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In this paper, we tackle the complexity of coexisting disorder and Coulomb electron-electron interactions
(CEEIs) in solids by addressing a strongly disordered system with intricate CEEIs and a screening that changes
both with charge carrier doping level Q and temperature T . We report on an experimental comparative study of
the T dependencies of the electrical conductivity σ and magnetic susceptibility χ of polyaniline pellets doped
with dodecylbenzenesulfonic acid over a wide range. This material is special within the class of doped polyaniline
by exhibiting in the electronic transport a crossover between a low-T variable range hopping (VRH) and a high-T
nearest-neighbor hopping (NNH) well below room temperature. Moreover, there is evidence of a soft Coulomb
gap �C in the disorder band, which implies the existence of a long-range CEEI. Simultaneously, there is an onsite
CEEI manifested as a Hubbard gap U and originating in the electronic structure of doped polyaniline, which
consists of localized electron states with dynamically varying occupancy. Therefore, our samples represent an
Anderson-Mott insulator in which long-range and short-range CEEIs coexist. The main result of the study is
the presence of a crossover between low- and high-T regimes not only in σ (T ) but also in χ (T ), the crossover
temperature T ∗ being essentially the same for both observables over the entire doping range. The relatively large
electron localization length along the polymer chains results in U being small, between 12 and 20 meV for the
high and low Q, respectively. Therefore, the thermal energy at T ∗ is sufficiently large to lead to an effective
closing of the Hubbard gap and the consequent appearance of NNH in the electronic transport within the disorder
band. �C is considerably larger than U , decreasing from 190 to 30 meV as Q increases, and plays the role of an
activation energy in the NNH.

DOI: 10.1103/PhysRevB.96.035104

I. INTRODUCTION

Electron localization in solids can be a consequence both of
disorder [1,2] and of Coulomb electron-electron interactions
(CEEIs) [3–5], the former mechanism being known as the
Anderson localization and the latter as the Mott localization.
It is well known that either of these phenomena can strongly
influence the transport and/or magnetic properties of a ma-
terial, possibly even leading to a metal-insulator transition
(MIT) [5–7]. Disorder in solids corresponds to deviations from
long-range periodicity and arises from the presence of impu-
rities and/or intrinsic structural imperfections. CEEIs can be
subdivided into short-range interactions between electrons on a
same impurity (onsite or Hubbard interaction) and long-range
interactions between electrons on different impurities [8–10].
In real materials, disorder and CEEIs often coexist, and such
systems, when on the insulating side of the MIT, are referred to
as Anderson-Mott insulators [10–12]. The localizing effects of
disorder and of CEEIs, as well as their interplay [13–19], are
of a considerable interest in the physics of strongly correlated
electrons, and it is also worthwhile to remark that many
of the related concepts can be extended beyond solid state
physics, e.g., to the field of ultracold atoms [20–23]. The
physics of Anderson-Mott insulators is such that one has to
simultaneously consider the effects of disorder and of CEEIs,
which may lead to various complications. Some of these
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complications may be overcome by applying the following
general principle: at high electron densities, electrons screen
the random potential due to impurities, which weakens the
disorder-induced localization. However, this simplification is
often not sufficient since CEEIs may also contribute to electron
localization. Therefore, sometimes one has to distinguish be-
tween the effects of disorder, long-range Coulomb interactions
(LIs), and short-range Coulomb interactions (SIs).

Clarifying the coexistence of disorder and CEEIs, and their
interplay, remains fundamental for the understanding of many
(novel) materials, which is experimentally often challenging.
The disorder band of a doped semiconducting material, formed
from the dopant states around the Fermi energy EF, has for long
been a benchmark for studying the combined effects of CEEIs
and disorder on electrons. It has been well established [24] that,
in such systems, LIs lead to the Altshuler-Aronov corrections
to the density of states for single-particle excitations at EF

on the metallic side of the MIT, whereas on the insulating
side, LIs lead to a soft Coulomb gap �C at EF (and hopping
conductivity within the disorder band or across the band gap
in which the disorder band is situated). On the other hand,
SIs lead to the formation of localized magnetic moments and
the Kondo effect on the metallic side, and to the Hubbard
splitting of the disorder band on the insulating side of the MIT.
Thus, both LIs and SIs can introduce gaps in the spectrum of
single-particle excitations. �C is always soft and centered at
EF, unlike the Hubbard gap U which can be either hard or soft,
and is centered at EF only in the case of the half-filling of the
disorder band [8].
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In this paper, we tackle the complexity of coexisting
disorder and CEEIs by addressing the results of systematic
transport and magnetic measurements on a strongly disordered
system with intricate CEEIs and a screening that changes
both with Q and T . This system is polyaniline (PANI) doped
with dodecylbenzenesulfonic acid (DBSA), which has been
shown to display, unlike other variants of doped PANI, rich
transport properties [25] that lead to a confirmation of the
Fogler-Teber-Shklovskii (FTS) model [26] of the hopping
transport of localized electrons in disordered networks of chain
conductors. The FTS model considers the effects of �C and
predicts different hopping transport exponents α as a function
of T and disorder level, accounting for both α < 1 [variable
range hopping (VRH)] and α = 1 [nearest-neighbor hopping
(NNH)]. In three dimensions (applicable to our samples),
the VRH α can be either 1

2 , 2
5 , or 1

4 , with α = 1
4 appearing

only over a small part of the T versus disorder level plane.
The mentioned experimental verification [25] comprises not
only VRH, commonly found in conducting polymers, but also
NNH which is rather rare in this class of materials below
room temperature [27]. The observed crossover between VRH
and NNH at T < 300 K is a consequence of a quite large
localization length L‖ along the polymer chains, which results
in a small U and allows for NNH to appear at relatively
low T (in PANI-DBSA, U is actually an on-mer CEEI).
The applicability of the FTS model to PANI-DBSA suggests
the existence of another CEEI, that is, an LI parametrized
via �C, which is solely a consequence of the presence of
disorder [28,29]. Namely, the Coulomb interaction is not
screened at long wavelengths and low frequencies due to the
scarcity of mobile charge in a disordered system, which is
particularly pronounced at low T since the hopping transport
is phonon assisted. Thus, the Coulomb interaction remains
both strong and long ranged, which consequently suppresses
the density of states for single-particle excitations around EF

and leads to �C. Since all our samples pertain to the case
of an intrinsic half-filling of the disorder band, �C and U

are both centered at EF and can therefore easily leave their
footprints in the behavior of electrons around EF. Hence, our
samples represent a system with disorder-induced localized
electron states, in which the screening depends on Q and/or
T (via the concentration of delocalized charge), and where an
LI and an SI coexist. This leaves signature in the magnetic
and transport properties that we probe in order to study the
mentioned peculiarities of Anderson-Mott insulators.

Our samples are pressed pellets of own-made PANI-DBSA,
doped over a wide range and covering a room-temperature
conductivity (σRT) range of 10−10–103 S/m [30]. This means
that we have been able to study the electron and spin
dynamics of (de)localization from a virtually nonconducting
to a relatively well-conducting state of the same material. We
have been able to resolve �C and U , in this way inferring
the roles of the LI and SI in the (de)localization phenomena,
which should be applicable to other Anderson-Mott insulators
at least to a certain extent. While �C can be estimated from
σ (T ) characteristics, U is more closely related to χ (T ) data.
Both σ (T ) and χ (T ) undergo a crossover between distinct
low- and high-T regimes, and the temperature T ∗ of this
crossover is essentially the same for the two quantities over
the whole doping range. In the case of σ (T ), the low-T regime

corresponds to a VRH with α being either 1
2 or 2

5 , and the
high-T regime to an NNH marked by α = 1. In χ (T ), the
crossover is seen as a kink in its paramagnetic part, reflecting
a sudden change in the concentrations of the Curie (localized)
spins and the Pauli (delocalized) spins, one at the expense of
the other. The fact that T ∗ is the same for both spin and charge
dynamics implies that these are interrelated.

The main features of our system are a robust �C and
a small U , both decreasing with increasing Q but in quite
different ways. �C depends on Q strongly due to the screening
effects, whereas U depends on Q weakly and this dependence
appears only because the onsite localized electron wave
function is spread over a mer [31]. By addressing the VRH-
NNH crossover using our previously established method of
analyzing hopping transport σ (T ) curves [32], we find that
�C ranges between 30 meV (350 K) at high Q to 190 meV
(2200 K) at low Q. The measured χ (T ) curves are analyzed
within the framework of the Kamimura model [33,34] of χ for
the Anderson localization in the presence of an onsite CEEI.
It follows from this analysis that the thermal energy at T ∗ is
sufficiently large to diminish the effects of the SI, removing
energy restrictions for the occupancy of the localized states.
This leads to an effective closing of the Hubbard gap U and
the consequent appearance of NNH in the electronic transport
within the disorder band. Using this picture, we estimate that
U is between 12 meV (145 K) at high Q and 20 meV (230 K)
at low Q. The former value of U corresponds to L‖ ∼ 8.5 Å
and the latter to L‖ ∼ 6.4 Å, which is consistent with the
lengths of one mer of doped PANI [35]. From our χ (T )
data, we have also calculated both the density of localized
spins and the effective density of states at EF for delocalized
spins, separately for the low- and high-T regimes, and these
results support the conclusion of an enhanced delocalization of
electrons when the T ∗(Q) boundary is crossed by heating up.
Despite this enhanced delocalization, our samples remain on
the insulating side of the MIT; at T ∗(Q), strictly speaking,
they exhibit only an insulator-insulator transition between
an Anderson-Mott-Hubbard insulator and an Anderson-Mott
insulator.

II. EXPERIMENT

As explained in detail in Ref. [30], the PANI-DBSA
powder was produced by us using a standard oxidative
polymerization of aniline and a subsequent equilibrium doping
of the obtained undoped PANI in aqueous solutions of different
DBSA concentrations. The doping level Q = 4qS/qN, where
qS and qN are the concentrations of sulfur and nitrogen in
PANI-DBSA, respectively, was determined by combining the
proton elastic backscattering spectroscopy with the particle
induced x-ray emission technique. Doped samples of eight
fixed values of 0.13 � Q � 3.39 have been studied, covering
σRT in the range ∼10−5–103 S/m, whereas the Q = 0 material
has had a barely measurable σRT ∼ 10−10 S/m.

In Refs. [25,30], it is discussed extensively that PANI-
DBSA is a peculiar material in which the dopant content
can exceed the concentration of the protonation sites (the
full protonation corresponds to Q = 2). Since the measured
x-ray diffraction patterns reveal that our PANI-DBSA is fully
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amorphous for all Q [30], the exact spatial distribution of
the extra dopant is not known. However, it is evident that
σ continues to increase with increasing Q even for Q > 2,
albeit much slower than for Q � 2. Such a behavior has
been assigned to an ordering of the hopping landscape by
a homogenization of the localization potential [25], and this
picture has led to confirming the FTS model in which the
hopping transport exponents depend on disorder level [26].

For measurements of electrical transport, polymer powder
was pressed into ∼8 × 5 × 1 mm3 rectangular pellets under
∼90 MPa. Electrical contacts in the four-point configuration
were made by first depositing a thin graphite layer onto the
contact area and then applying a silver paste. This resulted in
contact resistances that did not exceed the sample resistance
irrespective of its value. For the applied currents used in our
experiment (0.01–10 μA; typically 0.1 A/m2), we confirmed
the Ohmicity of the current-voltage response for each sample
over the whole investigated T range. Measurements were
carried out in a closed-cycle refrigerator, from the lowest
achievable temperature of ∼10 K up to room temperature,
using a constant dc bias current and a nanovoltmeter with a
10-G� input resistance and a maximum input signal of 12 V.

A Quantum Design SQUID magnetometer of a resolution
down to 10−6 emu was used to measure χ in the temperature
range 10–300 K. PANI-DBSA cylinders of a 5-mm height and
5 mm in diameter had been formed by pressing, mounted onto a
long polyethylene straw and then placed into the magnetometer
for measurements of magnetic moment by using an isothermal
6-cm scan technique [36]. No departure from linearity in
magnetic moment versus magnetic field curves was found.
Measured background signal from the sample holder was
subtracted from raw data. DBSA is a large molecule, its
diamagnetic contribution due to atomic and ionic cores being
of the order of that corresponding to the PANI mer, and
the paramagnetic part of χ was extracted by subtracting the
Q-dependent diamagnetic contribution as discussed in detail
in Ref. [30].

III. RESULTS AND DISCUSSION

The undoped form of PANI, emeraldine base (EB), is
depicted in Fig. 1(a). The dots next to the nitrogen atoms
represent electron lone pairs which are not involved in the
covalent bonds, and it can be seen that there are no empty states
for electronic transport along the polymer; the total spin of this
system is zero. If EB is treated by an acid H+A−, where A− is
an anion, the consequent protonation transforms the quinone
ring into a benzene ring; simultaneously, the imine nitrogen
becomes amine nitrogen, which results in a hole (+) and an
electron (•) at the protonated amine sites, as shown in Fig. 1(b)
for the fully protonated PANI [37,38]. Hence, now there
are empty states available for electronic transport (which in
PANI-H+A− commonly occurs via hopping) [27]. Notably, all
our samples represent the case of the half-filling of the disorder
band because each doping site is intrinsically half-filled, the
difference between the samples being only in the density of the
doped sites. Moreover, each protonated site carries a spin 1

2 and
this system is not spinless. When charge hops between these
states, some become empty, some singly occupied, and some
doubly occupied, and these configurations are energetically

N N N N

HH

n

N N N N

HH

n

H H

A- A-

(a) EB (undoped PANI)

(b) fully protonated PANI-H+A-

S OH

O

O

C12H25

(C) DBSA molecule

FIG. 1. (a) EB (undoped PANI). The dots represent electron lone
pairs on the N atoms. (b) Fully protonated PANI-H+A−, obtained
by a reaction of EB with an acid H+A−. The “+” symbols on the
protonated N atoms depict holes. (c) DBSA molecule. When DBSA
protonates PANI, the C12H25 tail points outwards from the PANI
backbone.

different because of the onsite CEEI represented by U .
Therefore, it is not unreasonable to expect that, in this structure,
spin properties and charge transport might not be independent,
and that this interconnection might be observable in transport
and magnetic measurements. In Fig. 1(c), we show the DBSA
molecule that for our samples provides A−. This is a large
molecule which protonates EB effectively while its long tail,
pointing outwards, plays an important role in the entanglement
of the polymer backbones [30,39]. The fact that PANI-DBSA
is fully amorphous and that the electronic transport in this
material is the characteristic of a hopping between localized
states implies a highly disordered system subjected to the
Anderson localization, in which the existence of �C has been
demonstrated [25]; moreover, the screening varies as a function
of Q and T , and there is also a finite U . All of this makes our
samples a system suitable for an experimental study of the
topics outlined in Introduction.

A. Electrical conductivity and the soft Coulomb gap

Generally, the electrical conductivity of doped PANI de-
pends on T as [27]

σ (T ) = ηα exp[−(Tα/T )α] , (1)

which is characteristic of a hopping charge transport. For
VRH, α < 1, and for NNH, α = 1, whereas Tα and ηα are
related to energy scales and disorder at a given α [25]. At low
T , one expects VRH to take place, while NNH may appear
as T is increased. The most studied form of PANI, where
the dopant is HCl, almost always exhibits VRH up to room
temperature [32] and only fully protonated samples have been
found to occasionally exhibit a crossover to NNH [40]. In
contrast, PANI-DBSA undergoes this crossover well below
room temperature over the whole studied doping range, as
shown in detail in Ref. [25], and here we address more closely
the crossover line T ∗(Q).
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FIG. 2. (a) Experimental log σ vs T −1/2 for Q = 0.38, exhibiting
a linear behavior for T below T ∗ (marked by an arrow) but not
when T > T ∗. (b) log σ vs T −2/5 for Q = 3.39 is also linear only
for T < T ∗. Insets to (a) and (b): zoom into the vicinity of T ∗. (c)
Plots of log σ vs T −1 for the samples from (a) and (b). These plots
are linear for T > T ∗ regardless of the low-T value of α. Inset to
(c): expanded view of the linear behavior at T > T ∗ for Q = 0.38.
Experimental data are in all the plots shown by symbols, and the
linear dependencies are outlined by solid lines.

The most straightforward way to analyze experimental data
with regard to Eq. (1) is to plot them as log σ = log e ln σ vs
T −α , where α has been chosen according to a given model
prediction. If the experimental data follow the law given by
Eq. (1) with a hopping exponent β that may or may not be equal
to α, σ (T ) = ηβ exp[−(Tβ/T )β], there are two possibilities.
The derivative

S = d ln σ

d
(

1
T α

) = −T
β

β

β

α
T α−β ∝ −T α−β (2)

is for β = α equal to −T α
α = const and the plot is linear. If

β �= α, the plot is nonlinear, and it depends on the relation
between α and β whether the experimental points will exhibit
an upward or a downward curvature.

Typical σ (T ) curves of our PANI-DBSA are shown in Fig. 2
by symbols. In Fig. 2(a), the log σ of a low-Q curve (Q =
0.38) is plotted against T −1/2 (i.e., α = 1

2 ), and in Fig. 2(b),
the horizontal scale for a high-Q curve (Q = 3.39) is T −2/5

(i.e., α = 2
5 ). Both these curves are linear at low T , whereas

this does not hold above a certain Q-dependent T ∗ (shown by
arrows), as seen from the mismatch of the symbols and the
straight solid lines. In the insets, we zoom into the vicinity
of T ∗ in order that the high-T departures of the experimental

10 100

0 1 2 3

0.5

1.0

α=0.53 0.03

α=0.48 0.03α=0.42 0.02

α=0.41 0.02

Q=3.39
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Q=1.10
Q=0.38

T*

Lo
g

Σ 
(a

.u
.)

T (K)

α=1.10
0.15

α
=

1.01
0.07

α=0.83
0.15α=0.93

0.10

α

α (T < T*)
α (T >T*)

2/5
1/2

Q

(a)

(b)

FIG. 3. (a) Experimental log 	 = ∂ ln σ/∂ ln T vs log T for Q =
0.38, 1.10, 2.09, and 3.39 (symbols). At T = T ∗, the exponent α

which is given by the negative slope of the linear dependence (solid
lines) [see Eq. (1)] changes from ∼0.4 or ∼0.5 (at T < T ∗) to ∼1
(at T > T ∗), indicating different transport mechanisms below (VRH)
and above (NNH) T ∗. (b) Calculated values of α (symbols) plotted
against Q. Below T ∗, α is close to 1

2 at low Q and to 2
5 at high Q.

For T > T ∗, α is close to 1 irrespective of Q.

σ (T ) from the low-T straight lines are more clearly resolved.
In both cases, |S| decreases with increasing T , which according
to Eq. (2) implies β > α for T > T ∗. These σ (T ) demonstrate
the general property of charge transport in PANI-DBSA: VRH
at low T (with α = 1

2 at low Q, and α = 2
5 at high Q) and a

more steep temperature dependence at T > T ∗. In Fig. 2(c),
we use the data from Figs. 2(a) and 2(b) to address the high-T
hopping exponent by choosing the horizontal scale to be 1/T

(hence, α = 1 irrespective of the value of the low-T hopping
exponent). It can be seen from the match of the symbols and
the straight solid lines that both plots are linear for T > T ∗
(this is for Q = 0.38 better seen in the inset). At T < T ∗, the
experimental points show a decrease of |S| as T decreases,
which according to Eq. (2) confirms that the low-T hopping
exponents are smaller than unity.

The hopping exponents and crossovers between the regimes
they signify can be analyzed from a different angle as well,
by carrying out a derivative 	 = ∂ ln σ/∂ ln T of the data
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and plotting log 	 against log T . It follows from Eq. (1) that
these plots should be linear, with a slope equal to −α, which
provides a numerical method for calculating α directly from
the data. The method is demonstrated in Fig. 3(a), where we
plot experimental log 	 against log T for Q = 0.38, 1.10, 2.09,
and 3.39 (symbols), and fit the linear dependence (solid lines)
to the data in two discernible ranges (T < T ∗ and T > T ∗).
These results confirm the conclusions drawn on the basis of
log σ vs T −α plots. For T < T ∗, the hopping exponent is
1
2 for two of these Q values (0.38 and 1.10), and 2

5 for the
other two (Q = 2.09 and 3.39). For T > T ∗, the slopes of the
linear fits have larger errors due this T range being smaller,
but they are for all the samples close to −1, which is again
in agreement with the notion that this regime corresponds to
NNH. Furthermore, the crossover temperatures are here better
defined than in Fig. 2, which allows us to determine them
more accurately. The values of α, calculated from log 	 vs
log T plots for all the samples, are shown in Fig. 3(b), and the
corresponding values of T ∗(Q) are listed in Table I.

Hence, the σ characteristics of our differently doped
samples have been analyzed using three independent methods
which have given consistent results. First, log σ vs T −α plots
have been used to deduce the low-T values of α and the upper
limit of the linear behavior. Second, α = 1 has been fixed for
these plots; the linearity has been confirmed on the high-T side
and the low-T limit of this behavior has been identified. Third,
the hopping exponents and crossovers between them have been
addressed numerically by constructing and analyzing log 	

against log T plots. Having these results for α and T ∗(Q), we
now turn to the inferences of our findings.

The fact that α assumes the values of 1
2 , 2

5 , and 1 implies the
existence of �C in our PANI-DBSA [25] because this is at the
heart of the FTS model [26]. There is a question of whether
one could extract �C from our σ (T ) data, similarly as this
was done from crossovers between different VRH regimes
(different α < 1) for HCl-doped PANI [32]. This method is

based on addressing the energy range (symmetrical around
EF) containing states involved in the hopping transport, which
is given by

εα = αkBT

(
Tα

T

)α

(3)

and plays the role of an activation energy [28]. The exponents
α = 2

5 and 1
2 reflect a reduction of the density of states for

charge transport, originating in the opening of a linear or
quadratic soft gap, respectively, for the energies E satisfying
|E − EF| � �C. When εα and �C are of the same order, a
crossover between α = 1

2 or 2
5 (low T ) and α = 1

4 or α = 1
(high T ) occurs at some T ∗ [41]. Hence, �C can be estimated
from

�C ≈ εγ (T ∗) = εδ(T ∗), (4)

where γ and δ are hopping transport exponents below and
above T ∗, respectively. An elegant way to account for Eq. (4)
directly from the data is to use that εα = kBT 	(T ) regardless
of α, so Eq. (4) can be written as

�C ≈ kBT ∗	(T ∗), (5)

which can be used to read �C directly from experimental
curves. The results of applying Eq. (5) to the data are plotted
in Fig. 4 by triangles. On the other hand, by inserting δ = 1
into Eq. (4), we obtain

�C ≈ kBT1, (6)

that is, �C represents the activation potential of the NNH in
our samples. This finding can also be supported by qualitative
arguments, as follows. If energy restrictions for the hopping
between nearest neighbors are marginal (we shall address
this in more detail in Sec. III B), the potential an electron
has to overcome in order to hop is the (screened) Coulomb
interaction with the hole left behind, and this is what underlies
the concept of �C in a disordered system [28,42]. In Fig. 4,

TABLE I. Parameters extracted from experimental χp(T ) for different Q: n(EF), NC, k−1
B �NC/�n(EF), and L‖ =

√
h̄2�n(EF)/8me�NC.

Ranges of linearity in χp(T )T are indicated, and T ∗ extracted from σ (T ) is also listed.

T ∗ T range of n(EF) NC 10−3 k−1
B �NC/

from σ (T ) linear χp(T )T [states(eV)−1 [states �n(EF) L‖
Q (K) (K) (2 rings)−1] (2 rings)−1] (K) (Å)

3.39 146 10–170 4.24 19.03 152 8.50
± 5 170–300 4.93 10.00

2.92 196 10–190 3.99 21.02 193 7.56
± 8 190–300 4.94 5.17

2.60 208 10–200 3.22 26.64 204 7.38
± 5 200–300 4.15 10.27

2.09 213 10–200 2.29 33.63 201 7.43
± 8 200–300 3.49 12.80

2.06 213 10–190 2.97 29.32 197 7.48
± 8 210–300 3.84 14.54

1.10 219 10–200 3.84 26.77 211 7.23
± 10 210–300 5.18 2.32

0.38 221 10–220 0.53 11.83 232 6.88
± 15 220–300 0.83 5.81
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FIG. 4. Coulomb gap in PANI-DBSA, determined by two inde-
pendent methods as explained in the text.

we plot by circles �C extracted from the data according to
Eq. (6), and these results show a good agreement with those
from the application of Eq. (5). It can be seen in Fig. 4
that �C decreases with increasing Q, dropping strongly from
∼190 meV (2200 K) at Q = 0.13 to ∼30 meV (350 K) at
Q = 3.38. We believe that this appreciable decrease arises
from an enhancement of the screening with increasing Q,
which diminishes the disorder potential and reduces the
corresponding Anderson localization.

B. Magnetic susceptibility and the onsite Coulomb interaction

The above analysis of σ (T ) provides valuable information
but still leaves certain questions unanswered. While the
decrease of �C as Q grows implicates an enhancement of the
screening and a consequent weakening of the disorder-induced
localization, the reason for the crossover between VRH and
NNH remains unclear when only these data are considered. In
particular, an important part of the energy restrictions for the
hopping between the localized states (which can be empty,
singly or doubly occupied) is expected to originate in the
onsite CEEI given by U (which opens a Hubbard gap). Since
differently occupied sites carry different spin (0 or 1

2 ), a natural
way to approach this matter is to measure χ and compare these
results to those for σ .

Measured χ (T ) curves for different Q are shown in Fig. 5,
where they are plotted as χT vs T (mole is defined per two
rings, see Fig. 1). These plots are approximately linear, which
implies [43–46]

χ (T ) = C1

T
+ C2 , (7)

where C1 and C2 are independent of T . The first term on
the right-hand side of Eq. (7) is the Curie susceptibility cor-
responding to localized spins at singly occupied protonation
sites (see Fig. 1). The second term, C2, comprises not only
a strong diamagnetic component originating in atomic and
ionic cores, but also a Pauli-type paramagnetic contribution of
delocalized spins that hop from one localized state to another.
Some of the curves exhibit cusps at temperatures of about
50 K, which is of little relevance for the current topic and
has been discussed elsewhere [47,48]. When the diamagnetic
contribution, which is of no importance for the behavior of
localized and delocalized spins, is subtracted as explained
in Ref. [30], one obtains the paramagnetic part χp of χ , as

0 50 100 150 200 250 300
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-6

-4

-2

0

Q=0
Q=0.38
Q=1.10
Q=2.06
Q=2.09
Q=2.60
Q=2.92
Q=3.39

χT
(1

0-2
em

u
K

/m
ol

)

T (K)

FIG. 5. χT vs T for different Q. Note that the intercept for
the Q = 0 sample (black solid circles) is zero, i.e., there is no
paramagnetism originating in localized spins.

we exemplify in Fig. 6 by plotting these data (symbols) for
Q = 0.38, 1.10, 2.09, and 3.39. A closer inspection of these
plots reveals that there are actually two ranges of linearity
in χpT (indicated by the solid fit lines), with a crossover
represented by a kink at a certain Q-dependent temperature
T ∗ (marked by arrows). In Fig. 7, we plot this crossover
temperature against Q by squares, and compare it to T ∗(Q) of

0 100 200 300

0

5

10

Q=2.09

Q=0.38

T *

Q=3.39

Q=1.10

χ pT
(1

0-2
em

u
K

/m
ol

)

T (K)
FIG. 6. Experimental χpT vs T (symbols) for Q = 0.38 and 1.10

(where α = 1
2 in VRH), and Q = 2.09 and 3.39 (where α = 2

5 in
VRH). For clarity, the Q > 0.38 plots are offset vertically (each by 2
emuK/mol from the previous one). The arrows point to the positions
of the crossover temperatures T ∗, whereas the straight lines represent
fits in the ranges of linearity. The cusp at T ∼ 50 K for Q = 0.38
is of little relevance for the current topic and has been addressed
elsewhere [47,48]. The physical parameters determining the linear
fits are discussed in the text and listed in Table I.
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FIG. 7. Crossover temperature T ∗ as a function of Q, determined
by three independent methods as explained in the text. Error bars are
of the order of the symbol size.

the crossover between VRH and NNH, extracted from σ (T )
(triangles). Evidently, there is a good agreement between the
crossover temperatures in σ (T ) and χ (T ) over the whole
Q range, which suggests the same underlying physics and
justifies the use of the same symbol T ∗. The circles represent
T ∗ obtained by a third method, which is discussed later.
A similar behavior was found for two HCl-doped PANI
samples close to the full protonation [40], but these data were
insufficient for establishing a more detailed physical picture.
Less pronounced kinks in χpT vs T plots were also found
for HCl-doped PANI at crossovers between different VRH
mechanisms (i.e., different α < 1), and the same mechanism,
discussed below, underlies these crossovers as well (although
they are less sharp than the crossover between VRH and
NNH) [48].

From the plots demonstrated in Fig. 6, we can extract,
separately for T < T ∗ and T > T ∗, several parameters
which are useful in the subsequent discussion. Since the
paramagnetic contribution of delocalized electrons is of a
Pauli type, the slope C2 is equal to μ2

Bn(EF), where μB

is the Bohr magneton and n(EF) is an effective density of
states of delocalized electrons around EF. The intercept C1

is equal to NCμ2
B/kB because it corresponds to the Curie

paramagnetism of localized spins 1
2 (the concentration of

which is NC). In Table I, we list the calculated values
of n(EF) and NC for all Q. Other calculated quantities in
Table I are k−1

B �NC/�n(EF) [where �n(EF) = n(EF; T >

T ∗) − n(EF; T < T ∗), and �NC = NC(T < T ∗) − NC(T >

T ∗)], and the longitudinal localization length L‖ (along the
polymer chains).

One can note in Table I that there are two distinct regimes
in n(EF): one for Q � 1.10 (where α = 1

2 in the VRH), and
one for Q > 1.10 (where α = 2

5 in the VRH). In each of these
regimes, n(EF) increases with increasing Q but n(EF) is for
Q = 1.10 larger than that for Q ≈ 2 although the conductivity
is in the former case lower. However, we recall that these
regimes differ in the structure of the Coulomb gap which is,
as a function of energy, in the former case quadratic and in
the latter case linear. This presumably affects the behavior of
electrons close to EF, which calls for a further modeling that
is out of the main focus of this paper. On the other hand, the
process at T ∗, which is accounted for by �n(EF) and �NC, is
insensitive to this difference, as follows. When the values of
k−1

B �NC/�n(EF) from Table I are plotted on Fig. 7 (circles),
it becomes clear that this quantity actually represents the same
T ∗ obtained directly from the σ (T ) and χp(T )T curves. This
leads to a conclusion that the thermal energy kBT ∗ plays a
decisive role in the (de)localization of spins at the crossover
between VRH and NNH. As T crosses T ∗ by heating up,
Curie (localized) spins become delocalized, turning into Pauli
spins, and the opposite happens in cooling down. Hence, NC

decreases (increases) by �NC, whereas n(EF) simultaneously
increases (decreases) by �n(EF), the energy scale for this
process being kBT ∗. For this to occur, the differences between
electron energies associated with the occupancy of a localized
state must be important for T < T ∗ and marginal for T > T ∗.
We believe that a viable explanation for that can be found
within the framework of the Kamimura model of χp for a
system with the Anderson localization and onsite CEEI, which
has been experimentally verified in a number of cases for doped
semiconductors [33,34] and also applied to treat the coexis-
tence of Curie-type and Pauli-type contributions in conducting
disordered PANI with weak CEEIs [33,34]. In this model [33],

χp = 2μ2
B

kBT

∑
j

[
2 + exp

(
EF − Ej − Uj

kBT

)
+ exp

(
−EF − Ej

kBT

)]−1

. (8)

A hop of an electron to a singly occupied localized state costs
an energy U ; this sets restrictions in the sense that hopping
to nearest neighbors is not necessarily the most favorable and
the charge transport is consequently VRH. Simultaneously,
the leading term in Eq. (8) is χ = NSμ

2
B/kBT , where NS

is the number of singly occupied states. This holds for any
relation between U and the width W of the impurity band.
When W > U and T increases, the Curie contribution is
suppressed and a Pauli-type behavior strengthens, becoming
dominant at T ∼ U/kB. At kBT � U,W , when electrons
become nondegenerate (hot), a Curie-type χp(T ) reappears
but with a replacement of NS by the total number of
electrons; this regime is obviously not reached in our
experiment.

In this picture, our samples are in the regime of W > U ,
and the crossover between the VRH and NNH occurs at
T ∗ ∼ U/kB. The fulfillment of this criterion implies that kBT ∗
is large enough to diminish the energy restrictions for the
hopping between differently occupied sites, which effectively
closes the Hubbard gap and, in turn, sets NNH as the most
efficient charge transfer mechanism. It can be seen in Fig. 7
that T ∗, and consequently U , exhibits a weak decrease with
increasing Q. If U were an on-atom SI, it should not depend
on Q at all, but we recall that U is an on-mer SI, corresponding
to more extended electron wave functions the tails of which
overlap. This overlap is larger for less separated doped sites,
i.e., larger Q, which increases the localization length and
reduces U .
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In order to test further the above picture of the effective
closing of the Hubbard gap due to heating up, we have cal-
culated the longitudinal localization length for the Anderson
localization, given by [49,50]

L‖ ≈
√

h̄2

8meU
, (9)

where me is the free-electron mass and U is in our calculation
replaced by experimentally determined kBT ∗. As can be seen
in Table I, the calculated L‖ ranges from ∼6.4 Å to ∼8.5 Å
(slightly increasing with increasing Q), which agrees well with
the PANI mer size [35]. If we could estimate the localization
length L⊥ perpendicular to the polymer backbone, we would
be able to calculate the localization volume Vloc = L2

⊥L‖.
We find it reasonable to assume that L⊥ ∼ 1–2 Å, which is
the width of the polymer backbone. This implies a relatively
large Vloc which is by a factor of L‖/L⊥ ∼ 5 larger than that
typical of a localization on a single atom. An implication
of this assessment is that thermal activation within disorder
band in doped PANI gives rise to a relatively high σ because
Tα ∝ 1/Vloc [5].

IV. CONCLUSIONS

Polyaniline (PANI) doped with dodecylbenzenesulfonic
acid (DBSA) shares many properties with other variants of
doped (electrically conducting) PANI, such as a protonation
mechanism which leads to the injection of conducting charge
and a relatively high conductivity, a strongly disordered
structure of entangled polymer chains that results in the
Anderson localization, an electrical transport via charge
hopping from one localized state to another, etc. On the other
hand, PANI-DBSA exhibits a behavior which is seldom found
not only in doped PANI, but also in conducting polymers
generally: it undergoes a crossover from a low-T variable range
hopping (VRH) to a high-T nearest-neighbor hopping (NNH)
below room temperature and over a wide doping range. This
property was useful in an experimental confirmation [25] of
the Fogler-Teber-Shklovskii model [26] of hopping transport
in three-dimensional networks of chain conductors, implying
the presence of a long-range Coulomb interaction that opens
a soft Coulomb gap �C within the impurity band. However,
PANI-DBSA is a system with a short-range, onsite Coulomb
interaction U as well, which generally may lead to the Mott
localization. Namely, the protonation of PANI leads to singly
occupied localized states, each carrying a spin 1

2 , which may
also become empty or doubly occupied as the charge hops,
and in this process, the onsite Coulomb repulsion cannot be
disregarded. Having the above in mind, we here address the
coexistence of long- and short-range Coulomb interactions in
Anderson-Mott insulators.

Our investigation is based on comparative measurements
and analysis of the T dependencies of the electrical con-
ductivity σ and magnetic susceptibility χ of own-made
PANI-DBSA pellets. The doping range of our samples covers
room-temperature conductivity between 10−10 and 103 S/m,
i.e., we have tackled the physics outlined above from a virtually
nonconducting to a relatively well-conducting state of a same

material. The shapes of σ (T ) and χ (T ) are characteristic of
doped PANI, that is, σ (T ) contains a signature of a thermally
activated hopping transport, whereas the paramagnetic part
of χ (T ) is a sum of a 1/T Curie-type and a T -independent
Pauli-type contribution. By analyzing the χ (T ) curves, we
have found that they also exhibit a crossover from a low-T
to a high-T regime, and that the crossover temperature T ∗
is, over the whole doping range, the same as that of the
VRH-NNH crossover in σ (T ). Using the Kamimura model for
the χ (T ) of a system with the Anderson localization and a finite
U , we conclude that the VRH-NNH crossover at T ∗ occurs
because the thermal energy kBT ∗ is of the order of the energy
differences between differently occupied localized states.
Hence, in this picture, U ∼ kBT ∗. Using this assumption, we
calculate the longitudinal electron localization length L‖ and
obtain that it is basically equal to the PANI-DBSA mer size.
This result is consistent with the structure of PANI-DBSA
polymer chains and explains why U is much smaller than
in the case of localized states on single atoms. In addition
to L‖, we determine several other parameters of importance,
these being �C, the effective density of states of delocalized
electrons around the Fermi energy, and the density of localized
Curie spins.

We find that �C is robust but strongly doping dependent,
ranging from 30 meV (350 K) to 190 meV (2200 K) at the
highest and lowest doping, respectively, and it plays the role
of the activation energy in the NNH. The strong reduction
of �C by doping is attributed to an enhancement of the
screening of the long-range Coulomb interaction as the density
of delocalized charge grows. In contrast, U is much smaller
and decreases with increasing doping from 20 meV (230 K) to
12 meV (145 K). For an on-atom electron-electron interaction,
U would be independent of doping, but U is here an on-mer
interaction and its doping dependence is a consequence of a
larger overlapping of the localized electron wave functions
when these are less separated.

A small Hubbard gap U that is situated within a larger
Coulomb gap �C is the main feature of our system, and
these two gaps govern the spin and charge dynamics in
PANI-DBSA. The property of having a gap within a gap
appears in many different systems, e.g., underdoped cuprate
superconductors, Bechgaard salts with spin-density-wave
order, etc., where a small gap or pseudogap is usually within a
large hard Hubbard gap [51,52]. In our system, in contrast, the
Hubbard gap is the smaller one of the two coexisting gaps. Yet,
such an attenuation of the Hubbard gap (which is in our system
due to an on-mer localization) is not surprising when relevant
electron wave functions are spread over several sites/atoms.
Because U is small, �C represents the dominant energy scale
in PANI-DBSA since the screening of the long-range Coulomb
interaction is only partial due to the presence of disorder in the
system.
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[47] M. Baćani, Ph.D. thesis, University of Zagreb, 2014.
[48] M. Novak, I. Kokanović, M. Baćani, and D. Babić, Eur. Phys. J.

B 83, 57 (2011).
[49] N. J. Pinto, P. K. Kahol, B. J. McCormick, N. S. Dalal, and H.

Wan, Phys. Rev. B 49, 13983 (1994).
[50] N. F. Mott and E. A. Davis, Electronic Processes in Non-

Crystalline Materials, 2nd ed. (Clarendon, Oxford, 1979).
[51] Handbook of High-Temperature Superconductivity, edited by

J. R. Schrieffer and J. S. Brooks (Springer, New York, 2007).
[52] M. Dressel, A. Schwartz, G. Grüner, and L. Degiorgi, Phys. Rev.

Lett. 77, 398 (1996).

035104-9

https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1063/1.3206091
https://doi.org/10.1063/1.3206091
https://doi.org/10.1063/1.3206091
https://doi.org/10.1063/1.3206091
https://doi.org/10.1063/1.3206091
https://doi.org/10.1088/0370-1298/62/7/303
https://doi.org/10.1088/0370-1298/62/7/303
https://doi.org/10.1088/0370-1298/62/7/303
https://doi.org/10.1088/0370-1298/62/7/303
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1103/RevModPhys.57.287
https://doi.org/10.1103/RevModPhys.57.287
https://doi.org/10.1103/RevModPhys.57.287
https://doi.org/10.1103/RevModPhys.57.287
https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1088/0022-3719/17/17/011
https://doi.org/10.1088/0022-3719/17/17/011
https://doi.org/10.1088/0022-3719/17/17/011
https://doi.org/10.1088/0022-3719/17/17/011
https://doi.org/10.1002/andp.201100034
https://doi.org/10.1002/andp.201100034
https://doi.org/10.1002/andp.201100034
https://doi.org/10.1002/andp.201100034
https://doi.org/10.1140/epjb/e2006-00078-0
https://doi.org/10.1140/epjb/e2006-00078-0
https://doi.org/10.1140/epjb/e2006-00078-0
https://doi.org/10.1140/epjb/e2006-00078-0
https://doi.org/10.1103/RevModPhys.66.261
https://doi.org/10.1103/RevModPhys.66.261
https://doi.org/10.1103/RevModPhys.66.261
https://doi.org/10.1103/RevModPhys.66.261
https://doi.org/10.1126/science.1183640
https://doi.org/10.1126/science.1183640
https://doi.org/10.1126/science.1183640
https://doi.org/10.1126/science.1183640
https://doi.org/10.1038/nnano.2012.94
https://doi.org/10.1038/nnano.2012.94
https://doi.org/10.1038/nnano.2012.94
https://doi.org/10.1038/nnano.2012.94
https://doi.org/10.1142/S0217979210064575
https://doi.org/10.1142/S0217979210064575
https://doi.org/10.1142/S0217979210064575
https://doi.org/10.1142/S0217979210064575
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1103/PhysRevLett.108.017002
https://doi.org/10.1103/PhysRevLett.108.017002
https://doi.org/10.1103/PhysRevLett.108.017002
https://doi.org/10.1103/PhysRevLett.108.017002
https://doi.org/10.1103/PhysRevB.66.085202
https://doi.org/10.1103/PhysRevB.66.085202
https://doi.org/10.1103/PhysRevB.66.085202
https://doi.org/10.1103/PhysRevB.66.085202
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1063/1.3206092
https://doi.org/10.1063/1.3206092
https://doi.org/10.1063/1.3206092
https://doi.org/10.1063/1.3206092
https://doi.org/10.1063/1.3206092
https://doi.org/10.1038/nature07071
https://doi.org/10.1038/nature07071
https://doi.org/10.1038/nature07071
https://doi.org/10.1038/nature07071
https://doi.org/10.1080/00018730701223200
https://doi.org/10.1080/00018730701223200
https://doi.org/10.1080/00018730701223200
https://doi.org/10.1080/00018730701223200
https://doi.org/10.1038/nphys1635
https://doi.org/10.1038/nphys1635
https://doi.org/10.1038/nphys1635
https://doi.org/10.1038/nphys1635
https://doi.org/10.1016/j.synthmet.2013.03.019
https://doi.org/10.1016/j.synthmet.2013.03.019
https://doi.org/10.1016/j.synthmet.2013.03.019
https://doi.org/10.1016/j.synthmet.2013.03.019
https://doi.org/10.1103/PhysRevB.69.035413
https://doi.org/10.1103/PhysRevB.69.035413
https://doi.org/10.1103/PhysRevB.69.035413
https://doi.org/10.1103/PhysRevB.69.035413
https://doi.org/10.1088/0022-3719/8/4/003
https://doi.org/10.1088/0022-3719/8/4/003
https://doi.org/10.1088/0022-3719/8/4/003
https://doi.org/10.1088/0022-3719/8/4/003
https://doi.org/10.1016/j.synthmet.2009.09.016
https://doi.org/10.1016/j.synthmet.2009.09.016
https://doi.org/10.1016/j.synthmet.2009.09.016
https://doi.org/10.1016/j.synthmet.2009.09.016
https://doi.org/10.1103/PhysRevLett.59.1464
https://doi.org/10.1103/PhysRevLett.59.1464
https://doi.org/10.1103/PhysRevLett.59.1464
https://doi.org/10.1103/PhysRevLett.59.1464
https://doi.org/10.1016/j.synthmet.2008.12.010
https://doi.org/10.1016/j.synthmet.2008.12.010
https://doi.org/10.1016/j.synthmet.2008.12.010
https://doi.org/10.1016/j.synthmet.2008.12.010
https://doi.org/10.1021/ma00003a022
https://doi.org/10.1021/ma00003a022
https://doi.org/10.1021/ma00003a022
https://doi.org/10.1021/ma00003a022
https://doi.org/10.1016/0379-6779(87)90893-9
https://doi.org/10.1016/0379-6779(87)90893-9
https://doi.org/10.1016/0379-6779(87)90893-9
https://doi.org/10.1016/0379-6779(87)90893-9
https://doi.org/10.1103/RevModPhys.73.701
https://doi.org/10.1103/RevModPhys.73.701
https://doi.org/10.1103/RevModPhys.73.701
https://doi.org/10.1103/RevModPhys.73.701
https://doi.org/10.1016/j.jnoncrysol.2010.06.021
https://doi.org/10.1016/j.jnoncrysol.2010.06.021
https://doi.org/10.1016/j.jnoncrysol.2010.06.021
https://doi.org/10.1016/j.jnoncrysol.2010.06.021
https://doi.org/10.1103/PhysRevB.84.064204
https://doi.org/10.1103/PhysRevB.84.064204
https://doi.org/10.1103/PhysRevB.84.064204
https://doi.org/10.1103/PhysRevB.84.064204
https://doi.org/10.1063/1.4873329
https://doi.org/10.1063/1.4873329
https://doi.org/10.1063/1.4873329
https://doi.org/10.1063/1.4873329
https://doi.org/10.1103/PhysRevB.49.4303
https://doi.org/10.1103/PhysRevB.49.4303
https://doi.org/10.1103/PhysRevB.49.4303
https://doi.org/10.1103/PhysRevB.49.4303
https://doi.org/10.1103/PhysRevB.49.5988
https://doi.org/10.1103/PhysRevB.49.5988
https://doi.org/10.1103/PhysRevB.49.5988
https://doi.org/10.1103/PhysRevB.49.5988
https://doi.org/10.1103/PhysRevB.73.075205
https://doi.org/10.1103/PhysRevB.73.075205
https://doi.org/10.1103/PhysRevB.73.075205
https://doi.org/10.1103/PhysRevB.73.075205
https://doi.org/10.1140/epjb/e2011-20388-2
https://doi.org/10.1140/epjb/e2011-20388-2
https://doi.org/10.1140/epjb/e2011-20388-2
https://doi.org/10.1140/epjb/e2011-20388-2
https://doi.org/10.1103/PhysRevB.49.13983
https://doi.org/10.1103/PhysRevB.49.13983
https://doi.org/10.1103/PhysRevB.49.13983
https://doi.org/10.1103/PhysRevB.49.13983
https://doi.org/10.1103/PhysRevLett.77.398
https://doi.org/10.1103/PhysRevLett.77.398
https://doi.org/10.1103/PhysRevLett.77.398
https://doi.org/10.1103/PhysRevLett.77.398



