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a b s t r a c t

The paper explores the numerical stability and the computational efficiency of a direct method for unfolding
the resolution function from the measurements of the neutron induced reactions. A detailed resolution function
formalism is laid out, followed by an overview of challenges present in a practical implementation of the method.
A special matrix storage scheme is developed in order to facilitate both the memory management of the resolution
function matrix, and to increase the computational efficiency of the matrix multiplication and decomposition
procedures. Due to its admirable computational properties, a Cholesky decomposition is at the heart of the
unfolding procedure. With the smallest but necessary modification of the matrix to be decomposed, the method
is successfully applied to system of 105 × 105. However, the amplification of the uncertainties during the direct
inversion procedures limits the applicability of the method to high-precision measurements of neutron induced
reactions.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The resolution function of the neutron beam is an inherent charac-
teristic of the neutron production facilities, such as the neutron time of
flight facility n_TOF [1] at CERN. In particular, the resolution function
𝑅(𝑡, 𝐸) is the distribution of the neutron flight time 𝑡 (over the flight
path of a fixed length 𝐿) for neutrons of a given kinetic energy 𝐸.
As opposed to the idealized one-to-one correspondence between time
of flight and neutron energy, the flight time can vary due to several
experimental effects: (1) the time spread of the primary beam of charged
particles producing the neutron beam; (2) the variable moderation time
in the target-moderator assembly; (3) the geometry of the neutron
propagation along the beam line of finite length and diameter. In case
of the n_TOF facility, the width of the primary 20 GeV proton beam

* Corresponding author.
E-mail address: pzugec@phy.hr (P. Žugec).

1 www.cern.ch/ntof.

from the CERN Proton Synchrotron is 7 ns RMS. The target-moderator
assembly consists of a massive lead spallation target, 40 cm in length
and 60 cm in diameter, surrounded by a cooling system comprised of
1 cm layer of demineralized water and additional 4 cm of either borated
or demineralized water. The n_TOF facility features two experiential
areas: Experimental Area 1 (EAR1 [1]) at the horizontal distance of
185 m from the spallation target, and Experimental Area 2 (EAR2 [2–4])
at the vertical distance of 20 m from the same target. Therefore, two
separate resolution functions must be taken into account, one for each
experimental area.

At n_TOF the resolution function of the neutron beam has been
given consideration ever since the very conception of the facility [5],
throughout the start of its operation [6,7], to the present day [1,2,8,9].
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Now, after entering n_TOF-Phase3 — the third phase in the operation of
the n_TOF facility, marked by the successful completion, commissioning
and the start of the operation of EAR2 — the resolution function
considerations are being pursued with greater fervour than ever be-
fore [2,8,9]. These efforts are motivated by the requirement for the
optimum quality in processing the high precision experimental data
obtained at n_TOF, which are regularly a key input to the development
of nuclear technologies and are of importance to the general scientific
community [10,11].

The reliable evaluation of the resolution function throughout wide
neutron energy range may only be obtained through the dedicated
simulations of the neutron production and their propagation through
the target-moderator assembly. However, the only way of evaluating
the reliability of the simulated results is by benchmarking them against
the experimental data, by means of applying the simulated resolution
function to the estimated reaction yield of well known resonances (such
as the neutron capture resonances of 25Mg, 56Fe, 197Au) and comparing
them with the available measurements [8,9]. Once the reliability of the
resolution function has been confirmed, it may be used either in its
numerical format, or it may be fitted to an appropriate analytical form.
The form from Ref. [1] is used at n_TOF, while Ref. [12] lists some other
forms widely used at other neutron production facilities.

Ultimately, the resolution function in either form needs to be applied
to the experimental data, in order to decouple its effect from the
measurements, in particular from the measured resonances in neutron
induced reactions. One way of performing this task is by relying on
specialized codes like SAMMY [12] or REFIT [13], which use the R-
matrix formalism to fit the experimental data to the parameterized
form of the underlying cross section. In the process the parameterized
cross section is folded or convoluted with the self-shielding, multiple
scattering, Doppler broadening and, ultimately, the resolution function
effects in order to reproduce the observable and, indeed, measured
reaction yield. This is certainly a very robust, stable and reliable method.
Notwithstanding, in this work we explore an alternative approach,
its applicability and limitations. While the SAMMY/REFIT approach
is evidently a forward application of the resolution function to the
assumed pure form of the underlying cross section, we seek to address
the inverse problem: how to directly unfold the resolution function from
the measurements, starting from the data already affected by it.

Section 2 presents the theoretical introduction to the resolution
function, establishing the central problem to be solved. Section 3 reports
on the successfully applied unfolding procedure. Section 4 addresses the
propagation of uncertainties, which is a crucial issue for any of the direct
unfolding procedures. Section 5 sums up the conclusions of this work.
Appendix A presents a matrix storage scheme central to this work and
lays out the important technical procedures to be performed prior to
the unfolding itself. In addition, Appendix B addresses the applicability
of the unfolding procedure in the presence of pronounced multiple
scattering effects.

2. Theoretical framework

2.1. Resolution function

Let us consider the resolution function 𝑅𝑋 (𝑋,𝐸) expressed as a
function of some general kinematic parameter 𝑋. For the moment we
identify 𝑋 with the neutron time of flight: 𝑋 = 𝑡. Then the precise
definition of the resolution function takes the form:

𝑅𝑋 (𝑋,𝐸) ≡
d𝑃𝑋 (𝑋,𝐸)

d𝑋
(1)

where d𝑃𝑋 (𝑋,𝐸) is the probability2 for the neutron of kinetic energy
𝐸 to have the corresponding kinematic parameter 𝑋 within the interval

2 The resolution function is normalized over 𝑋 for every value of 𝐸:

∫

∞

−∞
𝑅𝑋 (𝑋,𝐸)d𝑋 = 1 ∀𝐸.

d𝑋, i.e. to have the time of flight 𝑡 within the time of flight interval d𝑡.
Aside from the time of flight, one may express the resolution function
in terms of the reconstructed energy  , which is the equivalent neutron
kinetic energy calculated from the relativistic time–energy relation:

 = 𝑚𝑐2
{

[

1 −
(𝐿
𝑐𝑡

)2]−1∕2
− 1

}

(2)

with 𝑚 as the neutron mass, 𝑐 as the speed of light in vacuum and 𝐿 as
the mean neutron flight path. Another commonly used parameterization
is the one defining the effective neutron flight path 𝜆:

𝜆 ≡ 𝑣𝐸 𝑡 − 𝜆0 =

√

(

𝐸∕𝑚𝑐2
)2 + 2𝐸∕𝑚𝑐2

1 + 𝐸∕𝑚𝑐2
× 𝑐𝑡 − 𝜆0 (3)

where 𝑣𝐸 is the neutron speed calculated from a true neutron kinetic
energy 𝐸. In principle, the value of the shift parameter 𝜆0 is arbitrary,
but two conventions are commonly used: 𝜆0 = 0 or 𝜆0 = 𝐿. Under
the assumption of 𝜆0 = 0, the effective path length 𝜆 corresponds
to the entire path length that the neutron of energy 𝐸 would need
to traverse to arrive at the measurement position at time 𝑡. On the
other hand, when 𝜆0 = 𝐿 is assumed, then 𝜆 is interpreted as an
effective path the neutron needs to traverse within the target-moderator
assembly. Whichever kinematic parameter 𝑋 ∈ {𝑡,  , 𝜆} is selected for
expressing the resolution function, the probability conservation requires
the following to hold:

𝑅𝑡(𝑡, 𝐸) |d𝑡| = 𝑅 ( , 𝐸) |d| = 𝑅𝜆(𝜆, 𝐸) |d𝜆| (4)

allowing for a simple transformation between different forms of the
resolution function.

A note should be taken of the relation between the resolution func-
tions at different paths, in particular at the nominal neutron production
point 𝐿 = 0 and at some specific distance 𝐿 > 0 corresponding
to a measurement position. One may be tempted to use the function
𝑅(𝐿=0)
𝑡 (𝛿𝑡, 𝐸) (with 𝛿𝑡 as effective production time relative to the nominal

initial moment 𝑡 = 0) in order to reconstruct the resolution function
𝑅(𝐿>0)
𝑡 (𝑡, 𝐸) at any flight path 𝐿 simply by propagating the neutron in

time by the time of flight 𝑡𝐸 = 𝐿∕𝑣𝐸 , with 𝑣𝐸 as the neutron speed
defined by Eq. (3). However, the inequality:

𝑅(𝐿>0)
𝑡 (𝑡, 𝐸) ≠ 𝑅(𝐿=0)

𝑡 (𝑡 − 𝑡𝐸 , 𝐸) (5)

holds in general, for two reasons. One is that many neutrons reach
the measurement position propagating under a slight angle 𝜃 relative
to the shortest flight path, making their actual path length slightly
longer (𝐿∕ cos 𝜃). The other reason is that the neutrons exiting the
primary neutron source — directly giving rise to 𝑅(𝐿=0)

𝑡 (𝛿𝑡, 𝐸) — may
interact with any material along the flight path, thus being lost, de-
layed and/or producing secondary neutrons with kinematic parameters
uncorrelated to their own initial ones. Therefore, the final resolution
function 𝑅(𝐿>0)

𝑡 (𝑡, 𝐸) may have additional contributions, not inherited
from 𝑅(𝐿=0)

𝑡 (𝛿𝑡, 𝐸) at the neutron production point. For this reason,
throughout this work we will only consider the resolution functions at
the measurement position.

2.2. Continuous representation

Let us first lay down the formalism of continuous resolution func-
tions, establishing the connection between the measured spectrum
𝑆𝑋 (𝑋) expressed as a function of an experimentally accessible kinematic
parameter 𝑋, and the underlying spectrum 𝑆𝐸 (𝐸) dependent on the true
neutron kinetic energy 𝐸. The considerations are equally valid whether

In principle, the lower limit of integration may not be 0, depending on the definition of
the kinematic parameter 𝑋. For example, negative values of 𝑋 = 𝑡 are introduced by an
arbitrary selection of the nominal initial moment 𝑡 = 0 for the neutron production. If the
initial moment is selected such that no neutrons are produced prior to 𝑡 = 0, only then
may the lower limit of integration be set to 0.
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the selected kinematic parameter is the neutron time of flight (𝑋 = 𝑡) or
the reconstructed neutron energy (𝑋 = ).

Let d2𝑁(𝑋,𝐸) be the number of reactions caused by the neutrons of
energy 𝐸 and detected with the kinematic parameter 𝑋. We define the
corresponding spectrum (𝑋,𝐸) of detected counts as:

(𝑋,𝐸) ≡ d2𝑁(𝑋,𝐸)
d𝑋d𝐸

. (6)

We wish to reconstruct the spectrum 𝑆𝐸 (𝐸), unaffected by the resolution
function:

𝑆𝐸 (𝐸) ≡
d𝑁𝐸 (𝐸)

d𝐸
= ∫

∞

−∞
(𝑋,𝐸)d𝑋 (7)

starting from the measured spectrum 𝑆𝑋 (𝑋):

𝑆𝑋 (𝑋) ≡
d𝑁𝑋 (𝑋)

d𝑋
= ∫

∞

0
(𝑋,𝐸)d𝐸. (8)

Since d𝑁𝐸 (𝐸) = 𝑆𝐸 (𝐸)d𝐸 is the total number of detected counts caused
by the neutrons of energy 𝐸, the number of detections with a particular
value of the kinematic parameter 𝑋 equals:

d2𝑁(𝑋,𝐸) = d𝑁𝐸 (𝐸) × d𝑃𝑋 (𝑋,𝐸) = 𝑆𝐸 (𝐸)𝑅𝑋 (𝑋,𝐸)d𝑋d𝐸 (9)

where we have taken advantage of the probability d𝑃𝑋 (𝑋,𝐸) and the
definition of the resolution function 𝑅𝑋 (𝑋,𝐸) from Eq. (1). Inserting
this expression into Eq. (6) yields:

(𝑋,𝐸) = 𝑆𝐸 (𝐸)𝑅𝑋 (𝑋,𝐸) (10)

which, in turn, via Eq. (8) leads to:

𝑆𝑋 (𝑋) = ∫

∞

0
𝑆𝐸 (𝐸)𝑅𝑋 (𝑋,𝐸)d𝐸 (11)

otherwise known as a Fredholm integral equation of the first kind.

2.3. Discretized representation

In practical data analysis, the amount of data is finite and a dis-
cretized version of Eq. (11) is required:

𝑆𝑋 (𝑋𝑖) =
∑

𝑗
𝑆𝐸 (𝐸𝑗 )𝑅𝑋 (𝑋𝑖, 𝐸𝑗 )𝛥𝐸𝑗 (12)

with indices 𝑖 and 𝑗 denoting the corresponding histogram bins. In this
case the discretized version of the resolution function is simply the
average over both the source and the destination bin:

𝑅(𝛥>0)
𝑋 (𝑋𝑖, 𝐸𝑗 ) =

1
𝛥𝑋𝑖𝛥𝐸𝑗 ∫𝛥𝑋𝑖

∫𝛥𝐸𝑗

𝑅(𝛥→0)
𝑋 (𝑋,𝐸)d𝑋d𝐸 (13)

with 𝛥𝑋𝑖 and 𝛥𝐸𝑗 as the corresponding bin widths. 𝑅(𝛥>0)
𝑋 on the left side

of Eq. (13) denotes the discretized representation, while 𝑅(𝛥→0)
𝑋 from the

right side the continuous one. By constructing the vectors 𝑆𝐸 and 𝑆𝑋 of
the histogrammed spectra such that [𝑆𝐸 ]𝑖 ≡ 𝑆𝐸 (𝐸𝑖) and [𝑆𝑋 ]𝑖 ≡ 𝑆𝑋 (𝑋𝑖),
Eq. (12) may be rewritten in a compact matrix form:

𝑆𝑋 = 𝐑 𝑆𝐸 (14)

with the resolution function matrix 𝐑 defined as:

𝐑𝑖𝑗 ≡ 𝑅𝑋 (𝑋𝑖, 𝐸𝑗 )𝛥𝐸𝑗 =
𝛥𝐸𝑗

𝛥𝑋𝑖
𝛥𝑃𝑋 (𝑋𝑖, 𝐸𝑗 ). (15)

Evidently, 𝛥𝑃𝑋 is the discretized version of the probability d𝑃𝑋 from
Eq. (1).

Our ultimate goal — obtaining the spectrum 𝑆𝐸 (𝐸) from the mea-
sured spectrum 𝑆𝑋 (𝑋) — is now reduced to finding a solution of the
linear system from Eq. (14). At this point it is useful to note that the
matrix 𝐑 may be rewritten as:

𝐑 = 𝐗−1𝐏𝐄 (16)

where 𝐗 ≡ diag[𝛥𝑋𝑖] and 𝐄 ≡ diag[𝛥𝐸𝑖] are diagonal matrices and the
probability matrix 𝐏 is simply:

𝐏𝑖𝑗 ≡ 𝛥𝑃𝑋 (𝑋𝑖, 𝐸𝑗 ) =
1

𝛥𝐸𝑗 ∫𝛥𝐸𝑗

d𝐸 ∫𝛥𝑋𝑗

d𝑃𝑋 (𝑋,𝐸). (17)

The task of inverting 𝐑 from Eq. (16): 𝐑−1 = 𝐄−1𝐏−1𝐗 is thus translated
into that of inverting 𝐏. The advantage of this approach is the unification
of the numerical stability issues, regardless of the selection of the
kinematic parameter 𝑋. If the reconstructed neutron energy (𝑋 = )
is selected, then the relevant values of the fractional term from Eq. (15)
are close to unity (𝛥𝐸𝑗∕𝛥𝑖 ≈ 1), making the average magnitude of 𝐑𝑖𝑗
values basically uniform over the entire range of 𝐸. On the other hand,
when the neutron time of flight (𝑋 = 𝑡) is selected, there is a massive
variation in magnitude if the data span the wide range in 𝐸, which
is easily shown by taking advantage of the time–energy relation from
Eq. (2):

𝛥𝐸𝑗

𝛥𝑡𝑖
≈
|

|

|

|

d𝑡
d

|

|

|

|

−1

=𝐸𝑗

=

√

𝐸𝑗 (2 + 𝐸𝑗∕𝑚𝑐2)
3

𝐿
√

𝑚

𝐸𝑗≪𝑚𝑐2
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

1
𝐿

√

8𝐸3
𝑗

𝑚
. (18)

Adopting 𝐏 for the numerical treatment circumvents this inconsistency,
since 𝐏𝑖𝑗 are the true probabilities, subject to the normalization ∑

𝑖𝐏𝑖𝑗 =
1 for every 𝑗.

Having selected 𝐏 in place of the initial 𝐑, we may note that
by inserting Eq. (16) into Eq. (14) one can make a transition from
differential spectra 𝑆𝐸 and 𝑆𝑋 directly into the spectra of counts:

�⃗�𝐸 ≡ 𝐄 𝑆𝐸
�⃗�𝑋 ≡ 𝐗 𝑆𝑋 .

(19)

Evidently, the content of these vectors is just the amount of counts
from each corresponding histogram bin: [�⃗�𝐸 ]𝑖 = 𝛥𝑁𝐸 (𝐸𝑖) and [�⃗�𝑋 ]𝑖 =
𝛥𝑁𝑋 (𝑋𝑖). Thus the central equation of interest becomes:

�⃗�𝑋 = 𝐏 �⃗�𝐸 (20)

whose solution �⃗�𝐸 we seek to compute and analyze.
Throughout the following sections we deal with many well estab-

lished concepts in solving the linear system of equations. While the
literature on the subject is vast, we point the reader to Refs. [14,15]
for a highly comprehensive and practical overview of the subject.

3. Unfolding procedure

The potential challenges in solving Eq. (20) arise when we consider
the size of the system we aim to handle. The neutron capture measure-
ments from EAR1 often span the energy range from ∼10 meV up to
∼1 MeV, i.e. covering 8 orders of magnitude in energy. Considering that
the binning used for these data often reaches 5000 bins per decade [16],
we need to solve systems of the size (4×104)× (4×104), at the very least.
Furthermore, the method should be of sufficient generality to make
the transition between the spectra �⃗�𝐸 and �⃗�𝑋 not only of differently
distributed bins, but also of the different number of bins, implying
that 𝐏 should not necessarily be a square matrix. In this case the so-
called pseudoinverse of 𝐏 may still be constructed and expressed as:
𝐏−1 = (𝐏⊤𝐏)−1𝐏⊤, with (⋅)⊤ standing for the matrix transposition. When
applied, the pseudoinverse extracts the best solution to the system of
equations, in a least-squares sense. However, this operation is only
meaningful if the number of elements 𝑛𝐸 in the solution vector �⃗�𝐸 is
not greater than the number of elements 𝑛𝑋 in �⃗�𝑋 . In other words, if
𝐏 is of the size 𝑛𝑋 × 𝑛𝐸 , then 𝑛𝑋 ≥ 𝑛𝐸 should be satisfied in order for a
unique solution �⃗�𝐸 to exist [15].

Fig. 1 shows the resolution function for the EAR2 of the n_TOF
facility, obtained by Geant4 simulations [9], which we have selected for
presentation throughout this work. The top panel shows the probability
matrix 𝐏 as a function of an effective flight path length 𝜆, which may be
easily translated into the time of flight 𝑡 by Eq. (3), or further into the
reconstructed neutron energy  by Eq. (2). In presenting the graphical
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Fig. 1. Probability matrix 𝐏, representative of the resolution function for the EAR2 of
the n_TOF facility. The numerical matrix has been adopted directly from the raw Geant4
simulations. Top panel: 𝐏 as a function of an effective neutron flight inside the target-
moderator assembly (equivalent distance, for short). Middle panel: 𝐏 as function of the
neutron energy reconstructed from the neutron time of flight. Bottom panel: the unit-
spectrum folded by the adopted probability matrix.

examples from this work we show the reconstructed neutron energy, as
this enables the direct comparison of the folded spectra with the ones
from before and after unfolding. Thus, the middle panel from Fig. 1
shows the same probability matrix 𝐏 as a function of  . Alternatively,
Fig. 13 from Ref. [2] presents an example of the (unnormalized) 𝐏 as
a function of the time of flight 𝑡 (obtained, in that work, by FLUKA
simulations). Finally, the bottom plot from Fig. 1 shows the effect
of the adopted probability matrix when applied to the unit-spectrum.
The rough shape of the folded spectrum reflects the fact that we have
adopted the probability matrix directly from raw simulations, without
much refinements. This serves our goals well, as we wish to investigate
the numerical stability of the unfolding procedure even in case of a
challenging 𝐏, which does not necessarily yield a smooth and ‘‘well-
behaved’’ spectrum for unfolding.

Immediately evident from the middle panel of Fig. 1 (as well as
Fig. 13 from Ref. [2]) is the banded structure of 𝐏 — or, equivalently,
of the resolution function matrix 𝐑 — which we will take advantage
of in order to increase the efficiency of the matrix computations and to
reduce the matrix storage requirements. To this end we adopt the storage
scheme from Appendix A.1, which we apply to all matrices referred to
in this work. In addition, several important technical procedures need
to be performed before solving the system of Eq. (20), all of which are
described in Appendix A.2.

3.1. Solution to the system of equations

The most reliable method of solving the system from Eq. (20), in the
sense of numerical stability and a prospect of success, is the Singular
Value Decomposition (SVD) [14,15] of 𝐏. Moreover, SVD is directly
applicable even when 𝐏 is not square, which is the level of generality
that we wish to maintain. However, for the systems of the size that

we aim to handle (of the order 104 × 104 or even 105 × 105) the SVD
methods become prohibitively expensive to execute. Furthermore, while
SVD may be used to directly construct the inverse 𝐏−1, for large systems
this approach becomes of limited use. The main reason is that the inverse
of banded matrices — bandedness being the feature of 𝐏 that we heavily
rely on to be able to store it efficiently — is dense in general, i.e. does
not possess or even resemble the banded structure of the original matrix.
Thus, significantly higher, even prohibitive memory resources would
be needed just to store the inverse. Fortunately, there is a variety of
alternative methods available for obtaining the solution of Eq. (20).
Some entirely avoid the construction of any intermediate matrix, and
some — if successful — construct intermediate matrices of favorable
properties (preserving, for example, the banded structure), while uti-
lizing far simpler computational schemes than SVD. The methods of
the former class — requiring only the original matrix 𝐏 — are usually
iterative in nature and we reflect on them in Section 3.2. In this section,
however, we focus on a method of the latter class, namely the Cholesky
decomposition of a symmetric, positive definite matrix.

The system from Eq. (20) can always be reduced to a so-called
system of normal equations by applying the transpose 𝐏⊤, so that:
𝐏⊤�⃗�𝑋 = 𝐏⊤𝐏 �⃗�𝐸 . Introducing the notation  for a new core-matrix,
and ⃗𝑋 for a modified spectrum of measured counts, the system to be
solved takes the form:

 ≡ 𝐏⊤𝐏
⃗𝑋 ≡ 𝐏⊤�⃗�𝑋

}

⇒ ⃗𝑋 =  �⃗�𝐸 . (21)

The new core-matrix  is not only square, but also symmetric and
positive definite, making it a prime candidate for a Cholesky decom-
position. In addition, for banded 𝐏,  will also be banded, though with
a wider bandwidth. One issue to take note of is that it is not usually
recommended to substitute the system from Eq. (20) by the one from
Eq. (21), as the matrix  has a greater condition number than 𝐏, bringing
it closer to being ill-conditioned, thus making the decomposition and
inversion procedures more susceptible to failure [14,15]. However, in
light of our requirements (non-square matrix, the size of the system),
not many alternatives remain available. Furthermore, the benefits of the
Cholesky decomposition — if it can be successfully executed — are so
overwhelming that any attempt at it is certainly justified. These benefits
include: (1) extremely simple and efficient algorithm for performing the
decomposition itself; (2) extremely efficient procedure for obtaining the
solution to the linear system of equations from a decomposed matrix,
by means of a forward and backward substitution; (3) the Cholesky
decomposition inherits the banded structure of the decomposed ma-
trix [14], not only further reducing the number of required operations,
but also allowing for a compact storage of the decomposition result.
If the decomposition is of sufficient numerical accuracy, the direct
solution to Eq. (21) may be kept as the final result, or at least as a good
initial guess for the iterative methods (Section 3.2), accelerating their
convergence towards the true solution.

The Cholesky decomposition itself is of the form:

 = 𝐋𝐋⊤ (22)

with 𝐋 as the lower triangular matrix. Employing the default algo-
rithm [14,15], we indeed observe the failure of the decomposition when
 reaches the size of approximately 103×103. The failure bears an unmis-
takable signature, as it is realized through the appearance of negative
terms under the square roots involved in the calculation. However, even
if the solution �⃗�𝐸 to Eq. (21) is successfully found by means of the
Cholesky decomposition, in the presence of the roundoff errors caused
by the finite-precision arithmetic this solution does not solve exactly
the starting Eq. (21), but rather the system ( + 𝜹 )�⃗�𝐸 where 𝜹 is
a perturbation to  [17,18]. This implies that if the decomposition
fails for  , some perturbation 𝜹 could be manually added to it in
order to promote it towards the closest machine-representable matrix
for which the decomposition still succeeds. This matrix upgrade may go
even further, to the point where the decomposition not only reconstructs
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Fig. 2. Cross section for the 235U(𝑛,f) reaction, from the ENDF/B-VII.1 database. For visual
purposes, the smoothing effect of the resolution function for the EAR2 of the n_TOF facility
is displayed only within the dense resolved resonance region.

 as well as possible, but also yields the most accurate inverse −1.
In an attempt to promote the positive definiteness, we amplify the
diagonal elements of  by a small adjustable factor 𝜖, meaning that
𝜹 = diag[𝜖  𝑖𝑖]. This modification may be directly implemented into
the equations for calculating the elements of the Cholesky factor 𝐋:

𝐋𝑖𝑖 =

√

√

√

√ 𝑖𝑖(1 + 𝜖) −
𝑖−1
∑

𝑘=0
𝐋2
𝑖𝑘

𝐋𝑖𝑗 = 1
𝐋𝑖𝑖

(

 𝑖𝑗 −
𝑖−1
∑

𝑘=0
𝐋𝑖𝑘𝐋𝑗𝑘

)

.

(23)

Indeed, this practice stabilizes the decomposition of  even for the
values of 𝜖 close to the limit of the numerical precision (𝜖 ≈ 10−6 for
type float and 𝜖 ≈ 10−15 for type double from C++). However, for the
matrices of the size up to 105 × 105 (and for our particular resolution
function) we found the optimal value of 𝜖 = 10−4. In principle, this factor
depends on the particular binning of the resolution function matrix. But
if a unique value is sought, the optimization is best performed using a
matrix as large as possible, since the smaller matrices not only suffer
less from the stability issues but are also less sensitive to the value of 𝜖.
As suggested earlier, the method of optimization relies on observing the
quality of the solution to Eq. (21), which visibly degrades for values of
𝜖 sufficiently far from the optimal one.

Fig. 2 shows the cross section of the 235U(𝑛,f) reaction, adopted from
the ENDF/B-VII.1 database [19], that we have selected for presenting
the results of the unfolding procedure. This cross section features all the
common characteristics of a neutron reaction cross section — a smooth
1∕

√

𝐸 thermal region, several wide low-energy resonances, a densely
populated resolved resonance region and, finally, the unresolved reso-
nance region. Therefore, this particular cross section will allow us to
observe the response of the unfolding procedure to all the numerical
conditions that may be expected from a typical neutron reaction dataset.
In addition, Fig. 2 also shows (for visual purposes only) the portion of
the folded spectrum inside the dense resolved resonance region, in order
to emphasize the extreme smoothing effect that the resolution function
commonly exhibits within this energy range.

We have applied the unfolding procedure to the spectra of maximum
size of 105 bins (104 bins per decade within the energy range from
1 meV to 10 MeV), which meant using the probability matrix 𝐏 of size
105 × 105. Fig. 3 shows the results for the 235U(𝑛,f) spectrum of this
size. In order to reduce the visible dataset, in displaying the results
we have kept only one in every ten points. As opposed to rebinning
the dataset, which leads to a decrease in the relative fluctuations in
the unfolded solution, rejecting not too large a portion of the points
faithfully preserves the magnitude of these fluctuations (inasmuch as the
remaining sample of points is representative of the entire population).
The four plots from Fig. 3 focus on the smooth 1∕

√

𝐸 range, wide low-
energy resonances, densely populated resolved resonance region and

the unresolved resonance region. Somewhat surprisingly, the unfolding
procedure seems to suffer most in the smoothest parts of the spectrum,
yielding the greatest fluctuations around the true solution (shown sep-
arately by the respective bottom panels). However, taking into account
the size of the system, we consider the quality of the unfolded solution
to be commendable. It is worth noting that, implemented in C++, the
entire unfolding procedure — which is by far dominated by the Cholesky
decomposition — takes 15 min for the system of size 105×105, on a single
core of an Intel Core i5-6500 3.2 GHz processor. On the other hand, the
system of size (5 × 104) × (5 × 104) requires less than 2 min; the system
of (2 × 104) × (2 × 104) takes 5 s, while the system of 104 × 104 is handled
under a second.

3.2. Iterative methods

As an alternative to the direct methods of solving the linear system
from Eq. (21) — or out of necessity if none of them could be made to
work — one could always consider some of the iterative procedures.
First among those is the conjugate gradient method, requiring that the
matrix be symmetric and positive definite [14,15], which is a condition
met by  . If (and only if) successful, for the system of size 𝑛𝐸 × 𝑛𝐸
the method is supposed to converge to an exact solution in at most 𝑛𝐸
iterations. However, under the finite precision arithmetics the success
of the method may strongly depend on the initial guess for the solution.
In practical situations, this guess can hardly be anything other than ⃗𝑋
from the left side of Eq. (21). Unfortunately, we have observed that in
our case the method starts diverging severely from the expected solution
already for the system size of approximately 350 × 350. As such, we
do not recommend it for solving this particular problem.

The next method worth considering is the successive over-
relaxation [14,15]. For the system  �⃗� = 𝑦 under consideration, its 𝑘th
iterative step may be expressed in a closed-form as:

𝑥(𝑘)𝑖 = (1 − 𝜔)𝑥(𝑘−1)𝑖 + 𝜔
 𝑖𝑖

(

𝑦𝑖 −
∑

𝑗<𝑖
 𝑖𝑗𝑥

(𝑘)
𝑗 −

∑

𝑗>𝑖
 𝑖𝑗𝑥

(𝑘−1)
𝑗

)

(24)

with 𝜔 as the relaxation parameter such that 0 < 𝜔 < 2. For a particular
value of 𝜔 = 1 the method reduces to the so called Gauss–Seidel method.
The benefit of values different than unity may be the increased rate of
convergence. However, the optimal value for 𝜔 strongly depends on the
particular system being solved. We have found that the over-relaxation
method works well in solving Eq. (21) even for the systems of the largest
considered size (105 × 105), thus it may be recommended for its success
in unfolding the resolution function.

In practical applications no a priori knowledge of the expected solu-
tion is available. For this reason, at every point we define a convergence
criterion as the relative change 𝑟𝑖 between successive iterations:

𝑟𝑖 ≡ 2
|

|

|

|

|

|

𝑥𝑘𝑖 − 𝑥(𝑘−1)𝑖

𝑥𝑘𝑖 + 𝑥(𝑘−1)𝑖

|

|

|

|

|

|

(25)

and follow their evolution. Whenever the denominator happens to be 0,
the corresponding 𝑟𝑖 are simply ignored. Requiring that all 𝑟𝑖 drop below
a preset limit may be prohibitive, as there are always some sporadic far-
away values to be expected. Alternatively, one could always require that
some preset portion, e.g. 90% of their distribution drops below a certain
threshold. On the other hand, for a basically exponential-like shape of
the distribution with a longer tail, we found that a good estimator of the
relevant distribution range is 7𝜇𝜎, with 𝜇 as the mean value of 𝑟𝑖 values
(excluding ignored ones) and 𝜎 as their root mean square.

Despite the general success of the successive over-relaxation in
unfolding the resolution function, we have found its rate of convergence
to be rather slow. A carefully selected value of 𝜔 may, indeed, speed
up the convergence rate. However, there is no unique value to be
recommended, as it depends even on the number of bins in the analyzed
spectra, i.e. on the size of the constructed  matrix. Furthermore,
we have observed the following: after reaching the same value of the
convergence criterion using different values of 𝜔, the final iterative
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Fig. 3. Results of the resolution function unfolding procedure applied to the 235U(𝑛,f) cross section, within different representative energy regions. They are compared both to the
spectrum folded by the resolution function for the EAR2 of the n_TOF facility, and the true solution. Isolated subplots show the relative fluctuations of the unfolded spectrum around the
true solution.

results are sometimes at visibly different levels of agreement with the
expected solution. This difference is manifested through the increased
or reduced residual fluctuations around the expected solution, but the
quality of the particular solution does not seem to bear any correlation
with the optimality of 𝜔 (in the sense of the convergence rate).

One can, of course, use the solution obtained by the Cholesky
decomposition from Section 3.1 as a starting point for any of the iterative
procedures. If this option is available, i.e. if  was, indeed, successfully
decomposed so as to at least produce a numerically stable approximation
to the solution of Eq. (21), then another type of an iterative improvement
also becomes available. For a system  �⃗� = 𝑦 this improvement consists
of a repeated application of the following procedure [14,15]:

�⃗�new = �⃗�old − −1 ( �⃗�old − 𝑦
)

(26)

as many times as necessary, but rarely more than once. Eq. (26) is
not to be interpreted as an algebraic identity yielding �⃗�new = −1𝑦 at
every step, but as a literal instruction for the numerical evaluation of
the right-hand side. In that, the term 𝛿�⃗� = −1 ( �⃗�old − 𝑦

)

should be
calculated in the same way as the initial solution, i.e. by the forward
and backward substitutions, taking advantage of already completed
decomposition of  in order to extract the solution of the system
𝛿�⃗� =  �⃗�old − 𝑦 without explicitly constructing the inverse −1.
Having said that, we have not found any significant improvement to
the initial solution obtained directly from the Cholesky decomposition,
using any combination of the iterative procedures. Therefore, we can
wholeheartedly recommend the standalone application of the procedure
from Section 3.1 as selfsufficient.

4. Uncertainty propagation

The propagation of uncertainties is an important issue to be ad-
dressed in any kind of direct unfolding procedures. From the formal
solution �⃗�𝐸 = 𝐏−1 �⃗�𝑋 to Eq. (20), it directly follows that the uncer-
tainty 𝜎(𝐸)

𝑖 ≡ [�⃗�(𝐸)]𝑖 of the 𝑖th component of the reconstructed solution
equals:

𝜎(𝐸)
𝑖 =

√

∑

𝑗

(

𝐏−1
𝑖𝑗 𝜎

(𝑋)
𝑗

)2
(27)

with 𝜎(𝑋)
𝑗 ≡ [�⃗�(𝑋)]𝑗 as the uncertainty of the 𝑗th component in �⃗�𝑋 ,

together with the following notation: 𝐏−1
𝑖𝑗 ≡ [𝐏−1]𝑖𝑗 . The difficulty with

evaluating Eq. (27) lies in the numerical efficiency because �⃗�(𝐸) cannot
be expressed solely as a function of 𝐏−1�⃗�(𝑋), which we are able to
calculate efficiently by taking advantage of the Cholesky decomposition.
In order to avoid an explicit calculation of 𝐏−1 — just as we were
striving to do up to this point — we use Eq. (27) only as a starting point
for developing the procedure that can take advantage of the already
performed decomposition. We first recognize that 𝐏−1 = −1𝐏⊤, which
leads to:

𝜎(𝐸)
𝑖 =

√

√

√

√

√

∑

𝑗

(

∑

𝑘
−1

𝑖𝑘 𝐏
⊤
𝑘𝑗𝜎

(𝑋)
𝑗

)2

. (28)

The benefit of defining the sequence of vectors 𝜒 (𝑗):

[𝜒 (𝑗)]𝑘 ≡ 𝐏⊤
𝑘𝑗𝜎

(𝑋)
𝑗 (29)
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soon becomes evident, as this formal manipulation allows us to write:

𝜎(𝐸)
𝑖 =

√

∑

𝑗

(

[−1𝜒 (𝑗)]𝑖
)2 =

√

∑

𝑗

(

[𝜉(𝑗)]𝑖
)2

(30)

where we have immediately introduced an additional sequence of
vectors 𝜉(𝑗), each of them to be found as a solution to the equation:

 𝜉(𝑗) = 𝜒 (𝑗). (31)

By again taking advantage of the already performed Cholesky decom-
position of  , all 𝜉(𝑗) may be found just by using forward and backward
substitutions, without ever explicitly constructing −1. In practical
implementations 𝜉(𝑗) should not be all computed first and only then
Eq. (30) be evaluated. Such procedure would require a memory of size
𝑛𝑋×𝑛𝐸 (𝑛𝑋 vectors, each with 𝑛𝐸 components), equivalent to storing the
entire 𝐏 matrix, thus defeating one of the main benefits of introducing
the storage scheme from Appendix A.1. Instead, each 𝜉(𝑗) should be
immediately used for incrementing all 𝑛𝐸 sums (one for every 𝜎(𝐸)

𝑖 ),
allowing to store only one 𝜉(𝑗) at a time.

Unfortunately, this exact procedure is of (𝑛𝑋 × 𝑛𝐸 × 𝐵 ) compu-
tational complexity — (𝑛𝐸 × 𝐵 ) being the cost of solving each of
the 𝑛𝑋 systems from Eq. (31), with 𝐵 as the bandwidth of  — and
rapidly becomes prohibitive even for systems of modest size. Luckily, the
exact procedure may be easily and reliably replaced by a rudimentary
numerical simulation. Assuming that the original uncertainties are
purely due to statistical fluctuations in the number of detected counts,
a formally correct procedure would be to randomly generate across the
whole spectrum a preselected number of 𝐾 sets of deviations 𝛥(𝑘)

𝑋 from
the measured number of counts (𝑘 ∈ [1, 𝐾]), according to a Poisson
distribution:

[𝛥(𝑘)
𝑋 ]𝑖 = Poisson

(

𝜇 = [�⃗�𝑋 ]𝑖
)

− [�⃗�𝑋 ]𝑖. (32)

However, sampling the Gaussian distribution may be simpler and also
works perfectly well:

[𝛥(𝑘)
𝑋 ]𝑖 = Gauss

(

𝜇 = 0; 𝜎2 = [�⃗�𝑋 ]𝑖
)

. (33)

For each 𝑘 ∈ [1, 𝐾] a corresponding system:

𝛥(𝑘)
𝐸 = 𝐏⊤𝛥(𝑘)

𝑋 (34)

is to be solved for 𝛥(𝑘)
𝐸 and the final set of uncertainties across the

unfolded spectrum is to be calculated as:

𝜎(𝐸)
𝑖 =

√

√

√

√
1
𝐾

𝐾
∑

𝑘=1

(

[𝛥(𝑘)
𝐸 ]𝑖

)2
. (35)

The computational complexity of this procedure is (𝐾 × 𝑛𝐸 × 𝐵 ), a
significant improvement when the size 𝑛𝑋 of the initial dataset is large.
Though one should not settle for less than 𝐾 = 100 iterations, this value
already yields a quite satisfactory level of precision in estimating the
uncertainties that would otherwise be obtained by the exact procedure
from Eq. (30).

In order to precisely evaluate severity by which the unfolding
procedure affects the uncertainties, they need to be compared to the
original uncertainties before unfolding. Here we need to take into
account that the unfolded spectrum is always a function of the (true
kinetic) neutron energy 𝐸. Therefore, a direct comparison between the
uncertainties before and after unfolding can only be performed if the
original spectrum has also been constructed as a function of neutron
energy (in this case the reconstructed energy ) and with the identical
binning as the final unfolded spectrum �⃗�(𝐸), regardless of the kinematic
parameter 𝑋 and of the binning otherwise used for displaying the data
before unfolding. Using the notation �⃗�(=𝐸) for thus constructed set of
uncertainties, the relative amplification 𝜌𝑖 of the uncertainties across the
spectrum is:

𝜌𝑖 ≡
𝜎(𝐸)
𝑖

𝜎(=𝐸)
𝑖

. (36)

Fig. 4. Noise amplification induced by the direct unfolding procedure applied to the
235U(𝑛,f) cross section. For the spectrum of 1000 bins in total, simulated (MC: Monte Carlo)
results obtained with 100 iterations are shown alongside the exact uncertainties.

For a given binning, and as long as the original uncertainties are
purely statistical (due to the fluctuations in the number of detected
counts), these bin-wise amplification factors are insensitive to the total
integrated number of counts, making them robust estimators of the
effect of the unfolding procedure.

Fig. 4 shows the uncertainty amplification for the 235U(𝑛,f) cross
section from Figs. 2 and 3, for three different binning densities: 50, 100
and 1000 bins per decade, i.e. 500, 1000 and 10 000 bins in total. For
the total of 1000 bins, the simulated results are also shown, obtained
using 𝐾 = 100 iterations in the context of Eq. (35). Unfortunately, this
increase in the uncertainty is not caused by the numerical stability,
which could be improved by a more sophisticated algorithm. Rather,
it is the general and inherent feature of the direct unfolding methods,
i.e. of the direct inversion procedures. Therefore, while the method
may work impressively for the spectrum entirely devoid of noise — as
demonstrated by Fig. 3 — it can be meaningfully applied to the real-
world data only if the noise is still at or below some acceptable level,
even after amplification.

5. Conclusions

We have explored a direct method of unfolding the resolution
function from measurements of neutron induced reactions. The basic
principle behind the method is straightforward and consists of solv-
ing a large linear set of equations, akin to a direct inversion of the
resolution function matrix (RFM). The main concerns of the method
are the numerical stability and the computational efficiency, since the
systems of interest may become quite large, bringing the RFM closer
and closer to being ill-conditioned. For large systems the computational
efficiency requirement disqualifies some of the methods that would,
in principle, be successful at solving the numerical stability issue,
such as the Singular Value Decomposition. Fortunately, one may take
advantage of the narrow banded structure of the RFM and combine
the specialized matrix storage scheme, presented in this paper, with
the Cholesky decomposition of the modified RFM in order to arrive at
an efficient algorithm that was successfully applied to a system of size
105×105. However, a small modification of the large ill-conditioned RFM
must be carried out in advance of the Cholesky decomposition, if the
procedure is even to succeed, let alone be numerically stable during the
inversion process. The modification consists of reinforcing the positive
definiteness of the symmetric matrix  , introduced in Eq. (21). There is
more than a single unique choice for doing this, and we have opted for
a simple amplification of diagonal elements by a multiplicative factor
1 + 𝜖, using an optimal value of 𝜖 = 10−4.

We have also explored the amenability of the problem to the
iterative, rather than direct procedures. While the conjugate gradient
method fails to properly reconstruct the solution already in the case
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of more than 350 equations, the successive overrelaxation method
successfully handles the task, although at the price of a somewhat
slow convergence. One could always use the solution obtained by the
Cholesky decomposition as a starting point for any of the iterative
methods. However, we have found this entirely unnecessary, due to the
quality of the Cholesky solution already at the level where little could
be gained from an iterative improvement.

A critical issue to be addressed regarding the direct unfolding
methods is the propagation of uncertainties into the final solution.
Unfortunately, the high sensitivity to the noise in the measured data
is an inherent feature of such methods, as the noise is heavily amplified
during the inversion procedure. Therefore, the level of the noise ulti-
mately dictates if the procedure can be meaningfully applied. However,
if the method is to be applied, the expected increase in the noise
can be exactly evaluated (given the known or expected distribution of
uncertainties across the measured spectrum), thus allowing to determine
in advance the acceptable level of the noise in the measured data.
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Appendix A. Matrix manipulations

A.1. Matrix storage

We will describe the storage scheme for banded matrices, which we
apply to all matrices referred to in this work. Let 𝐌 be the banded
matrix of size  ×  . We will only store the consecutive sequence of
elements from each column, outside of which all elements are 0. To this
purpose we arrange the matrix content column-by-column into a one-
dimensional array 𝑀 , followed by the supporting arrays 𝑖min and 𝑖max
containing the indices of the first and the last stored term from a given
(𝑗th) column. In this sense 𝐌𝑖min[𝑗],𝑗 and 𝐌𝑖max[𝑗],𝑗 are the first and the last
nonzero elements from the 𝑗th column. While only these three arrays
are necessary for a unique and unambiguous storage, it is extremely
convenient to also maintain the arrays 𝑗min and 𝑗max, containing the
indices of the first and the last nonzero element from a given (𝑖th) row.
The main reason is that this practice allows for a significant speedup in
the multiplication of banded matrices:

(𝐀𝐁)𝑖𝑗 =
min

{

𝑗 (𝐀)max[𝑖], 𝑖
(𝐁)
max[𝑗]

}

∑

𝑘=max
{

𝑗 (𝐀)min [𝑖], 𝑖
(𝐁)
min[𝑗]

}

𝐀𝑖𝑘𝐁𝑘𝑗 (A.1)

thus avoiding to loop over the off-band portions of either 𝐀 or 𝐁, where
the product 𝐀𝑖𝑘𝐁𝑘𝑗 is always 0.

A quick access to an arbitrary matrix element 𝐌𝑖𝑗 is facilitated by
maintaining an additional array 𝐼 , containing the indices of the positions
in the array 𝑀 itself, where the content of a new column starts. In this
case the efficient access is achieved as:

𝐌𝑖𝑗 =
{

𝑀
[

𝐼[𝑗] + 𝑖 − 𝑖min[𝑗]
]

if 𝑖min[𝑗] ≤ 𝑖 ≤ 𝑖max[𝑗]
0 otherwise.

(A.2)

Evidently, one may store the matrix row-by-row, in which case an array
𝐼 needs to be replaced by a completely analogous array 𝐽 , containing
the indices of the positions within 𝑀 where the content of a new row
starts. Hence, the access takes the form:

𝐌𝑖𝑗 =
{

𝑀
[

𝐽 [𝑖] + 𝑗 − 𝑗min[𝑖]
]

if 𝑗min[𝑖] ≤ 𝑗 ≤ 𝑗max[𝑖]
0 otherwise.

(A.3)

However, the column-by-column storage lends itself more naturally to
the procedure ahead. It is worth noting that both pairs of index arrays —
𝑖min with 𝑖max and 𝑗min with 𝑗max — may be simultaneously updated while
the matrix 𝐌 is being constructed, regardless of the selected storage

scheme. This fact may lead to the improvement in the computational
efficiency when the construction of the next matrix element depends on
the elements constructed up to that point, as during the various matrix
decomposition operations.

In this work we adopt the convention of zero-offsetting all the array
indices (implying that the first matrix term is 𝐌00 ↔ 𝑀[0]). Recalling
that the matrix 𝐌 is of the size  ×  , we note the following: while the
arrays 𝑖min and 𝑖max contain  elements each, their range of values spans
between 0 and  − 1. Similarly, while the arrays 𝑗min and 𝑗max contain
 elements, their values are bounded between 0 and  − 1. In the most
general case, the only concern to be addressed is the arbitrary handling
of the empty, i.e. all-zero rows or columns.

The very definition of the arrays 𝐼 and 𝐽 :

𝐼[𝑗] = 𝐼[𝑗 − 1] +
(

𝑖max[𝑗 − 1] − 𝑖min[𝑗 − 1] + 1
)

𝐽 [𝑖] = 𝐽 [𝑖 − 1] +
(

𝑗max[𝑖 − 1] − 𝑗min[𝑖 − 1] + 1
) (A.4)

with 𝐼[0] = 𝐽 [0] = 0, is also computationally the most efficient
procedure. Due to the adopted zero-offset convention, the final terms
in these arrays are 𝐼[ − 1] and 𝐽 [ − 1]. However, in the sense of the
previous definitions, the terms 𝐼[ ] and 𝐽 []:

𝐼[ ] =
−1
∑

𝑘=0

(

𝑖max[𝑘] − 𝑖min[𝑘] + 1
)

𝐽 [] =
−1
∑

𝑘=0

(

𝑗max[𝑘] − 𝑗min[𝑘] + 1
)

(A.5)

determine the total number of the elements stored in the array 𝑀 , not
all of which are necessarily non-zeros. It should be noted that in general,
between the two storage schemes — either by the columns or the rows —
the number of stored elements is not the same: 𝐼[ ] ≠ 𝐽 [], which is
easily proven by considering the minimal matrix example 𝐌 = [∅ 0 ∅]. If
no dummy elements are used to fill-in all-zero columns or rows within
the array 𝑀 , here it holds: 𝐼[ = 3] = 2 and 𝐽 [ = 1] = 3.

A.2. Matrix preparation

Before finding the solution to Eq. (20), several technical procedures
need to be performed:

(1) construction of an appropriate matrix 𝐏
(2) reduction of 𝐏
(3) localization of the relevant invertible subportion of 𝐏
(4) normalization of 𝐏.

We address these procedures one by one.
Constructing 𝐏. The only reliable way to determine the resolution

function over the wide range of energies covered at n_TOF is by
dedicated simulations of the neutron production and transport process.
The initial form 𝐏0 of the probability matrix is then obtained by directly
histogramming the simulated data. However, this procedure cannot be
relied on in case of an arbitrarily high binning, as the amount of statistics
acquired from the simulations is limited. Therefore, for each specific bin-
ning the matrix 𝐏 should be constructed by an appropriate interpolation,
starting from an optimally binned 𝐏0. Regardless of the selection of the
kinematic parameter 𝑋 ∈ {𝑡,  , 𝜆} used for expressing the initial 𝐏0, the
transition into the selected functional dependence of the final 𝐏 may
be efficiently performed in a course of a single interpolation process,
without the need for constructing any intermediate forms of either 𝐏0
or 𝐏.

Reducing 𝐏. When the data from simulations are histogrammed,
there will always be few sporadic counts at the tails of the distribution
(in the direction of the kinematic parameter 𝑋), which unnecessarily
increase the column-wise bandwidth (the span between 𝑖min[𝑗] and
𝑖max[𝑗]), but do not contribute in any significant way to the total
resolution function. For this reason we recommend to reduce the stored
content of 𝐏 by cutting away the edges of the initially constructed ma-
trix. This procedure is even more important if 𝐏 was initially constructed
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Fig. A.5. Example of the slice through the probability matrix for the EAR2 of the n_TOF
facility, at the neutron kinetic energy of 𝐸 = 2 MeV. The full probability matrix is shown
by the top panel from Fig. 1.

not by directly histogramming the simulated data, but by evaluating the
global analytical fit to the simulated data, such as the one proposed in
Ref. [1] for modeling the n_TOF resolution function. In this case the
analytical form may be evaluated at every point throughout the entire
𝐏 matrix, destroying its banded structure and defeating any benefit of
the storage scheme from Appendix A.1. Therefore, we keep only the
most relevant portion of the resolution function. Some consideration is
required, though, as 𝐏 is regularly asymmetric along the 𝑋-direction.
For 𝑋 = 𝑡 the probability distribution has a long tail in the direction
of longer flight times, while for 𝑋 =  the tail extends towards
the lower reconstructed energies. However, neither is the head of the
distribution sharp, just more quickly decreasing than the tail. Therefore,
the distribution needs to be cut at both sides, but in a way that the
reduction at the tail is given precedence. For the clarity of terminology,
Fig. A.5 illustrates the difference between the head and the tail of the
distribution. Though the reduction is to be performed either in the
time of flight or the reconstructed energy spectrum, Fig. A.5 shows the
distribution as a function of the effective neutron flight path.

For the matrix reduction we employ the following simple algorithm.
Let 𝛿 be the maximum allowed portion of probability to be discarded
from each column of 𝐏 (i.e. for each value of the true kinetic energy 𝐸).
For each column let: 𝛴total =

∑

𝑖𝐏𝑖𝑗 (at this point the columns of 𝐏 have
not yet necessarily been normalized to unity). Then for each column do
the following:

(1) keep discarding the elements from the head of the distribution
as long as the sum 𝛴head of the discarded elements is lower than
the half of the assigned portion: 𝛴head < (𝛿∕2) × 𝛴tot

(2) keep discarding the elements from the tail as long as the total
sum of discarded elements does not exceed the assigned portion:
𝛴head + 𝛴tail ≤ 𝛿 × 𝛴tot

(3) continue discarding the elements from the head as long as the
assigned portion is not exceeded: 𝛴head + 𝛴tail ≤ 𝛿 × 𝛴tot .

At the end of the procedure it is possible that the greater contribution
will be discarded from the head than from the tail of the distribution
(𝛴head > 𝛴tail). However, the tail is given a greater chance of dominating
the total discarded content. For this work we have selected a value
of 𝛿 = 1%. Note that this procedure may be performed during the
column-by-column construction of 𝐏, meaning that one does not need
to construct the entire matrix first and cut it afterwards, which enables
the construction of matrices that might not fit the available memory
resources before cutting. This possibility is greatly facilitated by the
storage scheme from Appendix A.1.

Localizing 𝐏. One needs to ensure that 𝐏 does not span the range
outside the available resolution function data. Even a single row or
column in 𝐏 completely composed of zeros implies that 𝐏 is singular,

hence uninvertible. In order to find the relevant invertible subportion
of 𝐏, we first determine the ‘‘center of mass’’ coordinates 𝚤 and 𝚥3:

(𝚤, 𝚥) =
∑

𝑖,𝑗 (𝑖, 𝑗) × 𝐏𝑖𝑗
∑

𝑖,𝑗 𝐏𝑖𝑗
. (A.6)

Starting from the position (𝚤, 𝚥), we search for the nearest rows and
columns containing all zeros. Supposing that such rows and/or columns
exist, we reduce 𝐏 in size so that all the content beyond these rows and
columns is discarded. The procedure needs to be repeated until no such
rows/columns exist any more, since reducing the matrix in such a way
may introduce new all-zero rows/columns when there were none before.
This happens when the only non-zero entries from these rows/columns
have all been discarded by the last iteration of the matrix localization.
It should be noted that this procedure may also be efficiently performed
in-place just by shifting the matrix content, without constructing any
intermediate containers. This is again greatly facilitated by the storage
scheme from Appendix A.1.

Normalizing 𝐏. Only at this point should the probability normal-
ization (∑𝑖𝐏𝑖𝑗 = 1 for every 𝑗) be performed. Otherwise, the total sum
of probabilities in each column would be reduced by the portion of the
discarded content (contributed both by the rejection factor 𝛿 and the
portions of 𝐏 discarded during the localization process), thus implying
the nonconservation of counts when 𝐏 or, conversely, 𝐏−1 is applied.

Appendix B. Multiple scattering effects

In the presence of the pronounced multiple scattering effects the
direct resolution function unfolding cannot be meaningfully applied,
due to their coupling not being multiplicatively separable. The incon-
venience in obtaining the full and detailed parameterization of the
multiple scattering effects stems from their dependence on every single
sample — its cross section, shape, size, mass and material homogene-
ity — unlike the resolution function, which is uniquely determined by
the neutron production facility.

In order to demonstrate this fact, let us consider the total number of
detected counts d𝑁𝐸 (𝐸) caused by the neutrons of energy 𝐸. While they
are expected to have been measured with the time of flight 𝑡𝐸 = 𝐿∕𝑣𝐸 ,
𝑣𝐸 being the neutron speed defined by Eq. (3), they are first delayed or
advanced in time by 𝜏𝑅 due to the resolution function 𝑅𝑡(𝑡𝐸 + 𝜏𝑅, 𝐸),
only to be further offset by 𝜏𝑀 due to the multiple scattering effect
𝑀𝑡(𝑡𝐸 + 𝜏𝑀 , 𝐸). Therefore the total number of d3𝑁(𝑡, 𝐸) of counts
detected with the time of flight 𝑡:

𝑡 = 𝑡𝐸 + 𝜏𝑅 + 𝜏𝑀 (B.1)

but offset specifically by 𝜏𝑅 and 𝜏𝑀 equals:

d3𝑁(𝑡, 𝐸) = 𝑅𝑡(𝑡𝐸 + 𝜏𝑅, 𝐸) ×𝑀𝑡(𝑡𝐸 + 𝜏𝑀 , 𝐸) × d𝜏𝑅d𝜏𝑀d𝑁𝐸 (𝐸). (B.2)

Adopting the substitution:

𝑇𝑅 ≡ 𝑡𝐸 + 𝜏𝑅
𝑇𝑀 ≡ 𝑡𝐸 + 𝜏𝑀

}

⇒ 𝑡 = 𝑇𝑅 + 𝑇𝑀 − 𝑡𝐸 (B.3)

and transitioning from 𝑇𝑀 to 𝑡, Eq. (B.2) becomes:

d3𝑁(𝑡, 𝐸) = 𝑅𝑡(𝑇𝑅, 𝐸) ×𝑀𝑡(𝑡 + 𝑡𝐸 − 𝑇𝑅, 𝐸) × d𝑇𝑅d𝑡 d𝑁𝐸 (𝐸). (B.4)

Finally, to remove the experimentally indistinguishable sensitivity to the
pure resolution function effect, separate from the multiple scattering
contribution to the measured time of flight 𝑡, an integration over 𝑇𝑅
needs to be performed:

d2𝑁(𝑡, 𝐸) = d𝑡 d𝑁𝐸 (𝐸)∫

∞

−∞
𝑅𝑡(𝑇𝑅, 𝐸) ×𝑀𝑡(𝑡 + 𝑡𝐸 − 𝑇𝑅, 𝐸) × d𝑇𝑅 (B.5)

3 If 𝐏 were already normalized at this point, one might be tempted to reduce the
denominator to ∑

𝑖,𝑗𝐏𝑖𝑗 = 𝑛𝐸 and even to obtain ∑

𝑖,𝑗 𝑗×𝐏𝑖,𝑗 = (𝑛𝐸 −1)∕2. Alas, this does not
work precisely when it matters: when the column is completely filled with zeros ∑𝑖𝐏𝑖𝑗 = 1
does not hold any more for a given 𝑗.
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from where it is evident that in place of the resolution function from
Eq. (9), a joint effect 𝑄𝑡(𝑡, 𝐸) remains:

𝑄𝑡(𝑡, 𝐸) ≡ ∫

∞

−∞
𝑅𝑡(𝑇𝑅, 𝐸) ×𝑀𝑡(𝑡 + 𝑡𝐸 − 𝑇𝑅, 𝐸) × d𝑇𝑅. (B.6)

Since the form is multiplicatively inseparable (𝐐 ≠ 𝐑𝐌 for corre-
sponding matrices), the resolution function cannot be directly separated
from the measurements, without having a full parameterization of the
multiple scattering effects at hand.
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