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The first study of φ-meson production in p–Pb collisions at forward and backward rapidity, at a nucleon–
nucleon centre-of-mass energy √sNN = 5.02 TeV, has been performed with the ALICE apparatus at the 
LHC. The φ-mesons have been identified in the dimuon decay channel in the transverse momentum (pT) 
range 1 < pT < 7 GeV/c, both in the p-going (2.03 < y < 3.53) and the Pb-going (−4.46 < y < −2.96) 
directions — where y stands for the rapidity in the nucleon–nucleon centre-of-mass — the integrated 
luminosity amounting to 5.01 ± 0.19 nb−1 and 5.81 ± 0.20 nb−1, respectively, for the two data sam-
ples. Differential cross sections as a function of transverse momentum and rapidity are presented. The 
forward–backward ratio for φ-meson production is measured for 2.96 < |y| < 3.53, resulting in a ratio 
∼ 0.5 with no significant pT dependence within the uncertainties. The pT dependence of the φ nuclear 
modification factor RpPb exhibits an enhancement up to a factor 1.6 at pT = 3–4 GeV/c in the Pb-going 
direction. The pT dependence of the φ-meson cross section in pp collisions at 

√
s = 2.76 TeV, which is 

used to determine a reference for the p–Pb results, is also presented here for 1 < pT < 5 GeV/c and 
2.5 < y < 4, for a 78 ± 3 nb−1 integrated luminosity sample.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Proton–nucleus (p–A) collisions are of special interest in the 
context of high-energy nuclear physics for two reasons. On one 
hand, a precise characterisation of particle production processes 
in p–A collisions is needed as a reference for nucleus–nucleus 
data. This allows in-medium effects — linked to the forma-
tion of a deconfined phase of the QCD matter, the quark–gluon 
plasma (QGP) [1–3] — to be disentangled from the effects already 
present in cold nuclear matter. Among them, a sizeable role is 
played by the transverse momentum broadening of initial-state 
partons due to multiple scattering inside the nucleus, responsi-
ble for the Cronin effect [4], which may lead to an enhancement 
of intermediate-pT hadron spectra. In addition, p–A collisions at 
LHC energies provide a way to probe the parton distributions of 
the colliding nucleus at small values of Bjorken-x, in a regime 
where parton densities can reach saturation [5,6]. In particular, 
the smallest x values contributing to the wave function of the col-
liding nucleus can be probed by looking at particle production 
at large rapidities, in the p-going direction. Such a measurement 
can thus extend towards lower x-values the results of the lower-
energy measurements by the PHOBOS and BRAHMS experiments 
at RHIC [7,8]. Measurements of identified particle production may, 

� E-mail address: alice-publications@cern.ch.

in particular, provide useful constraints for forthcoming theoretical 
studies of the saturation mechanism at small x.

We have already reported results on charged particle produc-
tion in p–Pb collisions at mid-rapidity. These results focused on the 
pseudorapidity density [9] and the pT dependence of the nuclear 
modification factor [10–12]; the latter was found to be consistent 
with unity for pT � 2 GeV/c. The nuclear modification factor of 
charged hadrons was also studied by the BRAHMS and PHOBOS 
Collaborations in d–Au collisions at the nucleon–nucleon centre-
of-mass energy 

√
sNN = 200 GeV at RHIC [13,14], as a function 

of pseudorapidity, where values smaller than unity were found 
for η � 1, corresponding to the d-going direction.

In this Letter we report the measurement of φ-meson produc-
tion at forward rapidity in p–Pb collisions at 

√
sNN = 5.02 TeV in 

the transverse momentum (pT) range 1 < pT < 7 GeV/c, for the 
centre-of-mass rapidity (y) ranges 2.03 < y < 3.53 (p-going direc-
tion) and −4.46 < y < −2.96 (Pb-going direction), in the dimuon 
decay channel with the ALICE detector. This measurement extends 
the investigation of light-flavour particle production to forward ra-
pidity. At the same time, it represents an essential baseline for the 
understanding of φ production in heavy-ion collisions, where an 
enhancement of strange particle yields relative to the ones mea-
sured in pp collisions has been proposed long ago as a signature of 
the formation of a QGP phase [15–17] triggering an intense exper-
imental effort already at SPS and RHIC energies [18–24]. It should 
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be noted that, despite its hidden strangeness, producing a φ-meson 
in a hadronic collision still implies the creation of a ss̄ pair as it is 
the case for other strange hadrons, even if the hadronisation mech-
anisms can differ in reason of the different quark composition. In 
this context, the p–Pb data presented here will provide an impor-
tant reference for future measurements in Pb–Pb collisions in the 
LHC Run 2, which will be performed at a comparable energy.

The differential φ-meson cross section as a function of trans-
verse momentum is also presented for pp collisions at 

√
s =

2.76 TeV. This measurement complements the ALICE results on 
φ-meson production in pp collisions at 

√
s = 7 TeV, already re-

ported in [25] and, combined with the latter, is used to build the 
pp reference for the p–Pb measurements presented here.

2. Experimental setup

A full description of the ALICE detector can be found in [26,27]. 
The results presented in this Letter have been obtained detecting 
muon pairs with the muon spectrometer, covering the pseudora-
pidity region −4 < ηlab < −2.5. Here and in the following, the sign 
of ηlab is determined by the choice of the LHC reference system. 
The other detectors relevant for the analysis are the Silicon Pixel 
Detector (SPD) of the Inner Tracking System (ITS), the V0 detector 
and the Zero Degree Calorimeters (ZDC).

The elements of the muon spectrometer are a hadron absorber, 
followed by a set of tracking stations, a dipole magnet, an iron wall 
acting as muon filter and a set of trigger stations. The hadron ab-
sorber is made of carbon, concrete and steel and is placed 0.9 m 
away from the interaction point. Its total material budget cor-
responds to 10 hadronic interaction lengths. The dipole magnet 
provides an integrated magnetic field of 3 T · m in the vertical 
direction. The muon tracking is provided by five tracking sta-
tions, each one composed of two cathode pad chambers. The first 
two stations are located upstream of the dipole magnet, the third 
one in the middle of its gap and the last two downstream of it. 
A 1.2 m thick iron wall, corresponding to 7.2 hadronic interaction 
lengths, is placed between the tracking and trigger detectors and 
absorbs the residual secondary hadrons emerging from the hadron 
absorber. The hadron absorber together with the iron wall stops 
muons with total momentum lower than ∼ 4 GeV/c. The muon 
trigger detector consists of two stations, each one composed of 
two planes of resistive plate chambers, installed downstream of 
the muon filter.

The SPD consists of two silicon pixel layers, covering the pseu-
dorapidity regions |ηlab| < 2.0 and |ηlab| < 1.4 for the inner and 
outer layer, respectively. It is used for the determination of the 
primary interaction vertex position. The V0 is composed of two 
scintillator hodoscopes covering the pseudorapidity regions 2.8 <
ηlab < 5.1 and −3.7 < ηlab < −1.7. It is used in the definition 
of the minimum bias trigger signal, and allows the offline rejec-
tion of beam-halo and beam-gas interactions to be performed. The 
ZDC detectors, positioned symmetrically at 112.5 m from the in-
teraction point, are used to clean the event sample by removing 
beam–beam collisions not originating from nominal LHC bunches.

3. Data selection and signal extraction

The analysis presented in this Letter is based on two data sam-
ples, collected by ALICE during the 2013 p–Pb and pp runs at √

sNN = 5.02 TeV and 
√

s = 2.76 TeV, respectively. In this section 
we present the details of the data selection, as well as the proce-
dure followed for the extraction of the φ-meson signal.

3.1. Data selection

The Minimum-Bias (MB) trigger for the considered data sample 
is given by the logical AND of the signals in the two V0 detec-

tors [28]. Events containing a muon pair are selected by means 
of a specific dimuon trigger, based on the detection of two muon 
candidate tracks in the trigger system of the muon spectrometer, 
in coincidence with the MB condition. Due to the intrinsic momen-
tum cut imposed by the detector, only muons with pT � 0.5 GeV/c
manage to leave a signal in the trigger chambers.

Because of the different energy of the LHC proton and Pb beams 
(Ep = 4 TeV, EPb = 1.58 A · TeV), in p–Pb collisions the nucleon–
nucleon centre-of-mass moves in the laboratory with a rapidity 
y0 = 0.465 in the direction of the proton beam. The directions of 
the proton and Pb beam orbits were inverted during the p–Pb data 
taking period. This allowed the ALICE muon spectrometer to ac-
cess two different rapidity regions1: the region 2.03 < y < 3.53
where the proton beam is directed towards the muon spectrome-
ter (p-going direction) and the region −4.46 < y < −2.96 where 
the Pb beam is directed towards the muon spectrometer (Pb-going 
direction). In the following, these two rapidity ranges are also re-
ferred to as “forward” and “backward”, respectively. For pp colli-
sions at 

√
s = 2.76 TeV the muon spectrometer covers the rapidity 

region 2.5 < y < 4.2

Background events not coming from beam–beam interactions 
are rejected by performing an offline selection, based on the re-
quirement that the timing signals from the V0 and ZDC detectors 
are compatible with a collision occurring in the fiducial interaction 
region |zvtx| � 10 cm.

The integrated luminosity for the p–Pb data samples was eval-
uated as Lint = NMB/σMB, where NMB is the number of MB events 
corresponding to the analysed triggered events, and σMB the MB 
trigger cross section. The value of NMB was obtained by averag-
ing the results of two different methods — one based on the ratio 
of trigger rates and the other based on the offline selection of 
dimuon events in the MB data sample [29] — while the MB trigger 
cross sections σMB were measured with a van der Meer scan and 
found to be 2.09 ± 0.07 b and 2.12 ± 0.07 b, respectively, for the 
beam configurations corresponding to the forward and backward 
rapidity coverage of the muon spectrometer [30]. For the pp data 
sample, the integrated luminosity is calculated with the method 
described in [31], using as reference the MB trigger cross section 
σMB = 47.7 ± 0.9 mb, measured in a van der Meer scan [32].

The resulting values of Lint for the analysed p–Pb data samples 
are 5.01 ± 0.19 nb−1 and 5.81 ± 0.20 nb−1 [29,30] — correspond-
ing to ∼ 24 000 and ∼ 26 000 reconstructed φ → μμ decays (see 
next section) — respectively for the forward and backward ra-
pidity regions. For the pp data sample, the integrated luminosity 
amounts to 78 ± 3 nb−1 for a total number of ∼ 1 400 recon-
structed φ → μμ decays.

Track reconstruction in the muon spectrometer is based on 
a Kalman filter algorithm [25,33,34]. Muon identification is per-
formed by requiring the candidate track to match a track seg-
ment in the trigger chambers (trigger tracklet). This request selects 
muons with pT,μ � 0.5 GeV/c and, as a consequence, significantly 
affects the collected statistics for dimuons with invariant mass 
� 1 GeV/c2 and pT � 1 GeV/c. It is also required that muon tracks 
lie in the pseudorapidity interval −4 < ημ < −2.5, where ημ is de-
fined in the laboratory frame, in order to remove the tracks close 
to the acceptance borders of the spectrometer, where the accep-
tance drops abruptly. Selected tracks are finally required to exit 
the hadron absorber at a radial distance from the beam axis, Rabs, 
in the range 17.6 < Rabs < 89.5 cm: this cut, for all practical pur-
poses equivalent to the one on ημ , explicitly ensures the rejection 

1 The sign of y is defined by assuming the proton beam to have positive rapidity.
2 In this case the sign of y is defined by assuming the proton beam entering the 

muon spectrometer to have positive rapidity.
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Fig. 1. Dimuon mass spectrum after combinatorial background subtraction: pT-integrated pp sample (top panels) and pT-integrated p–Pb sample in the backward (centre 
panels) and forward (bottom panels) rapidity regions, compared to the result of the hadronic-cocktail and the empirical-function fits (left- and right-column panels, respec-
tively). Error boxes on data points (well visible only in some regions on the plots) represent the systematic uncertainty due to the combinatorial background subtraction, 
while error bars account for the statistical uncertainty. The width of the hadronic-cocktail fit result (red band) combines the statistical uncertainties of the free fit parameters 
with the systematic uncertainties on the fixed parameters (see text). (For interpretation of the references to colour in this figure, the reader is referred to the web version of 
this article.)
of tracks crossing the region of the absorber with the highest den-
sity material, where multiple scattering and energy loss effects are 
large and can affect the mass resolution. Muon pairs are built com-
bining two muon tracks that satisfy the above cuts.

3.2. Signal extraction

The Opposite-Sign (OS) muon pairs are composed of correlated 
and uncorrelated pairs. The former contain the signal of interest 
for the present analysis, while the latter — mainly coming from 
semi-muonic decays of pions and kaons — form a combinatorial 
background. The contribution of the combinatorial background to 
the OS mass spectrum was evaluated using an event mixing tech-

nique in which uncorrelated pairs are formed with muons taken 
from different events. A detailed description of the technique can 
be found in [25]. The ratio between correlated and uncorrelated OS 
dimuons at the φ-meson mass is ∼ 0.65 (∼ 0.40) in p–Pb collisions 
at 

√
sNN = 5.02 TeV at forward (backward) rapidity, and ∼ 1.30 in 

pp collisions at 
√

s = 2.76 TeV. A direct comparison of the raw 
OS mass spectrum and the associated combinatorial background 
is presented in [35], for each of the pT intervals considered in the 
analysis.

The invariant mass spectra in pp and p–Pb collisions, obtained 
after combinatorial background subtraction, are shown in Fig. 1
for the pT-integrated samples. In the left-column panels of Fig. 1, 
the signal is described in the low-mass region (from the threshold 
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up to ∼ 1.5 GeV/c2) by the superposition of a so-called hadronic 
cocktail and the open charm and open beauty processes. The pro-
cesses included in the hadronic cocktail are the two-body and 
Dalitz decays of the light neutral mesons η, ρ , ω, η′ and φ, 
which dominate dimuon production for invariant masses below 
∼ 1 GeV/c2. The open charm and open beauty contributions arise 
from correlated semi-muonic decays of charm and beauty mesons 
and baryons.

The hadronic cocktail was simulated with a dedicated generator 
described in [25], tuned to the existing measurements whenever 
possible, otherwise based on the kinematic distributions extracted 
from PYTHIA [36]. In particular, the kinematic distributions of the 
φ-meson have been tuned by means of an iterative procedure to 
the results presented in this Letter to ensure self-consistency for 
this analysis. The open charm and beauty generation is based on a 
parameterisation of the spectra generated with PYTHIA [33]. The 
detector response for all these processes is obtained with a simu-
lation based on the GEANT3 [37] transport code. Simulated events 
are then subjected to the same reconstruction and selection proce-
dure as the data.

When describing the signal with the superposition of the afore-
mentioned contributions, four parameters are adjusted in the fit 
procedure in each of the pT or rapidity intervals considered in the 
analysis: the yield of the η, ω and φ-mesons, and the one of the 
open charm and beauty processes, with the relative beauty/charm 
contribution fixed (see later in this paragraph). In this way, each 
parameter is linked to a process dominating in at least one re-
gion of the considered mass spectrum. The remaining degrees of 
freedom are fixed either according to the relative branching ratios 
known from literature [38], or assuming specific hypotheses on the 
cross section ratios. In particular, the production cross section of 
the ρ-meson is assumed to be the same as for the ω as suggested 
from both models and pp data [25], while the η′ contribution was 
derived from the η cross section by applying the ratio of the cor-
responding cross sections ση′/ση = 0.3 taken from the PYTHIA
tunes ATLAS-CSC and D6T which best describe the available low-
mass dimuon measurements at the LHC energies [25]. The open 
beauty normalisation is fixed to the open charm one via a fit of 
the pT- and rapidity-integrated mass spectra in which the yields 
from both processes are free parameters; when performing differ-
ential studies, the beauty/charm ratio is scaled according to the 
differential distributions for the two processes, given by the Monte 
Carlo (MC) simulations.

For each pT and rapidity interval, the raw number of φ-mesons 
is determined via a fit procedure based on a χ2 minimisation, per-
formed on the signal obtained after the subtraction of the combi-
natorial background, shown in Fig. 1 for the pT-integrated samples. 
Several tests have been performed to evaluate the robustness of 
the signal extraction and estimate an appropriate systematic un-
certainty for it. They include in particular:

– Replacing the fit based on the full MC hadronic cocktail with 
a fit based on the superposition of various empirical functions. 
In this case, illustrated in the right-column panels of Fig. 1, 
the continuum is modelled either with exponential functions 
or variable-width Gaussians, while the ρ+ω and φ peaks are 
described by Crystal Ball functions [39] tuned on the MC.

– Varying the ratio between the yields of open beauty and open 
charm processes. It was verified that for perturbations as large 
as ±50% (resulting in a reasonably wide range of variation for 
the shape of the total continuum) no significant systematic ef-
fect is visible.

– Varying the ratios between the two-body and Dalitz branching 
ratios of the η and ω-mesons, as well as the cross section ra-
tios σρ/σω and ση′/ση , within the uncertainties coming either 

from the available measurements or from the differences be-
tween the PYTHIA tunes considered in the analysis of the pp 
data. The branching ratio B Rω→μμ was taken as the average 
(weighted by the corresponding uncertainties) of the available 
measurements of B Rω→μμ and B Rω→ee [38], assuming lepton 
universality.

– Varying the considered fit range: in particular, the fit was per-
formed both including and excluding the mass region from 0.4 
to 0.65 GeV/c2 where the quality of the comparison between 
the data and the sum of the MC sources turns out to be lower.

The total systematic uncertainty on the signal extraction was taken 
as the quadratic sum of the above sources. The systematic uncer-
tainty on the combinatorial background is estimated by comparing 
the shape of the Like-Sign dimuon contributions coming from the 
event mixing procedure and from the raw data [25]. This uncer-
tainty depends on the mass, its relative contribution being maxi-
mal in the mass window 0.5–0.8 GeV/c2 and minimal around the 
φ-meson peak, and it is added in quadrature, for each point of the 
mass spectrum, to the statistical uncertainty of the signal: in this 
way, this source of systematics is accounted for by the χ2 minimi-
sation procedure, and automatically propagated when evaluating 
the φ-meson raw signal from the fit parameters. The uncertainty 
associated to the sum of the MC sources (red band in the left-
column plots of Fig. 1) is evaluated by combining the uncertainties 
on the normalisation of each considered process. For the processes 
whose normalisation is left free in the fit, this uncertainty is the 
statistical one resulting from the fit procedure itself; for the rest 
of the processes, we also propagate the systematic uncertainty on 
the parameters (branching ratios or cross section ratios) which fix 
their normalisations to those of the free processes.

4. Results

The results of the φ-meson analysis are presented as follows. 
We first present the measurement of the production cross sections, 
starting with its pT-dependence in pp collisions at 

√
s = 2.76 TeV, 

followed by p–Pb collision results as a function of pT and rapid-
ity. Then, we show the ratio of the cross sections measured in the 
forward and backward regions, obtained in the common rapidity 
interval 2.96 < |y| < 3.53. Finally, the measurement of the nuclear 
modification factor RpPb as a function of pT is presented, sepa-
rately for the p-going and the Pb-going directions.

4.1. Production cross section in pp and p–Pb collisions

The cross section σφ was evaluated for each pT and rapidity 
interval as:

σφ(x) = Nraw
φ→μμ(x)

[A · ε](x) · B Rφ→μμ · Lint
,

where x stands for any specific pT or rapidity interval considered. 
The total systematic uncertainty on Nraw

φ→μμ(x), after combining the 
different sources described above, ranges between 3% and 8% de-
pending on the collision system and kinematic range. The branch-
ing ratio B Rφ→μμ was taken from [38] as the average (weighted 
by the corresponding uncertainties) of the available measurements 
of B Rφ→μμ and B Rφ→ee , assuming lepton universality, resulting 
in a final uncertainty of approximately 1%. The product of the geo-
metrical acceptance A and the reconstruction efficiency ε has been 
evaluated by means of MC simulations, using the cocktail predic-
tions for the differential input spectra. The values are obtained as 
the ratio between the number of dimuons at the output of the 
reconstruction chain — including the effect of the event selection 
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Fig. 2. φ-meson cross section as a function of pT in pp collisions at √s = 2.76 TeV. 
Error bars and boxes represent statistical and systematic uncertainties, respectively. 
Predictions from PHOJET [42] and the PYTHIA tunes ATLAS-CSC [44], D6T [45],
Perugia0 and Perugia11 [43] are also shown for comparison, as well as the 
result of a fit with the Levy–Tsallis function defined by Eq. (1).

criteria imposed on the data — and the number of dimuons in-
jected as input.

The uncertainty on [A · ε] mainly originates from the system-
atic uncertainty on the dimuon tracking and trigger efficiencies. 
The systematic uncertainty on the tracking efficiency, amounting 
to 6% and 4% for the backward and forward rapidity regions, re-
spectively, comes from the residual differences between the results 
of the efficiency-determination method based on reconstructed 
tracks [29,40], applied to both data and MC. For the systematic 
uncertainty on the trigger efficiency, we also refer to the proce-
dure discussed in [29], resulting in an uncertainty of 3.2% and 
2.8%, respectively, for the backward and forward rapidity regions 
considered in the analysis. In order to test possible additional sys-
tematic effects related to the hardware trigger pT cut, imposing 
a non-sharp threshold around 0.5 GeV/c, the analysis was re-
peated with the additional offline sharp cuts pT,μ > 0.5 GeV/c and 
pT,μ > 1 GeV/c on single muons. For each of the two alternative 
scenarios, the corresponding measurement of the φ-meson cross 
section was compared to the one coming from the reference anal-
ysis: the difference between the results was found to be smaller 
than the quadratic difference of the statistical uncertainties, show-
ing that no significant bias related to the trigger threshold affects 
the results [41].

The reported values correspond to a zero-polarisation scenario 
for the 2-body decay of the φ-meson, in the absence of evidence 
supporting less trivial assumptions (in particular, no measurement 
of φ-meson polarisation is currently available at the LHC energies).

4.1.1. Production cross section in pp collisions
The inclusive, pT-differential φ-meson cross section in pp col-

lisions at 
√

s = 2.76 TeV is shown in Fig. 2. The data points, also 
summarised in Table 1, are compared with the predictions from
PHOJET [42] and PYTHIA [36], where for the latter the Peru-
gia0, Perugia11 [43], ATLAS-CSC [44], and D6T [45] tunes 
are considered. An overall good agreement is found between pre-
dictions and data, with the exception of the Perugia0 and Pe-
rugia11 tunes of PYTHIA which underestimate the measured 
cross section by a factor of two, as already observed for the 
φ-meson measurements at 

√
s = 7 TeV [25,46]. It is worth to note 

that the D6T tune is not successful in describing the pT evolution 
of the K/π ratio at mid-rapidity in pp collisions at 

√
s = 2.76 TeV, 

as measured by the CMS Collaboration [47]: this suggests that hid-
den strangeness is better reproduced than open strangeness in this 

Table 1
pT-differential production cross section for the φ-meson in pp collisions at √s =
2.76 TeV, for 2.5 < y < 4. The first uncertainty is statistical and the second is the 
bin-to-bin uncorrelated systematic. The bin-to-bin correlated relative systematic un-
certainty is 3.9%. The χ2/ndf values are relative to the hadronic-cocktail fit and the 
[0.8, 1.2 GeV/c2] mass region, where ndf = 10.

pT (GeV/c) χ2/ndf d2σφ/(dydpT) (mb/(GeV/c))

[1.0,1.5] 1.1 0.423 ± 0.067 ± 0.043
[1.5,2.0] 1.7 0.182 ± 0.025 ± 0.018
[2.0,2.5] 1.1 0.089 ± 0.011 ± 0.007
[2.5,3.0] 1.1 0.0340 ± 0.0056 ± 0.0020
[3.0,3.5] 0.9 0.0139 ± 0.0032 ± 0.0011
[3.5,4.0] 1.1 0.0087 ± 0.0022 ± 0.0006
[4.0,5.0] 1.1 0.0028 ± 0.0012 ± 0.0002

Table 2
Systematic uncertainties (in percent) contributing to the mea-
surement of the φ cross section in pp collisions at √

s =
2.76 TeV. When the uncertainty values depend on the pT in-
terval, their minimum and maximum values are quoted.

Source Syst. uncertainty on σ
pp
φ

Uncorrelated
Signal extraction 3–8%
Tracking efficiency 4%
Trigger efficiency 3%

Correlated
Lint 3.8%
B R(φ → ��) 1%

specific PYTHIA tune. Data points were fitted with a Levy–Tsallis 
function [48]

1

pT

dN

dpT
∝

(
1 + mT − mφ

nT

)−n

, (1)

where mT =
√

p2
T + m2

φ stands for the transverse mass, obtain-

ing the values n = 10.2 ± 4.8 and T = 284 ± 72 MeV for the fit 
parameters, where the errors reflect the statistical uncertainties 
only. The cross section integrated over the accessible pT range 
1 < pT < 5 GeV/c is σφ = 0.566 ± 0.055 (stat.) ± 0.044 (syst.) mb. 
The systematic uncertainties for this measurement are summarised 
in Table 2.

4.1.2. Production cross section in p–Pb collisions
The φ cross section as a function of pT in p–Pb collisions is 

shown in Fig. 3 for the forward and backward rapidity regions con-
sidered in the analysis. The results, also reported in Table 3, are 
fitted with the Levy–Tsallis distribution defined in Eq. (1), the re-
sulting fit parameters being β = 9.6 ± 1.3 and T = 366 ± 30 MeV
for the forward rapidity region and β = 11.4 ± 1.4 and T = 384 ±
24 MeV for the backward one, where the errors reflect the statis-
tical uncertainties only. The predictions from HIJING (with gluon 
shadowing) [49] and DPMJET [50] are also shown: these genera-
tors provided a good description of the ALICE dNch/dηlab results 
at mid-rapidity [9]. Averaging over the available pT range, the dis-
crepancy between the data and the predictions from HIJING and
DPMJET amounts to ∼ 18% and ∼ 57%, respectively, at backward 
rapidity (the Pb-going direction) and ∼ 5% and ∼ 9.5%, respec-
tively, at forward rapidity (the p-going direction). In all the cases, 
the generators underestimate the data points.

The φ cross section in p–Pb collisions, integrated over the ac-
cessible pT range, 1 < pT < 7 GeV/c, is shown as a function of 
rapidity in Fig. 4. The data points, also summarised in Table 4, 
exhibit a significant asymmetry between the forward and back-
ward rapidity regions. The data point from the φ-meson analysis 
at mid-rapidity in the K+K− channel [51], also shown for the 
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Fig. 3. φ-meson cross section in p–Pb collisions at √sNN = 5.02 TeV as a function of pT in the backward (left) and forward (right) rapidity regions. Error bars (smaller than 
the markers) and boxes represent statistical and systematic uncertainties, respectively. Predictions by HIJING [49] and DPMJET [50] are also shown, together with the result 
of a fit with the Levy–Tsallis function (Eq. (1)).

Table 3
Production cross section for the φ-meson in p–Pb collisions at √sNN = 5.02 TeV, as a function of pT, in the backward and forward rapidity regions. The first uncertainty is 
statistical and the second is the bin-to-bin uncorrelated systematic. The bin-to-bin correlated relative systematic uncertainty is 3.6% and 3.9%, respectively, for the backward 
and the forward regions. The χ2/ndf values are relative to the hadronic-cocktail fit and the [0.8, 1.2 GeV/c2] mass region.

pT (GeV/c) −4.46 < y < −2.96 2.03 < y < 3.53

χ2/ndf d2σ
pPb
φ /(dydpT) (mb/(GeV/c)) χ2/ndf d2σ

pPb
φ /(dydpT) (mb/(GeV/c))

[1.0,1.5] 0.7 102 ± 8 ± 12 1.5 73.3 ± 5.6 ± 8.0
[1.5,2.0] 1.2 58.6 ± 3.3 ± 5.5 1.9 42.1 ± 2.5 ± 4.3
[2.0,2.5] 2.5 28.3 ± 1.4 ± 2.9 1.7 21.0 ± 1.2 ± 2.0
[2.5,3.0] 4.2 15.0 ± 0.7 ± 1.2 3.1 10.07 ± 0.77 ± 0.97
[3.0,3.5] 2.6 7.66 ± 0.40 ± 0.70 2.0 6.38 ± 0.41 ± 0.61
[3.5,4.0] 1.9 4.20 ± 0.24 ± 0.34 1.2 3.96 ± 0.30 ± 0.36
[4.0,4.5] 0.7 2.15 ± 0.17 ± 0.16 1.0 1.99 ± 0.20 ± 0.15
[4.5,5.0] 0.9 1.20 ± 0.11 ± 0.10 0.9 1.06 ± 0.13 ± 0.08
[5.0,6.0] 1.0 0.560 ± 0.052 ± 0.054 1.0 0.570 ± 0.088 ± 0.043
[6.0,7.0] 1.2 0.201 ± 0.030 ± 0.028 0.9 0.199 ± 0.045 ± 0.016
Fig. 4. φ cross section in p–Pb collisions at √
sNN = 5.02 TeV as a function of 

rapidity, integrated over the range 1 < pT < 7 GeV/c. Error bars and boxes repre-
sent statistical and systematic uncertainties, respectively. Predictions by HIJING
and DPMJET are also shown, together with the mid-rapidity data point from the 
φ-meson measurement in the K+K− channel [51], also evaluated in the range 
1 < pT < 7 GeV/c.

1 < pT < 7 GeV/c pT range, fits well into the trend defined by 
the two series of points in the backward and forward rapidity re-
gions. This observation complements the previous measurements 
of light-flavour particle production (charged unidentified particles) 
reported in p–Pb by ALICE at the LHC at mid-rapidity [9], and 
in d–Au by PHOBOS at RHIC ranging from mid to forward rapid-
ity [14]. The comparison between the data and the predictions by

Table 4
Production cross section for the φ-meson in p–Pb collisions at √sNN = 5.02 TeV, 
as a function of rapidity, integrated over the range 1 < pT < 7 GeV/c. The first un-
certainty is statistical and the second is the bin-to-bin uncorrelated systematic. The 
bin-to-bin correlated relative systematic uncertainty is 3.6% and 3.9%, respectively, 
for the backward and the forward regions. The χ2/ndf values are relative to the 
hadronic-cocktail fit and the [0.8, 1.2 GeV/c2] mass region.

y χ2/ndf dσ
pPb
φ /dy (mb) y χ2/ndf dσ

pPb
φ /dy (mb)

[−4.46,−4.25] 0.9 89 ± 10 ± 9 [2.03,2.35] 2.6 104 ± 11 ± 6
[−4.25,−4.05] 1.8 89 ± 6 ± 7 [2.35,2.55] 1.5 102 ± 7 ± 5
[−4.05,−3.85] 0.9 103 ± 5 ± 8 [2.55,2.75] 2.0 96 ± 5 ± 6
[−3.85,−3.65] 2.9 117 ± 6 ± 9 [2.75,2.95] 1.6 86 ± 4 ± 5
[−3.65,−3.45] 1.2 128 ± 7 ± 9 [2.95,3.15] 2.3 68 ± 4 ± 4
[−3.45,−3.25] 3.6 133 ± 9 ± 9 [3.15,3.35] 1.0 66 ± 5 ± 5
[−3.25,−2.96] 1.2 136 ± 14 ± 11 [3.35,3.53] 1.2 45 ± 8 ± 6

HIJING and DPMJET, illustrated in Fig. 4, clearly shows how the 
models — which successfully described charged particle production 
at mid-rapidity in the same collision system [9] — fail to prop-
erly reproduce the shape and the normalisation of the observed 
rapidity dependence of the φ cross section. Still, the HIJING pre-
diction qualitatively reproduces the forward–backward asymmetry 
observed in the data, as well as — ignoring the normalisation — 
the shape of the y-dependence in the backward region. DPMJET, 
on the contrary, fails to reproduce even qualitatively the observed 
forward–backward asymmetry.

4.2. Forward–backward ratio in p–Pb collisions

To establish a more direct comparison of the cross section in 
the p-going and Pb-going directions, σ pPb

φ was extracted as a func-
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Fig. 5. Forward–backward ratio for the φ-meson in p–Pb collisions at √
sNN =

5.02 TeV as a function of pT, in the rapidity range 2.96 < |y| < 3.53 common to 
the two rapidity regions considered in the analysis. Error bars and boxes represent 
statistical and systematic uncertainties, respectively. The blue box on the left repre-
sents the bin-to-bin correlated systematic uncertainty, see Table 7. Predictions from
HIJING and DPMJET are also shown for comparison. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of 
this article.)

tion of pT in the common |y| range 2.96 < |y| < 3.53. The pT
interval 1.0 < pT < 1.5 GeV/c was discarded in this measurement 
because of the poor statistics available in this limited rapidity 
range, resulting in an uncertainty larger than 50%.

The ratio between the forward and backward cross section, 
RFB, is shown as a function of pT in Fig. 5. The data points ex-
hibit no significant pT dependence within the experimental un-
certainties. Predictions by HIJING and DPMJET are also shown, 
with HIJING slightly overestimating the data points and DPMJET
clearly failing to reproduce the observed values, staying above 
RFB = 1 in the whole pT range considered here. This observation 
is consistent with the observations in Fig. 4, where the forward–
backward asymmetry of the φ-meson yield was better reproduced 
by HIJING than by DPMJET.

4.3. Nuclear modification factor in p–Pb collisions

The φ-meson nuclear modification factor RpPb is defined as the 
ratio between the production cross section σ pPb

φ (pT) in p–Pb colli-

sions and the cross section σ pp
φ (pT) in pp collisions — evaluated at √

s = 5.02 TeV as described in the following — scaled by APb:

RpPb(pT) = σ
pPb
φ (pT)

σ
pp
φ (pT) · APb

, (2)

where APb is the nuclear mass number for the Pb nucleus. Since 
for the pp cross section σ pp

φ at 
√

s = 5.02 TeV no direct measure-
ment is currently available, it was evaluated by interpolating the 
measurements in the rapidity interval 2.5 < y < 4 at 

√
s = 2.76

(see Section 4.1.1) and 7 TeV [25]. For each pT interval, the 
√

s
dependence of the differential cross section d2σ

pp
φ /(dy dpT) was 

described with a power law σ pp(
√

s) = C · (√s)α , where C and α
are determined using the data at 2.76 and 7 TeV. Alternative pa-
rameterisations were also considered [52], namely a linear and an 
exponential function, and the mean of the results obtained with 
the three functions was taken. Since the pp measurements are lim-
ited to 1 < pT < 5 GeV/c, the cross section at 

√
sNN = 5.02 TeV

was extrapolated towards higher pT by means of a Levy–Tsallis 
function, which describes the calculated differential cross section 
in the pT range covered by the measurements. The uncertainty 

Table 5
Differential cross section for the φ-meson in pp collisions at √s = 5.02 TeV in the 
backward and forward rapidity regions of interest for the analysis of the p–Pb data, 
as obtained interpolating the available measurements at √s = 2.76 and 7 TeV. Total 
uncertainties, combining statistical and systematic sources, are reported.

pT (GeV/c) d2σφ/dydpT (mb/(GeV/c))

−4.46 < y < −2.96 2.03 < y < 3.53

[1.0,1.5] 0.491 ± 0.067 0.656 ± 0.090
[1.5,2.0] 0.223 ± 0.015 0.297 ± 0.020
[2.0,2.5] 0.0995 ± 0.0071 0.1328 ± 0.0095
[2.5,3.0] 0.0467 ± 0.0032 0.0623 ± 0.0043
[3.0,3.5] 0.0234 ± 0.0015 0.0312 ± 0.0020
[3.5,4.0] 0.0125 ± 0.0011 0.0167 ± 0.0015
[4.0,4.5] 0.00706 ± 0.00094 0.0094 ± 0.0012
[4.5,5.0] 0.00419 ± 0.00082 0.0056 ± 0.0011
[5.0,6.0] 0.00213 ± 0.00060 0.00284 ± 0.00081
[6.0,7.0] 0.00093 ± 0.00039 0.00124 ± 0.00052

on the interpolated cross sections arises from the choice of the 
function used for the interpolation, from the uncertainties in the 
measurements at 2.76 and 7 TeV, and — for pT > 5 GeV/c — from 
the extrapolation based on the Levy–Tsallis fit. They range from 
about 7% for pT = 1 GeV/c to 20% for pT = 5 GeV/c, and exceed 
30% for pT > 5 GeV/c, representing the major source of system-
atic uncertainty for the measurement of the nuclear modification 
factor. The interpolated cross section, which refers to the rapidity 
range 2.5 < y < 4, was finally scaled to the forward and backward 
rapidity windows 2.03 < y < 3.53 and −4.46 < y < −2.96, consid-
ered for the analysis of the p–Pb data. The relative scaling factors 
f fwd = 1.135 ± 0.031 and fbkw = 0.850 ± 0.028 were evaluated as 
an average from simulations with PHOJET and the Perugia0,
Perugia11, ATLAS-CSC and D6T PYTHIA tunes. In doing so, 
we also retained the PYTHIA tunes which were observed to fail 
in describing the pp data (see Section 4.1.1): the reason is that 
the disagreement between models and data concerns in this case 
the absolute normalisation more than the shape of the kinematic 
distributions, which is the only relevant feature in the evalua-
tion of the f fwd and fbkw factors. The uncertainties (amounting 
to about 3%) correspond to the differences between the considered 
MC predictions. The numerical values are reported in Table 5.

The nuclear modification factor RpPb as a function of pT is 
shown in the two panels of Fig. 6 for the backward and forward 
rapidity regions considered in the analysis. The numerical values 
are also quoted in Table 6. For each pT interval, the systematic 
uncertainty detailed in Table 7 results from the quadratic sum of 
the uncertainty on the φ cross section in p–Pb and the one of the 
pp reference. A rising trend of RpPb when going from pT = 1 GeV/c
to pT ≈ 3–4 GeV/c can be observed both at backward and forward 
rapidity. The values of RpPb in the two rapidity ranges, however, 
are significantly different. In particular, at backward rapidity we 
observe an enhancement of the φ cross section with respect to the 
scaled pp reference peaked around pT = 3–4 GeV/c. This enhance-
ment, absent in the forward rapidity region, reaches a factor of up 
to ∼ 1.6 and could be associated either to an initial-state effect 
(including a possible Cronin-like enhancement [4,53]) or to a final 
state effect related to radial flow in p–Pb as proposed for recent 
ALICE measurements at mid-rapidity [12]. Discriminating between 
these two effects requires more detailed investigations, including 
differential analyses as a function of global event properties like 
collision centrality.

Concerning the behaviour at high pT, we observe that the 
φ-meson RpPb is compatible with unity for pT � 4 GeV/c in the 
p-going direction, similar to what was observed for the RpPb of 
charged particle production at mid-rapidity [10,12]. The observa-
tions in the Pb-going direction do not allow a clear trend of the 
RpPb factor at high pT to be established. A possible saturation at 
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Fig. 6. Nuclear modification factor RpPb in p–Pb collisions at √sNN = 5.02 TeV for the φ-meson as a function of pT, in the backward (left) and forward (right) rapidity regions 
considered in the analysis. Error bars and boxes represent statistical and bin-to-bin uncorrelated systematic uncertainties, respectively. The blue box on the left represents 
the bin-to-bin correlated systematic uncertainty, see Table 7. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)
Table 6
Nuclear modification factor RpPb in p–Pb collisions at √

sNN = 5.02 TeV for the 
φ-meson as a function of pT in the backward and forward rapidity regions. The 
first uncertainty is statistical and the second is the bin-to-bin uncorrelated system-
atic. The bin-to-bin correlated relative systematic uncertainty is 8%.

pT (GeV/c) RpPb

−4.46 < y < −2.96 2.03 < y < 3.53

[1.0,1.5] 1.00 ± 0.08 ± 0.18 0.537 ± 0.041 ± 0.094
[1.5,2.0] 1.26 ± 0.07 ± 0.15 0.681 ± 0.040 ± 0.083
[2.0,2.5] 1.37 ± 0.07 ± 0.17 0.760 ± 0.043 ± 0.091
[2.5,3.0] 1.54 ± 0.07 ± 0.16 0.777 ± 0.059 ± 0.092
[3.0,3.5] 1.57 ± 0.08 ± 0.18 0.98 ± 0.06 ± 0.11
[3.5,4.0] 1.62 ± 0.09 ± 0.19 1.14 ± 0.09 ± 0.15
[4.0,4.5] 1.46 ± 0.12 ± 0.22 1.02 ± 0.10 ± 0.15
[4.5,5.0] 1.38 ± 0.13 ± 0.29 0.91 ± 0.11 ± 0.19
[5.0,6.0] 1.26 ± 0.12 ± 0.38 0.97 ± 0.15 ± 0.29
[6.0,7.0] 1.04 ± 0.16 ± 0.46 0.77 ± 0.17 ± 0.33

Table 7
Systematic uncertainties (in percent) contributing to the measurement of the φ

cross section and nuclear modification factor in the backward and forward rapidity 
regions in p–Pb collisions at √sNN = 5.02 TeV. When the uncertainty values depend 
on the pT interval, their minimum and maximum values are quoted.

Source Syst. uncertainty on σ
pPb
φ and RpPb

−4.46 < y < −2.96 2.03 < y < 3.53

Uncorrelated
Signal extraction 3–5% 4–8%
Tracking efficiency 6% 4%
Trigger efficiency 3.2% 2.8%
σ

pp
φ 7–30% 7–30%

Correlated
Lint 3.5% 3.8%
B R(φ → ��) 1% 1%
fbkw 3.3% –
f fwd – 2.7%

RpPb ≈ 1 for pT � 5 GeV/c is, however, still compatible with the 
measurements.

Only few other existing measurements can be compared to our 
data. In particular, results on φ-meson production in d–Au col-
lisions at 

√
sNN = 200 GeV have been recently released by the 

PHENIX Collaboration [54]. The pT-dependence of the RdAu mea-
sured by PHENIX, as well as its evolution from backward to for-
ward rapidity, is found to be similar to what is observed in our 
results for RpPb. Mid-rapidity data on RdAu, also presented by the 
PHENIX Collaboration for the φ-meson, seem to sit between the 

forward- and backward-rapidity results. Forward-rapidity measure-
ments in d–Au collisions at 

√
sNN = 200 GeV at RHIC [13,14] are 

also available for unidentified charged particles, although for the 
d-going direction only. These data exhibit, similar to our φ-meson 
results in the p-going direction, a rise of RdAu from ∼ 0.5 to ∼ 1
between pT ∼ 1 GeV/c and pT ∼ 4 GeV/c. A similar rise of RpPb in 
p–Pb collisions at 

√
sNN = 5.02 TeV is also observed in the already 

cited measurement of unidentified charged particle and identified 
charged pion and kaon production at mid-rapidity performed by 
ALICE [10,12]. A recent study of φ-meson production in p–Pb col-
lisions at mid-rapidity by ALICE [51] does not currently include 
results on RpPb.

5. Conclusions

We have presented results on φ-meson production in the 
dimuon channel in p–Pb collisions at 

√
sNN = 5.02 TeV obtained by 

the ALICE experiment at the LHC. Cross section and nuclear modifi-
cation factor measurements were performed for 1 < pT < 7 GeV/c
in the rapidity windows 2.03 < y < 3.53 (p-going direction) and 
−4.46 < y < −2.96 (Pb-going direction). A corresponding cross 
section measurement in pp collisions at 

√
s = 2.76 TeV has also 

been reported, for 1 < pT < 5 GeV/c in the region 2.5 < y < 4. 
Predictions from HIJING and DPMJET are compared to the p–Pb
cross sections and are found to underestimate the data both at 
backward (by about 18% and 57% on average, respectively) and at 
forward rapidity (by about 5% and 9.5% on average, respectively). 
The forward–backward ratio in the φ-meson cross section in p–Pb 
collisions was measured in the rapidity range 2.96 < |y| < 3.53, 
and no significant pT dependence was found within uncertainties. 
In this case, the data points are significantly overestimated by the
DPMJET model, while only a slight disagreement is observed with 
respect to the HIJING prediction.

In the p-going direction a rising trend of the nuclear modi-
fication factor RpPb is observed from ∼ 0.5 to ∼ 1, when going 
from pT = 1 GeV/c to pT = 4 GeV/c. This observation is compat-
ible with the behaviour of charged particles at forward rapidity 
at RHIC energies, and at mid-rapidity at LHC energies. In the Pb-
going direction, on the other hand, an enhancement is observed 
for RpPb, reaching values as large as ∼ 1.6 around pT = 3–4 GeV/c. 
An interpretation of these results, either in terms of an initial-
state (Cronin-like) effect or a final-state effect related to radial flow 
in p–Pb, is not possible yet, due to a general lack of theoretical 
predictions for particle production in the light-flavour sector at for-
ward rapidity in p–A collisions at the LHC energies.



ALICE Collaboration / Physics Letters B 768 (2017) 203–217 211

Acknowledgements

The ALICE Collaboration would like to thank all its engineers 
and technicians for their invaluable contributions to the construc-
tion of the experiment and the CERN accelerator teams for the 
outstanding performance of the LHC complex. The ALICE Collab-
oration gratefully acknowledges the resources and support pro-
vided by all Grid centres and the Worldwide LHC Computing Grid 
(WLCG) Collaboration. The ALICE Collaboration acknowledges the 
following funding agencies for their support in building and run-
ning the ALICE detector: A. I. Alikhanyan National Science Labo-
ratory (Yerevan Physics Institute) Foundation (ANSL), State Com-
mittee of Science and World Federation of Scientists (WFS), Ar-
menia; Austrian Academy of Sciences and Nationalstiftung für 
Forschung, Technologie und Entwicklung, Austria; Conselho Na-
cional de Desenvolvimento Científico e Tecnológico (CNPq), Uni-
versidade Federal do Rio Grande do Sul (UFRGS), Financiadora de 
Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa 
do Estado de São Paulo (FAPESP), Brazil; Ministry of Science and 
Technology of the People’s Republic of China (MOST), National 
Natural Science Foundation of China (NSFC) and Ministry of Ed-
ucation of China (MOE), China; Ministry of Science, Education 
and Sports and Croatian Science Foundation, Croatia; Ministry of 
Education, Youth and Sports of the Czech Republic, Czech Re-
public; The Danish Council for Independent Research – Natu-
ral Sciences, the Carlsberg Foundation and Danish National Re-
search Foundation (DNRF), Denmark; Helsinki Institute of Physics 
(HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Insti-
tut National de Physique Nucléaire et de Physique des Particules 
(IN2P3) and Centre National de la Recherche Scientifique (CNRS), 
France; Bundesministerium für Bildung, Wissenschaft, Forschung 
und Technologie (BMBF) and GSI Helmholtzzentrum für Schweri-
onenforschung GmbH, Germany; Ministry of Education, Research 
and Religious Affairs, Greece; National Research, Development and 
Innovation Office, Hungary; Department of Atomic Energy, Gov-
ernment of India (DAE) and Council of Scientific and Industrial 
Research (CSIR), New Delhi, India; Indonesian Institute of Science, 
Indonesia; Centro Fermi – Museo Storico della Fisica e Centro 
Studi e Ricerche Enrico Fermi and Instituto Nazionale di Fisica 
Nucleare (INFN), Italy; Institute for Innovative Science and Tech-
nology, Nagasaki Institute of Applied Science (IIST), Japan Soci-
ety for the Promotion of Science (JSPS) KAKENHI and Japanese 
Ministry of Education, Culture, Sports, Science, and Technology
(MEXT), Japan; Consejo Nacional de Ciencia (CONACYT) y Tec-
nología, through Fondo de Cooperación Internacional en Ciencia y 
Tecnología (FONCICYT) and Dirección General de Asuntos del Per-
sonal Academico (DGAPA), Mexico; Nationaal instituut voor sub-
atomaire fysica (Nikhef), Netherlands; The Research Council of 
Norway, Norway; Commission on Science and Technology for Sus-
tainable Development in the South (COMSATS), Pakistan; Pontificia 
Universidad Católica del Perú, Peru; Ministry of Science and Higher 
Education and National Science Centre, Poland; Korea Institute of 
Science and Technology Information and National Research Foun-
dation of Korea (NRF), Republic of Korea; Ministry of Education 
and Scientific Research, Institute of Atomic Physics and Romanian 
National Agency for Science, Technology and Innovation, Roma-
nia; Joint Institute for Nuclear Research (JINR), Ministry of Educa-
tion and Science of the Russian Federation and National Research 
Centre Kurchatov Institute, Russia; Ministry of Education, Science, 
Research and Sport of the Slovak Republic, Slovakia; National Re-
search Foundation of South Africa, South Africa; Centro de Apli-
caciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, 
Cuba, Ministerio de Ciencia e Innovación and Centro de Investi-
gaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 
Spain; Swedish Research Council (VR) and Knut and Alice Wal-

lenberg Foundation (KAW), Sweden; European Organization for 
Nuclear Research, Switzerland; National Science and Technology 
Development Agency (NSDTA), Suranaree University of Technol-
ogy (SUT) and Office of the Higher Education Commission under 
NRU project of Thailand, Thailand; Turkish Atomic Energy Agency 
(TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; 
Science and Technology Facilities Council (STFC), United Kingdom; 
National Science Foundation of the United States of America (NSF) 
and United States Department of Energy, Office of Nuclear Physics 
(DOE NP), United States of America.

References

[1] A. Bazavov, T. Bhattacharya, M. Cheng, C. DeTar, H. Ding, et al., The chiral and 
deconfinement aspects of the QCD transition, Phys. Rev. D 85 (2012) 054503, 
arXiv:1111.1710 [hep-lat].

[2] Wuppertal–Budapest Collaboration, S. Borsanyi, et al., Is there still any Tc mys-
tery in lattice QCD? Results with physical masses in the continuum limit III, 
J. High Energy Phys. 1009 (2010) 073, arXiv:1005.3508 [hep-lat].

[3] S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S.D. Katz, et al., The QCD equation 
of state with dynamical quarks, J. High Energy Phys. 1011 (2010) 077, arXiv:
1007.2580 [hep-lat].

[4] A. Accardi, Cronin effect in proton nucleus collisions: a survey of theoretical 
models, arXiv:hep-ph/0212148.

[5] C. Salgado, J. Alvarez-Muniz, F. Arleo, N. Armesto, M. Botje, et al., Proton–
nucleus collisions at the LHC: scientific opportunities and requirements, J. Phys. 
G 39 (2012) 015010, arXiv:1105.3919 [hep-ph].

[6] M. Brandt, M. Klasen, F. König, Nuclear parton density modifications from low-
mass lepton pair production at the LHC, Nucl. Phys. A 927 (2014) 78–90, arXiv:
1401.6817 [hep-ph].

[7] BRAHMS Collaboration, I. Arsene, et al., Quark gluon plasma and color glass 
condensate at RHIC? The perspective from the BRAHMS experiment, Nucl. Phys. 
A 757 (2005) 1–27, arXiv:nucl-ex/0410020.

[8] B. Back, M. Baker, M. Ballintijn, D. Barton, B. Becker, et al., The PHOBOS per-
spective on discoveries at RHIC, Nucl. Phys. A 757 (2005) 28–101, arXiv:nucl-
ex/0410022.

[9] ALICE Collaboration, B. Abelev, et al., Pseudorapidity density of charged parti-
cles p–Pb collisions at √sN N = 5.02 TeV, Phys. Rev. Lett. 110 (2013) 032301, 
arXiv:1210.3615 [nucl-ex].

[10] ALICE Collaboration, B. Abelev, et al., Transverse momentum distribution and 
nuclear modification factor of charged particles in p–Pb collisions at √sN N =
5.02 TeV, Phys. Rev. Lett. 110 (2013) 082302, arXiv:1210.4520 [nucl-ex].

[11] ALICE Collaboration, B. Abelev, et al., Transverse momentum dependence of 
inclusive primary charged-particle production in p–Pb collisions at √

sNN =
5.02 TeV, Eur. Phys. J. C 74 (9) (2014) 3054, arXiv:1405.2737 [nucl-ex].

[12] ALICE Collaboration, J. Adam, et al., Multiplicity dependence of charged pion, 
kaon, and (anti)proton production at large transverse momentum in p–Pb col-
lisions at √sNN = 5.02 TeV, Phys. Lett. B 760 (2016) 720–735, arXiv:1601.03658 
[nucl-ex].

[13] BRAHMS Collaboration, I. Arsene, et al., On the evolution of the nuclear mod-
ification factors with rapidity and centrality in d+Au collisions at √

sN N =
200 GeV, Phys. Rev. Lett. 93 (2004) 242303, arXiv:nucl-ex/0403005.

[14] PHOBOS Collaboration, B. Back, et al., Pseudorapidity distribution of charged 
particles in d+Au collisions at √sN N = 200 GeV, Phys. Rev. Lett. 93 (2004) 
082301, arXiv:nucl-ex/0311009.

[15] J. Rafelski, B. Muller, Strangeness production in the quark–gluon plasma, Phys. 
Rev. Lett. 48 (1982) 1066.

[16] A. Shor, φ-Meson production as a probe of the quark gluon plasma, Phys. Rev. 
Lett. 54 (1985) 1122–1125.

[17] P. Koch, B. Muller, J. Rafelski, Strangeness in relativistic heavy ion collisions, 
Phys. Rep. 142 (1986) 167–262.

[18] NA49 Collaboration, C. Alt, et al., System-size dependence of strangeness pro-
duction in nucleus–nucleus collisions at √sN N = 17.3 GeV, Phys. Rev. Lett. 94 
(2005) 052301, arXiv:nucl-ex/0406031.

[19] NA49 Collaboration, C. Alt, et al., Energy dependence of φ meson production 
in central Pb+Pb collisions at √sN N = 6 to 17 GeV, Phys. Rev. C 78 (2008) 
044907, arXiv:0806.1937 [nucl-ex].

[20] NA50 Collaboration, B. Alessandro, et al., φ production in Pb–Pb collisions at 
158-GeV/c per nucleon incident momentum, Phys. Lett. B 555 (2003) 147–155;
NA50 Collaboration, B. Alessandro, et al., Phys. Lett. B 561 (2003) 294 (Erra-
tum).

[21] NA60 Collaboration, K. Banicz, et al., φ production in In–In collisions at 158-A-
GeV, Eur. Phys. J. C 64 (2009) 1–18, arXiv:0906.1102 [hep-ex].

[22] NA60 Collaboration, R. Arnaldi, et al., A comparative measurement of φ →
K + K − and φ → μ+μ− in In–In collisions at the CERN SPS, Phys. Lett. B 699 
(2011) 325–329, arXiv:1104.4060 [nucl-ex].

http://refhub.elsevier.com/S0370-2693(17)30115-6/bib42617A61766F763A323031316E6Bs1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib42617A61766F763A323031316E6Bs1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib42617A61766F763A323031316E6Bs1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib426F7273616E79693A323031306270s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib426F7273616E79693A323031306270s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib426F7273616E79693A323031306270s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib426F7273616E79693A32303130636As1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib426F7273616E79693A32303130636As1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib426F7273616E79693A32303130636As1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib416363617264693A32303032696Bs1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib416363617264693A32303032696Bs1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib53616C6761646F3A323031317763s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib53616C6761646F3A323031317763s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib53616C6761646F3A323031317763s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib4272616E64743A32303134767661s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib4272616E64743A32303134767661s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib4272616E64743A32303134767661s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib417273656E653A323030346661s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib417273656E653A323030346661s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib417273656E653A323030346661s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib4261636B3A323030346A65s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib4261636B3A323030346A65s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib4261636B3A323030346A65s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib414C4943453A323031327873s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib414C4943453A323031327873s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib414C4943453A323031327873s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib414C4943453A323031326D6As1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib414C4943453A323031326D6As1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib414C4943453A323031326D6As1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib4162656C65763A32303134647361s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib4162656C65763A32303134647361s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib4162656C65763A32303134647361s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib4164616D3A32303136646175s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib4164616D3A32303136646175s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib4164616D3A32303136646175s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib4164616D3A32303136646175s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib417273656E653A323030347578s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib417273656E653A323030347578s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib417273656E653A323030347578s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib4261636B3A323030336878s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib4261636B3A323030336878s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib4261636B3A323030336878s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib526166656C736B693A313938327075s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib526166656C736B693A313938327075s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib53686F723A313938347569s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib53686F723A313938347569s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib4B6F63683A313938367564s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib4B6F63683A313938367564s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib416C743A323030347763s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib416C743A323030347763s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib416C743A323030347763s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib416C743A323030386976s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib416C743A323030386976s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib416C743A323030386976s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib416C657373616E64726F3A323030336779s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib416C657373616E64726F3A323030336779s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib416C657373616E64726F3A323030336779s2
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib416C657373616E64726F3A323030336779s2
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib42616E69637A3A323030396161s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib42616E69637A3A323030396161s1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib41726E616C64693A323031316E6Es1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib41726E616C64693A323031316E6Es1
http://refhub.elsevier.com/S0370-2693(17)30115-6/bib41726E616C64693A323031316E6Es1


212 ALICE Collaboration / Physics Letters B 768 (2017) 203–217

[23] STAR Collaboration, B. Abelev, et al., Measurements of φ meson production in 
relativistic heavy-ion collisions at RHIC, Phys. Rev. C 79 (2009) 064903, arXiv:
0809.4737 [nucl-ex].

[24] PHENIX Collaboration, S.S. Adler, et al., Production of φ mesons at mid-rapidity 
in √sN N = 200 GeV Au+Au collisions at RHIC, Phys. Rev. C 72 (2005) 014903, 
arXiv:nucl-ex/0410012.

[25] ALICE Collaboration, B. Abelev, et al., Light vector meson production in pp
collisions at √s = 7 TeV, Phys. Lett. B 710 (2012) 557–568, arXiv:1112.2222 
[nucl-ex].

[26] ALICE Collaboration, K. Aamodt, et al., The ALICE experiment at the CERN LHC, 
J. Instrum. 3 (2008) S08002.

[27] ALICE Collaboration, B. Abelev, et al., Performance of the ALICE experiment at 
the CERN LHC, Int. J. Mod. Phys. A 29 (2014) 1430044, arXiv:1402.4476 [nucl-
ex].

[28] ALICE Collaboration, M. Gagliardi, Measurement of reference cross sections in 
pp and Pb–Pb collisions at the LHC in van der Meer scans with the ALICE 
detector, AIP Conf. Proc. 1422 (2012) 110–116, arXiv:1109.5369 [hep-ex].

[29] ALICE Collaboration, B. Abelev, et al., J/ψ production and nuclear effects in 
p–Pb collisions at √sN N = 5.02 TeV, J. High Energy Phys. 1402 (2014) 073, 
arXiv:1308.6726 [nucl-ex].

[30] ALICE Collaboration, B. Abelev, et al., Measurement of visible cross sections in 
proton–lead collisions at √sNN = 5.02 TeV in van der Meer scans with the AL-
ICE detector, J. Instrum. 9 (11) (2014) P11003, arXiv:1405.1849 [nucl-ex].

[31] ALICE Collaboration, B. Abelev, et al., Measurement of quarkonium production 
at forward rapidity in pp collisions at √s = 7 TeV, Eur. Phys. J. C 74 (8) (2014) 
2974, arXiv:1403.3648 [nucl-ex].

[32] ALICE Collaboration, B. Abelev, et al., Measurement of inelastic, single- and 
double-diffraction cross sections in proton–proton collisions at the LHC with 
ALICE, Eur. Phys. J. C 73 (6) (2013) 2456, arXiv:1208.4968 [hep-ex].

[33] ALICE Collaboration, L. Aphecetche, et al., Numerical Simulations and Offline 
Reconstruction of the Muon Spectrometer of ALICE, 2009, ALICE-INT-2009-044.

[34] ALICE Collaboration, G. Chabratova, et al., Development of the Kalman Filter 
for Tracking in the Forward Muon Spectrometer of ALICE, 2003, ALICE-INT-
2003-002.

[35] ALICE Collaboration, Supplemental figures for “φ-Meson production at forward 
rapidity in p–Pb collisions at √sNN = 5.02 TeV and in pp collisions at √s =
2.76 TeV”, https://cds.cern.ch/record/2195308.

[36] T. Sjostrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual, J. High 
Energy Phys. 0605 (2006) 026, arXiv:hep-ph/0603175.

[37] R. Brun, F. Carminati, S. Giani, GEANT Detector Description and Simulation Tool, 
CERN-W-5013, 1994.

[38] Particle Data Group Collaboration, J. Beringer, et al., Review of Particle Physics 
(RPP), Phys. Rev. D 86 (2012) 010001.

[39] M. Oreglia, A Study of the Reactions ψ ′ → γ γ ψ , PhD thesis, SLAC, 1980, http://
search.proquest.com/docview/303036283.

[40] ALICE Collaboration, K. Aamodt, et al., Rapidity and transverse momentum de-
pendence of inclusive J/ψ production in pp collisions at √s = 7 TeV, Phys. 
Lett. B 704 (2011) 442–455, arXiv:1105.0380 [hep-ex];
ALICE Collaboration, K. Aamodt, et al., Phys. Lett. B 718 (2012) 692 (Erratum).

[41] R. Barlow, Systematic errors: facts and fictions, arXiv:hep-ex/0207026.
[42] R. Engel, J. Ranft, Hadronic photon–photon interactions at high-energies, Phys. 

Rev. D 54 (1996) 4244–4262, arXiv:hep-ph/9509373.
[43] P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes, Phys. Rev. D 82 

(2010) 074018, arXiv:1005.3457 [hep-ph].
[44] C. Buttar, D. Clements, I. Dawson, A. Moraes, Simulations of minimum bias 

events and the underlying event, MC tuning and predictions for the LHC, Acta 
Phys. Pol. B 35 (2004) 433–441.

[45] R. Field, Physics at the Tevatron, Acta Phys. Pol. B 39 (2008) 2611–2672.
[46] ALICE Collaboration, B. Abelev, et al., Production of K ∗(892)0 and φ(1020) in 

pp collisions at √s = 7 TeV, Eur. Phys. J. C 72 (2012) 2183, arXiv:1208.5717 
[hep-ex].

[47] CMS Collaboration, S. Chatrchyan, et al., Study of the inclusive production of 
charged pions, kaons, and protons in pp collisions at √s = 0.9, 2.76, and 7 TeV, 
Eur. Phys. J. C 72 (2012) 2164, arXiv:1207.4724 [hep-ex].

[48] C. Tsallis, Possible generalization of Boltzmann–Gibbs statistics, J. Stat. Phys. 52 
(1988) 479–487.

[49] X.-N. Wang, M. Gyulassy, HIJING: a Monte Carlo model for multiple jet produc-
tion in pp, pA and AA collisions, Phys. Rev. D 44 (1991) 3501–3516.

[50] S. Roesler, R. Engel, J. Ranft, The Monte Carlo event generator DPMJET-III, 
in: Advanced Monte Carlo for Radiation Physics, Particle Transport Simula-
tion and Applications. Proceedings, Conference, MC2000, Lisbon, Portugal, Oc-
tober 23–26, 2000, 2000, pp. 1033–1038, arXiv:hep-ph/0012252, http://www-
public.slac.stanford.edu/sciDoc/docMeta.aspx?slacPubNumber=SLAC-PUB-8740.

[51] ALICE Collaboration, J. Adam, et al., Production of K∗(892)0 and φ(1020) in 
p–Pb collisions at √sNN = 5.02 TeV, Eur. Phys. J. C 76 (5) (2016) 245, arXiv:
1601.07868 [nucl-ex].

[52] ALICE, LHCb Collaboration, Reference pp cross-sections for J/ψ studies in 
proton–lead collisions at √sN N = 5.02 TeV and comparisons between ALICE 
and LHCb results, http://cds.cern.ch/record/1639617, CONF-2013-013.

[53] HERA-B Collaboration, I. Abt, et al., K∗0 and φ meson production in proton–
nucleus interactions at √

s = 41.6 GeV, Eur. Phys. J. C 50 (2007) 315–328, 
arXiv:hep-ex/0606049.

[54] PHENIX Collaboration, A. Adare, et al., φ meson production in d+Au colli-
sions at √sN N = 200 GeV, Phys. Rev. C 92 (4) (2015) 044909, arXiv:1506.08181 
[nucl-ex].

The ALICE Collaboration

J. Adam 40, D. Adamová 83, M.M. Aggarwal 87, G. Aglieri Rinella 36, M. Agnello 111, N. Agrawal 48, 
Z. Ahammed 132, S.U. Ahn 68, I. Aimo 94,111, S. Aiola 136, M. Ajaz 16, A. Akindinov 58, S.N. Alam 132, 
D. Aleksandrov 100, B. Alessandro 111, D. Alexandre 102, R. Alfaro Molina 64, A. Alici 105,12, A. Alkin 3, 
J.R.M. Almaraz 119, J. Alme 38, T. Alt 43, S. Altinpinar 18, I. Altsybeev 131, C. Alves Garcia Prado 120, 
C. Andrei 78, A. Andronic 97, V. Anguelov 93, J. Anielski 54, T. Antičić 98, F. Antinori 108, P. Antonioli 105, 
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84 Oak Ridge National Laboratory, Oak Ridge, TN, United States
85 Petersburg Nuclear Physics Institute, Gatchina, Russia
86 Physics Department, Creighton University, Omaha, NE, United States
87 Physics Department, Panjab University, Chandigarh, India
88 Physics Department, University of Athens, Athens, Greece
89 Physics Department, University of Cape Town, Cape Town, South Africa
90 Physics Department, University of Jammu, Jammu, India
91 Physics Department, University of Rajasthan, Jaipur, India
92 Physik Department, Technische Universität München, Munich, Germany
93 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
94 Politecnico di Torino, Turin, Italy
95 Purdue University, West Lafayette, IN, United States
96 Pusan National University, Pusan, South Korea
97 Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
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