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We report the first measurement of the full angular distribution for inclusive J=ψ → μþμ− decays in
pþ p collisions at

ffiffiffi

s
p ¼ 510 GeV. The measurements are made for J=ψ transverse momentum 2 <

pT < 10 GeV=c and rapidity 1.2 < y < 2.2 in the Helicity, Collins-Soper, and Gottfried-Jackson reference
frames. In all frames the polar coefficient λθ is strongly negative at low pT and becomes close to zero at
high pT , while the azimuthal coefficient λϕ is close to zero at low pT, and becomes slightly negative at

higher pT. The frame-independent coefficient ~λ is strongly negative at all pT in all frames. The data are
compared to the theoretical predictions provided by nonrelativistic quantum chromodynamics models.

DOI: 10.1103/PhysRevD.95.092003

I. INTRODUCTION

Measurements of heavy quark bound states provide a
unique opportunity to explore basic quantum chromody-
namics (QCD). Because the energy scale of the heavy
quark mass is larger than the hadronization scale, non-
relativistic QCD (NRQCD) techniques can be applied to
provide theoretical access to hadronization. Charmonium,
the bound state of a charm and anticharm quark, is an
especially convenient laboratory as it decays with a con-
siderable branching fraction into two leptons. It is com-
posed of two moderately heavy quarks, and is more
copiously available than bottomonium (a bottom and
antibottom bound state).
The charmonium wave function can be expressed as a

combination of intermediate state contributions formed
during the c − c̄ hadronization stage. The S-wave charmo-
nium wave function can be calculated from an expansion in
a series of the charm and anticharm velocity ν in the
charmonium rest frame [1],

jψQi ¼ Oð1Þj3Sð1Þ1 i þOðνÞj3Pð8Þ
J gi

þOðν2Þj3Sð8Þ1 ggi þOðν2Þj3Sð8Þ0 gi þ � � � ; ð1Þ

in the spectroscopic notation 2Sþ1LJ. The series contains
color singletð1Þ and color octetð8Þ states. The nonrelativistic
operators O are parametrized from experimental results.
Several models have been proposed for the production of

J=ψ mesons, each one with a different interpretation of
these intermediate states. The color evaporation model
(CEM) [2], applied only to hadronic collisions, assumes
that the nonrelativistic amplitude is constant from twice the
charm quark mass to twice the D meson mass and zero
elsewhere. All relativistic diagrams to a fixed order in αs
producing a charm and anticharm quark in the final state are
included. The original color-singlet model (CSM) [3]
explicitly requires the cc̄ pair produced in the hard
scattering to be on-shell and in the same quantum state
as the hadronized J=ψ (2Sþ1LJ ¼ 3S1). The nonrelativistic
amplitude is taken as the real-space J=ψ wave function
evaluated at the origin. Early calculations of the CSM at LO
in αs under-predicted cross sections at CDF [4] and
PHENIX [5]. Recent calculations at next-to-leading order
(NLO) [6,7] and next-to-next-to-leading order (NNLO) [8]
increase the predicted cross section. NRQCD calculations
[1] predict nonnegligible contributions from cc̄ production
in the color-octet configuration, leading to a larger cross
section and better agreement with data than the current
CSM calculations.
Several terms in Eq. (1) produce similar J=ψ cross

sections and transverse momentum behavior, but can be
*Deceased
†akiba@rcf.rhic.bnl.gov
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experimentally distinguished because of their different
helicities. The angular distribution of spin 1

2
lepton decays

from a spin 1 quarkonium state is derived from the density
matrix ρm0m (where m0 and m have the possible values–
1,0,1) of the production process and parity conservation
constraints [9–11].
The elements of the matrix are identified as

WL ¼ ρ00 ðlongitudinal helicityÞ
WT ¼ ρ11 − ρ−1−1 ðtransverse helicityÞ

WΔ ¼ 1
ffiffiffi

2
p ðρ10 þ ρ01Þ ðsingle spin-flipÞ

WΔΔ ¼ ρ1−1 ðdouble spin-flipÞ ð2Þ

The angular distribution of the positive lepton from the
J=ψ decay can be written as

dN
dcosθdϕ

∝ 1þ λθcos2θþλθϕ sin2θcosϕþλϕsin2θcos2ϕ

ð3Þ

where,

λθ ¼
WT −WL

WT þWL

λϕ ¼ 2WΔΔ

WT þWL

λθϕ ¼
ffiffiffi

2
p

WΔ

WT þWL

which we call the polar (λθ), the azimuthal (λϕ) and the
“mixed” (λθϕ) angular decay coefficients.
The angles ϕ and θ are measured relative to a reference

frame defined such that the x̂ and ẑ-axes lie in the
production plane, formed by the momenta of the colliding
protons and the particle produced. The direction of the
ẑ-axis within the production plane is arbitrary. The simplest
frame to study the particle wave function is the one in
which the density matrix has only diagonal elements, or the
single and double spin-flip terms are zero. This simplest
frame is also called the natural frame and is identified when
the azimuthal coefficients in (3) are zero. The three most
common frames used in particle angular distribution studies
are (Fig. 1):
The Helicity frame (HX) [9], traditionally used in collider
experiments, takes the ẑ-axis as the spin-1 particle
momentum direction.

The Collins-Soper frame (CS) [10], widely used in Drell-
Yan measurements, chooses the ẑ-axis as the difference
between the momenta of the colliding partons boosted
into the spin-1 particle rest frame. Note that while the
original paper [10] and subsequent theoretical studies

used colliding parton momenta in their calculations, the
colliding hadron momenta are used here, because we do
not have information about the parton momenta.

The Gottfried-Jackson frame (GJ) [11], typically used in
fixed target experiments, takes the ẑ-axis as the beam
momentum boosted into the spin-1 particle rest frame. At
forward angles in a collider environment, the definition
of the GJ frame depends heavily on which beam is used
in the definition. If the beam circulating in the same
direction as the J=ψ momentum is chosen (GJ forward),
the resulting ẑ-axis is nearly collinear with the ẑ-axis of
the HX and CS frames and points in the same direction.
In GJ backward frame (beam circulating in the direction
opposite to J=ψ momentum is chosen) the ẑ-axis points
in the opposite direction.

(a)

(b)

FIG. 1. Reference frames and coordinate system used in this
analysis. The x̂ and ẑ-axes are chosen to lie in the production
plane determined by the colliding hadrons and the particle
produced (a J=ψ in this figure). (a) shows the production plane
and the direction convention for the ẑ in the Collins-Soper (CS),
Helicity (HX) and Gottfried-Jackson (GJ) reference frames. p⃗a,
p⃗b in this diagram, represent colliding parton momenta. Note that
in an experiment we do not know parton momenta and use
colliding hadron momenta instead. In (b) the angles θ and ϕ
represent the direction of the positive decay lepton in the
corresponding reference frame.
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While the angular decay coefficients depend heavily on
the reference frame, it was noted in [12] that the λθ
coefficient from various measurements transformed into
the CS frames changes smoothly from longitudinal (neg-
ative) to transverse (positive) with increasing J=ψ momen-
tum. The smooth variation occurs between measurements
from fixed targets by E866/NuSea [13] and HERA-B [14],
as well as a collider environment by CDF [15]. The
transformation of the measurements depends on the
assumption that the ẑ-axis of the CS frame is the natural
frame, along which the J=ψ spin-alignment is purely
longitudinal or transverse. The assumption is based on
measurements of the angular distribution for inclusive J=ψ
decays from fixed target pþ N collisions at HERA-B
covering pT < 5 GeV=c and −0.3 < xF < 0.1 [14]. It has
been predicted that the natural frame at large pT is near to
but not identically along the CS ẑ-axis [16]. Subsequent
work reported in [17] obtained equations which could
convert the angular parameters measured in one frame to
another frame rotated around the ŷ-axis. A combination of
polar and azimuthal constants can be arranged to form a
frame-invariant angular decay coefficient

~λ ¼ λθ þ 3λϕ
1 − λϕ

: ð4Þ

~λ is sensitive to the maximum angular asymmetry, or
polarization, independent of the ẑ-axis orientation of the
reference frame. A comparison between ~λ derived from the
azimuthal coefficients measured in the different reference
frames can be used as a consistency check of the parameters
extracted from the various reference frames.
While there is no clear prediction for the J=ψ spin-

alignment from the CEM, it has been suggested that
multiple soft gluon exchanges destroy the spin-alignment
of the cc̄ pair [18]. Recent calculations at NLO [6,7] and
NNLO [8] in the CSM improve agreement with the spin-
alignment measured previously at PHENIX [19], which is
predicted at NLO to be longitudinal in the HX frame for
large pT [20]. Numerical estimates [21,22] in the NRQCD
approach and recent calculations at NLO [23] predict a
transverse spin-alignment in the HX frame at pT ≫ MJ=ψ

due to gluon fragmentation, which disagrees in both sign
and magnitude with data from CDF [15]. Measurements of
the J=ψ spin alignment in different kinematic regions can
help distinguish the dominant production mechanism.
The PHENIX experiment has already published [19] a λθ

measurement for J=ψ ’s produced in pþ p collisions at
ffiffiffi

s
p ¼ 200 GeV at midrapidity. In this paper we present a
more comprehensive measurement of the full angular
distributions for the leptonic decays of inclusive J=ψ in
pþ p collisions at

ffiffiffi

s
p ¼ 510 GeV for the HX, CS, GJ

forward, and GJ backward reference frames. The meas-
urement covers a transverse momentum range 2 < pT <
10 GeV=c and rapidity range 1.2 < y < 2.2.

The experimental apparatus used to measure dimuon
pairs from J=ψ decays is described in Sec. II. The
procedure followed to obtain angular decay coefficients
and their uncertainties is explained in Sec. III. The results,
their comparison to other measurements and theoretical
predictions are presented in Sec. IV.

II. EXPERIMENTAL SETUP AND J=ψ SELECTION

The measurements were carried out using the PHENIX
detector [24] with data from pþ p collisions at

ffiffiffi

s
p ¼

510 GeV recorded in 2013. Decays of J=ψ → μþμ− were
measured in the muon spectrometer [25] for 1.2 < y < 2.2
and full azimuthal angle. Collisions are identified by
triggering on a minimal multiplicity of hits in two beam-
beam counters (BBC) [26] placed at 3.0 < jηj < 3.9. The
data presented correspond to an integrated luminosity of
222 pb−1. Approximately 117 × 103J=ψ mesons are used
to determine the decay coefficients.
The PHENIX muon spectrometer comprises three finely-

segmented multiplane cathode strip tracking chambers
(MuTr) located in a radial magnetic field and positioned in
front of five layers of Iarocci tubes interleavedwith thick steel
absorbers (MuID), which provide a hadron rejection of 10−4.
Events containing J=ψ mesons are triggered using logical
units composed of all tubes in a window projecting from the
vertex through the MuID. To satisfy the trigger, trigger logic
units in the horizontal and vertical projection must contain at
least one hit in either the first or second layer of theMuID, one

Invariant mass [GeV]
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ψJ/
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total fit

FIG. 2. An example of the invariant mass distribution of
oppositely charged dimuon pairs after like-sign background
subtraction (dark blue points) fit with a double Gaussian for
the J=ψ (dashed blue curve) and ψð2SÞ (green dash-dotted curve)
signals plus exponential for the background (dotted red curve).
The solid black curve is the sum of signal and background fit.

ANGULAR DECAY COEFFICIENTS OF J=ψ MESONS … PHYSICAL REVIEW D 95, 092003 (2017)

092003-5



additional hit in either the fourth or fifth layer, and at least
three hits in total. To avoid the low-momentum region where
the trigger efficiency changes quickly before reaching a
plateau, the muons used in this analysis are required to have
momentum along the beam direction pz > 1.45 GeV=c as
measured at the first MuTr station for the spectrometer,
corresponding to ∼2.1 GeV=c at the vertex.
Events are required to occur within 30 cm of the center of

the experimental apparatus along the beam direction as
measured by the beam-beam counters. To improve hadron
rejection, a fit of the two tracks to the collision vertex was
performed and required to have χ2 < 5 per degree of
freedom. MuTr tracks and MuID hit roads were required
to match within four standard deviations to ensure that they
correspond to the same particle.

III. ANALYSIS PROCEDURE

In this section, we outline the procedure used to tune the
simulation to data and extract both the shape of the J=ψ
yield and the angular decay coefficients.

A. J=ψ reconstruction

The J=ψ mesons are reconstructed by calculating the
invariant mass of all unlike-sign muon pairs after analysis
cuts. Combinatorial random background is estimated by
like-sign dimuons calculated as 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NþþN−−
p

, where Nþþ
and N−− are number of positive and negative same-sign
pairs respectively, and subtracted. Mass distributions for
each bin in pT and rapidity are then fit using a double
Gaussian as signal and exponential background to remove
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FIG. 3. A comparison of the total cluster charge distributions in the MuTr in simulation (blue histogram) and data (closed black
circles). Each MuTr station is composed of three (Stations 1 and 2) or two (Station 3) measurement planes (“gaps”) [25]. A cluster is the
collection of ionization energy from the passage of a charged particle in the measurement plane.
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dimuons from Drell-Yan and correlated open-heavy flavor
decays (see Fig. 2). The number of J=ψ ’s is obtained
directly by integrating the dimuon invariant mass distribu-
tion in a mass interval from 2.5 to 3.7 GeV=c2 after
background subtraction. Background subtraction was per-
formed for each individual cos θ-ϕ bin (see Sec. III C).

B. Experimental acceptance and simulation tuning

A simulation of J=ψ mesons generated by tuned PYTHIA

6.421 [27] is performed to determine the effects of the detector
acceptance. As a complete GEANT 3 [28] model of the
detector is used to obtain the efficiency and acceptance
corrections in this analysis, the simulation itself needs to be
well tuned to reproduce both low-level detector-related
quantities and high level kinematic distributions. In particu-
lar, because we perform a two-dimensional fit to the data in
cos θ-ϕ space for each reference frame, the inefficiencies in
the experimental acceptance must be properly represented.
To ensure that the acceptance is approximately constant

throughout the data-taking period, we excluded from analy-
sis the data taken during time intervals when the MuTr or
MuID had additional tripped high voltage channels over
normal operation, or there were problems with data trans-
mission from the detectors for > 1% of all events. Areas of
the detectors that were disabled or highly inefficient are
eliminated in both the analyzed data and simulations. In
addition, for the MuTr, the charges deposited in individual
strips within a MuTr cluster are smeared in the simulation to
match the measured properties in the data.

An example of the excellent agreement between tuned
simulations and data for the MuTr is shown in Fig. 3, where
cluster charge distributions in data and simulation are
compared. In addition to the low-level performance of the
MuTr, theMuIDdetector has an efficiency for pairs of Iarocci
tubes that is a function of the collision rate seen by the BBC,
varying between 0.93 at 400 kHz to 0.88 at 2.2 MHz. The
mean efficiency over the course of the running period is used
as the efficiency of each pair, as a uniform change in
efficiency will not affect the relative angular acceptance.
At a higher level, a good match of simulation to the data

is demonstrated in Fig. 4, where the mass resolution for
simulated and reconstructed J=ψ ’s is compared.
Single unpolarized J=ψ ’s were generated by PYTHIA and

processed through full GEANT simulation. Even after the
tuning described at the beginning of this chapter, small
additional pT and rapidity weights were still required to
match the J=ψ ’s pT and rapidity distributions in PYTHIA to
those measured experimentally. A systematic uncertainty,
correlated between data points, was introduced to account
for a possible mismatch between the pT and rapidity
distributions in simulation and data. This systematic
uncertainty was estimated by varying the pT and rapidity
weights in simulation by 10%, or one standard deviation of
the fits to the data (see Sec. III D for details). Because the
detector acceptance in the simulation is sensitive to the
input asymmetry in the decay muon distributions, the final
step in the simulation was to apply angular decay coef-
ficients obtained in the initial iteration as weights in the
simulation, thus imitating the observed J=ψ polarization.
The relative acceptance as a function of pT for the

different reference frames is shown in Fig. 5.

C. Angular decay coefficients

To extract the angular decay coefficients, the background
subtracted J=ψ yields are histogrammed according to the
angular distribution of the positive muon in twelve bins of
cos θ by ten bins of ϕ, and three bins in pT (2–3, 3–4, and
4–10 GeV=c) for each reference frame. The mean pT for
each bin are 2.47, 3.46, and 5.45 GeV=c, respectively. The
experimental data are corrected for acceptance, and then fit
with Eq. (3). The fit is performed simultaneously in cos θ
and ϕ to extract all three angular decay coefficients λθ, λθϕ,

λϕ, and frame-independent ~λ. In general the fits to the data
are good, with a typical χ2 value per degree of freedom
between 1.2–2.1, with the number of degrees of freedom
typically in the 40–60 range.
The exact fitting procedure is outlined below.
(1) The J=ψ angular distributions are divided into 12 bins

in cos θ and 10 bins in ϕ. Combinatorial and corre-
lated background is subtracted bin-by-bin, and an-
gular distributions are then corrected for acceptance,
which is calculated assuming no polarization, that is
λθ ¼ λθϕ ¼ λϕ ¼ 0. This is done for each of the three
transversemomentumbins in eachpolarization frame.

Invariant mass [GeV/c]
1.5 2 2.5 3 3.5 4 4.5 5

1

10

210

310
Data

Simulation

FIG. 4. Invariant mass distribution of simulated J=ψ (red open
circles), and J=ψ ’s reconstructed in data (solid blue dots)
after all backgrounds are subtracted. The insert at the bottom
shows ðdata-simulationÞ=σ difference, where σ is the statistical
uncertainty of the difference.
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(2) λθ, λθϕ, and λϕ in Eq. (3) are varied separately
and independently from −1 to 1 with a 0.01 step,
and for each step a fit is done to the acceptance
corrected measured angular distribution. The
fit is done for a fixed value of all λ’s. The only

free parameter is absolute normalization. A χ2 of the
fit is calculated at each step. The minimum χ2

obtained in the three dimensional phase space
spanned by λθ, λθϕ and λϕ is chosen as the
best fit.
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FIG. 5. Relative acceptance in cos θ-ϕ bins in (from top to bottom) the HX, CS, GJ Backward, and GJ Forward frames for increasing
pT from left to right. The area of rectangles is proportional to acceptance value in linear scale. See Sec. III C for definition of pT , cos θ,
and ϕ bins.
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(3) Extracted λ coefficients are used as weights in the
simulation to generate acceptance for polarized J=ψ
which is used in the next iteration. Convergence is
achieved when the newly extracted λ coefficients
become zero within the experimental uncertainty,
which means that the polarization in the simulation
matches that in the data.

The resulting angular decay coefficients λθ, λθϕ, λϕ, and
frame-independent coefficient ~λ are shown in Fig. 6, Fig. 7,
Fig. 8, and Fig. 9 respectively, for four reference frames as a
function of transverse momentum.

D. Systematic uncertainty discussion

The statistical uncertainties of the angular decay coeffi-
cients were calculated by randomizing each bin in cos θ vs.ϕ
histograms with a Gaussian random number according to the
statistical uncertainty in that bin, and refitting. This procedure
was repeated one hundred times, and theRMSof the resulting
λ distribution was taken as a statistical uncertainty.
A measurement of the angular decay coefficients is

sensitive to several factors, including the input pT and
rapidity distribution in the simulation, exact matching of
acceptance between data and simulation, how well the
simulation reproduces low-level detector-related quantities,
and time-varying conditions. These uncertainties were
estimated by introducing variations in the input pT and
rapidity distributions, fiducial cuts, and low-level deposited charge smearing in the simulation. Additional cross-checks

included variations of the collision vertex cut and J=ψ
rapidity cut. Possible polarization bias in acceptance was
studied with a simulation-based blind analysis. In this blind
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FIG. 6. Polar angular decay coefficient λθ as a function of
transverse momentum for four reference frames and three pT
bins. Black circles: HX frame; blue squares: CS frame; red
triangles: GJ Backward; green crosses: GJ Forward frames.
Shaded error boxes show systematic uncertainty. Points are
shifted in pT for clarity. Down-pointing arrow indicates 90% con-
fidence level upper limit. The data are compared with NRQCD
theoretical predictions in Helicity frame by H. S. Chung et al.
[29] and H. Shao et al. [30].
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FIG. 7. “Mixed” angular decay coefficient λθϕ as a function of
transverse momentum for four reference frames and three pT
bins. Black circles: HX frame; blue squares: CS frame; red
triangles: GJ Backward; green crosses: GJ Forward frames.
Shaded error boxes show systematic uncertainty. Points are
shifted in pT for clarity.
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FIG. 8. Azimuthal angular decay coefficient λϕ as a function of
transverse momentum for four reference frames and three pT
bins. Black circles: HX frame; blue squares: CS frame; red
triangles: GJ Backward; green crosses: GJ Forward frames.
Shaded error boxes show systematic uncertainty. Points are
shifted in pT for clarity.
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analysis simulated J=ψ ’s generated with a certain polari-
zation were used as fake data. A full analysis of the fake
data was performed without prior knowledge of the input
polarization, polarization coefficients were extracted and
compared to the input values.
The resulting variations in angular decay coefficients

were accounted for as systematic uncertainties and are
listed in Table I.
The total systematic uncertainty shown as shaded boxes

in Figs. 6 through 9 is taken to be the quadratic sum of these
components, assuming that they are uncorrelated.

IV. RESULTS AND DISCUSSION

We have presented the first measurement of the
full angular distribution from J=ψ decays to muons
in pþ p collisions at

ffiffiffi

s
p ¼ 510 GeV at forward rapidity

(1.2 < y < 2.2) in the Helicity, Collins-Soper, and
Gottfried-Jackson reference frames. The results are sum-
marized in Tables II and III, and in Figs. 6 through 9.
The measurements presented here are for inclusive J=ψ .

Feed-down from higher mass quarkonium states also
contribute to the observed polarization and is not separated
out.
In all frames the polar coefficient λθ is strongly

negative at low pT and becomes close to zero at high
pT , while the azimuthal coefficient λϕ is close to zero
at low pT, and becomes slightly negative at higher pT.
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FIG. 9. Frame-independent angular decay coefficient ~λ as a
function of transverse momentum for the four reference frames
and three pT bins. Black circles: HX frame; blue squares: CS
frame; red triangles: GJ Backward; green crosses: GJ Forward
frames. Shaded error boxes show systematic uncertainty. Points
are shifted in pT for clarity. Down pointing arrow indicates
90% confidence level upper limit.

TABLE I. Systematic uncertainties in the polarization measurement.

λθ ~λ λϕ λθϕ

pT bin [GeV=c]: 2–3 3–4 4–10 2–3 3–4 4–10 2–3 3–4 4–10 2–3 3–4 4–10
HX Acceptance 0.134 0.118 0.103 0.082 0.082 0.075 0.010 0.024 0.034 0.052 0.077 0.076

Kinematics þ0.049
−0.023

þ0.050
−0.008

þ0.120
−0.038

þ0.036
−0.004

þ0.042
−0.001

þ0.089
−0.049

þ0.006
−0.009

þ0.002
−0.004

þ0.021
−0.028

þ0.003
−0.012

þ0.014
−0.010

þ0.012
−0.043

Hit smearing 0.134 0.131 0.140 0.094 0.119 0.173 0.027 0.031 0.067 0.050 0.035 0.142
Polarization bias 0.015 0.010 0.005 0.016 0.011 0.006 0.002 0.002 0.001 0.010 0.008 0.005
TOTAL þ0.196

−0.191
þ0.183
−0.176

þ0.211
−0.178

þ0.130
−0.125

þ0.150
−0.144

þ0.209
−0.195

þ0.030
−0.031

þ0.039
−0.039

þ0.079
−0.081

þ0.072
−0.073

þ0.086
−0.085

þ0.162
−0.167

CS Acceptance 0.106 0.148 0.079 0.076 0.101 0.083 0.010 0.010 0.025 0.061 0.076 0.042
Kinematics þ0.011

−0.004
þ0.020
−0.014

þ0.061
−0.066

þ0.0147
−0.006

þ0.014
−0.016

þ0.068
−0.074

þ0.003
−0.001

þ0.001
−0.004

þ0.020
−0.020

þ0.016
−0.015

þ0.011
−0.025

þ0.019
−0.025

Hit smearing 0.085 0.214 0.099 0.045 0.061 0.107 0.042 0.072 0.092 0.102 0.092 0.032
Polarization bias 0.016 0.012 0.006 0.017 0.013 0.007 0.002 0.002 0.0015 0.011 0.009 0.007
TOTAL þ0.136

−0.136
þ0.261
−0.261

þ0.141
−0.143

þ0.089
−0.088

þ0.118
−0.119

þ0.151
−0.154

þ0.043
−0.043

þ0.073
−0.073

þ0.098
−0.098

þ0.120
−0.120

þ0.120
−0.122

þ0.057
−0.059

GJB Acceptance 0.111 0.138 0.081 0.086 0.106 0.089 0.012 0.013 0.026 0.065 0.071 0.045
Kinematics þ0.013

−0.037
þ0.021
−0.003

þ0.106
−0.064

þ0.005
−0.018

þ0.029
−0.019

þ0.075
−0.033

þ0.010
−0.009

þ0.007
−0.015

þ0.013
−0.005

þ0.013
−0.008

þ0.013
−0.019

þ0.054
−0.037

Hit smearing 0.149 0.087 0.121 0.119 0.082 0.112 0.032 0.050 0.083 0.074 0.041 0.133
Polarization bias 0.018 0.009 0.004 0.019 0.010 0.005 0.002 0.002 0.002 0.016 0.009 0.005
TOTAL þ0.186

−0.189
þ0.165
−0.163

þ0.180
−0.159

þ0.147
−0.148

þ0.137
−0.136

þ0.162
−0.147

þ0.035
−0.035

þ0.052
−0.054

þ0.088
−0.087

þ0.099
−0.098

þ0.083
−0.084

þ0.151
−0.145

GJF Acceptance 0.129 0.122 0.120 0.081 0.084 0.078 0.015 0.026 0.035 0.061 0.076 0.074
Kinematics þ0.005

−0.000
þ0.024
−0.020

þ0.008
−0.020

þ0.029
−0.019

þ0.007
−0.006

þ0.096
−0.013

þ0.017
−0.009

þ0.006
−0.016

þ0.112
−0.002

þ0.022
−0.016

þ0.023
−0.000

þ0.044
−0.026

Hit smearing 0.141 0.137 0.067 0.212 0.243 0.276 0.060 0.145 0.110 0.058 0.106 0.200
Polarization bias 0.015 0.012 0.006 0.016 0.013 0.007 0.002 0.001 0.001 0.013 0.010 0.007
TOTAL þ0.192

−0.191
þ0.185
−0.184

þ0.137
−0.139

þ0.229
−0.227

þ0.257
−0.257

þ0.303
−0.287

þ0.064
−0.063

þ0.148
−0.149

þ0.160
−0.115

þ0.087
−0.086

þ0.133
−0.131

þ0.217
−0.214
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The frame-independent coefficient ~λ is strongly negative at
all pT in all frames. Consistency of ~λ values in all
polarization frames indicates that systematic uncertainties
are well under control. The obtained polarization coeffi-
cient ~λ is in good agreement with what was reported by the
STAR experiment [31], for the same

ffiffiffi

s
p

at midrapidity and
higher transverse momentum.
At the Large Hadron Collider (LHC), the LHCb experi-

ment [32] reported similar, although smaller values of λθ
with similar trend in transverse momentum at forward
rapidity. λθ measured by the ALICE experiment [33] at
forward rapidity is consistent with no polarization,
although, within experimental uncertainty, it can be said
to be similar to the LHCb result. A very comprehensive
CMS measurement [34] indicates that both λθ and ~λ are
consistent with zero. However, note that the CMS meas-
urement covers much a higher transverse momentum range
and for more central rapidities.
The measured polar coefficient λθ is compared to

theoretical prediction for prompt J=ψ in Helicity frame
calculated in the NRQCD factorization approach by
H. S. Chung et al. [29] and H. Shao [30] in Fig. 6. At
high transverse momentum both predictions are in good
agreement with the data, while at low pT a strong deviation
can be seen. While theory expects λθ to be small and
slightly positive at low pT, it is strongly negative in the
data. The polar coefficient result in the Helicity frame poses
a challenge to the NRQCD effective theory at low pT,
where perturbative calculations are more difficult to com-
pute. No theoretical calculation is available for the frame-
independent coefficient ~λ or for other reference frames. The
reported experimental results represent a challenge for the

theory and provide a basis for better understanding of
quarkonium production in high energy pþ p collisions.
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