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“Sloppy” nuclear energy density functionals. II. Finite nuclei
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A study of parameter sensitivity of nuclear energy density functionals, initiated in the first part of this work
[Nikšić and Vretenar, Phys. Rev. C 94, 024333 (2016)], is extended by the inclusion of data on ground-state
properties of finite nuclei in the application of the manifold boundary approximation method (MBAM). Density
functionals used in self-consistent mean-field calculations, and nuclear structure models based on them, are
generally “sloppy” and exhibit an exponential range of sensitivity to parameter variations. Concepts of information
geometry are used to identify the presence of effective functionals of lower dimension in parameter space
associated with parameter combinations that can be tightly constrained by data. The MBAM is used in an
iterative procedure that systematically reduces the complexity and dimension of parameter space of a sloppy
functional, with properties of nuclear matter and data on finite nuclei determining not only the values of model
parameters but also the optimal functional form of the density dependence.

DOI: 10.1103/PhysRevC.95.054304

I. INTRODUCTION

The complexity of internucleon interactions in the nuclear
medium, the interplay between single-nucleon and collective
degrees of freedom, and finite-size effects make a unified
treatment of the nuclear many-body problem in a single
theoretical framework very difficult. Nuclear energy density
functionals (EDFs), and various collective models based on
them, have emerged as the most promising unified approach for
a global description of nuclear structure phenomena over the
entire nuclear chart. Whether nuclear EDFs are by construction
microscopic, semiempirical, or fully phenomenological, their
various implementations on the self-consistent mean-field
level and collective methods that extend the approach beyond
the mean-field approximation differ in the functional depen-
dence on the nucleonic densities and currents and contain
model parameters. The most efficient functional density
dependence and the values of most parameters, even though
constrained to a certain extent by the microscopic dynamics,
ultimately have to be determined by low-energy data.

In the first part of this study [1], we have used concepts from
information geometry to analyze a representative semiempir-
ical functional and show that, in general, nuclear EDFs are
“sloppy” [2–6]. This means that even when their parameters
are adjusted to data, the predictions of nuclear EDFs and
related models are sensitive to only a few combinations of
parameters (stiff parameter combinations) and exhibit an ex-
ponential decrease of sensitivity to variations of the remaining
soft parameters that are only approximately constrained by
data. By considering the space of model predictions as a
manifold embedded in the data space, we have shown that the
exponential distribution of model manifold widths corresponds
to the range of parameter sensitivity. These results indicate that
most nuclear EDFs, if not all, in fact contain models of lower
effective dimension associated with the stiff combinations of
model parameters.

A systematic simplification of the complex dependence on
nucleonic densities and currents of a sloppy EDF, and the re-
duction of the model to a lower dimension in parameter space,
crucially depends on the selection of data that constrain the

functional form and determine parameter values. In Ref. [1],
we have employed the manifold boundary approximation
method (MBAM) [3] to deduce the most effective functional
form of the density-dependent coupling parameters of a
representative model EDF. However, since the application of
MBAM necessitates the computation of both first and second
derivatives of observables with respect to model parameters
along geodesic paths on the model manifold, the data used in
Ref. [1] included only a set of points on a microscopic equation
of state (EoS) of symmetric nuclear matter and neutron matter.
In that case, derivatives of pseudo-observables with respect
to model parameters can be evaluated analytically, and the
computational task of applying the MBAM to the nuclear
system is not particularly difficult. On the downside, such
a study is not very realistic because it does not include data
on finite nuclei that are almost always used to determine or
fine-tune the parameters of an EDF.

In this work, we extend the study of Ref. [1] and use a
simple numerical approximation that enables the application
of the MBAM to realistic nuclear energy density functionals,
constrained not only by the nuclear matter EoS but also
by observables that can be measured in nuclei all over
the mass table. We will start from the same model EDF
and microscopic EoS as in Ref. [1] and include additional
ground-state properties of spherical nuclei in the set of data
used to determine the functional form and model parameters.
The aim is to show how methods of information geometry,
and the MBAM in particular, can be employed to construct
and optimize nuclear energy density functionals. Section II
defines the model functional and describes the data set used
in the analysis of parameter sensitivity. In Sec. III we apply
the MBAM in a reduction of the parameter space dimension
and the corresponding transformation of the functional density
dependence. Section IV contains a summary and conclusions.

II. THE FUNCTIONAL DD-PC1 AND THE DATA SET

As representative of a class of semiempirical energy density
functional that are currently used in numerous studies of
nuclear structure phenomena, also in this work we consider
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the relativistic functional DD-PC1 [7]. It explicitly includes
nucleon degrees of freedom only and is constructed with
second-order interaction terms; that is, the functional con-
tains interaction terms bilinear in the densities and currents
in the isoscalar-scalar, isoscalar-vector, and isovector-vector
isospace-space channels. Many-body correlations are encoded
in the density-dependent coupling functions:

αs(ρ) = as + (bs + csx)e−dsx,

αv(ρ) = av + bve
−dvx, (1)

αtv(ρ) = btve
−dtvx,

where the indices s, v, and tv denote the isoscalar-scalar,
isoscalar-vector, and isovector-vector channels, respectively.
x = ρ/ρsat, where ρsat indicates the nucleon density at
saturation in symmetric nuclear matter. The corresponding
Lagrangian contains an additional derivative term with a
single constant parameter [7] that accounts for leading effects
of finite-range interactions and is essential for a quanti-
tative description of nuclear density distributions. From a
Lagrangian with bilinear interaction terms, one derives the
linear single-nucleon Dirac (Kohn-Sham) equation which,
because of the density dependence of the couplings, contains
also rearrangement terms. Like for other similar nuclear
energy density functionals, both relativistic and nonrelativistic,
the explicit medium dependence of the couplings can be
derived, at least in principle, from the underlying microscopic
internucleon interactions. However, the strength parameters of
the functional, and in the present case there are ten parameters,
are adjusted directly to nuclear data. In recent studies of global
performance of relativistic EDFs in modeling ground-state
properties of even-even nuclei over the entire mass table [8,9],
it has been shown that DD-PC1 is currently one of the most
accurate functionals, comparable in predictions to the latest
Skyrme and Gogny nonrelativistic functionals.

In this study, we also consider properties of open-shell
nuclei and, therefore, in addition to the effective interaction
in the particle-hole channel, pairing correlations must be
taken into account. The relativistic Hartree-Bogoliubov (RHB)
model [10] will be used in self-consistent mean-field calcula-
tions of ground-state properties. As in many recent nuclear
structure applications of the RHB framework based on the
functional DD-PC1 [11], for the pairing interaction we employ
a finite-range force that is separable in momentum space
and is completely determined by two parameters adjusted to
reproduce the result of the D1S Gogny interaction for the
density dependence of the bell-shaped pairing gap in nuclear
matter [12]. The present analysis of parameter sensitivity of the
functional DD-PC1 does not include the pairing interaction;
that is, the parameters of the pairing force are kept constant
while the functional form of the density dependence and
strength parameters of the EDF are modified and adjusted
to reproduce the data.

Extending the analysis of Ref. [1] to include data on
finite nuclei, the (pseudo-) observables that determine the
parameters of the functional consist of two sets of data.
The first contains seven points of the microscopic equation
of state of symmetric nuclear matter and six points of the
neutron matter equation of state of Ref. [13], based on the

TABLE I. Pseudodata for infinite symmetric
nuclear matter used to compute the penalty func-
tion χ 2 for the energy density functional defined
by Eq. (1). The seven points of energy as function
of the nuclear matter density correspond to the
microscopic EoS of Ref. [13]. In the least-squares
fit the adopted error for the EoS points is 10%.

Pseudo-observable

ε(0.04 fm−3) −6.48 MeV
ε(0.08 fm−3) −12.43 MeV
ε(0.12 fm−3) −15.43 MeV
ε(0.16 fm−3) −16.03 MeV
ε(0.20 fm−3) −14.99 MeV
ε(0.24 fm−3) −12.88 MeV
ε(0.32 fm−3) −6.49 MeV

Argonne V18NN potential and the Urbana model IX (UIX)
three-nucleon interaction. One could, of course, use any other
microscopic EoS of nuclear and neutron matter. As this study
aims to demonstrate the applicability of the MBAM to nuclear
density functionals rather than to uniquely determine the
parameters of a functional, the choice of the microscopic
EoS is not essential for the present discussion. In addition
to the pseudo-observables of the infinite homogeneous nu-
clear medium, the second set of data contains ground-state
properties of eight spherical nuclei: binding energies, charge
radii, and available data on the difference between radii of
neutron and proton distributions. Additional nuclei and data
points could be included in a more quantitative analysis. Here,
we are interested not so much in an accurate determination of
model parameters but rather in qualitative constraints on the
functional form of the density dependence. The relatively small
set selected for the present analysis extends, nevertheless,
from 16O to 214Pb and includes both closed-shell and single
open-shell nuclei. The data that will be used to analyze the
functional form of DD-PC1 are listed in Tables I–III.

The set of all possible values of model parameters defines
the 10-dimensional manifold embedded in the N -dimensional
data space (N = 29 in the present case). For a given point in
the data space, that is, for the set of data listed in Tables I–III,

TABLE II. Pseudo-data for neutron matter
used to compute the penalty function χ 2 for the
energy density functional defined by Eq. (1). The
six points correspond to the microscopic neutron
matter EoS of Ref. [13]. In the least-squares fit, the
adopted error for the energy of pure neutron matter
as a function of density is 10%.

Pseudo-observable

ε(0.04 fm−3) 6.45 MeV
ε(0.08 fm−3) 9.65 MeV
ε(0.12 fm−3) 13.29 MeV
ε(0.16 fm−3) 17.94 MeV
ε(0.20 fm−3) 22.92 MeV
ε(0.24 fm−3) 27.49 MeV
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TABLE III. The total binding energies BE, charge radii rch, and
the differences between the radii of neutron and proton density
distributions rnp = rn − rp used to compute the penalty function χ 2

for the energy density functional defined by Eq. (1). The adopted
errors for the binding energies and charge radii are 0.1% and 0.2%,
respectively, while 5% is assumed for the accuracy of the neutron
skin values.

Nucleus BE (MeV) rch (fm) rn − rp (fm)

16O −127.619 MeV 2.73
48Ca −415.991 MeV 3.484
72Ni −613.173 MeV
90Zr −783.893 MeV 4.272
116Sn −988.681 MeV 4.626 0.12
132Sn −1102.860 MeV
208Pb −1636.446 MeV 5.505 0.20
214Pb −1663.298 MeV 5.562

the nine parameters that determine the density dependence
of the coupling functions Eq. (1), plus the strength parameter
of the derivative term δs(∂νψ̄ψ)(∂νψ̄ψ) of the functional
DD-PC1, are optimized by minimizing the penalty function
χ2(p) on the manifold of model predictions embedded in the
data space:

χ2(p) =
N∑

n=1

r2
n(p), (2)

where rn(p) denotes the residual

rn(p) = O(mod)
n (p) − On


On

, (3)

and O(mod)
n are model predictions that depend on the set of

parameters p = {p1, . . . ,pF }. Every observable is weighted
by the inverse of 
On, and the adopted errors are given
in the captions to Tables I–III. The behavior of the model
around the best-fit point p0 can be analyzed in the quadratic
approximation to the penalty function:


χ2(p) = χ2(p) − χ2(p0) = 1
2
pT M̂
p, (4)

where 
p = p − p0. The curvature matrix

Mμν = ∂2χ2

∂pμ∂pν

∣∣∣∣
p=p0

(5)

is symmetric and can be diagonalized by an orthogonal
transformation: M̂ = ÂD̂ÂT , where Â denotes the
orthogonal matrix with columns corresponding to normalized
eigenvectors of M̂, and the diagonal matrix D̂ contains the
eigenvalues of M̂. The deviation of χ2 from its minimum
value can be expressed as


χ2(p) = 1

2

pT (ADAT )
p = 1

2
ξTDξ = 1

2

F∑

α=1

λαξ 2
α .

(6)

The transformed vectors ξ = ÂT p define the principal axes
on the F -dimensional model manifold. Figure 1 displays the
eigenvectors and eigenvalues of the 10 × 10 Hessian matrix

of second derivatives M of χ2(p) at the best-fit point for the
functional defined by the couplings of Eq. (1), plus the strength
parameter of the derivative term δs . We will refer to this set
of parameters as set 1. The empty and filled bars indicate
that the corresponding amplitudes contribute with opposite
signs. The eigenvalues of the Hessian matrix, characterizing
the sensitivity of model predictions to variations along
orthogonal directions in parameter space, span ten orders of
magnitude, and this is typical of sloppy models that exhibit
an exponentially large range of sensitivities to changes in
parameter values [2,4,5,14–16]. Such a model is essentially
determined by only a few stiff directions in parameter space
characterized by large eigenvalues λα , while the remaining
soft directions that correspond to small eigenvalues λα are not
constrained by the data used in the least-squares fit.

III. MODEL REDUCTION BY THE MANIFOLD
BOUNDARY APPROXIMATION METHOD

In Ref. [1] we have also shown that the functional
DD-PC1 exhibits another unique characteristic of sloppy
models [2,3,5,6], namely that the widths of the model manifold
in the directions of the eigenvectors of the Hessian follow
closely the distribution of sensitivity (square root of the
eigenvalue of the Hessian) of the functional to changes in
the values of the corresponding parameter combinations. By
interpreting the space of model predictions as a manifold
embedded in the Euclidean data space, with parameters of the
functional as coordinates on the manifold, one can explore the
boundaries of the manifold using geodesic paths. Boundaries
correspond to points on the manifold where the metric becomes
singular, and the arc length of geodesics, along directions
specified by the eigenvectors of the Hessian matrix at the
minimum of χ2, provide a measure of the manifold width in
each of these directions [5]. The parameters corresponding to a
geodesic path can be found as the solution of the second-order
differential equation

p̈μ +
∑

αβ

�
μ
αβṗαṗβ = 0, (7)

where �
μ
αβ are the connection coefficients:

�α
μν =

∑

β

(g−1)αβ

∑

m

∂rm

∂pβ

∂2rm

∂pμ∂pν

, (8)

the metric on the model manifold is defined by the Fisher
information matrix (FIM):

gμν =
∑

m

∂rm

∂pμ

∂rm

∂pν

, (9)

and the dot denotes differentiation with respect to the affine
parametrization of the geodesic. Note that at the best-fit point
(minimum of χ2), the metric gμν of the model manifold
approximately equals the Hessian matrix of second derivatives
M of χ2(p). The geodesic equation presents an initial value
problem in the parameter space. Starting from any point
on the model manifold, one follows the geodesic path in a
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

FIG. 1. Eigenvectors and eigenvalues of the 10 × 10 Hessian matrix of second derivatives M of χ2(p) at the best-fit point for the functional
defined by the couplings of Eq. (1), plus the strength parameter of the derivative term δs . The empty and filled bars indicate that the corresponding
amplitudes contribute with opposite signs.

given direction until the boundary is identified by the metric
tensor becoming singular. In particular, if one considers the
best-fit point χ2(p0), the geodesic equation can be integrated
along the eigendirection of the Hessian matrix to determine
the corresponding boundaries of the model manifold. The
initial value pini corresponds to the best-fit parameters, and
the initial velocities ṗini are determined by the eigenvectors of
the Hessian at the best-fit point. An eigenvector defines two
possible directions for integration (positive and negative), and
the sum of the two arc lengths equals the width of the manifold
for that particular eigendirection [3].

In the analysis of the DD-PC1 model manifold of Ref. [1],
we have only considered a set of pseudo-observables, energies
as function of density, for infinite nuclear matter. In this case,
the derivatives of residuals with respect to model parameters,
contained in the expression for the connection coefficients (8),
can be calculated analytically. Here. the data set is extended
with ground-state properties of finite nuclei for which the
connection coefficients have to be calculated numerically.
The computational task can be considerably reduced by
interchanging the order of summations implicit in Eqs. (7)

and (8), that is, by calculating first the following quantity:

∑

αβ

∂2rm

∂pα∂pβ

ṗαṗβ = ‖ṗ‖2
∑

αβ

∂2rm

∂pα∂pβ

ṗα

‖ṗ‖
ṗβ

‖ṗ‖

= ‖ṗ‖2

ε2

∑

αβ

∂2rm

∂pα∂pβ

δpαδpβ, (10)

where

δpμ ≡ ε
ṗμ

‖ṗ‖ , μ ∈ {α,β}, (11)

and ε is a small constant. A Taylor expansion for the residual
rm leads to the following expression:

∑

αβ

∂2rm

∂pα∂pβ

δpαδpβ ≈ rm(p1 + δp1, . . . ,pn + δpn)

+ rm(p1 − δp1, . . . ,pn − δpn)

− 2rm(p1, . . . ,pn). (12)
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The calculation is simplified by numerically computing direc-
tional second-order derivatives instead of all second derivatives
entering the definition of connection coefficient. The initial
nine parameters defined in Eq. (1), plus the strength parameter
of the derivative term δs , are transformed as follows:

as = as,bf pas
, bs = bs,bf pbs

,
(13)

cs = cs,bf pcs
, ds = ds,bf pds

,

av = av,bf pav
, bv = bv,bf pbv

, dv = dv,bf pdv
, (14)

btv = btv,bf pbtv
, dtv = dtv,bf pdtv

, (15)

δs = δs,bf pδs
. (16)

where the subscript bf denotes the best-fit values obtained
by minimizing the penalty function χ2(p) (set 1). In this
way, all the parameters in the geodesic equation (7) become
dimensionless, and their values at the initial point:

pμ(0) = 1, μ ∈ {as,bs,cs,ds,av,bv,dv,btv,dtv,δs}. (17)

Compared to the transformation we used in the previous
study (see Appendix B of Ref. [1]), here the parameters are
not constrained to have the same sign along the geodesic
path. This allows us to explore the entire parameter space
and, by including data on finite nuclei, the data space
contains enough points to avoid possible unphysical regions
of parameters. The initial velocities are determined by the cor-
responding amplitudes of eigenvectors of the Hessian matrix
(M = ADAT ) of the penalty function (cf. Fig. 1):

ṗμ(0) ∼ Aμ. (18)

The overall normalization factor is chosen so that the data
space norm of the velocity vector equals one,

∑

μ,ν

gμνṗμ(0)ṗν(0) = 1, (19)

and gμν denotes the metric tensor (FIM). Because an eigen-
vector is defined up to an overall phase, Eqs. (18) and (19)
determine two opposite directions for the initial velocity. For
each direction, the geodesic equation is integrated up to the
manifold boundary and, since the data space norm of the
velocity remains constant, the length of the traversed path in
the data space equals the maximal value of the affine parameter.
The sum of the two arcs equals the width of the model manifold
for this particular combination of bare model parameters.

The resulting widths of the model manifold in the directions
of eigenvectors of the Hessian matrix of the penalty function
χ2(p0) exhibit an exponential distribution of values (cf.
Fig. 1 in Ref. [1]), and this points to the existence of an
effective functional of lower dimension associated with stiff
parameter combinations. The reduction of a general sloppy
model to lower dimension in parameter space is essentially
determined by the choice of data to which the parameters are
adjusted. Following our study of DD-PC1 in nuclear matter
in Ref. [1], we employ the manifold boundary approximation
method (MBAM) [3] to construct a simpler EDF of lower
parameter space dimension, constrained by the data set listed in
Tables I–III, and which also includes ground-state data of finite
nuclei.

(a)

(b)

FIG. 2. The parameters of the isoscalar part of the ten-parameter
functional set 1, as functions of the affine parametrization, along the
geodesic path determined by the eigenvector of the Hessian matrix
that corresponds to the smallest eigenvalue (cf. Fig. 1). Panel (a)
displays the four parameters of the scalar channel, while the evolution
of the three parameters that determine the vector channel is shown in
panel (b).

Starting from the best-fit point p0 in parameter space,
the geodesic equation is integrated in the eigendirection that
corresponds to the smallest eigenvalue of the Hessian matrix,
until the boundary of the model manifold is reached. Because
the eigenvector is defined up to an overall phase, we choose the
direction in which the parameter space norm of the velocity
vector (

∑
μ ṗ2

μ) increases [1,3]. The model limit associated
with the manifold boundary is analyzed and a different model
is constructed that contains one less parameter. This model
is then optimized by a least-squares fit to the same set of
data and used as a starting point for the next iteration of the
MBAM. This method, therefore, reduces the sloppiness of a
model by successively eliminating soft combinations of bare
parameters. In the ideal case in which the data set contains
all the information necessary to completely determine an a
priori unknown physical model, the MBAM will produce a
unique nonsloppy model with only stiff combinations of bare
parameters.

The first iteration of the MBAM for the initial ten-parameter
functional is illustrated in Figs. 2–4. The evolution of the
parameters along the geodesic path determined by the eigen-
vector of the Hessian matrix that corresponds to the smallest
eigenvalue, as functions of the affine parametrization of the
geodesic, is shown in Figs. 2 and 3. The geodesic equation is
integrated with the initial conditions described above until the
corresponding boundary of the model manifold is identified.
While there are no significant changes of the parameters in the
isoscalar-scalar and isovector-vector channels, as well as the
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(a)

(b)

FIG. 3. Same as in the caption to Fig. 2 but for the two parameters
of the isovector part of the functional defined in Eq. (1) (a) and the
strength parameter of the derivative term (b).

strength of the derivative term, in the isoscalar-vector channel
one notes that the parameters av and bv start to diverge as the
geodesic path approaches the boundary of the manifold, and
dv tends to a small value close to zero. This can be understood
from the form of the vector coupling:

αv(ρ) = av + bve
−dvx, x = ρ/ρsat. (20)

When dv approaches zero, the derivatives ∂αv/∂av and
∂αv/∂bv are virtually identical, the corresponding rows and
columns of the FIM are almost equal, and the matrix becomes
singular. In Fig. 4(a) we plot the initial and final (at the
boundary) eigenspectrum of the FIM, and the initial and final
eigenvectors that correspond to the smallest eigenvalues in
Figs. 4(b) and 4(c). At the boundary, the smallest eigenvalue
separates from the rest of the spectrum and tends to zero. While
all bare parameters, with the exception of δs , contribute to the
amplitudes of the initial softest eigenvector, at the boundary
only the components av and bv (with opposite phases)
determine the eigenvector of the FIM with the eigenvalue
approaching zero. The limiting behavior of av, bv , and dv sug-
gests the following Taylor expansion for the vector coupling
function at the boundary:

αv(ρ) ≈ av + bv(1 − dvx) = av + bv − bvdvx = ãv + b̃vx.

(21)

In first order, this reduces the functional form of the coupling
function in the isoscalar-vector channel to a linear density
dependence, and the corresponding number of bare parameters
from three to two. In the final step, the nine parameters of the
resulting model are again determined in a least-squares fit to

(a) (b)

(c)

FIG. 4. The initial (best-fit point) and final (at the boundary of
the model manifold) eigenspectrum of the FIM for the ten-parameter
functional SET 1 (a). The eigenvectors that correspond to the initial
and final smallest eigenvalues are shown in panels (b) and (c).

the data listed Tables I–III (set 2) and used as a starting point
for the next iteration of the MBAM.

The second iteration thus starts with a model functional de-
termined by the nine parameters: as, bs, cs, ds, ãv, b̃v, btv, dtv ,
and δs (set 2). The eigenvectors and eigenvalues of the FIM
calculated at the best-fit point (Hessian matrix) are shown
in Fig. 5. In this case, the eigenvalues span nine orders
of magnitude. Starting from the best-fit point, the geodesic
equation is integrated following the direction determined by
the softest eigenvector, and in Figs. 6 and 7 we display the
evolution of the model parameters, as functions of the affine
parametrization of the geodesic. A scenario similar to the first
iteration unfolds, only this time in the isoscalar-scalar channel.
As the parameter of the exponential function ds approaches
zero, and the two parameters as and bs start to diverge, the FIM
becomes singular at the manifold boundary. The eigenvector
with the smallest eigenvalue decouples from the rest, as shown
in Fig. 8. The eigenvalue tends to zero, while the amplitudes of
the corresponding eigenvector exhibit dominant out-of-phase
components as and bs . The initial and final eigenvalues of the
FIM are displayed in Fig. 8(a).

The divergent behavior of the parameters as and bs , and the
Taylor expansion of the exponential coupling function to first
order in the small parameter ds at the boundary, lead to the
following reduction of the isoscalar-scalar coupling function:

αs(ρ) ≈ as + (bs + csx)(1 − dsx)

= as + bs + (cs − bsds)x − csdsx
2

= ãs + b̃sx + c̃sx
2. (22)
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FIG. 5. Same as in the caption to Fig. 1 but for the functional with nine parameters (set 2) obtained by applying the MBAM to the
ten-parameter functional set 1.

(a)

(b)

FIG. 6. Same as in the caption to Fig. 2 but for the nine-parameter
functional (set 2).

(a)

(b)

FIG. 7. Same as in the caption to Fig. 3 but for the nine-parameter
functional (set 2).

054304-7
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(a) (b)

(c)

FIG. 8. Same as in the caption to Fig. 4 but for the nine-parameter
functional (set 2).

The second iteration, therefore, transforms the coupling in
the isoscalar-scalar channel to a polynomial of second degree
in the nucleonic density, and the number of parameters is
reduced by one. As a final step of this MBAM iteration,
the new model determined by the eight parameters ãs , b̃s , c̃s ,
ãv, b̃v, btv, dtv , and δs is again fitted to the observables
listed in Tables I–III. The resulting parameters are denoted
set 3.

Note that in both MBAM iterations the parameters of the
isovector-vector channel btv and dtv , as well as the strength
parameter of the derivative term δs , do not display significant
variations along the softest eigendirections (Figs. 3 and 7) or
in the two successive least-squares adjustments to data. This
means that the parameters of the isovector channel and the
derivative term are already constrained by the data used in
the fit (in particular, the neutron matter EoS and difference
of the radii of neutron and proton distributions for the
isovector channel, and charge radii for the derivative term). The
dominant component of the third eigenvector of the Hessian
matrix for both best-fit points (Figs. 1 and 5) corresponds
to the bare parameter δs , while the fifth eigenvector is
characterized by large out-of-phase amplitudes that correspond
to btv and dtv . To constrain the in-phase combination of the
isovector parameters, additional data are required such as, for
instance, information on the isovector effective mass in nuclear
matter.

The functional determined by the eight parameters (five in
the isoscalar channel):

αs(ρ) = ãs + b̃sx + c̃sx
2 and αv(ρ) = ãv + b̃vx, (23)

where x = ρ/ρsat, two in the isovector-vector channel btv and
dtv , and the parameter of the derivative term δs (set 3), could,
in principle, be further reduced. However, for the data set of
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FIG. 9. Equation of state of symmetric nuclear matter (a) and
neutron matter (b). Energy as a function of nuclear (neutron) matter
calculated with the functional DD-PC1, and the three functionals
adjusted in this study, sets 1, 2, and 3, are shown in comparison
to the microscopic equations of state [13]. The points to which the
parameters of the functionals have been fitted are shown with the
adopted uncertainty 10%.

Tables I–III, in the next, third iteration, the integration of the
geodesic equation does not lead to the decoupling of the softest
eigenvector. Even considering both directions determined by
the softest eigenvector of the Hessian matrix, we have not
been able to reach the corresponding boundary of the model
manifold and, therefore, the number of parameters could not
be reduced. Note that in our previous study [1], in which
only nuclear matter pseudo-data were used to determine the
parameters of the functional, it was possible to reduce both
isoscalar coupling functions to a linear dependence of the
nucleonic density; that is, a third iteration reduced the number
of isoscalar parameters to four. Here, this is no longer possible
because ground-state properties of finite nuclei are included in
the data set and, with only a simple linear density dependence
of the scalar and vector coupling functions, a self-consistent
mean-field calculation based on such a functional could not
reproduce the data.

This effect is illustrated in Figs. 9 and 10, in which
we display the results for nuclear matter and finite nuclei
obtained with the functionals determined by the parameters
set 1 (ten parameters), set 2 (nine parameters), and set 3 (eight
parameters), in comparison to the original functional DD-PC1
(ten parameters). Note that DD-PC1 was actually not adjusted
to the nuclear matter EoS and/or spherical nuclei, but rather to
the binding energies of 64 axially deformed nuclei in the mass
regions A ≈ 150–180 and A ≈ 230–250 [7].

In Fig. 9, we plot the equation of state for symmetric
nuclear matter [Fig. 9(a)] and neutron matter [Fig. 9(b)].
The curves calculated with DD-PC1 and the three functionals
adjusted in this study (sets 1, 2, and 3), are compared to
the microscopic equations of state [13]. All three functionals,
adjusted to the points shown in the figure (with the adopted
uncertainty of 10%), reproduce the equations of state with
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FIG. 10. Differences between the theoretical and experimental
values for the charge radii (a) and binding energies (b) of the eight
nuclei used to adjust the parameters of the functionals sets 1, 2, and 3.

comparable accuracy. It is only in the region of extrapolation
at higher densities, where no fit points have been specified,
that their predictions start to diverge. This is similar to the
results obtained in Ref. [1]. DD-PC1 was not adjusted to
these equations of state and, of course, does not reproduce the
microscopic EoS particularly well, especially the EoS of neu-
tron matter. Empirical properties of symmetric nuclear matter
at saturation (binding energy, density, incompressibility), as
well as two points at low and high density, are built into the
parameters of DD-PC1 and, thus, this functional reproduces
the microscopic EoS up to and slightly above saturation
density. Figure 10 displays the absolute differences between
the theoretical values and data for the charge radii and binding
energies of the eight nuclei used in the least-squares fits of the
parameter sets 1, 2, and 3. The binding energies are reproduced
by all three functionals with similar accuracy, whereas several
charge radii (16O, 48Ca, 208Pb, and 214Pb) calculated with the
functional SET3 are markedly different from those predicted
by sets 1 and 2. This already indicates that with a further
reduction of the number of parameters it would not be possible
to accurately reproduce the data set.

IV. SUMMARY AND OUTLOOK

One of the most important current research topics in
low-energy nuclear physics is the development of a universal
energy density functional framework that can be used in
global studies of structure phenomena in different regions
of the nuclear mass table. Even though structure models
based on EDFs can accurately reproduce a variety of mea-
sured nuclear properties and in many cases provide useful
predictions for regions far from stability where few data are
available, empirically it has been known for a long time that
nuclear EDFs exhibit an exponential range of sensitivity to
parameter variations, crucially depend on just a few parameter
combinations, while the remaining combinations of bare
model parameters can only approximately be constrained by
available data. Various approaches to the construction of EDFs
lead to different, and sometimes very complex, functional
dependence on nucleonic densities and currents, characterized
by a relatively large number of parameters whose values
are difficult to accurately determine either microscopically or
from experiment. Parameter uncertainties and propagation of
errors, as well as correlations between parameters, have been
the subject of numerous recent studies in the framework of
nuclear density functional theory (see, for instance, Ref. [17]
and references cited therein).

In Ref. [1] and in this work, we have analyzed a represen-
tative semi-empirical relativistic EDF, with a microscopically
motivated ansatz for the functional density dependence, and
parameters determined by empirical properties of homo-
geneous nuclear matter and data on ground-state nuclear
properties. If the space of model predictions is considered as a
manifold embedded in the data space, with model parameters
as coordinates of the manifold, geodesic paths can be used
to explore the boundaries of the model manifold. These are
defined by points on the manifold where the metric (Fisher
information matrix) becomes singular. Starting from a best-fit
point for a given model functional, obtained by minimizing the
penalty function χ2 that provides a measure of the distance in
the data space between model predictions and the data point to
which the model is fitted, one can explore the boundaries of the
model manifold in the directions of eigenvectors of the Hessian
matrix of second derivatives of χ2 at minimum. In Ref. [1] we
have shown that the widths of the manifold of predictions
for the model functional, that is, the arc lengths of geodesics
along the eigendirections of the Hessian matrix, exhibit an
exponential distribution nearly identical to the exponential
range of sensitivity of the model to parameter variations.
This is characteristic of sloppy models and indicates that our
model functional could contain functionals of lower effective
dimension in parameter space that can equally well reproduce
data and with parameters more tightly constrained by the
data.

The general problem of a reduction of a nonlinear sloppy
model functional to lower dimensions in parameter space is
difficult and depends on the data that are used to determine
both the functional form of the density dependence as well
as the values of the parameters. The solution cannot be found
by simply eliminating bare model parameters but necessitates
often nonlinear transformations in parameter space that also

054304-9
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modify the form of density dependence. We have shown
that the recently introduced manifold boundary approximation
method (MBAM) [3] can be used to systematically reduce
the complexity and the sloppiness of a general nuclear EDF,
with reduced sets of parameters constrained by the underlying
microscopic dynamics and fine-tuned to nuclear data. While
in Ref. [1] we only considered a set of pseudo-observables
that characterize the microscopic EoS of nuclear matter, in the
present study the data set has been extended with points on the
microscopic EoS of neutron matter and ground-state properties
(binding energies, charge radii, difference between radii of
neutron and proton distributions) of eight spherical nuclei.
Since first and second derivatives of observables with respect
to parameters along geodesic paths on the model manifold
have to be computed, the inclusion of data on finite nuclei
makes the application of the MBAM computationally much
more challenging. Nevertheless, it has been possible to reduce
our original ten-parameter functional to an eight-parameter
functional that reproduces the given data set with comparable
accuracy. An important result is that the functional density
dependence of the coupling functions (density-dependent
parameters) has been simplified to a polynomial form in
the isoscalar channel of the functional. After two MBAM
iterations, in the third the algorithm could no longer identify
the boundary of the model manifold in the direction of the
softest eigenvector of the Hessian matrix and, therefore, the
dimension of the parameter space could not be reduced further.
This is one MBAM iteration less than in our previous study [1],
in which only pseudodata on nuclear matter were used in the

nonlinear least-squares fit. Obviously the additional data on
finite nuclei place more stringent constraints on the functional
form and parameter values, especially in the isoscalar channel,
and thus prevent further parameter reduction.

Even though we have only analyzed a single representative
example of semi-empirical functionals currently used in
nuclear structure studies, the illustrative study has shown how
the MBAM can be used in the development and optimization
of nuclear EDFs. In particular, this method can be applied
to fully microscopic functionals that encode the underlying
many-body dynamics in a complex dependence on nucleonic
densities and currents and include all terms allowed by
symmetries. Generally such a functional will be characterized
by a rather large number of parameters whose values have to
be determined by low-energy data and, therefore, one expects
that a microscopic derivation will produce a sloppy functional.
When the complexity and parameter space of a general sloppy
functional is systematically reduced by applying the MBAM
as described in this work, it is the data that such a model is
designed to reproduce that determine not only the values of
model parameters but also the optimal functional form of the
density dependence.
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