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dominant contribution for central rapidities. We observe that the inclusive photon cross
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also appear in quark-pair production; unlike the latter, photon production is insensitive

to hadronization uncertainties and therefore more sensitive to multi-parton correlations in

the gluon saturation regime of QCD. We demonstrate that k⊥ and collinear factorized

expressions for inclusive photon production are obtained as leading twist approximations

to our result. In particular, the collinearly factorized expression is directly sensitive to the

nuclear gluon distribution at small x. Other results of interest include the realization of the

Low-Burnett-Kroll soft photon theorem in the CGC framework and a comparative study

of how the photon amplitude is obtained in Lorenz and light-cone gauges.
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1 Introduction

Photons produced in proton-nucleus (p+A) collisions are powerful probes of the funda-

mental many-body structure of strongly interacting matter. Sufficiently energetic photons,

in particular, are free of the uncertainties that attend the fragmentation of partons into

hadrons. Further, the information on microscopic dynamics that is probed by photon final

states complements in fundamental ways the information accessible in deeply inelastic scat-

tering (DIS) experiments off hadrons and nuclei. A global analysis of photon production in

DIS and p+A collisions, analogous to those performed for currently for parton distribution

functions has therefore the potential to reveal universal features of parton dynamics that

are distinct from those that are particular to the scattering process.

The photons produced in deuteron-nucleus collisions at the ultrarelativistic energies

of the Relativistic Heavy Ion Collider (RHIC) and p+A collisions at the Large Hadron

Collider (LHC) are uniquely sensitive to strongly correlated states of gluons in which the

gluons have the maximal occupancy allowed by QCD. The dynamics of these saturated

gluon states is described by the Color Glass Condensate (CGC) [1–3], a classical effective

theory of QCD in the high energy asymptotics (of high center of mass energies and small
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Figure 1. Leading order process for prompt photon production in proton-nucleus collisions. The

diagram describes the bremsstrahlung of a photon from a valence quark after multiple scattering

off the classical gluon field in the nucleus.

values of parton momentum fractions x) that may be applicable for significant kinematic

windows at RHIC and LHC.

A characteristic feature of the CGC is that the dynamics of saturated gluons is gov-

erned by an emergent “saturation scale” QS(x), which grows with increasing energy, or

equivalently, decreasing x. Modes in hadron/nuclear wavefunctions with k⊥ < QS are

maximally occupied with an occupancy that is parametrically 1/αS , where αS is the QCD

fine structure constant. In contrast, the modes k⊥ � QS have small occupancies and in-

teract dynamically as the partons of perturbative QCD (pQCD). If QS is large relative to

the intrinsic non-perturbative QCD scale, the strongly correlated dynamics of gluons can

be computed using weak coupling techniques. In nuclei, the saturation scale (QAS )2 ∼ A1/3.

The high energy dynamics of nuclei are therefore well suited to test the CGC description of

high energy QCD. Photon production, as noted, is a particularly sensitive probe because

it is independent of the details of how partons fragment into hadrons.

Photon production in p+A collisions was previously computed to leading order in the

CGC framework [4]. See also [5]. A derivation within the dipole formalism can be found

in [6, 7]. Using this result, the forward prompt photon spectrum was calculated in [8].

Further applications include the photon-hadron [9, 10] and the photon-jet correlations [11]

at forward rapidity.

The power counting for proton-nucleus collisions corresponds to a “dilute-dense” limit,

where contributions to lowest order in QpS/k1⊥ � 1 (where QpS is the saturation scale in

the projectile proton) are preserved along with all order terms in QAS /k1⊥. Here k1⊥, k2⊥
respectively correspond to the momentum exchange from the proton and the nucleus to

the final state of interest. For photon production, the leading term in this dilute-dense

power counting corresponds to order O(α), where αe is the QED fine structure constant.

This leading order (LO) contribution is illustrated in figure 1. The quark line in this figure

corresponds to a valence quark in the wavefunction of the projectile proton. In the high

occupancy regime of k⊥ ≤ QAS , there is no αS dependence at LO because the αS factor in

the cross section arising from the coupling of a gluon to the valence quark is compensated

by the 1/αS occupancy of these gluons in the target. The O(α) dependence must be

understood as being accompanied by the valence quark distribution fq in the proton.

At next-to-leading order (NLO) O(αeαS), there are a number of contributions which

can be classified into the three classes shown in figure 2. The leftmost diagram (class I)

– 2 –
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Figure 2. Next-to-leading order processes for prompt photon production in proton-nucleus colli-

sions. The class I diagram describes the bremsstrahlung of a photon from a valence quark. The

next two diagrams correspond to a gluon from the proton splitting into a qq̄ that annihilates into

a photon final state (class II), or emits a photon either before or after rescattering off the nucleus

(class III). As described in the text, the class I diagram, upon evolution, is the same order as the

diagram in figure 1.

corresponds to a gluon emitted from the incoming valence quark. For inclusive photon

production, one has to integrate over the phase space corresponding to the emitted gluon.

Another NLO contribution to inclusive photon production in this diagrammatic class (not

shown) arises from the interference between the LO contribution in the amplitude and

a contribution in the complex conjugate amplitude corresponding to the virtual emission

and absorption of a gluon by the valence quark. Since both of these diagrams are of a

bremsstrahlung type, the divergence structure is inherited from NLO quark production,

investigated in detail in ref. [12]. The resulting expression gives logarithms that are sensi-

tive to the transverse momentum and x of the gluon as well as finite pieces. These diagrams

contribute to the double-log DGLAP renormalization group (RG) evolution of the valence

quark distribution.1 The finite pieces can be absorbed in the definition of the quark distri-

bution function by appropriate choice of factorization scale and by choice of factorization

scheme. The NLO contributions of class I are therefore actually of O(αe) if the bare valence

quark distribution in the proton is replaced by the RG evolved quark distribution.

The class II diagram in figure 2 was computed recently [13]. In this case, since the

quark-antiquark pair are emitted from the gluon prior to their subsequent annihilation into

the photon. At small-x kinematics, this diagram is of order O(αeαS) with the cross section

for this contribution accompanied by a factor fg corresponding to the gluon distribution

in the proton. The emission of the initial gluon from the valence quark line is of order

αS log 1/x ∼ 1 at small-x where it does not contribute to the power counting. While

this is an NLO diagram, it can in principle provide a much larger contribution to photon

production. This is because the gluon distribution grows rapidly while the valence quark

distribution decreases at small x, giving fg � fq. Thus for photon production in the small

x kinematics of the projectile proton, such NLO contributions can dominate significantly.

The kinematics of the class II diagram is relevant for inclusive photon production at central

1The dominant contribution comes from the large phase space in transverse momentum αS ln(k⊥) ∼ 1;

since valence quarks are predominantly localized at x ∼ 1, the logarithms in x are sub-dominant, as is the

case for DGLAP evolution.
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rapidities. Because of pair annihilation, the transverse momentum of the photon for this

diagram is strongly constrained to be dominated by momenta around kγ⊥ ∼ QAS . Thus

this contribution is in principle very sensitive to the saturation scale of the nucleus.

However as also noted in ref. [13], there is a further class of NLO processes, class III

in figure 2, that contribute significantly to photon production in p+A collisions. Firstly,

like the class II process, this NLO contribution comes accompanied by a factor fg which,

as noted, will overwhelm the LO contribution at small x. Secondly there are some features

of the class III computation that are qualitatively different from those of class II. Unlike

the latter, photon production, while sensitive to QAS , is dominated by soft momenta with

k⊥ < QAS . Similarly, since photon production is not as kinematically constrained for class

III diagrams relative to class II diagrams, it will also dominate at large kγ⊥ > QAS . In

particular, class III diagrams will match the contribution from leading twist pQCD at high

kγ⊥, while the class II contribution is proportional to a higher twist four point correlator

even at large kγ⊥. The sum of class II and class III diagrams constitute the relevant NLO

contribution to inclusive photon production in the CGC framework.

In this paper, we will compute the class III NLO diagrams for photon production in

p+A collisions in the CGC framework.2 We will perform the computation first in Lorenz

gauge ∂µA
µ = 0 gauge, and subsequently in light-cone gauge A+ = 0. In addition to being

an independent non-trivial check of our results, the intermediate steps are interesting and

realized differently in the two gauges.

The paper is organized as follows. In section 2, after a preliminary discussion of dilute-

dense collisions in the CGC framework, we will outline the derivation of the amplitude for

the inclusive production of a qq̄γ final state in Lorenz gauge. Our work closely follows the

previous derivation in this gauge of the amplitude for gluon production [15] and quark-

antiquark pair production [16] in proton-nucleus collisions. As for the case of the pair

production amplitude considered previously, we show that contributions from so-called

“singular” terms, wherein the photon is produced from within the target, are exactly

canceled by terms that one can identify as gauge artifacts in regular terms. The latter are

contributions where the quark-antiquark pair (and the photon) are produced either before

or after the scattering of gluons from the target off the projectile.

In section 3, we compute the cross section for inclusive photon production. For readers

interested in the central result of this work, the key expression is given in eq. (3.17). As in

the case of quark-antiquark production [16], the cross section factorizes into the product of

the unintegrated gluon distribution in the projectile times the sum of terms corresponding

to the gluon distribution in the target, and quark-antiquark-gluon and quark-antiquark-

quark-antiquark light-like Wilson line correlators. These correlators contain non-trivial

information on many-body gluon and sea quark correlations that are of all twist order in

conventional pQCD language. In section 4 we demonstrate that for QAS � k2⊥, the cross

section can be expressed as a k⊥ factorized product of unintegrated gluon distributions in

the projectile and target [17, 18]. We show explicitly that the corresponding leading twist

2Several of the results presented here were first obtained as a part of the Masters’s thesis of one of the

authors (Garcia-Montero) at the University of Heidelberg [14].
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k⊥ factorized amplitude agrees exactly with the expression derived recently by Motyka,

Sadzikowski and Stebel [18] in the context of Z0 boson hadroproduction. Taking the limit

k1⊥, k2⊥ → 0, one recovers the formal structure of the leading collinear factorization contri-

bution to inclusive photon production from gluon-gluon scattering [19]. This demonstrates

the unique sensitivity of inclusive photon production to the nuclear gluon distribution func-

tion at small x. Unfortunately, the detailed analytical comparison of the two expressions

is cumbersome; a numerical comparison is left for future work. In section 5, we summarize

our results and provide a detailed outline of the necessary ingredients for the numerical

computation of inclusive photon production in proton-nucleus collisions. We will leave this

numerical computation for a subsequent publication.

In A we will compute the amplitude for inclusive photon production in light-cone gauge

A+ = 0. This computation follows a previous computation of gluon production in this

gauge [20]. Unlike gluon production, where the amplitudes in Lorenz gauge and light-cone

gauge differ (albeit the cross sections of course agree), in this case, the amplitudes in the

two gauges agree exactly. Some properties of the amplitude are outlined in B. In addition to

demonstrating that this amplitude satisfies a Ward identitiy, we show in particular that the

well known Low-Burnett-Kroll theorem [21–23] is satisfied. This corresponds, in the soft

photon limit, to the factorization of the amplitude into the amplitude for quark-antiquark

production times a contribution determined by the Lorentz structure of the photon.

2 Amplitude for inclusive qq̄γ production in the Lorenz gauge

In the CGC effective theory, the gluon dynamics with high occupancy at small x are

described by the classical Yang-Mills equations. For collisions of the proton moving in the

positive z direction and the nucleus moving in the negative z direction at the speed of light,

the Yang-Mills equations are

[Dµ, F
µν ](x) = gδν+δ(x−)ρp(x⊥) + gδν−δ(x+)ρA(x⊥) , (2.1)

where ρp and ρA correspond to the static and stochastic color charge density matrices

at large x in the proton and the nucleus, respectively. This framework is feasible at a

given impact parameter for three different regimes of color charge densities depending on

the energy of the collision and the kinematic regime of interest. These correspond to the

dilute-dilute (ρp/k
2
1⊥ � 1, ρA/k

2
2⊥ � 1), the dilute-dense (ρp/k

2
1⊥ � 1, ρA/k

2
2⊥ ∼ 1),

and the dense-dense (ρp/k
2
1⊥ ∼ 1, ρA/k

2
2⊥ ∼ 1) regimes. To compute inclusive cross

sections, the modulus squared of the computed amplitude must be averaged over the color

sources, thereby replacing ρp, ρA → QpS , Q
A
S in the power counting. Subsequent to this

averaging, the dilute-dilute limit in the CGC effective theory can be matched to the leading

twist frameworks of pQCD at small x. Further, the dilute-dense limit corresponds to the

dominance of leading twist contributions on the proton side with all twist contributions on

the nuclear side, and the dense-dense limit includes all twist contributions from both the

proton and the nucleus to the scattering process of interest.

At the collider energies currently accessible in p+A collisions, the appropriate dynamics

is that of the dilute-dense limit. The nucleus is dense because there is an enhancement of the

– 5 –
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order of A1/3 in the number of color sources even at large x. These sources can all radiate

soft gluons that further function as color sources for even softer gluons. In the proton, on

the other hand, there are O(1) color sources, and it is only at very large rapidities relative

to the proton fragmentation region that the density of color sources becomes ρp/k
2
1⊥ ∼ 1.

Alternately, the dense-dense regime can be attained in very rare high multiplicity events

where the proton fluctuates into sources of color charge already at large x.

In this work, we will be interested in photon production in p+A collisions at collider

energies for the small x kinematics, and in event classes where the dilute-dense asymptotics

is appropriate and gives the dominant contribution. Analytic computations are feasible

then, and explicit expressions can be derived. In contrast, the dense-dense limit is not

analytically tractable even for inclusive gluon production since there is no small parameter

to expand in. Results can be obtained only through numerical simulations of the Yang-Mills

equations [24–26].

2.1 Structure of the gluon field and setup of the amplitude computation

In what follows, we work entirely in the Lorenz covariant gauge ∂µA
µ = 0. The outline of

the derivation in light-cone gauge is given in A. For a dilute-dense system with ρp/k
2
1⊥ � 1

and ρA/k
2
2⊥ ∼ 1, the analytical solution of eq. (2.1) in the Lorenz gauge can be expressed

in momentum space as [15]

Aµ(q) = Aµp (q) +
ig

q2 + iq+ε

∫
k1⊥

∫
x⊥

ei(q⊥−k1⊥)·x⊥

×
{
CµU (q,k1⊥)[U(x⊥)− 1] + CµV (q)[V (x⊥)− 1]

}ρp(k1⊥)

k2
1⊥

, (2.2)

where Aµ(q) = Aaµ(q)T a and T a are the generators of SU(Nc) in the adjoint representation.

We will also use a shorthand notation,
∫
k⊥
≡
∫

d2k⊥
(2π)2

and
∫
x⊥
≡
∫

d2x⊥, hereafter. In

detail, the ingredients going into eq. (2.2) are as follows. The first term, Aµp (q), represents

the gluon field of the proton alone

Aµp (x) = −gδµ+δ(x−)
1

∇2
⊥
ρp(x⊥) . (2.3)

The vectors CµU and CµV are abbreviated forms for the momentum dependence of the

integral, with k1⊥ being the momentum exchanged from the proton, while k2⊥ ≡ q⊥−k1⊥
exchanged from the nucleus. The explicit forms of CµU and CµV are

C+
U (q,k1⊥) ≡ − k2

1⊥
q−+iε

, C−U (q,k1⊥) ≡
(q⊥−k1⊥)2−q2

⊥
q+

, C⊥U (q,k1⊥) ≡ −2k1⊥ ,

C+
V (q) ≡ 2q+ , C−V (q) ≡ 2

q2
⊥
q+
− 2q− , C⊥V (q) ≡ 2q⊥ .

(2.4)

These two functions are related to the well-known Lipatov effective vertex [27–29] via the

simple relation, CµL = CµU +CµV /2. This effective vertex is a gauge covariant expression that

efficiently combines the various contributions to glue-glue scattering in the Regge-Gribov

limit of QCD.

– 6 –
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In eq. (2.2), the Wilson lines U and V account for the modification of the gluon field

of the proton due to multiple gluon scatterings in the nucleus and can be expressed, for an

arbitrary light-like path as

U(a, b;x⊥) = P+ exp

[
ig

∫ a

b
dz+A−A(z+,x⊥) · T

]
, (2.5)

V (a, b;x⊥) = P+ exp

[
ig

2

∫ a

b
dz+A−A(z+,x⊥) · T

]
, (2.6)

where A−A(z+,x⊥) represents the gluon field alone. This field can be expressed similarly

to Aµp above as

AµA(x) = −gδµ−δ(x+)
1

∇2
⊥
ρA(x⊥) . (2.7)

In the above expressions for the Wilson lines P+ denotes path-ordering in the x+ direction.

While U is the standard Wilson line in the adjoint representation of SU(Nc), V is

an unusual form of the Wilson line that turns out to be a gauge artifact of the gluon

production amplitude in Lorenz gauge. This can be deduced from the fact that the V

dependent terms in the amplitude do not appear in the cross sections nor in calculations

in other gauges [20, 30]. While one expects therefore that V should drop out at the level

of the cross section for photon production, we will show that they will not appear in

our final expressions for the amplitude. The same observation was made previously for

the amplitude for qq̄ production in Lorenz gauge. We will henceforth use the following

shorthand notation for the complete Wilson lines,

U(x⊥) ≡ U(∞,−∞;x⊥) , V (x⊥) ≡ V (∞,−∞;x⊥) . (2.8)

Before we proceed, it is instructive to discuss the underlying structure of eq. (2.2) in

coordinate space. This can be decomposed by splitting eq. (2.2) as Aµ = AµR+AµS where AµR
is called a regular term and AµS a singular term. The former corresponds to the emission of

the gluon from the proton before interacting with the highly Lorentz contracted shock wave

of gluons that comprises the nuclear target, while the latter corresponds to gluon production

from within the shock wave. The latter term is proportional to the Lorentz contracted width

of the nucleus ∝ δ(x+). Because 2q− = q2/q+ + q2
⊥/q

+, we can split C−V (q), the only term

with q− dependence, into a regular part CµV,reg(q) and a “singular” part

CµV (q) = CµV,reg(q)− δµ− q
2

q+
. (2.9)

We observe that the singular field appears from the second term in eq. (2.9) because the

q2 term in eq. (2.9) cancels the 1/q2 pole in eq. (2.2). Clearly, the q− integration leads to

δ(x+), but we need to be cautious about the infinitesimal longitudinal extension in V (x⊥).

After careful treatment, its Fourier transformed representation in coordinate space can be

expressed as

AµS(x) =
g2

2
AµA(x)V (x+,−∞;x⊥)θ(x−)

1

∇2
⊥
ρp(x⊥) . (2.10)

– 7 –
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In addition to decomposing the gauge field, we will need one more ingredient for our

computation of the class III amplitude for photon production. This is the effective vertex

corresponding to self-energy insertions in the time-ordered quark propagator arising from

multiple insertions of the nuclear gluon background field: it is given by [16]

T (k, p) =


2πδ(k+)γ+

∫
x⊥

eik⊥·x⊥
[
Ũ(x⊥)− 1

]
(p+ > 0) ,

−2πδ(k+)γ+

∫
x⊥

eik⊥·x⊥
[
Ũ †(x⊥)− 1

]
(p+ < 0) ,

(2.11)

where p is the quark momentum and k is the momentum transfer from the multiple gluon

“kicks” to the quark. The Wilson line in the fundamental representation Ũ is defined as

in eq. (2.5) with the SU(Nc) adjoint generators T a replaced by the generators ta of the

fundamental representation. Explicitly, it is written as [31]

Ũ(x⊥) = P+ exp

[
−ig2

∫ ∞
−∞

dz+ 1

∇2
⊥
ρA(z+,x⊥) · t

]
. (2.12)

The effective vertex appears in the quark propagator and Ũ and Ũ † sum over all the gluon

insertions to the quark and the antiquark respectively. The momentum transfer from the

nucleus k should be integrated over. Since the effective vertex does not change the order

of the diagrams parametrically by any power of g, processes where the emitted photon is

sandwiched between two such effective vertices are possible. We will see in the following

that this is not the case; the kinematics of the process will constrain the number and

configuration of these effective vertices.

From the above discussion, we can deduce that for the amplitude for photon production

in figure 2 there are fourteen non-vanishing contributions. We will separate them in two

groups of diagrams:

1. the regular terms, in which the qq̄ pair is created from the regular field AµR.

2. the singular terms, wherein the pair is spawned from AµS .

In the following computation, we shall include only one insertion of AµR/S on the quark

propagator, regular or singular, to stay consistently at first order in the proton source ρp.

As noted, the number of gluon insertions from the nucleus onto the quark and antiquark

lines from the nucleus can, however, in our dilute-dense power counting, be as many as

the kinematics permit. The amplitude can be decomposed into the external polarization

vector of the photon and an amplitude vector, with the results in the following subsections

expressed in terms of the amplitude vector defined as

Mλ(p, q,kγ) ≡ ε∗µ(kγ , λ)Mµ(p, q,kγ) , (2.13)

where q, p, and kγ are the quark, the antiquark, and the photon external three momenta,

respectively, and λ is the photon polarization. We summarize in table 1 the momenta

notations that will be used in the following calculations.

– 8 –
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k1: 4-momentum exchanged from the proton k2: 4-momentum exchanged from the nucleus

kγ : photon 4-momentum k: 4-momentum from Ũ

q: quark 4-momentum p: antiquark 4-momentum

P : 4-momentum of the final state P = k1 + k2 = p+ q + kγ
(4-momentum from Ũ †: k2 − k = P − k1 − k)

Table 1. Summary of momentum notations used in the text.

AR

Q̄(p)

Q(q)

γ(kγ)

(R1)

AR

γ(kγ)

Q̄(p)

Q(q)

(R2)

Figure 3. Brehmstrahlung diagrams without gluon insertions in the quark and antiquark lines.

2.2 Regular contributions to the amplitude

Following the above stated classification, we will proceed to find the regular diagrams which

have no fundamental Wilson lines first. For this case, there are two diagrams, shown on

figure 3, with exactly one insertion of the proton source, in the form of the regular field

AR. The two diagrams represent the scattering of a gluon off the target and the resulting

creation of a qq̄ pair. The photon is then emitted from the quark or antiquark line. Using

standard Feynman rules, the vector amplitude for the diagram (R1) (denoted as Mµ
R1) is

Mµ
R1(p, q,kγ) = ū(q)(−iqfeγ

µ)S0(q + kγ)(−ig /A(P ) · t) v(p) , (2.14)

where P is the total external 4-momentum

P ≡ p+ q + kγ , (2.15)

and the quark lines are given in this calculation by the vacuum time-ordered fermion

propagator

S0(p) ≡ i
/p+m

p2 −m2 + iε
. (2.16)

The proton field Aµp does not contribute to this diagram. It contains the delta function

δ(p−+ q−+k−γ ) which cannot be satisfied if the quark, antiquark, and photon are on-shell,

as p−, q−, k−γ > 0. Dropping the Aµp term, we are left with the rest of AµR, which, for the

amplitude Mµ
R1, gives,

Mµ
R1(p, q,kγ) =

qfeg
2

P 2

∫
k1⊥

∫
x⊥

ρap(k1⊥)

k2
1⊥

ei(P⊥−k1⊥)·x⊥ ū(q)γµ
/q + /kγ +m

(q + kγ)2 −m2

×
{[
U(x⊥)− 1

]ba /CU (P,k1⊥) +
[
V (x⊥)− 1

]ba /CV,reg(P )
}
tbv(p) .

(2.17)
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AR

Q̄(p)

Q(q)

γ(kγ)

(3)
AA

AR

Q̄(p)

Q(q)

γ(kγ)

(4)

AA

AR

γ(kγ)

Q̄(p)

Q(q)

(5)
AA

AR

γ(kγ)

Q̄(p)

Q(q)

(6)
AA

AR

Q̄(p)

γ(kγ)

Q(q)

(7)
AA

AR

Q̄(p)

Q(q)

γ(kγ)

(8)
AA

Figure 4. Contributions for the amplitude with at most one Wilson line in the fundamental

representation, either Ũ or Ũ†.

Following the same procedure as the one for (R1), one finds the amplitude contribution

(R2) for the photon emitted from the antiquark to be

Mµ
R2(p, q,kγ) = −

qfeg
2

P 2

∫
k1⊥

∫
x⊥

ρap(k1⊥)

k2
1⊥

ei(P⊥−k1⊥)·x⊥ ū(q)
{[
U(x⊥)− 1

]ba /CU (P,k1⊥)

+
[
V (x⊥)− 1

]ba /CV,reg(P )
} /p+ /kγ −m

(p+ kγ)2 −m2
γµtbv(p) . (2.18)

It will be shown in the next subsection that the singular contributions will cancel the terms

with the Wilson line V — the final expression has no dependence on V .

Diagrams with one insertion of the effective vertex on the quark propagator can have

one Wilson line Ũ or Ũ † in the fundamental representation, as shown in figure 4, for the

quark [diagrams (3)–(5)] and likewise for the antiquark [diagrams (6)–(8)]. In the following

steps we will treat them separately for convenience. As in the case of the amplitudes (1)

and (2), the amplitude (3) in figure 4 will have a regular field insertion. However, now in

addition we must insert the effective nuclear vertex (2.11) for the multiple gluon scatterings.

We should integrate over nuclear momentum transfer k2 to obtain,

Mµ
3 (p, q,kγ) (2.19)

=

∫
d4k2

(2π)4
ū(q)(−iqfeγ

µ)S0(q+kγ)T (k2, q+kγ)S0(q + kγ − k2)(−ig /AR(P − k2) · t) v(p) .

We then integrate over k+
2 and k−2 . This integration is trivial for k+

2 since T (k2, q + kγ)

contains δ(k+
2 ). Only the proton field part Aµp of the regular field gives a finite contri-

bution. In this part, the k−2 integration is also trivial because Aµp contains δ(P− − k−2 ).

We shall now demonstrate that the integration over the remaining part of AµR vanishes by
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the residue theorem. The singularities in k−2 of the regular field and the quark propagator

S0(q + kγ − k2), respectively, are

k−2 = P− − (P⊥ − k2⊥)2

2P+
+

iε

2P+
, k−2 = P− + iε ,

k−2 = q− + k−γ −
m2 + (q⊥ + kγ⊥ − k2⊥)2

2(q+ + k+
γ )

+
iε

2(q+ + k+
γ )

,

(2.20)

where the first pole comes from the prefactor and the second from C+
U in AµR. Since all the

three poles are above the real k−2 axis, the k−2 integral vanishes by the residue theorem.

This result has the clean physical interpretation that the quark-antiquark pair is first

created in the proton and subsequently the quark scatters off the gluons in the nucleus.

The calculation of the diagrams (4) and (5) is analogous. We can collect the results for the

amplitude vector in a compact form as

Mµ
β(p, q,kγ) = −qfeg2

∫
k1⊥

∫
x⊥

ρap(k1⊥)

k2
1⊥

ei(P⊥−k1⊥)·x⊥ ū(q)Rµβ(k1⊥)
[
Ũ(x⊥)− 1

]
tav(p) ,

(2.21)

where the integration variable was changed from k2 to k1 = P − k2 and β ∈ 3, 4, 5. The

symbol Rµβ(k1⊥) is a shorthand notation for the Dirac structure

Rµ3 (k1⊥) ≡ γµ /q + /kγ +m

(q + kγ)2 −m2
γ+

/k1⊥ − /p⊥ +m

2(q+ + k+
γ )p− +M2(k1⊥ − p⊥)

γ− ,

Rµ4 (k1⊥) ≡ −γ+ /q + /k1⊥ − /P⊥ +m

2q+(p− + k−γ )+M2(k1⊥−p⊥−kγ⊥)
γµ

/k1⊥ − /p+m

2(q+ + k+
γ )p−+M2(k1⊥−p⊥)

γ− ,

Rµ5 (k1⊥) ≡ γ+ /p⊥ + /kγ⊥ − /k1⊥ −m
2q+(p− + k−γ ) +M2(k1⊥ − p⊥ − kγ⊥)

γ−
/p+ /kγ −m

(p+ kγ)2 −m2
γµ , (2.22)

where we define /p⊥ ≡ piγ
i and M2(p⊥) ≡ p2

⊥+m2 as the transverse mass. The reductions

to transverse Dirac matrices in the numerators comes from using k+
1 = P+, k−1 = 0 and

also the identities (γ+)2 = 0, (γ−)2 = 0.

The next three contributions to the photon amplitude, represented in diagrams (6)–(8)

of figure 4, can be found in the same fashion, and as the former, can be shown to have

vanishing pole integrations. The amplitudes for these processes are

Mµ
β(p, q,kγ) = −qfeg2

∫
k1⊥

∫
x⊥

ρap(k1⊥)

k2
1⊥

ei(P⊥−k1⊥)·x⊥ ū(q)Rµβ(k1⊥)ta
[
Ũ †(x⊥)− 1

]
v(p) ,

(2.23)

where β ∈ 6, 7, 8 corresponds to the respective diagrams in figure 4 and the corresponding

Dirac structures

Rµ6 (k1⊥) ≡ γ−
/q⊥ − /k1⊥ +m

2(p+ + k+
γ )q− +M2(k1⊥ − q⊥)

γ+ /p+ /kγ −m
(p+ kγ)2 −m2

γµ ,

Rµ7 (k1⊥) ≡ −γ− /q − /k1⊥ +m

2(p+ + k+
γ )q−+M2(k1⊥−q⊥)

γµ
/p+ /k1⊥ − /P⊥ −m

2p+(q−+k−γ )+M2(q⊥+kγ⊥−k1⊥)
γ+ ,

Rµ8 (k1⊥) ≡ γµ /q + /kγ +m

(q + kγ)2 −m2
γ−

/k1⊥ − /q⊥ − /kγ⊥ −m
2p+(q− + k−γ ) +M2(q⊥ + kγ⊥ − k1⊥)

γ+ . (2.24)
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AR

Q̄(p)

Q(q)

γ(kγ)

(9)
AA AA

AR

γ(kγ)

Q̄(p)

Q(q)

(10)
AA AA

AR

Q̄(p)

Q(q)

γ(kγ)

(11)
AA AA

AR

Q̄(p)

γ(kγ)

Q(q)

(12)
AA AA

Figure 5. Regular contributions for the amplitude with two Wilson lines in the fundamental

representation.

To tidy up our notation, we will express the sum of the contributions (3)–(8) in figure 4 as

8∑
β=3

Mµ
β(p, q,kγ) = −qfeg2

∫
k⊥k1⊥

∫
x⊥y⊥

ρap(k1⊥)

k2
1⊥

eik⊥·x⊥+i(P⊥−k⊥−k1⊥)·y⊥ (2.25)

× ū(q)
{
Tµq (k1⊥)

[
Ũ(x⊥)− 1

]
ta + Tµq̄ (k1⊥)ta

[
Ũ †(y⊥)− 1

]}
v(p) ,

where the total Dirac structure is combined as

Tµq (k1⊥) ≡
5∑

β=3

Rµβ(k1⊥) , Tµq̄ (k1⊥) ≡
8∑

β=6

Rµβ(k1⊥) . (2.26)

In the first term in (2.25), we introduced a dummy integration over y⊥ and k⊥. In the

second term in (2.25), we renamed x⊥ → y⊥ and further, introduced a dummy integration

over x⊥ and k⊥.

Let us now consider the case where there are two insertions of the effective vertex on

the quark propagator. The contribution corresponding to a photon emission between two

insertions of the effective vanishes for the same kinematic reasons as previously — the pole

integration yields a null contribution. Thus the only non-zero contributions come from

diagrams where one insertion is on the quark line and the other on the anti-quark line.

There are four such contributions, which are listed as diagrams (9)–(12) in figure 5.

All of these diagrams are computed with the same logic as previously. As an example,

we focus on diagram (9). The corresponding amplitude can be written as

Mµ
9 (p, q,kγ) =

∫
d4k

(2π)4

d4k1

(2π)4
ū(q)(−iqfeγ

µ)S0(q+kγ)T (k, q+kγ)S0(q+kγ−k)

×(−ig /AR(k1) · t)S0(q+kγ−k−k1)T (P−k−k1, q+kγ−k−k1)v(p) .

(2.27)
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As for the case with only one effective vertex, and for the same reasons articulated there,

only the proton piece Aµp of the regular field AµR contributes. The integrals over k+, k+
1

and k−1 can be performed thanks to the δ-functions in the two effective vertices T and in

Aµp , respectively. The remaining integration over k− can be evaluated by the method of

residues. As in the case of the one effective vertex insertion, the gluon scattering vertices

(CµU and CµV ) are kinematically forbidden by the pole integration. Performing similar steps

for the remaining diagrams (10)–(12), the amplitude of the sum of the diagrams (9)–(12)

can be expressed as

12∑
β=9

Mµ
β(p, q,kγ) = −qfeg2

∫
k⊥k1⊥

∫
x⊥y⊥

ρap(k1⊥)

k2
1⊥

eik⊥·x⊥+i(P⊥−k⊥−k1⊥)·y⊥

× ū(q)Tµqq̄(k⊥,k1⊥)
[
Ũ(x⊥)− 1

]
ta
[
Ũ †(y⊥)− 1

]
v(p) ,

(2.28)

where

Tµqq̄(k⊥,k1⊥) ≡
12∑
β=9

Rµβ(k⊥,k1⊥) . (2.29)

The Dirac structures here for β = 9, . . . , 12, corresponding to the diagrams (9)–(12) in

figure 5, are

Rµ9 (k⊥,k1⊥) ≡ −γµ /q + /kγ +m

(q + kγ)2 −m2
γ+

(/q⊥ + /kγ⊥ − /k⊥ +m)γ−(/q⊥ + /kγ⊥ − /k⊥ − /k1⊥ +m)γ+

Nk(k⊥,k1⊥)
,

Rµ10(k⊥,k1⊥) ≡
γ+(/q⊥ − /k⊥ +m)γ−(/q⊥ − /k⊥ − /k1⊥ +m)

Nq(k⊥,k1⊥)
γ+ /p+ /kγ −m

(p+ kγ)2 −m2
γµ ,

Rµ11(k⊥,k1⊥) ≡ 2p+
γ+(/q +m− /k⊥)γµ(/q⊥ + /kγ⊥ − /k⊥ +m)γ−(/q⊥ + /kγ⊥ − /k⊥ − /k1⊥ +m)γ+

S(k⊥,k1⊥)Nk(k⊥,k1⊥)

−M2(q⊥+kγ⊥−k⊥−k1⊥)
γ+(/q+m−/k⊥)γµγ+γ−(/q⊥+/kγ⊥−/k⊥−/k1⊥+m)γ+

S(k⊥,k1⊥)Nk(k⊥,k1⊥)
,

Rµ12(k⊥,k1⊥) ≡ 2q+
γ+(/q⊥−/k⊥+m)γ−(/q⊥−/k1⊥−/k⊥+m)γµ( /P⊥−/k1⊥−/k⊥−/p+m)γ+

S(k⊥,k1⊥)Nq(k⊥,k1⊥)

+M2(q⊥−k⊥)
γ+(/q⊥−/k⊥+m)γ−γ+γµ( /P⊥−/k1⊥−/k⊥−/p+m)γ+

S(k⊥,k1⊥)Nq(k⊥,k1⊥)
. (2.30)

For clarity of presentation, the following functions in the denominator have been defined as

Nq(k⊥,k1⊥) ≡ 2(p+ + k+
γ )M2(q⊥ − k⊥) + 2q+M2(q⊥ − k⊥ − k1⊥) ,

Nk(k⊥,k1⊥) ≡ 2p+M2(q⊥+kγ⊥−k⊥)+2(q++k+
γ )M2(q⊥+kγ⊥−k⊥−k1⊥) ,

S(k⊥,k1⊥) ≡ 4p+q+k−γ + 2q+M2(q⊥ + kγ⊥ − k⊥ − k1⊥) + 2p+M2(q⊥ − k⊥) .

(2.31)

In all the equations presented here, k⊥ stands for the momentum transferred from

the dense nucleus to the quark line. Likewise, k1⊥ is the momentum transferred from

the proton. This is transparent since the proton color sources ρap(k1⊥) are dependent on

this integration variable alone. From this fact, and from the fact that the initial momen-

tum flow must be inferred from the final state momenta P⊥, one can readily notice that

P⊥ − k⊥ − k1⊥ is the momentum transfer from the nucleus to the antiquark.
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Q̄(p)

Q(q)

γ(kγ)

(S1)

AS

γ(kγ)

Q̄(p)

Q(q)
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Figure 6. Singular diagrams of the process. The blob represents the effective vertex defined in

eq. (2.11).

2.3 Singular contributions to the amplitude

The terms for which the qq̄ is produced by the singular part of the field AµS are represented

by the diagrams (S1) and (S2) in figure 6, corresponding to both the creation of the qq̄

pair, and the subsequent emission of the photon from within the nucleus. The amplitude

for this process is non-vanishing in the Lorenz gauge ∂µA
µ = 0 and needs further expla-

nation. Without regularization, the expressions for amplitudes (S1) and (S2) would look

the same as in eq. (2.14), but with the regular field exchanged for the singular field. With

regularization, the δ(x+) function has a small width: δ(x+)→ δε(x
+). This allows the qq̄

to undergo multiple gluon scatterings.

Diagrams (S1) and (S2) split into four different parts; each one corresponds to inser-

tions on the quark and the antiquark lines, making four distinct combinations. However

these insertions have to be treated differently than in the previous terms we considered

as they occur inside the regularized region. This can be achieved by changing the Wilson

lines in the insertions into incomplete Wilson lines. Summing all the terms that make up

(S1), we find,

Mµ
S1(p, q,kγ) (2.32)

=

∫
d4x eiP ·x ū(q)(−iqfeγ

µ)S0(q + kγ)Ũ(∞, x+,x⊥)(−ig /AS(x) · t) Ũ †(∞, x+,x⊥) v(p) .

Several points have to be noted about this expression. Firstly, the structure of the am-

plitude reflects the fact that for these diagrams the quarks do not rescatter again as a

consequence of the vanishing duration of the interaction in the ε → 0 limit. In this limit

the insertion of the singular field and the rescattering occur in the same transverse plane,

which is intuitively what one would expect from a qq̄ pair being created and interacting

inside a heavily boosted nucleus. Secondly, the photon emission from inside the nucleus or

followed by another scattering would be tantamount to resolving the nuclear gluon shock

wave; this too is not kinematically viable. Therefore one can only have the addition of an

external photon leg emitted by the outgoing quark or antiquark.

Using the identity

Ũ(∞, x+,x⊥)taŨ †(∞, x+,x⊥) = tbU ba(∞, x+,x⊥) , (2.33)
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and the formula [16]

ig

2

∫ ∞
−∞

dx+
[
U(∞, x+;x⊥)A−A(x) · T V (∞, x+;x⊥)

]
= U(x⊥)− V (x⊥) , (2.34)

we obtain,

Mµ
S1(p, q,kγ) = −

qfeg
2

P+

∫
k1⊥

∫
x⊥

ρap(k1⊥)

k2
1⊥

ei(P⊥−k1⊥)·x⊥
{

[U(x⊥)− 1]− [V (x⊥)− 1]
}ba

× ū(q)γµ
/q + /kγ +m

(q + kγ)2 −m2
γ+tbv(p) . (2.35)

A similar procedure for (S2) gives

Mµ
S2(p, q,kγ) =

qfeg
2

P+

∫
k1⊥

∫
x⊥

ρap(k1⊥)

k2
1⊥

ei(P⊥−k1⊥)·x⊥
{

[U(x⊥)− 1]− [V (x⊥)− 1]
}ba

× ū(q)γ+ /p+ /kγ −m
(p+ kγ)2 −m2

γµtbv(p) . (2.36)

In these expressions, we have added and substracted the adjoint representation identity

matrix to show their similarity to eqs. (2.17) and (2.18). In the following, it will be shown

that some of these contributions cancel out.

2.4 Assembling the contributions: the complete result for the photon

amplitude

The net contribution to the amplitude is given by a summation of the terms in eqs. (2.17),

(2.18), (2.25), (2.28), (2.35) and (2.36). There are several cancellations that occur when

we put these terms together. The cancellation of the Wilson line V (x⊥) will be addressed

first, as it was anticipated, and it stands as a good check of our computation. Firstly, using

the relations of eqs. (2.4) and (2.9) CµV,reg(P ) is explicitly written as

CµV,reg(P ) = 2Pµ − P 2

P+
δµ− . (2.37)

Using the identities

ū(q)γµ
/q + /kγ +m

(q + kγ)2 −m2
/Ptav(p) = ū(q)γµtav(p) ,

ū(q)/P
/p+ /kγ −m

(p+ kγ)2 −m2
γµtav(p) = ū(q)γµtav(p) ,

(2.38)

it follows that the first term of (2.37) cancels out within eqs. (2.17) and (2.18). These

relations leave us with only the second term in CµV,reg(P ). It is straightforward to check

that both remaining contributions in eqs. (2.17) and (2.18) are the counterparts of the V

dependent terms in the singular diagrams, and so eqs. (2.35) and (2.36) demonstrate the

anticipated cancellation.
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The resulting effective vertex for the U terms in the sum of the diagrams (R1), (S1)

and separately (R2), (S2) is

/CU (P,k1⊥)− γ+ 1

P+
, (2.39)

which can equivalently be written as

/CU (P,k1⊥) +
1

2
/CV (P ) = /CL(P,k1⊥) , (2.40)

where the expression CµL is the Lipatov effective vertex

C+
L (q,k1⊥) = q+− k2

1⊥
q−+iε

, C−L (q,k1⊥) =
(q⊥−k1⊥)2

q+
− q−, CL⊥(q,k1⊥) = q⊥−2k1⊥ .

(2.41)

The terms that survive the above mentioned cancellation give the net amplitude for a

gluon to first scatter off the nucleus before emitting a qq̄ pair and can be expressed as

Mµ
β(p, q,kγ) ≡Mµ

Rβ(p, q,kγ) +Mµ
Sβ(p, q,kγ) (2.42)

= −qfeg2

∫
k1⊥

∫
x⊥

ρap(k1⊥)

k2
1⊥

ei(P⊥−k1⊥)·x⊥ ū(q)[U(x⊥)− 1]batbRµβ(k1⊥)v(p) ,

with β = 1, 2 and where

Rµ1 (k1⊥) ≡ −γµ /q + /kγ +m

(q + kγ)2 −m2

/CL(P,k1⊥)

P 2
,

Rµ2 (k1⊥) ≡
/CL(P,k1⊥)

P 2

/p+ /kγ −m
(p+ kγ)2 −m2

γµ .

(2.43)

Combining all the results, the full amplitude vector is

Mµ(p, q,kγ) =

12∑
β=1

Mµ
β(p, q,kγ) (2.44)

= −qfeg2

∫
k⊥,k1⊥

∫
x⊥y⊥

ρap(k1⊥)

k2
1⊥

eik⊥·x⊥+i(P⊥−k⊥−k1⊥)·y⊥

× ū(q)
{
Tµg (k1⊥)[U(x⊥)− 1]batb + Tµq (k1⊥)[Ũ(x⊥)− 1]ta

+ Tµq̄ (k1⊥)ta[Ũ †(y⊥)−1]+Tµqq̄(k⊥,k1⊥)[Ũ(x⊥)−1]ta[Ũ †(y⊥)−1]
}
,

with

Tµg (k1⊥) ≡
2∑

β=1

Rµβ(k1⊥) . (2.45)

This last expression extends the Dirac structure found in ref. [16] to photon production.

We note that in eq. (2.44) we introduced a dummy integration over x⊥, y⊥ and k⊥ to

ensure that all the terms have identical integration variables.

The result (2.44) can be further simplified by making use of the identities,

Tµg (P⊥) + Tµq (P⊥) + Tµq̄ (P⊥)− Tµqq̄(0,P⊥) = 0 ,

Tµq (P⊥ − k⊥)− Tµqq̄(k⊥,P⊥ − k⊥) = 0 , T µq̄ (k1⊥)− Tµqq̄(0,k1⊥) = 0 .
(2.46)
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Using eq. (2.46), the expression for the amplitude can considerably simplify to

Mµ(p, q,kγ) = −qfeg2

∫
k⊥k1⊥

∫
x⊥y⊥

ρap(k1⊥)

k2
1⊥

eik⊥·x⊥+i(P⊥−k⊥−k1⊥)·y⊥

× ū(q)
{
Tµg (k1⊥)U(x⊥)batb + Tµqq̄(k⊥,k1⊥)Ũ(x⊥)taŨ †(y⊥)

}
v(p) .

(2.47)

This expression for the photon amplitude is a key result of this work. In A, we will show

that this expression for the amplitude in Lorenz gauge is identical to the expression derived

in light-cone gauge.

Before we conclude this section, we wish to make a few points regarding the final

result. Firstly, in eq. (2.46), the sum of the four effective vertices is zero as a consequence

of momentum conservation. If there is no nuclear and proton momentum transfer, the

quark-antiquark dipole cannot be created. The second and third relations in eq. (2.46)

stand for the vanishing of contributions if there is no momentum transfer either from the

projectile or the target. We are thus left only with contributions to the photon amplitude

that have i) both the quark and the antiquark interact with the nucleus after being created

(and before or after radiating the photon), and those ii) where the gluon from the proton

scatters off the nucleus before creating the quark-antiquark pair and thence, the photon.

3 The inclusive photon cross section

The probability for creating a qq̄ pair with 4-momenta q and p, respectively, and a photon

with momentum kγ , for a fixed distribution of sources ρp in the projectile and ρA in the

target, respectively, is given by

P γincl.[ρp, ρA] =

∫
d3p

(2π)32Ep

d3q

(2π)32Eq

d3kγ
(2π)32Ekγ

∑
λ

∑
spin

∣∣Mλ(p, q,kγ)
∣∣2 . (3.1)

Here Ep, Eq and Ekγ denote the relativistic energies of the antiquark, quark and photon,

respectively. The sum over polarizations can be taken by noting that∑
λ

∣∣Mλ(p, q,kγ)
∣∣2 =

∑
λ

εµ(kγ , λ)ε∗µ(kγ , λ)Mµ(p, q,kγ)Mµ∗(p, q,kγ) . (3.2)

The color average of an inclusive quantity O must be taken after taking the modulus

squared of the amplitude [15],

〈O〉 =

∫
DρpDρAWp[ρp]WA[ρA]O[ρp, ρA] . (3.3)

The weight functionals Wp[ρp] and WA[ρA] are density matrices that obey the JIMWLK

evolution equations [32–35] that describe the renormalization group evolution of distribu-

tions of color charges in the wave-functions of the projectile and the target, respectively,

from their respective fragmentation regions at large x down to the small x values probed

by measurements in high energy collisions.
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Thus the impact parameter-dependent triple differential probability corresponding to

the probability functional defined above is

dP γ(b⊥)

d6K⊥d3ηK
=

1

8(2π)9

∑
λ

∑
spin

〈∣∣Mλ(p, q,kγ)
∣∣2〉 , (3.4)

where d6K⊥ ≡ d2p⊥d2q⊥d2kγ⊥ and d3ηK ≡ dηpdηqdηkγ . The angle brackets, 〈· · · 〉, rep-

resent the color average in eq. (3.3). The triple-differential inclusive cross section can be

obtained by integrating the above expression over impact parameter b⊥,

dσγ

d6K⊥d3ηK
=

∫
b⊥

dP γ(b⊥)

d6K⊥d3ηK
. (3.5)

Using eqs. (2.47) and (3.4), the triple differential probability can be expressed as

dP γ(b⊥)

d6K⊥d3ηK

=
q2
fe

2g4

8(2π)9

∫
k⊥k′

⊥k1⊥k′
1⊥

∫
x⊥x′

⊥y⊥y′
⊥

ei(k⊥·x⊥−k′
⊥·x′

⊥)+i(P⊥−k⊥−k1⊥)·y⊥−i(P⊥−k′
⊥−k

′
1⊥)·y′

⊥

×

〈
ρap(k1⊥)ρ†a

′
p (k′1⊥)

〉
k2

1⊥k
′2
1⊥

{
τg,g(k1⊥;k′1⊥)trc

〈
tbU ba(x⊥)tb

′
U †a

′b′(x′⊥)
〉

+ τqq̄,g(k⊥,k1⊥;k′1⊥)trc
〈
Ũ(x⊥)taŨ †(y⊥)tb

′
U †a

′b′(x′⊥)
〉

+ τg,qq̄(k1⊥;k′⊥,k
′
1⊥)trc

〈
tbU baŨ(y′⊥)ta

′
Ũ †(x′⊥)

〉
+ τqq̄,qq̄(k⊥,k1⊥;k′⊥,k

′
1⊥)trc

〈
Ũ(x⊥)taŨ †(y⊥)Ũ(y′⊥)ta

′
Ũ †(x′⊥)

〉}
, (3.6)

where we wrote four Dirac traces in a compact form using the following notation,

τn,m ≡ tr
[
(/q +m)Tµn (m− /p)γ0T ′†m,µγ

0
]
, (3.7)

with n,m ∈ {g, qq̄} and where we used the abbreviations Tµg ≡ Tµg (k1⊥), T ′µg ≡ Tµg (k′1⊥)

and Tµqq̄ ≡ T
µ
qq̄(k1⊥,k⊥), T ′µqq̄ ≡ T

µ
qq̄(k

′
1⊥,k

′
⊥).

We will now shift the spatial transverse coordinates by the impact parameter to make

them relative to the center of the nucleus,

{x⊥,x′⊥,y⊥,y′⊥} → {x⊥ − b⊥, x′⊥ − b⊥, y⊥ − b⊥, y′⊥ − b⊥} . (3.8)

Since the Wilson line correlators are approximately translational invariant for a large nu-

cleus, the phases in the integrand yield a factor of eib⊥·(k1⊥−k′
1⊥) after the above coordinate

shift. Thus, to obtain the triple-differential cross section we can easily integrate over the

impact parameter b⊥, resulting in a δ-function: (2π)2δ(2)(k′1⊥−k1⊥). In eq. (3.6), we also

introduce a dummy integration over k2⊥, together with a δ-function representing overall

momentum conservation (2π)2δ(2)(P⊥ − k1⊥ − k2⊥).
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As discussed previously in refs. [15, 16], the color averages in the formula above can be

re-expressed in terms of novel unintegrated distribution functions. The correlator of color

sources in the projectile proton is defined to be

〈ρap(k1⊥)ρ†bp (k′1⊥)〉 =
δab

2πNcCF g2

(
k1⊥+k′1⊥

2

)2 ∫
r⊥

ei(k1⊥−k′
1⊥)·r⊥

dϕp
(

1
2(k1⊥+k′1⊥)|r⊥

)
d2r⊥

,

(3.9)

where dϕp/d
2r⊥ is the proton unintegrated gluon distribution per unit area, r⊥ is the vari-

able that runs over the transverse profile of the proton, CF ≡ (N2
c − 1)/2Nc is the SU(Nc)

quadratic Casimir in the fundamental representation. When the momenta in the argument

of dϕp/d
2r⊥ are identical as is the case after the integration over b⊥, the expression greatly

simplifies to

〈ρap(k1⊥)ρ†bp (k1⊥)〉 =
δabk2

1⊥
2πNcCF g2

ϕp(k1⊥, Yp) , (3.10)

with ϕp(k1⊥, Yp) being the unintegrated gluon distribution in the proton. In line with

the dilute-dense expansion performed here to O(ρ1
p), ϕp(k1⊥) will evolve according to the

BFKL equation.

The identification of the correlator of color sources can be straightforwardly gener-

alized to correlators of Wilson lines which likewise can be expressed in terms of nuclear

unintegrated distribution functions [16, 36, 37]. In conventional pQCD language, these

unintegrated momentum distributions resum a sub-class of all twist correlations in the

nucleus. The correlator of two adjoint Wilson lines can be expressed as∫
k⊥k′

⊥

∫
x⊥x′

⊥y⊥y′
⊥

ei(k⊥·x⊥−k′
⊥·x

′
⊥)+i(k2⊥−k⊥)·y⊥−i(k2⊥−k′

⊥)·y′
⊥ δaa

′
trc
〈
tbU ba(x⊥)tb

′
U†a

′b′(x′⊥)
〉

≡ 2NcαS

k2
2⊥

φg,gA (k2⊥) . (3.11)

Similarly, the three point fundamental-adjoint Wilson line correlator can be expressed as∫
k′
⊥

∫
x⊥x′

⊥y⊥y′
⊥

ei(k⊥·x⊥−k′
⊥·x

′
⊥)+i(k2⊥−k⊥)·y⊥−i(k2⊥−k′

⊥)·y′
⊥ δaa

′
trc
〈
Ũ(x⊥)taŨ †(y⊥)tb

′
U †a

′b′(x′⊥)
〉

≡ 2NcαS

k2
2⊥

φqq̄,gA (k⊥,k2⊥ − k⊥;k2⊥) , (3.12)

and likewise for its Hermitean conjugate expression in the cross section. Finally, the four

point correlator of fundamental Wilson lines can be expressed as∫
x⊥x′

⊥y⊥y′
⊥

ei(k⊥·x⊥−k′
⊥·x

′
⊥)+i(k2⊥−k⊥)·y⊥−i(k2⊥−k′

⊥)·y′
⊥ δaa

′
trc
〈
Ũ(x⊥)taŨ †(y⊥)Ũ(y′⊥)ta

′
Ũ†(x′⊥)

〉
≡ 2NcαS

k2
2⊥

φqq̄,qq̄A (k⊥,k2⊥ − k⊥;k′⊥,k2⊥ − k′⊥) . (3.13)

The correlators can be evaluated for a large nuclei with Gaussian random color

sources [38–40] that satisfy the relation,

〈ρaA(x⊥)ρbA(y⊥)〉 = δabδ(2)(x⊥ − y⊥)µ2
A , (3.14)

where the color charge squared per unit area is µ2
A = A/(2πR2) ∼ A1/3. In general, the

correlations amongst color sources in the nuclear wave-function is given by the weight
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functional WA[ρA], which as we noted previously, satisfies the JIMWLK equation. This

equation is formally equivalent to the Balitsky-JIMWLK hierarchy [41, 42] of n-point

Wilson line correlators. The JIMWLK equation has been solved numerically [43, 44].

It was found, to a good approximation, that the solution is well represented by a non-local

Gaussian [44], with µ2
A → µ2

A(YA,x⊥), with which we can define,

φA(YA,k⊥) =
2πNcCF g

2

k2
⊥

∫
x⊥

µ2
A(YA,x⊥) , (3.15)

such that φA(YA,k⊥) obeys the Balitsky-Kovchegov (BK) equation [41, 45]. In this ex-

pression, YA is the rapidity, relative to the nuclear beam rapidity, of gluons from the target

off which the qq̄ pair scatters. The BK equation, for large Nc, is the closed form equation

for the “dipole” correlator of Wilson lines — the lowest term in the Balitsky-JIMWLK

hierarchy. In the low density limit the BK equation goes to the BFKL equation. Even

though the BK equation has a closed form, it cannot be solved analytically. It can however

be solved numerically; we will return to this discussion when we later outline the necessary

ingredients for the numerical solution of eq. (3.17).

Returning to the triple-differential cross section, with the help of the relations eq. (3.8)–

(3.13), we express its final form as

dσγ

d6K⊥d3ηK

=
αeα

2
S q

2
f

256π8CF

∫
k1⊥k2⊥

(2π)2δ(2)(P⊥ − k1⊥ − k2⊥)
ϕp(k1⊥)

k2
1⊥k

2
2⊥

×
{
τg,g(k1⊥;k1⊥)φg,gA (k2⊥) +

∫
k⊥

2Re
[
τg,qq̄(k1⊥;k⊥,k1⊥)

]
φqq̄,gA (k⊥,k2⊥ − k⊥;k2⊥)

+

∫
k⊥k′

⊥

τqq̄,qq̄(k⊥,k1⊥;k′⊥,k1⊥)φqq̄,qq̄A (k⊥,k2⊥ − k⊥;k′⊥,k2⊥ − k′⊥)

}
. (3.16)

We remind the reader that P⊥ = p⊥+ q⊥+ kγ⊥. It is worth noting that the r.h.s. depen-

dence on the external momenta lies only in the overall δ-function and in the Dirac traces.

The expression in eq. (3.16) would be useful if it were feasible to measure direct photons

in coincidence with a quarkonium state, for instance the J/Ψ meson. Alternately, by

integrating over either the quark (antiquark), this cross section would provide the rate

for direct photons measured in coincidence with open charm (anticharm) states. These

measurements are challenging even at LHC energies. On the other hand, inclusive prompt

photon differential cross section has already been measured at RHIC in deuteron-gold

collisions [46, 47] and photon measurements can be anticipated at both RHIC and LHC in

p+A collisions in the near future.

The simplest quantity that can be measured is the inclusive prompt-photon single-

differential cross section. For this one must integrate over the quark and the antiquark
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momenta and rapidities, and one obtains,

dσγ

d2kγ⊥dηkγ

=
αeα

2
Sq

2
f

16π4CF

∫ ∞
0

dq+

q+

dp+

p+

∫
k1⊥k2⊥q⊥p⊥

(2π)2δ(2)(P⊥ − k1⊥ − k2⊥)
ϕp(k1⊥)

k2
1⊥k

2
2⊥

×
{
τg,g(k1⊥;k1⊥)φg,gA (k2⊥) +

∫
k⊥

2Re
[
τg,qq̄(k1⊥;k⊥,k1⊥)

]
φqq̄,gA (k⊥,k2⊥ − k⊥;k2⊥)

+

∫
k⊥k′

⊥

τqq̄,qq̄(k⊥,k1⊥;k′⊥,k1⊥)φqq̄,qq̄A (k⊥,k2⊥ − k⊥;k′⊥,k2⊥ − k′⊥)

}
. (3.17)

This expression is the main result of this paper. In the previous related work on quark-

antiquark production [16, 37], the integration over the momentum of the quark or the

antiquark enabled one to simplify the result so that it depended only on the φg,gA and φqq̄,gA

nuclear distributions. Unfortunately, it appears no such simplification is possible here due

to the particular momentum dependence of the τn,m functions. Equation (3.17), however,

simplifies considerably in the k⊥ factorization and collinear pQCD limits, which will be

the subject of the next section.

4 k⊥ factorization and collinear factorization limits

Our master expression, eq. (3.17), can be simplified considerably in a high transverse

momentum expansion of the nuclear unintegrated distributions. The high momentum ex-

pansion corresponds to expanding the Wilson lines, Ũ(x⊥) and U(x⊥) in the fundamental

and the adjoint representations, to lowest non-trivial order in terms of ρA/∇2
⊥. This is

equivalent to the leading twist expansion in pQCD as will become manifest when we con-

sider the collinear factorization limit of our expressions. Physically, this limit corresponds

to the dynamics when the density of color sources is large enough to be represented as

classical color charges, but only one of the color charges in this classical color distribution

is resolved by a high transverse momentum probe. Keeping only the leading-twist terms in

the expansion of the Wilson lines in eq. (3.13), one can straightforwardly show that [16, 37]

φqq̄,qq̄A (YA,k⊥,k2⊥ − k⊥;k′⊥,k2⊥ − k′⊥) = (2π)4ϕA(YA,k2⊥)

{
CF
Nc

[
δ(2)(k⊥)δ(2)(k′⊥)

+ δ(2)(k2⊥−k⊥)δ(2)(k2⊥−k′⊥)
]
+

1

2N2
c

[
δ(2)(k⊥)δ(2)(k2⊥−k′⊥)+δ(2)(k2⊥−k⊥)δ(2)(k′⊥)

]}
.

(4.1)

Similarly,

φqq̄,gA (YA,k⊥,k2⊥ − k⊥;k2⊥) =
1

2
(2π)2ϕA(YA,k2⊥)

[
δ(2)(k⊥) + δ(2)(k2⊥ − k⊥)

]
, (4.2)

and

φg,gA (YA,k2⊥) = ϕA(YA,k2⊥) , (4.3)
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In complete analogy with (3.10) we have defined

〈ρaA(k2⊥)ρ†bA (k2⊥)〉 ≡ δabk2
2⊥

2πNcCF g2
ϕA(YA,k2⊥) , (4.4)

where the YA dependence is now shown explicitly. The unintegrated gluon distribution

in the nuclei ϕA(YA,k2⊥) evolves at this level of approximations according to the BFKL

equation.

Substituting these leading twist distributions into eq. (3.17), we find that the cross

section simplifies greatly and can be expressed as

dσγ

d6K⊥d3ηK
=

αeα
2
Sq

2
f

256π8Nc(N2
c − 1)

∫
k1⊥k2⊥

(2π)2δ(2)(P⊥ − k1⊥ − k2⊥)

× ϕp(Yp,k1⊥)ϕA(YA,k2⊥)

k2
1⊥k

2
2⊥

Θ(k1⊥,k2⊥) , (4.5)

with

Θ(k1⊥,k2⊥) (4.6)

≡ N2
c tr
{

(/q+m)
[
Tµg (k1⊥)+Tµq (P⊥−k2⊥)

]
(m−/p)γ0

[
Tg,µ(k1⊥)+Tq,µ(P⊥−k2⊥)

]†
γ0
}

+N2
c tr
{

(/q +m)
[
Tµg (k1⊥) + Tµq̄ (k1⊥)

]
(m− /p)γ0

[
Tg,µ(k1⊥) + Tq̄,µ(k1⊥)

]†
γ0
}

− tr
{

(/q +m)
[
Tµq (P⊥ − k2⊥)− Tµq̄ (k1⊥)

]
(m− /p)γ0

[
Tq,µ(P⊥ − k2⊥)− Tq̄,µ(k1⊥)

]†
γ0
}
.

The expression in eq. (4.5) is the k⊥ factorized expression for inclusive photon production

in high energy QCD and is analogous to similar expressions derived previously for gluon

production [15, 30, 48] and qq̄ pair production [16] in this framework. To derive eq. (4.6) we

have taken advantage of the second line in the eq. (2.46) to express Tµqq̄ in terms of Tµq or Tµq̄ .

Alternately, it is useful to arrive at the results in eqs. (4.5) and (4.6) starting directly

from the perturbative computation of the amplitude. The leading twist diagrams are listed

in figure 7. In fact, the leading twist amplitude in Lorenz gauge can immediately be read off

from the original amplitudes (1)–(8) by expanding the Wilson lines to the first non-trivial

order. In this case, it gives a non-zero contribution to the amplitude at the order O(ρ1
pρ

1
A).

The amplitudes (9)–(12) contain two insertions of the effective vertex (see eq. (2.11)), and

so they do not contribute at the order O(ρ1
pρ

1
A). We can then write the leading twist

amplitude as

Mµ
LT(p, q,kγ) (4.7)

=

∫
d4k1

(2π)4

∫
d4k2

(2π)4
(2π)4δ(4)(P − k1 − k2)Aap,ν1(k1)AbA,ν2(k2)mµν1ν2

ab (k1, k2,p, q,kγ) ,

where the gluon fields are given by Fourier transforms of the expressions in eqs. (2.3)

and (2.7) and

mµν1ν2
ab (k1, k2,p, q,kγ) =

8∑
β=1

mµν1ν2
β,ab (k1, k2,p, q,kγ) , (4.8)
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(LT1) Q̄(p)

γ(kγ)

Q(q)

(LT2) Q̄(p)

γ(kγ)

Q(q)

(LT3) Q̄(p)

γ(kγ)

Q(q)

(LT4) Q̄(p)

γ(kγ)

Q(q)

(LT5) Q̄(p)

γ(kγ)

Q(q)

(LT6) Q̄(p)

γ(kγ)

Q(q)

(LT7) Q̄(p)

γ(kγ)

Q(q)

(LT8) Q̄(p)

γ(kγ)

Q(q)

Figure 7. Leading twist reduction and corresponding diagrams. The upper and lower bold lines

correspond to the nuclear and proton sources, respectively. In diagrams LT1 and LT2, the blob

represents the Lipatov effective vertex.

with the index β = 1, . . . , 8 corresponding to the respective diagram in figure 7 as

mµ−+
1,ab (k1, k2,p, q,kγ) = qfeg

2ū(q)γµS0(q + kγ) [tb, ta]
/CL(P, k1)

P 2
v(p) ,

mµ−+
2,ab (k1, k2,p, q,kγ) = qfeg

2ū(q) [tb, ta]
/CL(P, k1)

P 2
S0(−p− kγ)γµv(p) ,

mµ−+
3,ab (k1, k2,p, q,kγ) = −iqfeg

2ū(q)γµS0(q + kγ)γ+tbS0(k1 − p)γ−tav(p) ,

mµ−+
4,ab (k1, k2,p, q,kγ) = −iqfeg

2ū(q)γ+tbS0(q − k2)γµS0(k1 − p)γ−tav(p) ,

mµ−+
5,ab (k1, k2,p, q,kγ) = −iqfeg

2ū(q)γ+tbS0(q − k2)γ−S0(−p− kγ)γµtav(p) ,

mµ−+
6,ab (k1, k2,p, q,kγ) = −iqfeg

2ū(q)γ−taS0(q − k1)γ+tbS0(−p− kγ)γµv(p) ,

mµ−+
7,ab (k1, k2,p, q,kγ) = −iqfeg

2ū(q)γ−taS0(q − k1)γµS0(k2 − p)γ+tbv(p) ,

mµ−+
8,ab (k1, k2,p, q,kγ) = −iqfeg

2ū(q)γµS0(q + kγ)γ−taS0(k2 − p)γ+tbv(p) .

(4.9)

Inserting the gluon fields from eqs. (2.3) and (2.7), we can perform the light-cone integra-

tions to obtain

Mµ
LT = −iqfeg

2

∫
k1⊥k2⊥

(2π)2δ(2)(P⊥ − k1⊥ − k2⊥)
ρap(k1⊥)

k2
1⊥

ρbA(k2⊥)

k2
2⊥

× ū(q)
[
Tµg (k1⊥)[tb, ta] + Tµq (k1⊥)tbta − Tµq̄ (k1⊥)tatb

]
v(p) ,

(4.10)

By taking the modulus squared and by performing the color averages as in eqs. (3.10)

and (4.4), we can confirm that eq. (4.5) is reproduced.

The expression for the amplitude in eq. (4.10), and in particular the individual contri-

butions (4.9), can be compared to the amplitude for prompt photon hadroproduction first

computed by Baranov et al. [17] and to the Z0 hadroproduction from gluon fusion derived

recently by Motyka et al. [18]. We have checked that our leading twist k⊥ factorized result

agrees exactly with eq. (28) of Motyka et al.

One can also take the collinear limit, which as noted previously [49], can be obtained

by taking k1⊥ → 0 and k2⊥ → 0 in the trace element, Θ(k1⊥,k2⊥)/k2
1⊥k

2
2⊥, but not
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in the unintegrated functions. This means that the total external momenta vanishes,

p⊥ + q⊥ + kγ⊥ = 0, thus guaranteeing momentum conservation. The limit

lim
k1⊥→0
k2⊥→0

Θ(k1⊥,k2⊥)

k2
1⊥k

2
2⊥

, (4.11)

is well defined thanks to the Ward identities

k1ν1m
µν1+
ab (k1, k2,p, q,kγ) = 0 , k2ν2m

µ−ν2
ab (k1, k2,p, q,kγ) = 0 , (4.12)

ensuring that the amplitude vanishes linearly with k1⊥ and k2⊥.

The integration over k1⊥(k2⊥) has to be taken then only over the unintegrated distri-

bution functions,

xifg,i(xi, Q
2) ≡ 1

4π3

∫ Q2

0
dk2
⊥ ϕi(Yi,k⊥) =

1

π2

∫
k⊥

ϕi(Yi,k⊥) , i = p,A , (4.13)

to get the inclusive photon cross section at fixed Q2 and momentum fractions in the proton

xp ∼
QpS√
s
eηkγ and in the nuclei xA ∼

QAS√
s
e−ηkγ , as

dσγ

d2kγdηkγ
=

1

16

∫ ∞
0

dq+

q+

dp+

p+

∫
q⊥ p⊥

(2π)2δ(2)(p⊥ + q⊥ + kγ⊥)

× xpfg,p(xp, Q2)xAfg,A(xA, Q
2) |Mgg→qq̄γ |2 , (4.14)

where the |Mgg→qq̄γ |2 object is defined as

|Mgg→qq̄γ |2 ≡ lim
k1⊥→0
k2⊥→0

q2
f αe α

2
S

Nc(N2
c − 1)

Θ(k1⊥,k2⊥)

k2
1⊥k

2
2⊥

. (4.15)

An especially interesting point to note here is the sensitivity of the collinear result in

eq. (4.14) to the nuclear gluon distribution function fg,A. The CGC formalism used in this

paper naturally extends beyond this result to the multi-parton distributions of the saturated

nucleus as the momentum scales probed approach the semi-hard saturation scale QAS .

5 Summary and outlook

We have computed in this work the leading contribution to inclusive cross section for photon

production at central rapidities in high energy proton-nucleus collisions. Our result for the

triple differential cross section for a photon accompanied by a quark-antiquark pair is

given in eq. (3.16) and that for the inclusive photon cross section is given in eq. (3.17).

The result in this paper for the class III diagrams, in combination with the result for the

class II diagrams in figure 2 obtained previously in [13], completes the NLO computation

of inclusive photon production within the CGC framework.
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The result in eq. (3.17) has an identical structure to the expression for quark-antiquark

pair production computed previously in [16]. Moreover as we show explicitly in eq. (B.11) of

appendix B, the Low-Burnett-Kroll theorem tells us that, in the soft photon limit, the am-

plitude for photon production is precisely the amplitude for quark-antiquark pair produc-

tion multiplied by a simple kinematic expression with the Lorentz structure of the photon.

The properties of the heavy quark pair production cross section derived in [16] have

been explored extensively [36, 37]. These results, when combined with a CGC+non-

relativistic QCD (NRQCD) formalism [50], provide an excellent description of p+p J/Ψ

production data [51] and p+A J/Ψ production data [52] at both RHIC and the LHC.

The same formalism has also been employed to study J/Ψ production in p+A colli-

sions within a color evaporation model of the hadronization of charm-anticharm pairs to

J/Ψ mesons [53, 54].

Computational techniques identical to those employed in these works can be used for

quantitative estimates of inclusive photon production in p+A collisions at RHIC and LHC.

The momentum dependent multi-parton correlations functions φg,gA , φqq̄,gA and φqq̄,qq̄A appear-

ing in eq. (3.17) can be computed within the non-local Gaussian approximation we alluded

to previously; this approximation reproduces a Langevin numerical implementation of the

JIMWLK hierarchy [44] that delivers closed form results for such multi-parton correlators.

The large Nc limit of the multi-parton correlators provides an added simplification. Thus

while the number of integrals to be performed are greater in the photon case relative to that

of qq̄ production, the computation of the former is feasible and will be reported on in future.

The numerical results will be very relevant for comparisons to anticipated results for

direct photon measurements in p+A collisions at RHIC and the LHC. As noted, such mea-

surements will be very sensitive to the nuclear gluon distribution function and will provide

a quantitative estimate of power corrections to the same. Currently, the deuteron-gold

measurements [46, 47] at RHIC have covered the kinematic range 1 GeV . kγ⊥ . 6 GeV

with nearly real virtual photons and 5 GeV . kγ⊥ . 16 GeV with real photons. It will be

important to extend the latter measurements to lower k⊥ to fully explore the gluon satura-

tion regime. While the data is in agreement with pQCD, the remaining uncertainty allows

for the possibility of thermal photons [55] on top of the pQCD results. Computations in

our framework will help determine whether the latter are necessary.

Further, prompt photon measurements will provide an important test of the gluon

saturation in general and, in particular, of the multi-parton correlators we have discussed

here. They should corroborate the above mentioned studies of quarkonium production

and may potentially be more robust since they are less sensitive to hadronization effects.

We also note that our framework may provide insight into a long standing experimental

puzzle [56] regarding the “anomalously” large photon production at soft momenta relative

to predictions based on the Low-Burnett-Kroll theorem. We will investigate these issues

in future work.

Another interesting feature of the results presented here is the comparative study of

photon production in Lorentz gauge and light-cone gauge. While this study is a useful

check of our results, it may also have further value in higher order computations that are

feasible in this framework.
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A Photon amplitude in light-cone gauge

A.1 Derivation of the amplitude

The treatment of the quantum fluctuations would be easier in the light-cone gauge, A+ = 0,

while the classical solution of the Yang-Mills equation would be more complicated in the

light-cone gauge having transverse components than in the Lorenz gauge. Interestingly,

the non-zero component of the classical solution obtained in the Lorenz gauge is A− only

and A+ = 0 is consistent with the light-cone gauge. Here, we adopt such a hybrid choice of

gauge fixing with the background field in the Lorenz gauge and the quantum fluctuations

in the light-cone gauge [20, 57]. Then, unlike the Lorenz gauge, the gauge field from the

proton color source does not depend on V (x⊥) but only U(x⊥). We can write it as

AµLC(q) = Aµp,LC(q)+
ig

q2 + iq+ε

∫
k1⊥

∫
x⊥

ei(q⊥−k1⊥)·x⊥ Cµ(q,k1⊥)U(x⊥)
ρp(k1⊥)

k2
1⊥

, (A.1)

where the first term represents,

A±p,LC(q) = 0 , Ap,LC⊥(q) =
ig q⊥

(q+ + iε)(q− − iε)

ρp(q⊥)

q2
⊥

. (A.2)

We note that Ap,LC is non-zero only in the x+ < 0 region thanks to the pole at q− = iε,

while the second term in eq. (A.1) is non-zero only in the x+ > 0 region. The components

of Cµ(q,k1⊥) in the light-cone gauge are

C+(q,k1⊥) = 0 , C−(q,k1⊥) =
−2k1⊥ · (q⊥ − k1⊥)

q+ + iε
,

C⊥(q;k1⊥) =
q⊥ k

2
1⊥

(q+ + iε)(q− + iε)
− 2k1⊥ . (A.3)

Because no V (x⊥) appears, we do not have to consider the singular diagrams.
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We can give the counterparts of the amplitude vectors corresponding to the diagrams

(R1)–(R2) in figure 3 as

Mµ
1 (p, q,kγ) = ū(q)(−iqfeγ

µ)S0(q + kγ)(−ig /ALC(P ) · t) v(p) , (A.4)

Mµ
2 (p, q,kγ) = ū(q)(−ig /ALC(P ) · t)S0(−p− kγ)(−iqfeγ

µ)v(p) , (A.5)

This expression seems to be parametrically identical to that in the Lorenz gauge but a

difference arises from the gauge field from the proton; in the Lorenz gauge AµR appear with

CµU and CµV or CµL after cancellation of CµV , while in the light-cone gauge AµLC appear with

Cµ as defined above. After some calculations we find,

Mµ
β(p, q,kγ) (A.6)

= −qfeg2

∫
k1⊥

∫
x⊥

ρap(k1⊥)

k2
1⊥

ei(P⊥−k1⊥)·x⊥ [U(x⊥)− 1]baū(q)Rµνβ Cν(P,k1⊥)tbv(p) ,

where β = 1, 2. To facilitate a comparison between different gauges we introduced extended

tensors for Dirac indices as

Rµν1 ≡ −
1

P 2
γµ

/q + /kγ +m

(q + kγ)2 −m2
γν , Rµν2 ≡

1

P 2
γν

/p+ /kγ −m
(p+ kγ)2 −m2

γµ , (A.7)

and for later convenience we also define

Rµνg ≡
2∑

β=1

Rµνβ . (A.8)

Now we understand that we can express Tµg (k1⊥) in the Lorenz gauge as

Tµg (k1⊥) = Rµνg CLν(P,k1⊥) . (A.9)

Similarly, we proceed to evaluate the counterparts of regular diagrams (3)–(8) in

figure 4. For example, let us look carefully at the evaluation of Mµ
3 . The diagram (3)

immediately leads to

Mµ
3 (p, q,kγ) (A.10)

=

∫
d4k2

(2π)4
ū(q)(−iqfeγ

µ)S0(q+kγ)T (q+kγ , k2)S0(q+kγ−k2)(−ig /ALC(P−k2) · t) v(p) .

in which only Aµp,LC contributes. In the above expression the k+
2 integration is trivial once

we insert the effective vertex T (q + kγ , k2), given in (2.11). The k−2 integration picks up a

singularity in S0(q + kγ − k2). After the variable change change k2 = P − k1 we find

Mµ
3 (p, q,kγ) = qfeg

2

∫
k1⊥

∫
x⊥

ρap(k1⊥)

k2
1⊥

ei(P⊥−k1⊥)·x⊥ ū(q)Rµi3 (k1⊥)
k1i

P+
[Ũ(x⊥)−1]tav(p) ,

(A.11)

where

Rµν3 (k1⊥) ≡ γµ /q + /kγ +m

(q + kγ)2 −m2
γ+

/k1 − /p+m

2(q+ + k+
γ )p− +M2(k1⊥ − p⊥)

γν . (A.12)
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We note that in the Lorenz gauge Rµi3 (k1⊥)(k1i/P
+) would be replaced with −Rµ−3 . For

diagrams (4)–(8) we can carry out similar procedures to define Rµνβ (k1⊥) by generalizing γ−

inRµβ(k1⊥) to γν , and thenMµ
β is simply given by Rµiβ (k1⊥)(k1i/P

+) instead of−Rµ−β (k1⊥).

By analogy to eq. (2.26) we define

Rµνq (k1⊥) ≡
5∑

β=3

Rµνβ (k1⊥) , Rµνq̄ (k1⊥) ≡
8∑

β=6

Rµνβ (k1⊥) , (A.13)

where Tµq (k1⊥) and Tµq̄ (k1⊥) can be obtained as Tµq (k1⊥) = Rµ−q (k1⊥) and Tµq̄ (k1⊥) =

Rµ−q̄ (k1⊥).

Let us turn to contributions from diagrams (9)–(12) in figure 5. Here, we look specifi-

cally at the diagram (9) that yields,

Mµ
9 (p, q,kγ) =

∫
d4k

(2π)4

d4k1

(2π)4
ū(q)(−iqfeγ

µ)S0(q + kγ)T (k, q + kγ)S0(q + kγ − k)

×(−ig /ALC(k1)·t)S0(q+kγ−k−k1)T (P−k−k1, q+kγ−k−k1)v(p). (A.14)

The integrations over k+ and k+
1 are trivial thanks to the nuclear effective vertex T . For

the integrations over k− and k−1 we pick up the singularities in the quark propagators

S0(q + kγ − k) and in S0(q + kγ − k − k1). We find

Mµ
9 (p, q,kγ) = qfeg

2

∫
k⊥k1⊥

∫
x⊥y⊥

ρap(k1⊥)

k2
1⊥

eik⊥·x⊥+i(P⊥−k⊥−k1⊥)·y⊥

× ū(q)Rµi9 (k⊥,k1⊥)
k1i

P+

[
Ũ(x⊥)− 1

]
ta
[
Ũ †(y⊥)− 1

]
v(p) ,

(A.15)

where

Rµν9 (k⊥,k1⊥) = γµ
/q + /kγ +m

(q + kγ)2 −m2
γ+(/q+/kγ−/k1+m)γν

(/q+/kγ−/k−/k1+m)γ+

Nk(k⊥,k1⊥)
. (A.16)

A similar calculation can be performed for the remaining diagrams (10)–(12). For β =

9, . . . , 12, the difference from the Lorenz gauge calculation is to again have the replacement

Rµiβ (k1i/P
+) instead of −Rµ−β . By analogy to eq. (2.29) we define

Rµνqq̄ (k⊥,k1⊥) ≡
12∑
β=9

Rµνβ (k⊥,k1⊥) . (A.17)

Obviously, we can express Tµqq̄(k⊥,k1⊥) through Rµνqq̄ (k⊥,k1⊥) as

Tµqq̄(k⊥,k1⊥) = Rµ−qq̄ (k⊥,k1⊥) . (A.18)

Finally, below we list the singularities we picked up when calculating the integrations over

k−1 in the amplitudes with β = 9, . . . , 12

k−1(9) =
M2(q⊥ + kγ⊥ − k⊥)

2(q+ + k+
γ )

+
M2(q⊥ + kγ⊥ − k⊥ − k1⊥)

2p+
− iε ,

k−1(10) =
M2(q⊥ − k⊥)

2q+
+
M2(q⊥ − k⊥ − k1⊥)

2(p+ + k+
γ )

− iε ,

k−1(11) = iε , k−1(12) = iε .

(A.19)
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By using the relations

Rµνg Cν(P,P⊥) +
[
Rµiq (P⊥) +Rµiq̄ (P⊥)−Rµiqq̄(0,P⊥)

] Pi
P+

= 0 ,

Rµiq (P⊥ − k⊥)−Rµνqq̄ (k⊥,P⊥ − k⊥) = 0 , Rµνq̄ (k1⊥)−Rµνqq̄ (0,k1⊥) = 0 ,
(A.20)

we find that the terms in the amplitude that do not contain a Wilson line or contain

only one Wilson line cancel. Eqs. (A.20) are analogous to eqs. (2.46). Now, the complete

expression for the amplitude is thus,

Mµ(p, q,kγ) = −qfeg2

∫
k⊥k1⊥

∫
x⊥y⊥

ρap(k1⊥)

k2
1⊥

eik⊥·x⊥+i(P⊥−k⊥−k1⊥)·y⊥ (A.21)

×ū(q)

{
Rµνg Cν(P,k1⊥)U ba(x⊥)tb−Rµiqq̄(k⊥,k1⊥)

k1i

P+
Ũ(x⊥)taŨ †(y⊥)

}
v(p) .

A.2 Equivalence with the amplitude in the Lorenz gauge

There are two apparent differences between the light-cone gauge amplitude in eq. (A.21)

and the Lorenz gauge amplitude in eq. (2.47); first, Cν(P,k1⊥) is replaced with the Lipatov

vertex CνL(P,k1⊥), and second, the gluon vertex in the quantity Tµqq̄(k⊥,k1⊥) carries a light-

cone index instead of the transverse index, as seen in eq. (A.21). We can show that they

are identical by two-step arguments. First, let us look at the difference between Cν and

CνL, that is,

Cν(P,k1⊥)− CνL(P,k1⊥) =

(
k2

1⊥
P+P−

− 1

)
P ν +

P 2

P+
δν+ . (A.22)

We contract this difference with Rµνg and sandwich it with the ū(q) and v(p) spinors.

We find

ū(q)Rµνg
[
CLν(P,k1⊥)− Cν(P,k1⊥)

]
v(p)

= ū(q)

[
Rµνg CLν(P,k1⊥)− Tµg (k1⊥)

]
v(p)

= − 1

P+
ū(q)

[
γµ

/q + /kγ +m

(q + kγ)2 −m2
γ+ − γ+ /p+ /kγ −m

(p+ kγ)2 −m2
γµ
]
v(p) .

(A.23)

In the first line we used (A.9) and in the second line we used the Dirac equation.

Next, we work on the part of the amplitude containing Rµνqq̄ (k⊥,k1⊥). With some

calculations we can prove that for β = 9, . . . , 12,

12∑
β=9

ū(q)Rµνβ (k⊥,k1⊥)k̃1(β)νv(p) = 0 , (A.24)

where the four vector k̃1(β) is defined with k̃+
1(β) = P+ and k̃−1(β) from the singularity of the

integrand, see eqs. (A.19), as well as k̃1(β)⊥ = k1⊥.

For Rµν11,12 the singularity is located at k−1(11) = k−1(12) = 0, see eq. (A.19), and so from

eq. (A.24) we have,

ū(q)
[
Tµqq̄(k⊥,k1⊥)P+ +Rµiqq̄(k⊥,k1⊥)k1i

]
v(p) (A.25)

= −ū(q)Rµ+
qq̄ (k⊥,k1⊥)k−1(β)v(p) = −ū(q)

[
Rµ+

9 (k⊥,k1⊥)k−1(9) +Rµ+
10 (k⊥,k1⊥)k−1(10)

]
v(p) ,
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where in the first line we used eq. (A.18). We consider the first term for the moment and

use the explicit expression for Rµ+
9 (k⊥,k1⊥) from eq. (A.16) as well as the explicit form of

k−1(9), see eq. (A.19). We then find,

ū(q)Rµ+
9 (k⊥,k1⊥)k−1(9)v(p)

= ū(q)γµ
/q + /kγ +m

(q + kγ)2 −m2
γ+

(/q + /kγ − /k +m)γ+(/q + /kγ − /k − /k1 +m)v(p)

−2p+ 2(q+ + k+
γ )

= −ū(q)γµ
/q + /kγ +m

(q + kγ)2 −m2
γ+v(p) . (A.26)

In the second line we moved γ+ and used (γ+)2 = 0. The second term, containing

Rµ+
10 (k⊥,k1⊥), can be manipulated in a similar way, leading to

ū(q)

[
Tµqq̄(k⊥,k1⊥) +Rµiqq̄(k⊥,k1⊥)

k1i

P+

]
v(p)

=
1

P+
ū(q)

[
γµ

/q + /kγ +m

(q + kγ)2 −m2
γ+ − γ+ /p+ /kγ −m

(p+ kγ)2 −m2
γµ
]
v(p) . (A.27)

This has exactly the same form as eq. (A.23) but with an opposite sign. To end the proof

we note that eq. (A.27) is independent of k⊥ and so we effectively have x⊥ = y⊥ in the

fundamental Wilson lines in the amplitude (A.21). Then we can use the following identity,

Ũ(x⊥)taŨ †(x⊥) = tbU ba(x⊥) , (A.28)

which will ensure that eqs. (A.23) and (A.27) cancel out once these expressions are multi-

plied by the appropriate Wilson lines.

B Properties of the photon production amplitude

In this appendix we will prove that the amplitude satisfies the photon Ward identity and the

famous Low-Burnett-Kroll soft photon theorem [21–23]. The Low-Burnett-Kroll theorem

states that, in the infrared limit for the radiated photon momentum, i. e. kγ → 0, the

amplitude should factorize into the product of the non-radiative amplitude, the photon

polarization vector, and a vectorial structure that depends on momenta of the emitted

charged particles.

We will rely on diagrammatic representations in the derivation in section 2 though our

conclusions will be valid of course for another derivation in A.

B.1 Photon Ward identity

The photon Ward identity implies that the amplitude vector given in eq. (2.47) should

satisfy

kγµMµ(p, q,kγ) = 0 . (B.1)
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As we demonstrate below, this is satisfied independently for Tµg and Tµqq̄ terms that consti-

tute the total amplitude. For Tµg , we immediately notice,

ū(q) kγµT
µ
g (k1⊥) v(p) =

1

P 2
ū(q)

[
/CL(P,k1⊥)

/p−m
2p · kγ

/kγ − /kγ
/q +m

2q · kγ
/CL(P,k1⊥)

]
v(p) = 0 ,

(B.2)

which we can easily prove using (/p −m)/kγ = −/kγ(/p −m) + 2p · kγ in the first term and

/kγ(/q + m) = −(/q + m)/kγ + 2q · kγ in the second term and the Dirac equations satisfied

by ū(q) and v(p). For Tµqq̄, it is somewhat more involved to prove a counterpart of the

identity. By definition as given in eq. (2.29) Tµqq̄ is a sum of Rµβ with β = 9, · · · , 12. Using

the explicit forms of Rµβ in eq. (2.30), we can prove the following relation,

ū(q)kγµ
[
Rµ9 (k⊥,k1⊥)+Rµ11(k⊥,k1⊥)

]
v(p) = −ū(q)kγµ

[
Rµ10(k⊥,k1⊥)+Rµ12(k⊥,k1⊥)

]
v(p) .

The different denominators in the expressions above, Nk(k⊥,k1⊥) in Rµ9 and Rµ11 and

Nq(k⊥,k1⊥) in Rµ10 and Rµ12, cancel with the numerator after taking the contraction with

the photon momentum, kγµ. This cancellation occurs in a way similar to the Tµg case as a

consequence of anticommuting the gamma matrices and using the Dirac equations satisfied

by ū(q) and v(p) as well as using the on-shell-ness of the photon momentum. This leads to

ū(q) kγµT
µ
qq̄(k⊥,k1⊥)v(p) = 0 . (B.3)

Since the Tµg and the Tµqq̄ contributions separately vanish, we have confirmed that the

photon Ward identity (B.1) is certainly satisfied.

B.2 Soft-photon factorization

As we will demonstrate explicitly, the photon production amplitude we have derived sat-

isfies the Low-Burnett-Kroll theorem: we will recover the non-radiative amplitude (and

sub-leading pieces coming from the diagrams (11) and (12) in figure 5 in which the photon

is not radiated from external legs) The leading contributions encompass sub-processes in

which the photon is radiated after the qq̄ pair scatters off the nucleus, and thus the photon

is attached to exteral legs. Such leading terms possess the factor,

/q + /kγ +m

(q + kγ)2 −m2
or

/p+ /kγ −m
(p+ kγ)2 −m2

. (B.4)

The numerators are finite in the kγ → 0 limit, and non-vanishing contributions under this

limit are

γµ(/p+ /kγ −m)v(p)→ (/p−m)γµv(p) = 2pµv(p) ,

ū(q)γµ(/q + /kγ +m)→ ū(q)γµ(/q +m) = 2qµū(q) , (B.5)

while the denominators are linearly divergent in the kγ → 0

(p+ kγ)2 −m2 → 2p · kγ , (q + kγ)2 −m2 → 2q · kγ . (B.6)
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With these simplifications, we find,

ε∗µ(kγ , λ)Tµg (k1⊥)

= ε∗µ(kγ , λ)
1

P 2

[
/CL(P,k1⊥)

/p+ /kγ −m
(p+ kγ)2 −m2

γµ − γµ /q + /kγ +m

(q + kγ)2 −m2
/CL(P,k1⊥)

]
→ ε∗µ(kγ , λ)

(
pµ

p · kγ
− qµ

q · kγ

)
Tg(k1⊥) , (B.7)

where the last piece defined by

Tg(k1⊥) ≡
/CL(p+ q,k1⊥)

(p+ q)2
, (B.8)

is the expression obtained in the computation of the amplitude for quark-antiquark pair

production [16].

For Tµqq̄, at the leading order, we only have to concern ourselves with diagrams (9) and

(10) in figure 5. This is because the contributions from (11) and (12) do not contain any

quark propagator in the form of eq. (B.4), while (9) and (10) are divergent in the kγ → 0

limit, and this explains our identification of (9) and (10) as leading contributions and (11)

and (12) as sub-leading ones. From this argument we can show that the Tµqq̄ term with

leading contributions only behaves as follows,

ε∗µ(kγ , λ)Tµqq̄(k⊥,k1⊥) → ε∗µ(kγ , λ)

(
pµ

p · kγ
− qµ

q · kγ

)
Tqq̄(k⊥,k1⊥) , (B.9)

where the last piece defined by

Tqq̄(k⊥,k1⊥) ≡
γ+(/q⊥ − /k⊥ +m)γ−(/q⊥ − /k⊥ − /k1⊥ +m)γ+

2p+M2(q⊥ − k⊥) + 2q+M2(q⊥ − k⊥ − k1⊥)
, (B.10)

is the expression that also appears as a part of the amplitude for quark-antiquark pair

production [16]. It should be noted that in the computation in ref. [16] only the leading

terms have been concerned, while the kγ → 0 limit of the amplitude in the present work

can also pick up the sub-leading rest from diagrams (11) and (12). Combining both sets

of leading contributions in the soft photon limit, we then get,

ε∗µ(kγ , λ)Mµ(p, q,kγ) → −qfe ε∗µ(kγ , λ)

(
pµ

p · kγ
− qµ

q · kγ

)
M(q,p) , (B.11)

where M(q,p) is the amplitude for qq̄ pair production found in ref. [16], and eq. (B.11)

verifies that the Low-Burnett-Kroll theorem in the kγ → 0 limit is satisfied.
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