The a0 masses and coupling parameters, all in GeV (taken from Ref. [2]).

Reference ma0 γa0 K K̄ γa0πη

Martin [7] 0.974 0.333 0.222
Antonelli [8] 0.985 0.4038 0.3711
Achasov1 [9] 0.992 0.5555 0.4401
Achasov2 [9] 1.003 0.8365 0.4580

f (k∗) = γa0→KK

m2
a0 − s − i(γa0→KKk∗ + γa0→πηkπη)

. (6)

In Eq. (6), ma0 is the mass of the a0 resonance, and γa0→KK and 
γa0→πη are the couplings of the a0 resonance to the K0K− (or 
K0K+) and πη channels, respectively. Also, s = 4(m2

K0 + k∗2) and 
kπη denotes the momentum in the second decay channel (πη) 
(see Table 1).

The correlation function due to the FSI is then calculated by 
integrating �−�k∗ (�r∗) in the Koonin–Pratt equation [22,23]

C(�k∗) =
∫

d3 �r∗ S(�r∗)
∣∣∣�−�k∗(�r∗)

∣∣∣2
, (7)

where S(�r∗) is a one-dimensional Gaussian source function of the 
PRF relative distance 

∣∣�r∗∣∣ with a Gaussian width R of the form

S(�r∗) ∼ e−∣∣�r∗∣∣2
/(4R2) . (8)

Equation (7) can be integrated analytically for K0
S K± correlations 

with FSI for the one-dimensional case, with the result

C(k∗) = 1 + λα

[
1

2

∣∣∣∣ f (k∗)
R

∣∣∣∣
2

+ 2R f (k∗)√
π R

F1(2k∗R)

− I f (k∗)
R

F2(2k∗R)

]
, (9)

where

F1(z) ≡
√

πe−z2
erfi(z)

2z
; F2(z) ≡ 1 − e−z2

z
. (10)

In the above equations α is the fraction of K0
SK± pairs that come 

from the K0K− or K0K+ system, set to 0.5 assuming symmetry 
in K0 and K0 production [2], R is the radius parameter from the 
spherical Gaussian source distribution given in Eq. (8), and λ is the 
correlation strength. The correlation strength is unity in the ideal 
case of pure a0-resonant FSI, perfect PID, a perfect Gaussian kaon 
source and the absence of long-lived resonances which decay into 
kaons. Note that the form of the FSI term in Eq. (9) differs from 
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the form of the FSI term for K0
SK0

S correlations (Eq. (9) of Ref. [2]) 
by a factor of 1/2 due to the non-identical particles in K0

SK± cor-
relations and thus the absence of the requirement to symmetrize 
the wavefunction given in Eq. (5).

As seen in Eq. (6), the K0K− or K0K+ s-wave scattering am-
plitude depends on the a0 mass and decay couplings. In the 
present work, we have taken the values used in Ref. [2] which 
have been extracted from the analysis of the a0 → πη spectra 
of several experiments [7–10], shown in Table 1. The extracted 
a0 mass and decay couplings have a range of values for the var-
ious references. Except for the Martin reference [7], which ex-
tracts the a0 values from the reaction 4.2 GeV/c incident mo-
mentum K− + p → 
+(1385)π−η using a two-channel Breit–
Wigner formula, the other references extract the a0 values from 
the radiative φ-decay data, i.e. φ → π0ηγ , from the KLOE col-
laboration [24]. These latter three references apply a model that 
assumes, after taking into account the φ → π0ρ0 → π0ηγ back-
ground process, that the φ decays to the π0ηγ final state through 
the intermediate processes φ → K+K−γ → a0γ or φ → K+K− →
a0γ , i.e. the “charged kaon loop model” [9]. The main difference 
between these analyses is that the Antonelli reference [8] as-
sumes a fixed a0 mass in the fit of this model to the π0η data, 
whereas the Achasov1 and Achasov2 analyses [9] allow the a0
mass to be a free parameter in the two different fits made to 
the data. It is assumed in the present analysis that these decay 
couplings will also be valid for K0K− and K0K+ scattering due to 
isospin invariance. Correlation functions were fitted with all four 
of these cases to see the effect on the extracted source parame-
ters.

3.3. Fitting methods

In order to estimate the systematic errors in the fitting method 
used to extract R and λ using Eq. (9), two different methods, 
judged to be equally valid, have been used to handle the effects of 
the baseline: 1) a separate linear fit to the “baseline region,” fol-
lowed by fitting Eq. (9) to the correlation function divided by the 
linear fit to extract the source parameters, and 2) a combined fit of 
Eq. (9) and a quadratic function describing the baseline where the 
source parameters and the parameters of the quadratic function 
are fitted simultaneously. The source parameters are extracted for 
each case from both methods and averaged, the symmetric system-
atic error for each case due to the fitting method being one-half of 
the difference between the two methods. Both fitting methods will 
now be described in more detail.

3.3.1. Linear baseline method
In the “linear baseline method,” for the all kT, kT < 0.675 and 

kT > 0.675 GeV/c bins the a0 regions were taken to be k∗ < 0.3, 
k∗ < 0.2 and k∗ < 0.4 GeV/c, respectively. In the higher k∗ region 
it was assumed that effects of the a0 were not present and thus 
can be used as a reference, i.e. “baseline”, for the a0-based model 
fitted to C(k∗), which was averaged over the two magnetic field 
orientations used in the experiment, to extract the source param-
eters. For the three kT bins, linear fits were made in the k∗ ranges 
0.3–0.45, 0.2–0.45 and 0.4–0.6 GeV/c, respectively, and the cor-
relation functions were divided by these fits to remove baseline 
effects extending into the low-k∗ region. These ranges were taken 
to define the baselines since the measured correlation functions 
were found to be linear here. For larger values of k∗ the correla-
tion functions became non-linear. The baseline was studied using 
HIJING MC calculations which take into account the detector char-
acteristics as described earlier. The C(k∗) distributions obtained 
from HIJING do not show suppressions at low k∗ as seen in Fig. 1

but rather show linear distributions over the entire ranges in k∗
shown in the figure. HIJING also shows the baseline becoming non-
linear for larger values of k∗ , as seen in the measurements. The 
MC generator code AMPT [25] was also used to study the baseline. 
AMPT is similar to HIJING but also includes final-state rescatter-
ing effects. AMPT calculations also showed linear baselines in the 
k∗ ranges used in the present analysis, becoming non-linear for 
larger k∗ . Both HIJING and AMPT qualitatively show the same di-
rection of changes in the slopes of the baseline vs. kT as seen in the 
data, but AMPT more accurately described the slope values them-
selves, suggesting that final-state rescattering plays a role in the 
kT dependence of the baseline slope. The systematic uncertainties 
on the extracted source parameters due to the assumption of lin-
earity in these k∗ regions were estimated from HIJING to be less 
than 1%.

Fig. 2 shows examples of K0
SK+ and K0

SK− correlation func-
tions divided by linear fits to the baseline with Eq. (9) using the 
Achasov2 parameters. One can see the main feature of the fem-
toscopic correlation function: the suppression due to the strong 
final-state interactions for small k∗ . As seen, the a0 FSI parameter-
ization gives an excellent representation of the “signal region” of 
the data, i.e. the suppression of the correlation functions in the k∗
range 0 to about 0.15 GeV/c.

3.3.2. Quadratic baseline method
In the “quadratic baseline method,” R and λ are extracted as-

suming a quadratic baseline function by fitting the product of a 
quadratic function and the Lednicky equation, Eq. (9), to the raw 
correlation functions for each of the two magnetic field orienta-
tions used in the experiment, such as shown in Fig. 1, i.e.,

C f it
raw(k∗) = a(1 − bk∗ + ck∗2)C(k∗) (11)

where C(k∗) is given by Eq. (9), and a, b and c are fit parame-
ters. Eq. (11) is fit to the same k∗ ranges as shown in Fig. 1, i.e. 
0–0.45 GeV/c for all kT and kT < 0.675 GeV/c, and 0–0.6 GeV/c for 
kT > 0.675 GeV/c. The fits to the experimental correlation func-
tions are found to be of similar good quality as seen for the linear 
baseline method fits shown in Fig. 2.

3.4. Systematic uncertainties

Systematic uncertainties on the extracted source parameters 
were estimated by varying the ranges of kinematic and PID cut 
values on the data by ±10% and ±20%, as well as from MC simu-
lations. The main systematic uncertainties on the extracted values 
of R and λ due to various sources, not including the baseline fit-
ting method, are: a) k∗ fitting range: 2%, b) single-particle and pair 
cuts (e.g. DCA cuts, PID cuts, pair separation cuts): 2%–4% for R
and 3%–8% for λ, and c) pair purity: 1% on λ. Combining the indi-
vidual systematic uncertainties in quadrature, the total systematic 
uncertainties on the extracted source parameters, not including the 
baseline fitting method contribution, are in the ranges 3%–5% for 
R and 4%–8% for λ.

As mentioned earlier, for the two fitting methods, the source 
parameters are extracted for each case from both methods and av-
eraged, the symmetric systematic error for each case due to the 
fitting method being one-half of the difference between the two 
methods. The baseline fitting method systematic error thus ob-
tained is added in quadrature with the systematic errors given 
above. It is found that the size of the baseline fitting method sys-
tematic errors are about 50% larger for R and of similar magnitude 
for λ as those quoted above for the non-fitting-method systematic 
errors.
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Fig. 2. Examples of K0
S K+ and K0

S K− correlation functions divided by linear fits to the baseline with the Lednicky parameterization using the Achasov2 [9] parameters. 
Statistical (lines) and the linear sum of statistical and systematic uncertainties (boxes) are shown.
4. Results and discussion

Fig. 3 shows sample results for the R and λ parameters ex-
tracted in the present analysis from K0

S K± femtoscopy using the 
Achasov1 parameters. The left column compares K0

S K+ and K0
SK−

results from the quadratic baseline fit method, and the right col-
umn compares results averaged over K0

SK+ and K0
SK− for the 

quadratic baseline fits and the linear baseline fits. As it is usually 
the case in femtoscopic analyses, the fitted R and λ parameters 
are correlated. The fitting (statistical) uncertainties are taken to 
be the extreme values of the 1σ fit contours in R vs. λ. Statis-
tical uncertainties are plotted for all results. It is seen in the figure 
that the R and λ values for K0

SK− have a slight tendency to be 
larger than those for K0

SK+ . Such a difference could result from 
the K−–nucleon scattering cross section being larger than that for 
K+–nucleon (see Fig. 51.9 of Ref. [6]), possibly resulting in more 
final-state rescattering for the K− . Since the difference is not sig-
nificant once systematic uncertainties are taken into account, K0

SK+
and K0

SK− are averaged over in the final results. The difference in 
the extracted parameters between the two baseline fitting meth-
ods is also seen to be small, and is accounted for as a systematic 
error, as described earlier.

The results for the R and λ parameters extracted in the present 
analysis from K0

SK± femtoscopy, averaged over the two baseline 
fit methods and averaged over K0

SK+ and K0
SK− , are presented in 

Table 2 and in Figs. 4 and 5. Fit results are shown for all four pa-
rameter sets given in Table 1. Figs. 4 and 5 also show comparisons 
with identical kaon results for the same collision system and en-
ergy from ALICE from Ref. [5]. Statistical and total uncertainties are 
shown for all results.

As shown in Fig. 4, both Achasov parameter sets, with the larger 
a0 masses and decay couplings, appear to give R values that agree 
best with those obtained from identical-kaon femtoscopy. The An-

tonelli parameter set appears to give slightly lower values. Com-
paring the measured R values between K0

SK0
S and K±K± in Fig. 4

they are seen to agree with each other within the uncertainties. In 
fact, the only reason for the femtoscopic K0

S K± radii to be different 
from the K0

SK0
S and K±K± ones would be if the K0

S and K± sources 
were displaced with respect to each other. This is not expected be-
cause the collision dynamics is governed by strong interactions for 
which the isospin symmetry applies.

The results for the correlation strength parameters λ are shown 
in Fig. 5. The λ parameters from K0

SK± and K±K± are corrected 
for experimental purity [5]. The K0

SK0
S pairs have a high purity of 

>90%, so the corresponding correction was neglected [5] (see the 
earlier discussion on purity). Statistical and total uncertainties are 
shown for all results.

The K0
SK± λ values, with the exception of the Martin parame-

ters, appear to be in agreement with the λ values for the identical 
kaons. All of the λ values are seen to be measured to be about 
0.6, i.e. less than the ideal value of unity, which can be due to 
the contribution of kaons from K∗ decay ( ∼ 50 MeV, where 
is the decay width) and from other long-lived resonances (such as 
the D-meson) distorting the spatial kaon source distribution away 
from the ideal Gaussian which is assumed in the fit function [26]. 
One would expect that the K0

SK± λ values agree with those from 
the identical kaons if the FSI for the K0

S K± went solely through the 
a0 resonant channel since this analysis should see the same source 
distribution.

In order to obtain a more quantitative comparison of the 
present results for R and λ with the identical kaon results, the 
χ2/ndf is calculated for R and λ for each parameter set,

χ2
ω/ndf = 1

ndf

3∑
i=1

[ωi(K 0
S K ±) − ωi(K K )]2

σ 2
i

(12)
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Fig. 3. Sample results for the R and λ parameters extracted in the present analysis from K0
SK± femtoscopy using the Achasov1 parameters. The left column compares K0

S K+
and K0

S K− results from the quadratic baseline fit method, and the right column compares results averaged over K0
SK+ and K0

S K− for the quadratic baseline fits and the linear 
baseline fits. Statistical uncertainties are plotted for all results.

Table 2
Fit results for R and λ extracted in the present analysis from K0

SK± femtoscopy averaged over K0
S K+ and K0

S K− . 
Statistical and systematic errors are also shown.

Parameters R (fm) or λ All kT kT < 0.675 GeV/c kT > 0.675 GeV/c

Achasov2 R 5.17 ± 0.16 ± 0.41 6.71 ± 0.40 ± 0.42 4.75 ± 0.18 ± 0.36
λ 0.587 ± 0.034 ± 0.051 0.651 ± 0.073 ± 0.076 0.600 ± 0.040 ± 0.034

Achasov1 R 4.92 ± 0.15 ± 0.39 6.30 ± 0.40 ± 0.43 4.49 ± 0.18 ± 0.30
λ 0.650 ± 0.038 ± 0.056 0.723 ± 0.087 ± 0.091 0.649 ± 0.048 ± 0.038

Antonelli R 4.66 ± 0.17 ± 0.46 5.74 ± 0.36 ± 0.26 4.07 ± 0.18 ± 0.29
λ 0.624 ± 0.044 ± 0.058 0.703 ± 0.085 ± 0.077 0.613 ± 0.052 ± 0.037

Martin R 3.29 ± 0.12 ± 0.35 4.46 ± 0.25 ± 0.20 2.90 ± 0.11 ± 0.41
λ 0.305 ± 0.020 ± 0.033 0.376 ± 0.041 ± 0.037 0.296 ± 0.021 ± 0.030
where ω is either R or λ, i runs over the three kT values, the num-
ber of degrees of freedom taken is ndf = 3 and σi is the sum of the 
statistical and systematic uncertainties on the ith K0

S K± extracted 
parameter (Note that the all kT bin indeed contains the kaon pairs 
that make up the kT < 0.675 GeV/c and kT > 0.675 GeV/c bins, 
but in addition it contains an equal number of new pair combina-
tions between the kaons in the kT < 0.675 GeV/c and kT > 0.675
GeV/c bins. So for the purposes of this simple comparison, we ap-
proximate the all kT bin as being independent.) The linear sum 
of the statistical and systematic uncertainties is used for σi to be 
consistent with the linear sum of the statistical and systematic un-
certainties plotted on the points in Figs. 4 and 5. The quantity 
ωi(K K ) is determined by fitting a quadratic to the identical kaon 
results and evaluating the fit at the average kT values of the K0

SK±
measurements. Table 3 summarizes the results for each parameter 
set and the extracted p-values. As seen, the Achasov2, Achasov1 
and Antonelli parameter sets are consistent with the identical kaon 
results for both R and λ. The Martin parameter set is seen to have 
vanishingly small p-values for both R and λ and is thus in clear 

Table 3
Comparisons of R and λ from K0

S K± with identical kaon results.

Parameters χ2
R /ndf R p-value χ2

λ /ndf λ p-value

〈
λ(K 0

S K ±)

λ(K K )

〉
Achasov2 0.456 0.713 0.248 0.863 1.04 ± 0.17
Achasov1 0.583 0.626 0.712 0.545 1.14 ± 0.20
Antonelli 1.297 0.273 0.302 0.824 1.09 ± 0.20
Martin 14.0 0.000 22.2 0.000 0.55 ± 0.10

disagreement with the identical kaon results, as can easily be seen 
by examining Figs. 4 and 5.

In order to quantitatively estimate the size of the non-resonant 

channel present, the ratio 
〈

λ(K 0
S K ±)

λ(K K )

〉
has been calculated for each 

parameters set, where the average is over the three kT values 
and the uncertainty is calculated from the average of the statisti-
cal+systematic uncertainties on the K0

SK± parameters. These values 
are shown in the last column of Table 3. Disregarding the Martin 
value, the smallest value this ratio can take within the uncertain-
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Fig. 4. Source radius parameter, R , extracted in the present analysis from K0
SK± femtoscopy averaged over K0

S K+ and K0
S K− and the two baseline fit methods (red symbols), 

along with comparisons with identical kaon results from ALICE [5] (blue symbols). Statistical (lines) and the linear sum of statistical and systematic uncertainties (boxes) are 
shown. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

Fig. 5. Correlation strength parameter, λ, extracted in the present analysis from K0
SK± femtoscopy averaged over K0

S K+ and K0
S K− and the two baseline fit methods (red 

symbols), along with comparisons with identical kaon results from ALICE [5] (blue symbols). Statistical (lines) and the linear sum of statistical and systematic uncertainties 
(boxes) are shown. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)
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ties is 0.87 (from the Achasov2 parameters) which would thus 
allow at most a 13% non-resonant contribution.

The results of this study presented above clearly show that the 
measured K0

SK± have dominantly undergone a FSI through the a0
resonance. This is remarkable considering that we measure in Pb–
Pb collisions the average separation between the two kaons at 
freeze out to be ∼ 5 fm, and due to the short-ranged nature of 
the strong interaction of ∼ 1 fm this would seem to not encour-
age a FSI but rather encourage free-streaming of the kaons to the 
detector resulting in a “flat” correlation function. A dominant FSI 
is what might be expected if the a0 would be a four-quark, i.e. 
tetraquark, state or a “K–K molecule.” There appears to be no cal-
culations in the literature for the tetraquark vs. diquark production 
cross sections for the interaction KK → a0, but qualitative argu-
ments compatible with the a0 being a four–quark state can be 
made based on the present measurements. The main argument in 
favor of this is that the reaction channel K0K− → a−

0 (K0K+ → a+
0 ) 

is strongly favored if the a−
0 (a+

0 ) is composed of dssu (dssu) 
quarks such that a direct transfer of the quarks in the kaons to the 
a−

0 (a+
0 ) has taken place, since this is an “OZI superallowed” reac-

tion [12]. The “OZI rule” can be stated as “an inhibition associated 
with the creation or annihilation of quark lines” [12]. Thus, a di-
quark a0 final state is less favored according to the OZI rule since 
it would require the annihilation of the strange quarks in the kaon 
interaction. This would allow for the possibility of a significant 
non-resonant or free-streaming channel for the kaon interaction 
that would result in a λ value below the identical-kaon value by 
diluting the a0 signal. As mentioned above, the collision geometry 
itself also suppresses the annihilation of the strange quarks due 
to the large separation between the kaons at freeze out. Note that 
this assumes that the C(k∗) distribution of a non-resonant channel 
would be mostly “flat” or “monotonic” in shape and not showing 
a strong resonant-like signal as seen for the a0 in Fig. 1 and Fig. 2. 
This assumption is clearly true in the free-streaming case, which 
is assumed in Eq. (9) in setting α = 0.5 due to the non-resonant 
kaon combinations. A similar argument, namely that the success of 
the “charged kaon loop model” in describing the radiative φ-decay 
data favors the a0 as a tetraquark state, is given in Ref. [9].

5. Summary

In summary, femtoscopic correlations with K0
SK± pairs have 

been studied for the first time. This new femtoscopic method was 
applied to data from central Pb–Pb collisions at 

√
sNN = 2.76 TeV 

by the LHC ALICE experiment. Correlations in the K0
SK± pairs are 

produced by final-state interactions which proceed through the 
a0(980) resonance. The a0 resonant FSI is seen to give an excel-
lent representation of the shape of the signal region in the present 
study. The differences between K0K+ and K0K− for the extracted R
and λ values are found to be insignificant within the uncertainties 
of the present study. The three larger a0 mass and decay parameter 
sets are favored by the comparison with the identical kaon results. 
The present results are also compatible with the interpretation of 
the a0 resonance as a tetraquark state. This work should provide 
a constraint on models that are used to predict kaon–kaon inter-
actions [27,28]. It will be interesting to apply K0

S K± femtoscopy to 
other collision energies, e.g. the higher LHC energies now avail-
able, and bombarding species, e.g. proton–proton collisions, since 
the different source sizes encountered in these cases will probe 
the interaction of the K0

S with the K± in different sensitivity ranges 
(i.e. see the R dependence in Eq. (9)).

Acknowledgements

The ALICE Collaboration would like to thank all its engineers 
and technicians for their invaluable contributions to the construc-

tion of the experiment and the CERN accelerator teams for the 
outstanding performance of the LHC complex. The ALICE Collab-
oration gratefully acknowledges the resources and support pro-
vided by all Grid centers and the Worldwide LHC Computing Grid 
(WLCG) collaboration. The ALICE Collaboration acknowledges the 
following funding agencies for their support in building and run-
ning the ALICE detector: A. I. Alikhanyan National Science Labora-
tory (Yerevan Physics Institute) Foundation (ANSL), State Commit-
tee of Science and World Federation of Scientists (WFS), Armenia; 
Austrian Academy of Sciences and Nationalstiftung für Forschung, 
Technologie und Entwicklung, Austria; Ministry of Communica-
tions and High Technologies, National Nuclear Research Center, 
Azerbaijan; Conselho Nacional de Desenvolvimento Científico e 
Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul 
(UFRGS), Financiadora de Estudos e Projetos (Finep) and Fun-
dação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), 
Brazil; Ministry of Science & Technology of China (MSTC), Na-
tional Natural Science Foundation of China (NSFC) and Ministry 
of Education of China (MOEC), China; Ministry of Science, Edu-
cation and Sports and Croatian Science Foundation, Croatia; Min-
istry of Education, Youth and Sports of the Czech Republic, Czech 
Republic; The Danish Council for Independent Research Natu-
ral Sciences, the Carlsberg Foundation and Danish National Re-
search Foundation (DNRF), Denmark; Helsinki Institute of Physics 
(HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Insti-
tut National de Physique Nucléaire et de Physique des Particules 
(IN2P3) and Centre National de la Recherche Scientifique (CNRS), 
France; Bundesministerium für Bildung, Wissenschaft, Forschung 
und Technologie (BMBF) and GSI Helmholtzzentrum für Schweri-
onenforschung GmbH, Germany; General Secretariat for Research 
and Technology, Ministry of Education, Research and Religions, 
Greece; National Research, Development and Innovation Office, 
Hungary; Department of Atomic Energy Government of India (DAE) 
and Council of Scientific and Industrial Research (CSIR), New Delhi, 
India; Indonesian Institute of Science, Indonesia; Centro Fermi – 
Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi 
and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for 
Innovative Science and Technology, Nagasaki Institute of Applied 
Science (IIST), Japan Society for the Promotion of Science (JSPS) 
KAKENHI and Japanese Ministry of Education, Culture, Sports, Sci-
ence and Technology (MEXT), Japan; Consejo Nacional de Ciencia 
y Tecnología (CONACYT), through Fondo de Cooperación Interna-
cional en Ciencia y Tecnología (FONCICYT) and Dirección General 
de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse 
Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; 
The Research Council of Norway, Norway; Commission on Science 
and Technology for Sustainable Development in the South (COM-
SATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Min-
istry of Science and Higher Education and National Science Cen-
tre, Poland; Korea Institute of Science and Technology Informa-
tion and National Research Foundation of Korea (NRF), Republic 
of Korea; Ministry of Education and Scientific Research, Institute of 
Atomic Physics and Romanian National Agency for Science, Tech-
nology and Innovation, Romania; Joint Institute for Nuclear Re-
search (JINR), Ministry of Education and Science of the Russian 
Federation and National Research Centre Kurchatov Institute, Rus-
sia; Ministry of Education, Science, Research and Sport of the 
Slovak Republic, Slovakia; National Research Foundation of South 
Africa, South Africa; Centro de Aplicaciones Tecnológicas y Desar-
rollo Nuclear (CEADEN), Cubaenergía, Cuba, Ministerio de Ciencia e 
Innovacion and Centro de Investigaciones Energéticas, Medioambi-
entales y Tecnológicas (CIEMAT), Spain; Swedish Research Council 
(VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; Eu-
ropean Organization for Nuclear Research, Switzerland; National 
Science and Technology Development Agency (NSDTA), Suranaree 



72 ALICE Collaboration / Physics Letters B 774 (2017) 64–77

University of Technology (SUT) and Office of the Higher Educa-
tion Commission under NRU project of Thailand, Thailand; Turkish 
Atomic Energy Agency (TAEK), Turkey; National Academy of Sci-
ences of Ukraine, Ukraine; Science and Technology Facilities Coun-
cil (STFC), United Kingdom; National Science Foundation of the 
United States of America (NSF) and United States Department of 
Energy, Office of Nuclear Physics (DOE NP), United States of Amer-
ica.

References

[1] M.A. Lisa, S. Pratt, R. Soltz, U. Wiedemann, Femtoscopy in relativistic heavy ion 
collisions, Ann. Rev. Nucl. Part. Sci. 55 (2005) 357–402, arXiv:nucl-ex/0505014.

[2] STAR Collaboration, B.I. Abelev, et al., Neutral kaon interferometry in Au +
Au collisions at √sN N = 200 GeV, Phys. Rev. C 74 (2006) 054902, arXiv:nucl-
ex/0608012.

[3] ALICE Collaboration, B. Abelev, et al., K0
s –K0

s correlations in pp collisions at √
s = 7 TeV from the LHC ALICE experiment, Phys. Lett. B 717 (2012) 151–161, 

arXiv:1206.2056 [hep-ex].
[4] ALICE Collaboration, B. Abelev, et al., Charged kaon femtoscopic correla-

tions in pp collisions at √
s = 7 TeV, Phys. Rev. D 87 (5) (2013) 052016, 

arXiv:1212.5958 [hep-ex].
[5] ALICE Collaboration, J. Adam, et al., One-dimensional pion, kaon, and proton 

femtoscopy in Pb–Pb collisions at √sNN = 2.76 TeV, Phys. Rev. C 92 (5) (2015) 
054908, arXiv:1506.07884 [nucl-ex].

[6] Particle Data Group Collaboration, C. Patrignani, et al., Review of particle 
physics, Chin. Phys. C 40 (10) (2016) 100001.

[7] A. Martin, E. Ozmutlu, E. Squires, The ππ and KK̄ amplitudes, the S∗ and the 
quark structure of 0++ resonances, Nucl. Phys. B 121 (1977) 514–530.

[8] KLOE Collaboration, A. Antonelli, Radiative phi decays, eConf C020620 (2002) 
THAT06, arXiv:hep-ex/029069.

[9] N.N. Achasov, A.V. Kiselev, The new analysis of the KLOE data on the phi →
eta pi0 gamma decay, Phys. Rev. D 68 (2003) 014006, arXiv:hep-ph/0212153.

[10] N. Achasov, V. Gubin, Analysis of the nature of the �ϕγπη and �ϕγπ0π0 decays, 
Phys. Rev. D 63 (2001) 094007.

[11] E. Santopinto, G. Galata, Spectroscopy of tetraquark states, Phys. Rev. C 75 
(2007) 045206, arXiv:hep-ph/0605333.

[12] R.L. Jaffe, Multi-quark hadrons. 1. The phenomenology of qqqq mesons, Phys. 
Rev. D 15 (1977) 267.

[13] ALICE Collaboration, K. Aamodt, et al., The ALICE experiment at the CERN LHC, 
JINST 3 (2008) S08002.

[14] ALICE Collaboration, B.B. Abelev, et al., Performance of the ALICE experiment at 
the CERN LHC, Int. J. Mod. Phys. A 29 (2014) 1430044, arXiv:1402.4476 [nucl-
ex].

[15] A. Akindinov, et al., Performance of the ALICE Time-Of-Flight detector at the 
LHC, Eur. Phys. J. Plus 128 (2013) 44.

[16] ALICE Collaboration, B. Abelev, et al., Centrality dependence of π , K, p produc-
tion in Pb–Pb collisions at √sN N = 2.76 TeV, Phys. Rev. C 88 (2013) 044910, 
arXiv:1303.0737 [hep-ex].

[17] J. Alme, et al., The ALICE TPC, a large 3-dimensional tracking device with fast 
readout for ultra-high multiplicity events, Nucl. Instrum. Meth. A 622 (2010) 
316–367, arXiv:1001.1950 [physics.ins-det].

[18] X.-N. Wang, M. Gyulassy, HIJING: a Monte Carlo model for multiple jet produc-
tion in pp, pA and AA collisions, Phys. Rev. D 44 (1991) 3501–3516.

[19] R. Brun, F. Bruyant, F. Carminati, S. Giani, M. Maire, A. McPherson, G. Patrick, L. 
Urban, GEANT detector description and simulation tool, CERN-W5013 1 (1994) 
1.

[20] R. Lednicky, V. Lyuboshits, Final state interaction effect on pairing correlations 
between particles with small relative momenta, Sov. J. Nucl. Phys. 35 (1982) 
770.

[21] R. Lednicky, Correlation femtoscopy, Nucl. Phys. A 774 (2006) 189–198, 
arXiv:nucl-th/0510020.

[22] S. Koonin, Proton pictures of high-energy nuclear collisions, Phys. Lett. B 70 
(1977) 43–47.

[23] S. Pratt, T. Csorgo, J. Zimanyi, Detailed predictions for two pion correlations in 
ultrarelativistic heavy ion collisions, Phys. Rev. C 42 (1990) 2646–2652.

[24] KLOE Collaboration, A. Aloisio, et al., Study of the decay φ → ηπ0γ with the 
KLOE detector, Phys. Lett. B 536 (2002) 209–216, arXiv:hep-ex/0204012.

[25] Z.-W. Lin, C.M. Ko, B.-A. Li, B. Zhang, S. Pal, A multi-phase transport model 
for relativistic heavy ion collisions, Phys. Rev. C 72 (2005) 064901, arXiv:nucl-
th/0411110.

[26] T.J. Humanic, Extracting the hadronization timescale in √s = 7 TeV proton-
proton collisions from pion and kaon femtoscopy, J. Phys. G 41 (2014) 075105, 
arXiv:1312.2303 [hep-ph].

[27] J.A. Oller, E. Oset, J.R. Pelaez, Meson meson interaction in a nonperturbative 
chiral approach, Phys. Rev. D 59 (1999) 074001, arXiv:hep-ph/9804209, Phys. 
Rev. D 75 (2007) 099903, Erratum.

[28] N.T. Hong Xiem, S. Shinmura, Pion–pion, pion–kaon, and kaon–kaon interac-
tions in the one-meson-exchange model, PTEP 2014 (2) (2014), 023D04.

ALICE Collaboration

S. Acharya 139, D. Adamová 96, J. Adolfsson 34, M.M. Aggarwal 101, G. Aglieri Rinella 35, M. Agnello 31, 
N. Agrawal 48, Z. Ahammed 139, N. Ahmad 17, S.U. Ahn 80, S. Aiola 143, A. Akindinov 65, S.N. Alam 139, 
J.L.B. Alba 114, D.S.D. Albuquerque 125, D. Aleksandrov 92, B. Alessandro 59, R. Alfaro Molina 75, 
A. Alici 54,12,27, A. Alkin 3, J. Alme 22, T. Alt 71, L. Altenkamper 22, I. Altsybeev 138, 
C. Alves Garcia Prado 124, M. An 7, C. Andrei 89, D. Andreou 35, H.A. Andrews 113, A. Andronic 109, 
V. Anguelov 106, C. Anson 99, T. Antičić 110, F. Antinori 57, P. Antonioli 54, R. Anwar 127, L. Aphecetche 117, 
H. Appelshäuser 71, S. Arcelli 27, R. Arnaldi 59, O.W. Arnold 107,36, I.C. Arsene 21, M. Arslandok 106, 
B. Audurier 117, A. Augustinus 35, R. Averbeck 109, M.D. Azmi 17, A. Badalà 56, Y.W. Baek 79,61, 
S. Bagnasco 59, R. Bailhache 71, R. Bala 103, A. Baldisseri 76, M. Ball 45, R.C. Baral 68, A.M. Barbano 26, 
R. Barbera 28, F. Barile 53,33, L. Barioglio 26, G.G. Barnaföldi 142, L.S. Barnby 113,95, V. Barret 82, P. Bartalini 7, 
K. Barth 35, J. Bartke 121,i, E. Bartsch 71, M. Basile 27, N. Bastid 82, S. Basu 139,141, B. Bathen 72, 
G. Batigne 117, A. Batista Camejo 82, B. Batyunya 78, P.C. Batzing 21, I.G. Bearden 93, H. Beck 106, 
C. Bedda 64, N.K. Behera 61, I. Belikov 135, F. Bellini 27, H. Bello Martinez 2, R. Bellwied 127, 
L.G.E. Beltran 123, V. Belyaev 85, G. Bencedi 142, S. Beole 26, A. Bercuci 89, Y. Berdnikov 98, D. Berenyi 142, 
R.A. Bertens 130, D. Berzano 35, L. Betev 35, A. Bhasin 103, I.R. Bhat 103, A.K. Bhati 101, B. Bhattacharjee 44, 
J. Bhom 121, L. Bianchi 127, N. Bianchi 51, C. Bianchin 141, J. Bielčík 39, J. Bielčíková 96, A. Bilandzic 36,107, 
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M. Krivda 66,113, F. Krizek 96, E. Kryshen 98, M. Krzewicki 42, A.M. Kubera 18, V. Kučera 96, C. Kuhn 135, 
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