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Enhanced production of multi-strange hadrons in
high-multiplicity proton–proton collisions
ALICE Collaboration†

At su�ciently high temperature and energy density, nuclear
matter undergoes a transition to a phase in which quarks
and gluons are not confined: the quark–gluon plasma (QGP)1.
Such an exotic state of strongly interacting quantum chro-
modynamics matter is produced in the laboratory in heavy
nuclei high-energy collisions, where an enhanced production
of strange hadrons is observed2–6. Strangeness enhancement,
originally proposed as a signature of QGP formation in nuc-
lear collisions7, is more pronounced for multi-strange baryons.
Several e�ects typical of heavy-ion phenomenology have been
observed in high-multiplicity proton–proton (pp) collisions8,9,
but the enhanced production of multi-strange particles has not
been reported so far. Here we present the first observation of
strangeness enhancement in high-multiplicity proton–proton
collisions. We find that the integrated yields of strange and
multi-strange particles, relative to pions, increases signifi-
cantly with the event charged-particle multiplicity. The mea-
surements are in remarkable agreement with the p–Pb colli-
sion results10,11, indicating that the phenomenon is related to
the final system created in the collision. In high-multiplicity
events strangeness production reaches values similar to those
observed in Pb–Pb collisions, where a QGP is formed.

The production of strange hadrons in high-energy hadronic
interactions provides a way to investigate the properties of quantum
chromodynamics (QCD), the theory of strongly interacting matter.
Unlike up (u) and down (d) quarks, which form ordinary matter,
strange (s) quarks are not present as valence quarks in the initial
state, yet they are sufficiently light to be abundantly created during
the course of the collisions. In the early stages of high-energy
collisions, strangeness is produced in hard (perturbative) 2→ 2
partonic scattering processes by flavour creation (gg→ ss̄, qq̄→ ss̄)
and flavour excitation (gs→gs, qs→qs). Strangeness is also created
during the subsequent partonic evolution via gluon splittings
(g→ ss̄). These processes tend to dominate the production of
high transverse momentum (pT) strange hadrons. At low pT, non-
perturbative processes dominate the production of strange hadrons.
In string fragmentation models the production of strange hadrons
is generally suppressed relative to hadrons containing only light
quarks, as the strange quark is heavier than up and down quarks.
The amount of strangeness suppression in elementary (e+e− and pp)
collisions is an important parameter in Monte Carlo (MC) models.
For this reason, measurements of strange hadron production place
constraints on these models.

The abundances of strange particles relative to pions in heavy-
ion collisions from top RHIC (Relativistic Heavy-Ion Collider) to
LHC (Large Hadron Collider) energies do not show a significant
dependence on either the initial volume (collision centrality) or
the initial energy density (collision energy). With the exception
of the most peripheral collisions, particle ratios are found to be
compatible with those of a hadron gas in thermal and chemical

equilibrium and can be described using a grand-canonical statistical
model12,13. In peripheral collisions, where the overlap of the colliding
nuclei becomes very small, the relative yields of strange particles
to pions decrease and tend toward those observed in pp collisions,
for which a statistical-mechanics approach can also be applied14,15.
Extensions of a pure grand-canonical description of particle pro-
duction, such as statisticalmodels implementing strangeness canon-
ical suppression16 and core–corona superposition17,18 models, can
effectively produce a suppression of strangeness production in small
systems. However, the microscopic origin of enhanced strangeness
production is not known, and the measurements presented in this
Letter may contribute to its understanding. Several effects, such as
azimuthal correlations and mass-dependent hardening of pT distri-
butions, which in nuclear collisions are typically attributed to the
formation of a strongly interacting quark–gluonmedium, have been
observed in high-multiplicity pp and proton–nucleus collisions at
the LHC8–11,19–25. Yet, enhanced production of strange particles as a
function of the charged-particle multiplicity density (dNch/dη) has
so far not been observed in pp collisions. The study of pp collisions
at high multiplicity is thus of considerable interest as it opens the
exciting possibility of a microscopic understanding of phenomena
known from nuclear reactions.

In this Letter, we present the multiplicity dependence of the
production of primary strange (K 0

S , Λ, Λ) and multi-strange
(Ξ−,Ξ+,Ω−,Ω+) hadrons in pp collisions at the centre-of-mass
energy of

√
s=7TeV. Primary particles are defined as all particles

created in the collisions, except those coming from weak decays
of light-flavour hadrons and of muons. The measurements have
been performed at midrapidity (the particle rapidity is defined as
y = (1/2) ln((E+pzc)/(E−pzc)), where E is the energy and pz
is the component of momentum along the beam axis),

∣∣y∣∣<0.5,
with the ALICE detector26 at the LHC. Similar measurements of the
multiplicity and centrality dependence of strange and multi-strange
hadron production have been performed by ALICE in proton–
lead (p–Pb) collisions at a centre-of-mass energy per nucleon pair
√
sNN= 5.02 TeV (refs 10,11) and in lead–lead (Pb–Pb) collisions

at
√
sNN= 2.76 TeV (refs 6,27). The measurements reported here

have been obtained in pp collisions at
√
s=7TeV for events having

at least one charged particle produced in the pseudorapidity (the
particle pseudorapidity is defined as η=− ln(tan(θ/2)), where θ is
the angle with respect to the beam axis) interval |η|<1 (INEL> 0),
corresponding to about 75% of the total inelastic cross-section.
To study the multiplicity dependence of strange and multi-strange
hadron production, the sample is divided into event classes based on
the total ionization energy deposited in the forward detectors, cov-
ering the pseudorapidity regions 2.8<η<5.1 and−3.7<η<−1.7.

Particle/antiparticle production yields are identical within
uncertainties. The pT distributions of K 0

S ,Λ+Λ, Ξ
−
+Ξ

+ and
Ω−+Ω

+ (in the following denoted as K 0
S ,Λ,Ξ andΩ) are shown

in Fig. 1 for a selection of event classes with progressively decreasing

†A full list of authors and a�liations appears at the end of the paper.

NATURE PHYSICS | VOL 13 | JUNE 2017 | www.nature.com/naturephysics 535

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

http://dx.doi.org/10.1038/nphys4111
www.nature.com/naturephysics


LETTERS NATURE PHYSICS DOI: 10.1038/NPHYS4111

(I)

(I)

(I)

(I + II)

(VII)

(VII)

(VII)

(V + VI)

(X)

(X)

(X)

(IX + X)

109

108
d2 N

/(
dy

dp
T)

 ((
G

eV
/c

)−1
)

pT (GeV/c)

1

10−1

10−2

10−3

10−4

10−5

10−6

10−7
0 2 4 6 8 10 12 14

Ω− + Ω+ 

Ξ− + Ξ + (×103) 

Λ + Λ  (×106)

K0
S  (×109)

ALICE pp   s = 7 TeV
(event multiplicity classes)

107

106

105

104

103

102

101

Figure 1 | pT-di�erential yields of K
0
S , Λ+Λ, Ξ−+Ξ

+ and Ω−+Ω
+

measured in |y|<0.5. The results are shown for a selection of event
classes, indicated by roman numbers in brackets, with decreasing
multiplicity. The error bars show the statistical uncertainty, whereas the
empty boxes show the total systematic uncertainty. The data are scaled by
di�erent factors to improve the visibility. The dashed curves represent
Tsallis–Lévy fits to each individual distribution to extract integrated yields.
The indicated uncertainties all represent standard deviations.

〈dNch/dη〉. The mean pseudorapidity densities of primary charged
particles 〈dNch/dη〉 are measured at midrapidity, |η|<0.5. The
pT spectra become harder as the multiplicity increases, with the
hardening being more pronounced for higher-mass particles. A
similar observation was reported for p–Pb collisions10, where
this and several other features common with Pb–Pb collisions
are consistent with the appearance of collective behaviour at high
multiplicity8,11,19–23. In heavy-ion collisions these observations are
successfully described by models based on relativistic hydrody-
namics. In this framework, the pT distributions are determined by
particle emission from a collectively expanding thermal source28.
The blast-wave model29 is employed to analyse the spectral shapes
of K 0

S ,Λ and Ξ in the common highest multiplicity class (class
I). A simultaneous fit to all particles is performed following the
approach discussed in ref. 10 in the pT ranges 0–1.5, 0.6–2.9 and
0.6–2.9GeV/c, for K 0

S ,Λ and Ξ , respectively. The best fit describes
the data to better than 5% in the respective fit ranges, consistent
with particle production from a thermal source at temperature Tfo
expanding with a common transverse velocity 〈βT〉. The resulting
parameters, Tfo=163±10MeV and 〈βT〉 = 0.49 ± 0.02, are
remarkably similar to the ones obtained in p–Pb collisions for an
event class with comparable 〈dNch/dη〉 (ref. 10).

The pT-integrated yields are computed from the data in the
measured ranges and using extrapolations to the unmeasured
regions. To extrapolate to the unmeasured region, the data were
fitted with a Tsallis–Lévy10 parametrization, which gives the best
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Figure 2 | pT-integrated yield ratios to pions (π++π−) as a function of
〈dNch/dη〉measured in |y|<0.5. The error bars show the statistical
uncertainty, whereas the empty and dark-shaded boxes show the total
systematic uncertainty and the contribution uncorrelated across
multiplicity bins, respectively. The values are compared to calculations from
MC models30–32 and to results obtained in p–Pb and Pb–Pb collisions at the
LHC6,10,11. For Pb–Pb results the ratio 2Λ/(π++π−) is shown. The
indicated uncertainties all represent standard deviations.

description of the individual spectra for all particles and all
event classes over the full pT range (Fig. 1). Several other fit
functions (Boltzmann, mT-exponential, pT-exponential, blast wave,
Fermi–Dirac, Bose–Einstein) are employed to estimate the cor-
responding systematic uncertainties. The fraction of the extrapo-
lated yield for the highest(lowest) multiplicity event class is about
10(25)%, 16(36)%, 27(47)% for Λ,Ξ and Ω , respectively, and is
negligible for K 0

S . The uncertainty on the extrapolation amounts
to about 2(6)%, 3(10)%, 4(13)% of the total yield for Λ,Ξ and
Ω , respectively, and it is negligible for K 0

S . The total systematic
uncertainty on the pT-integrated yields amounts to 5(9)%, 7(12)%,
6(14)% and 9(18)% for K 0

S , Λ,Ξ and Ω , respectively. A significant
fraction of this uncertainty is common to all multiplicity classes and
it is estimated to be about 5%, 6%, 6% and 9% for K 0

S ,Λ,Ξ andΩ ,
respectively. In Fig. 2, the ratios of the yields of K 0

S , Λ,Ξ and Ω to
the pion (π++π−) yield as a function of 〈dNch/dη〉 are compared
to p–Pb and Pb–Pb results at the LHC6,10,11. A significant enhance-
ment of strange to non-strange hadron production is observed
with increasing particle multiplicity in pp collisions. The behaviour
observed in pp collisions resembles that of p–Pb collisions at a
slightly lower centre-of-mass energy11, in terms of both the values
of the ratios and their evolution with multiplicity. As no significant
dependence on the centre-of-mass energy is observed at the LHC
for inclusive inelastic collisions, the origin of strangeness production
in hadronic collisions is apparently driven by the characteristics
of the final state rather than by the collision system or energy. At
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Figure 3 | Particle yield ratios Λ/K0
S= (Λ+Λ)/2K0

S and
p/π= (p+p)/(π++π−) as a function of 〈dNch/dη〉. The yield ratios are
measured in the rapidity interval |y|<0.5. The error bars show the
statistical uncertainty, whereas the empty and dark-shaded boxes show the
total systematic uncertainty and the contribution uncorrelated across
multiplicity bins, respectively. The values are compared to calculations from
MC models30–32 in pp collisions at

√
s=7 TeV and to results obtained in

p–Pb collisions at the LHC10. The indicated uncertainties all represent
standard deviations.

high multiplicity, the yield ratios reach values similar to the ones
observed in Pb–Pb collisions, where no significant changewithmul-
tiplicity is observed beyond an initial slight rise. Note that the final-
state average charged-particle density 〈dNch/dη〉, which changes by
over three orders of magnitude from low-multiplicity pp to central
Pb–Pb, will in general be related to different underlying physics in
the various reaction systems. For example, under the assumption
that the initial reaction volume in both pp and p–Pb is determined
mostly by the size of the proton, 〈dNch/dη〉 could be used as a proxy
for the initial energy density. In Pb–Pb collisions, on the other hand,
both the overlap area as well as the energy density could increase
with 〈dNch/dη〉. Nonetheless, it is a non-trivial observation that
particle ratios in pp and p–Pb are identical at the same dNch/dη,
representing an indication that the final-state particle density might
indeed be a good scaling variable between these two systems.

Figure 3 shows that the yield ratios Λ/K 0
S = (Λ+Λ)/2K

0
S and

p/π= (p+ p)/(π++π−) do not change significantly with multi-
plicity, demonstrating that the observed enhanced production rates
of strange hadrons with respect to pions is not due to the difference
in the hadron masses. The results in Figs 2 and 3 are compared to
calculations from MC models commonly used for pp collisions at
the LHC: PYTHIA830, EPOS LHC31 and DIPSY32. The kinematic
domain and the multiplicity selections are the same for MC and
data, namely, dividing the INEL> 0 sample into event classes based
on the total charged-particle multiplicity in the forward region.
The observation of a multiplicity-dependent enhancement of the
production of strange hadrons along with the constant production
of protons relative to pions cannot be simultaneously reproduced
by any of the MC models commonly used at the LHC. The model
which describes the data best, DIPSY, is a model where interaction
between gluonic strings is allowed to form ‘colour ropes’ which are
expected to produce more strange particles and baryons.

To illustrate the evolution of the production of strange hadrons
with multiplicity, Fig. 4 presents the yield ratios to pions divided
by the values measured in the inclusive INEL > 0 pp sample, both
for pp and p–Pb collisions. The observed multiplicity-dependent
enhancement with respect to the INEL > 0 sample follows a hier-
archy determined by the hadron strangeness. We have attempted
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Figure 4 | Particle yield ratios to pions normalized to the values measured
in the inclusive INEL > 0 pp sample. The results are shown for pp and
p–Pb collisions, both normalized to the inclusive INEL> 0 pp sample. The
error bars show the statistical uncertainty. The common systematic
uncertainties cancel in the double ratio. The empty boxes represent the
remaining uncorrelated uncertainties. The lines represent a simultaneous fit
of the results with the empirical scaling formula in equation (1). The
indicated uncertainties all represent standard deviations.

to describe the observed strangeness hierarchy by fitting the data
presented in Fig. 4 and the empirical function of the form

(h/π)
(h/π)ppINEL>0

=1+a Sb log

[
〈dNch/dη〉
〈dNch/dη〉ppINEL>0

]
(1)

where S is the number of strange or anti-strange valence quarks
in the hadron, (h/π)ppINEL>0 and 〈dNch/dη〉ppINEL>0 are the measured
hadron-to-pion ratio and the charged-particle multiplicity density
in INEL > 0 pp collisions, respectively, and a and b are free
parameters. The fit describes the data well, yielding a= 0.083±
0.006, b=1.67±0.09, with a χ 2/ndf of 0.66.

In summary, we have presented the multiplicity dependence of
the production of primary strange (K 0

S , Λ, Λ) and multi-strange
(Ξ−, Ξ+, Ω−, Ω+) hadrons in pp collisions at

√
s = 7 TeV.

The results are obtained as a function of 〈dNch/dη〉 measured at
midrapidity for event classes selected on the basis of the total charge
deposited in the forward region. The pT spectra become harder as
themultiplicity increases. Themass andmultiplicity dependences of
the spectral shapes are reminiscent of the patterns seen in p–Pb and
Pb–Pb collisions at the LHC, which can be understood assuming a
collective expansion of the system in the final state. The data show
for the first time in pp collisions that the pT-integrated yields of
strange and multi-strange particles relative to pions increase signif-
icantly with multiplicity. These particle ratios are similar to those
found in p–Pb collisions at the samemultiplicity densities11. The ob-
served enhancement increases with strangeness content rather than
with mass or baryon number of the hadron. Such behaviour cannot
be reproduced by any of theMCmodels commonly used, suggesting
that further developments are needed to obtain a complete micro-
scopic understanding of strangeness production, and indicating the
presence of a phenomenon novel in high-multiplicity pp collisions.
The evolution of strangeness enhancement seen at the LHC steadily
increases as a function of 〈dNch/dη〉 from low-multiplicity pp
to high multiplicity p–Pb and reaches the values observed in
Pb–Pb collisions. This may point towards a common underlying
physics mechanism which gradually compensates the strangeness
suppression in fragmentation. Further studies extending to
higher multiplicity in small systems are essential, as they would
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demonstrate whether strangeness production saturates at the ther-
mal equilibrium values predicted by the grand-canonical statistical
model12,13 or continues to increase. The remarkable similarity of
strange particle production in pp, p–Pb and Pb–Pb collisions adds
to previous measurements in pp, which also exhibit characteristic
features known from high-energy heavy-ion collisions8–11,19–23,25 and
are understood to be connected to the formation of a deconfined
QCD phase at high temperature and energy density.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.

Received 9 January 2017; accepted 23 March 2017;
published online 24 April 2017
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Table 1 | Eventmultiplicity classes, their corresponding fraction of the INEL>0 cross-section (σ/σ INEL >0) and their corresponding
〈dNch/dη〉 at midrapidity (|η|<0.5).

Class name I II III IV V VI VII VIII IX X

σ/σINEL>0 0–0.95% 0.95–4.7% 4.7–9.5% 9.5–14% 14–19% 19–28% 28–38% 38–48% 48–68% 68–100%
〈dNch/dη〉 21.3± 0.6 16.5± 0.5 13.5± 0.4 11.5± 0.3 10.1± 0.3 8.45± 0.25 6.72± 0.21 5.40± 0.17 3.90± 0.14 2.26± 0.12

The value of 〈dNch/dη〉 in the inclusive (INEL> 0) class is 5.96± 0.23. The uncertainties are the quadratic sum of statistical and systematic contributions and represent standard deviations.

Table 2 |Main sources and values of the relative systematic uncertainties (standard deviations expressed in %) of the
pT-di�erential yields.

Hadron K0
S Λ(Λ) Ξ−(Ξ+) Ω−(Ω+)

pT (GeV/c) 0.05 6.2 11.0 0.5 3.7 7.2 0.8 2.1 5.8 1.2 2.8 4.7
Material budget 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Transport code Negligible 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Track selection 1.0 5.0 0.8 0.2 5.9 4.3 0.4 0.3 2.2 0.8 0.6 4.1
Topological selection 2.6 1.1 2.3 0.8 0.6 3.2 3.1 2.0 4.0 5.0 5.6 8.1
Particle identification 0.1 0.1 0.1 0.2 0.2 3.0 1.0 0.2 1.2 1.1 1.7 3.2
E�ciency determination 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Signal extraction 1.5 1.2 3.6 0.6 0.7 3.0 1.5 0.2 1.0 3.2 2.5 2.3
Proper lifetime 1.3 0.1 0.2 0.3 2.3 0.1 0.9 0.1 0.1 2.2 0.7 0.7
Competing decay rejection Negl. 0.7 1.3 Negl. 1.0 6.2 Not applicable 0.2 4.2 5.2
Feed-down correction Not applicable 3.3 2.1 4.3 Negligible Negligible
Total 5.6 6.9 6.4 5.8 8.2 11.2 5.9 5.0 6.7 7.9 9.0 12.1
Common (Nch-independent) 5.0 5.9 4.4 5.4 7.8 9.9 5.2 4.5 6.2 7.3 8.7 11.6

The values are reported for low, intermediate and high pT . The sums of the contributions common to all event classes are listed separately as Nch-independent systematics.

Methods
A detailed description of the ALICE detector and of its performance can be found
in refs 26,33. We briefly outline the main detectors utilized for this analysis. The V0
detectors are two scintillator hodoscopes employed for triggering, background
suppression and event-class determination. They are placed on either side of the
interaction region at z=3.3m and z=−0.9m, covering the pseudorapidity
regions 2.8<η<5.1 and−3.7<η<−1.7, respectively. Vertex reconstruction,
central-barrel tracking and charged-hadron identification are performed with the
Inner Tracking System (ITS) and the Time-Projection Chamber (TPC), which are
located inside a solenoidal magnet providing a 0.5 T magnetic field. The ITS is
composed of six cylindrical layers of high-resolution silicon tracking detectors. The
innermost layers consist of two arrays of hybrid silicon pixel detectors (SPD)
located at average radii 3.9 and 7.6 cm from the beam axis and covering |η|<2.0
and |η|<1.4, respectively. The TPC is a large cylindrical drift detector of radial and
longitudinal size of about 85< r<250 cm and−250< z<250 cm, respectively. It
provides charged-hadron identification information via ionization energy loss in
the fill gas.

The data were collected in 2010 using a minimum-bias trigger requiring a hit in
either the V0 scintillators or in the SPD detector, in coincidence with the arrival of
proton bunches from both directions. The contamination from beam-induced
background is removed offline by using the timing information and correlations in
the V0 and SPD detectors, as discussed in detail in ref. 33. Events used for the data
analysis are further required to have a reconstructed vertex within |z|<10cm.
Events containing more than one distinct vertex are tagged as pileup and are
discarded. The remaining pileup fraction is estimated to be negligible, ranging
from about 10−4 to 10−2 for the lowest and highest multiplicity classes, respectively.
A total of about 100 million events has been utilized for the analysis.

The mean pseudorapidity densities of primary charged particles 〈dNch/dη〉 are
measured at midrapidity, |η|<0.5, for each event class using the technique
described in ref. 34. The 〈dNch/dη〉 values, corrected for acceptance and efficiency,
as well as for contamination from secondary particles and combinatorial
background, are listed in Table 1. The relative RMS width of the corresponding
multiplicity distributions ranges from 68% to 30% for the lowest and highest
multiplicity classes, respectively. The corresponding fractions of the INEL> 0
cross-section are also summarized inTable 1.

Strange K 0
S ,Λ andΛ and multi-strangeΞ−,Ξ+,Ω− andΩ+ candidates are

reconstructed via topological selection criteria and invariant-mass analysis of their
characteristic weak decays35 (BR is branching ratio):

K 0
S→π

+
+π

− BR= (69.20±0.05)%

Λ(Λ)→p(p)+π−(π+) BR= (63.9±0.5)%

Ξ
−
(Ξ
+

)→Λ(Λ)+π
−
(π
+
) BR= (99.887±0.035)%

Ω
−
(Ω
+

)→Λ(Λ)+K−(K+) BR= (67.8±0.7)%

Details on the analysis technique are described in refs 10,36,37. The results are
corrected for detector acceptance and reconstruction efficiency calculated using
events from the PYTHIA6 (tune Perugia 0) MC generator38 with particle
transport performed via a GEANT3 (ref. 39) simulation of the ALICE detector. The
contamination toΛ (Λ) yields from weak decays of charged and neutralΞ
baryons (feed-down) is subtracted using a data-driven approach10. The study of
systematic uncertainties follows the analysis described in refs 10,36,37.
Contributions common to all event classes (Nch-independent) are estimated and
removed to determine the remaining uncertainties which are uncorrelated across
different multiplicity intervals. The main sources of systematic uncertainty and
their corresponding values are summarized in Table 2. The results on pion and
proton production have been obtained following the analysis method discussed
in ref. 40.

Data availability. All data shown in histograms and plots are publicly available
from HEPdata (https://hepdata.net).
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