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Electrons from heavy-flavour hadron decays (charm and beauty) were measured with the ALICE detector 
in Pb–Pb collisions at a centre-of-mass of energy √sNN = 2.76 TeV. The transverse momentum (pT) 
differential production yields at mid-rapidity were used to calculate the nuclear modification factor RAA
in the interval 3 < pT < 18 GeV/c. The RAA shows a strong suppression compared to binary scaling of 
pp collisions at the same energy (up to a factor of 4) in the 10% most central Pb–Pb collisions. There is 
a centrality trend of suppression, and a weaker suppression (down to a factor of 2) in semi-peripheral 
(50–80%) collisions is observed. The suppression of electrons in this broad pT interval indicates that both 
charm and beauty quarks lose energy when they traverse the hot medium formed in Pb–Pb collisions at 
LHC.

© 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

High-energy heavy-ion collisions provide a unique opportunity 
to study the properties of the hot and dense strongly-interacting 
system composed of deconfined quarks and gluons – the quark-
gluon plasma (QGP). The formation of a QGP is predicted by lattice 
QCD calculations [1–4]. A crossover transition from hadronic mat-
ter at zero baryochemical potential is expected to take place once 
the system temperature reaches values above T ≈ 155 MeV and/or 
the energy density above ε ≈ 0.5 GeV/fm3 [5,6]. To characterise
the physical properties of this short-lived QGP (lifetime of about 
10 fm/c [7]) experimental studies use auto-generated probes, such 
as high-energy partons created early in the collision, thermally 
emitted photons, and particle correlations sensitive to the collec-
tive expansion and the dynamics of the system.

In particular, the interaction of high-pT partons with the QGP, 
leading to modifications of the internal jet structure (jet quench-
ing), was first proposed in [8] and is studied as a sensitive probe of 
the medium properties [9]. Jet quenching was first observed exper-
imentally via the strong suppression of high transverse momentum 
particle production in heavy-ion collisions at the Relativistic Heavy 
Ion Collider (RHIC) [10–13]. Similar observations have since been 
reported by the Large Hadron Collider (LHC) experiments at col-
lision energies larger by one order of magnitude with hadrons 
[14–16] and extended to fully reconstructed jets [17–19].

Heavy flavours (charm and beauty) are sensitive tools for stud-
ies of the in-medium parton energy loss, providing qualitatively 
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different sensitivity to the medium properties as compared to 
gluon or light-quark induced jets [20,21]. The production of heavy 
quarks is well understood in terms of the perturbative QCD (pQCD) 
formalism. Good agreement between the theoretical calculations 
and measurements of various heavy-flavour particle production 
cross sections in hadronic collisions is established over a wide 
range of centre-of-mass energies from RHIC [22–24], through the 
Tevatron [25–27] to the LHC [28–32].

Interactions between partons and the medium can occur via 
both inelastic (radiative parton energy loss) [33–35] and elastic 
(collisional energy loss) [36–39] processes that depend on the par-
ton type and the properties of the medium. The interactions with 
the medium modify the radiation pattern of the shower by in-
ducing longitudinal drag (and associated longitudinal diffusion), 
transverse diffusion, and enhanced splitting of the propagating par-
tons. On average, for a given parton energy, gluons are expected to 
lose more energy than quarks due to the difference in the Casimir 
colour factor [40] controlling the strength of the coupling to the 
coloured medium. Moreover, the energy loss is predicted to de-
pend on the mass of the quark [41–45]. In particular, for quarks 
with energies comparable to their mass the radiative energy loss 
is expected to be smaller than for more highly-energetic partons. 
Consequently the relative role of elastic processes for heavy quarks 
is enhanced and the heavy quarks of moderate energies are ex-
pected to be more sensitive, as compared to light quarks, to the 
longitudinal drag and diffusion coefficients [39] that are propor-
tional to the inverse of the mass of the parton. Moreover, as a 
result of multiple elastic collisions and possible in-medium res-
onant interactions within the hot matter, low-momentum heavy 
quarks could reach thermalisation in the medium [46].

http://dx.doi.org/10.1016/j.physletb.2017.05.060
0370-2693/© 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.

http://dx.doi.org/10.1016/j.physletb.2017.05.060
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:alice-publications@cern.ch
http://dx.doi.org/10.1016/j.physletb.2017.05.060
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2017.05.060&domain=pdf


468 ALICE Collaboration / Physics Letters B 771 (2017) 467–481

The predicted hierarchy of energy loss �Eg > �E light-q >

�Echarm > �Ebeauty [41] motivated experimental studies of the 
suppression patterns of heavy-flavour hadrons and their decay 
products. Up to now the in-medium energy loss of heavy flavours 
at the LHC has been studied via open charm measurements of 
prompt D mesons [47,48], heavy-flavour decay muon measure-
ments at forward rapidity [31], non-prompt J/ψ , and measure-
ments of b-jet production [49]. At RHIC the nuclear modification 
of heavy-flavour production has been studied via its semilep-
tonic decays [50,51] and via measurements of D mesons [52]. 
The measurement that we report covers the electron (electron 
and positron) pT interval 3–18 GeV/c, probing at high pT the in-
medium interaction of b quarks with momentum of a few tens 
of GeV/c.

The modifications of particle yields are quantified using the 
nuclear modification factor RAA. It is constructed by dividing the 
pT-differential yield in nucleus–nucleus (AA) collisions, dNAA/dpT, 
by the cross section in pp collisions, dσpp/dpT, scaled by the av-
erage of the nuclear overlap function 〈TAA〉 for the considered 
centrality class [53]

RAA = dNAA/dpT

〈TAA〉dσpp/dpT
. (1)

By construction, RAA is unity when no nuclear effects are present. 
RAA values consistent with unity have been measured for colour 
neutral particles (direct photons, W and Z bosons) in Pb–Pb col-
lisions at 

√
sNN = 2.76 TeV [54–58] as well as for charged par-

ticles and heavy-flavour production in p–Pb collisions at 
√

sNN =
5.02 TeV [59–61].

This paper reports on the suppression (RAA < 1) of electrons 
from semi-leptonic decays of charm and beauty hadrons measured 
at high-transverse momentum (pT > 3 GeV/c) at mid-rapidity 
(|y| < 0.6) in Pb–Pb collisions at 

√
sNN = 2.76 TeV using the AL-

ICE detector. The suppression is measured as a function of collision 
centrality and pT in the interval 3 < pT < 18 GeV/c. The next two 
sections of the paper define the experimental setup and the analy-
sis details together with the discussion of systematic uncertainties 
on the measured electron spectra. The electron yields measured 
in bins of centrality defined as fractions of the total hadronic 
cross-section of Pb–Pb collisions are then presented. Finally the 
pT-differential RAA in the 0–10%, 10–20%, 20–30%, 30–40%, 40–50% 
and 50–80% centrality classes are presented and compared to the 
measurement of muons from heavy-flavour hadron decays at for-
ward rapidities [31] as well as to calculations of in-medium energy 
loss of heavy quarks.

2. Apparatus, data sample and analysis

2.1. Detector setup

The measurements were carried out using the ALICE detector 
at the LHC [62] with Pb-ion beams at a centre-of-mass energy 
of 

√
sNN = 2.76 TeV. A complete description of the experimen-

tal setup and the performance of detectors can be found in [63,
64]. Particle track reconstruction and particle identification were 
performed based on information from the Inner Tracking System 
(ITS), the Time Projection Chamber (TPC), and the Electromag-
netic Calorimeter (EMCal), located inside a solenoid magnet, which 
generates a 0.5 T field parallel to the beam direction. The event 
centrality determination was based on the signals from the V0 
detector, which is a set of scintillator arrays. Moreover, the V0 
detector together with the neutron Zero-Degree Calorimeters (ZN) 
was used for triggering and beam background rejection.

The ITS is composed of six cylindrical layers: two Silicon Pixel 
Detectors (SPD), two Silicon Drift Detectors (SDD), and two Silicon 

Strip Detectors (SSD). The SPD barrel consists of staves distributed 
in two layers around the beam pipe at radius of 3.9 cm and 7.6 cm, 
covering a length of 28.2 cm in the z direction. The outermost 
layer of the ITS (SSD) is located 43 cm from the beam axis.

The TPC with a radial extent of 85–247 cm, enables charged 
particle tracking beyond the ITS and particle identification via the 
measurement of the particle specific ionisation energy loss within 
the Ne–CO2 gas mixture. The TPC provides up to 159 independent 
space points per particle track.

Charged particle tracks are reconstructed in the TPC from pT ≈
0.15 GeV/c, |η| < 0.9 and full azimuth. Using the ITS and TPC space 
points the particle momentum is determined from the combined 
track fit with a resolution of about 1% at 1 GeV/c and about 3% at 
10 GeV/c [64].

The front face of the EMCal is positioned at about 450 cm 
from the beam axis in the radial direction and the detector is ap-
proximately 110 cm deep. The detector is a layered Pb-scintillator 
sampling calorimeter covering 107 degrees in azimuth and a pseu-
dorapidity region |η| < 0.7. The calorimeter design incorporates on 
average a moderate active volume density that results in a com-
pact detector of about 20 radiation lengths.

The V0 detector consists of two arrays of 32 scintillator tiles 
placed at distances z = 3.4 m (V0-A) and z = −0.9 m (V0-C) from 
the nominal interaction point. V0-A and V0-C cover the full az-
imuth, and pseudorapidity intervals of 2.8 < η < 5.1 and −3.7 <
η < −1.7, respectively. The detector was used for triggering and 
event centrality determination.

The ZN are two identical sets of forward hadronic calorimeters 
which are located on both sides relative to the interaction point at 
z ≈ 114 m.

2.2. Event sample and trigger

The data sample used for this analysis was collected in 2011 
and it consists of 14 · 106 most central collisions (0–10%) and 13 ·
106 semi-central collisions (10–50%) recorded with a minimum-
bias trigger, and 3.2 · 106 collisions (0–90%) triggered with the 
EMCal. The minimum-bias trigger was a coincidence of signals 
from the V0-A and V0-C detectors. The timing resolution of the 
V0 system is better than 1 ns and it provides an efficient discrim-
ination of the beam–beam collisions from the background events 
produced upstream of the experiment. Additional suppression of 
the background was provided by timing information from the ZDC. 
The minimum-bias trigger included two trigger classes for most-
central and semi-central collisions, which were selected online by 
applying thresholds on the V0 signal amplitudes.

The EMCal provides two hierarchically-configured trigger levels 
(Level-0 and Level-1). For this analysis the data were recorded with 
the L1 trigger in coincidence with the V0 minimum-bias trigger. 
The trigger logic of the Level-1 trigger employed a sliding window 
algorithm of 4×4 towers with a sliding step of 2 towers along 
either of the surface axes. An event was rejected unless the en-
ergy summed within at least one set of the 16 adjacent towers 
was greater than a threshold. Additionally, the trigger logic was 
configured to adjust the online threshold according to the event 
centrality estimated from the analogue sum of the V0 detector sig-
nals. The threshold was adjusted such that the rejection rate was 
approximately constant as a function of the event centrality. The 
thresholds varied from 7 GeV in 10% most central events to 2 GeV 
in the most peripheral events.

The offline selection retained only events where the coordinate 
of the reconstructed vertex along the beam direction was within 
±10 cm around the nominal interaction point. The event vertex 
reconstruction is fully efficient for the event centralities considered 
in this analysis.
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Fig. 1. Trigger turn-on curves: the ratio of inclusive electrons in EMCal triggered events to minimum-bias events as a function of associated track pT in centrality bins between 
0% and 50%. The lower right panel shows a similar ratio obtained with EMCal clusters for centrality 50–80%. The pT from which the spectra from the minimum-bias trigger 
to the EMCal trigger are used are indicated with black dashed lines. The scaling factors which were obtained by fits (red lines) are summarised in Table 1. (For interpretation 
of the references to colour in this figure, the reader is referred to the web version of this article.)
Collisions were classified into different centrality classes in 
terms of percentiles of the hadronic Pb–Pb cross section using the 
signal amplitudes in the V0 detector. The event centrality was re-
lated to the nuclear overlap function TAA via a Glauber model [65]. 
Details on the centrality determination can be found in [53].

To obtain the inclusive electron spectra utilising minimum bias 
and EMCal triggers, in each centrality class, the per-event yield 
of electrons from the EMCal triggered sample was scaled to the 
minimum-bias yield by normalisation factors determined with a 
data-driven method. Fig. 1 shows the ratio of pT-differential yields 
of the electron candidate tracks from the EMCal triggered sample 
to the minimum-bias trigger sample as a function of the track pT. 
The electron candidates were selected based on the ionisation en-
ergy loss in the TPC gas and the ratio of the EMCal cluster en-
ergy and the momentum of the particle track (details of electron 
identification are given in the next section). Because of the lim-
ited electron yield in the semi-peripheral event class (50–80%) the 
correction for the trigger enhancement in that interval was ob-
tained as the ratio of the energy distributions of EMCal clusters 
for the two trigger types (shown in panel (f) of Fig. 1). The inclu-
sive pT spectrum of electrons is formed by the electron spectrum 
from minimum-bias events below the trigger plateau (indicated by 
dashed lines in Fig. 1) and the spectrum measured with only the 
EMCal trigger in the plateau region. The difference in the shape 
of the curves in Fig. 1 for pT below the plateau is a consequence 
of the particle mixture contributing to the EMCal clusters and re-
sponse of the EMCal to charged hadrons. The scaling factors and 
the transition from the minimum-bias sample to the triggered 
sample were determined by fits with a constant to the high-pT
plateau regions. The scaling factors for all centrality classes as well 
as the pT at which the switch from the minimum-bias to the 
EMCal trigger spectra occurs are summarised in Table 1. The uncer-
tainty on the factors (also reported in Table 1) was obtained from 
the individual fits and therefore it is driven by the statistical un-
certainty of the measured spectra. The scaling factors within cen-
tralities 0–50% were extracted using the electron tracks, whereas 
for centralities larger than 50% the spectrum of EMCal clusters 
is used. The relative difference in the scaling factors depending 
on whether electrons or clusters were selected was studied and 
shown to be below 8.5%. This difference was included in the sys-

Table 1
Summary for centrality dependence of the EMCal trigger scaling factor. Middle col-
umn: trigger scaling factors (together with their absolute statistical uncertainty) 
extracted from the ratio of electrons (or EMCal cluster) pT spectra in EMCal trig-
gered and minimum-bias events. Right column: particle pT at which the spectrum 
measured in minimum-bias events and EMCal triggered events are switched to form 
the inclusive electron pT spectrum. See text for details.

Centrality Scaling factor Plateau above pT

(GeV/c)

0–10% 38 ± 2.2 9
10–20% 32 ± 3.5 9
20–30% 35 ± 2.9 8
30–40% 34 ± 2.5 6
40–50% 41 ± 5.2 6
50–80% 89 ± 3.5 6

tematic uncertainty of the measurement for all centrality classes. 
Table 1 corresponds to Fig. 1.

2.3. Electron reconstruction

For the reconstruction of electrons in this analysis tracks with a 
minimum of 100 out of 159 possible TPC space points were re-
tained. In addition, tracks were selected using their distance of 
closest approach (DCA) to the primary vertex. Accepted tracks were 
within |DCAxy| < 2.4 cm in the transverse plane and |DCAz| <
3.2 cm along the beam axis. Furthermore, the tracks were se-
lected within a fiducial pseudorapidity acceptance of |η| < 0.6. 
Each track was required to contain at least one point measured 
in the SPD and at least three hits out of the maximum of six in 
the ITS. Moreover, the electron candidates were selected by apply-
ing a cut on the specific ionisation energy loss (dE/dx) within the 
TPC. The measured dE/dx was required to be between −1 to 3σ , 
where σ is dE/dx resolution, from the expected mean of dE/dx
for electrons. This selection is hereafter indicated as −1 < nTPC

σ < 3. 
The tracks extrapolated to the sensitive volume of the EMCal were 
matched with a cluster if the cluster-track residual in azimuth and 
pseudorapidity was within a window of |�ϕ| < 0.05 and |�η| <
0.05. Such matching criteria corresponds to an effective radius of 
about 6 times larger than the effective Moliere radius for EMCal, 
thus it is fully efficient for electron tracks with pT > 2 GeV/c.
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Fig. 2. Left: The ratio of E/p as a function of nTPC
σ in 10% most central Pb–Pb events (pT > 3 GeV/c), where p is the charged particle momentum, E is the matched EMCal 

cluster energy, and σ TPC is the resolution on the energy loss in the TPC gas expected for electrons. Right: E/p for electrons in two transverse momentum ranges. The blue 
open symbols shows the hadron contamination – an E/p distribution for particles 3.5 σ away from the mean of the true electron TPC-dE/dx distribution normalised to 
the electron E/p at small values of the ratio (away from the electron signal). (For interpretation of the references to colour in this figure, the reader is referred to the web 
version of this article.)
Additional hadron rejection used the combination of the energy 
deposited within EMCal and a cut on the electromagnetic shower 
shape [64,66]. Since the shower from an electron is fully contained 
and accurately measured by the EMCal, the ratio of the energy (E) 
measured by the EMCal and the momentum (p) for electron tracks 
is approximately unity (E/p ≈ 1). The E/p distribution is qualita-
tively different in the case of hadrons. The E/p as a function of the 
nTPC
σ for charged particles matched with an EMCal cluster in 10% 

most central events is shown in Fig. 2. From the primary tracks 
matched to an EMCal cluster the electron candidates were selected 
using a momentum independent cut of 0.9 < E/p < 1.3. Further-
more, the shapes of the measured showers in the calorimeter can 
be characterised by the two eigenvalues (λ0 and λ1) of the co-
variance matrix built from the tower coordinates weighted by the 
logarithms of the tower energies. These eigenvalues may be used 
to differentiate between incident particle species [64]. A selection 
of λ2

1 < 0.3, corresponding to the shorter-axis of the shower shape 
projected onto the EMCal surface, was applied, because the char-
acteristic electromagnetic shower of an electron is peaked at λ2

1 of 
about 0.25 independent of the cluster energy.

The remaining hadron background in the electron sample was 
estimated with a data-driven approach and statistically subtracted 
from the sample. The shape of the residual hadron background 
in E/p at the position of the electron peak was reconstructed 
using the E/p distribution for hadron-dominated tracks selected 
with nTPC

σ < −3.5. The E/p distribution of the hadrons was then 
normalised to match the distribution of the electron candidate in 
0.4 < E/p < 0.7 (away from the true electron peak). An example 
of the E/p distributions together with the estimated hadron con-
tamination for two transverse momentum intervals is shown in the 
right panel of Fig. 2. The hadron contamination is less than 5% at 
pT < 10 GeV/c in all centrality classes. At high pT , it is larger than 
10% with a maximum of about 15% at pT = 18 GeV/c.

The efficiencies related to the cuts on the ionisation energy loss 
in the TPC were estimated with data-driven techniques [64]. The 
EMCal efficiencies were calculated using Monte Carlo simulations 
of proton-proton (PYTHIA [67]) and heavy-ion collisions (HIJING 
[68]) with complete detector response modelled by GEANT [69]. 
The product of detector acceptance and reconstruction efficiencies 
for inclusive electrons for the 10% most central collisions is shown 
in the left panel of Fig. 3. The efficiencies were estimated for each 

centrality class separately. A variation of about 2.5–3% was found 
between the most central (0–10%) and peripheral (50–80%) events.

2.4. Background electron subtraction

The main sources of electrons contributing to the inclusive elec-
tron sample in this analysis are: a) heavy-flavour hadron decay 
electrons; b) electrons from leptonic decays of quarkonia (J/ψ and 
ϒ mesons); c) electrons from W and Z/γ ∗ decays; d) the so-
called photonic electrons, originating from photon conversions and 
Dalitz decays of neutral mesons (mainly π0 and η); and e) neu-
tral kaon decays; however, the contribution from the non-photonic 
electrons created in vector meson and Ke3 decays is negligible 
(< 0.1%) [30] in the momentum range considered in this analy-
sis.

The contribution of the photonic electrons to the inclusive elec-
tron sample was measured by the invariant mass method. The 
invariant mass distribution was determined by pairing every elec-
tron track from the inclusive sample with an oppositely-charged 
track selected with −3 < nTPC

σ < 3 to increase the chance for find-
ing the pairs. Pairs satisfying electron identification selections and 
pairs satisfying a cut on the invariant mass of minv < 0.1 GeV/c2

were selected for further analysis. These selected unlike-sign pairs, 
however, contain not only true photonic electrons but also a con-
tribution from random pairs. This combinatorial background to 
photonic electrons was estimated using the invariant mass distri-
bution of the like-sign electrons (NeL S ), and it was subtracted from 
that of unlike-sign pairs (NeU L S ) to obtain the number of raw pho-
tonic electrons: Nraw

eγ = NeU L S − NeL S .
The efficiency for the identification of the photonic electrons 

by the invariant mass method (εeγ ) was estimated from Monte 
Carlo simulations with full detector response and was found to be 
centrality independent. The efficiency, shown in the right panel of 
Fig. 3, is about 30% at pe

T = 4 GeV/c and rising to 55% at 18 GeV/c.
The number of photonic electrons present within the inclu-

sive electron sample was calculated as the raw photonic elec-
tron yield corrected for the reconstruction efficiency such that: 
Neγ = Nraw

eγ /εeγ . The fraction of photonic electrons within the in-
clusive electron sample in the 10% most central collisions is about 
30% at pT = 3 GeV/c, drops to 25% at 12 GeV/c and remains ap-
proximately constant at higher pT considered in this analysis.
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Fig. 3. Left: Product of detector acceptance and reconstruction efficiency for inclusive electrons as a function of the electron pT. The statistical uncertainty is smaller than the 
size of the points. Right: Photonic electron reconstruction efficiency via invariant mass (εeγ ) as a function of pT of the electron.
The contribution to the inclusive electrons from J/ψ decays 
was estimated using a phenomenological interpolation at 

√
s =

2.76 TeV of the pT-differential cross sections measured in pp colli-
sions at various centre-of-mass energies [70] and scaling with the 
nuclear modification factor R J/ψ

AA (pT) measured at the LHC [71,72]. 
In 3 < pT < 4 GeV/c, the contribution is 5.5% in the most cen-
tral collisions and decreases at high-pT. The contribution from ϒ
states estimated from the cross section measured in pp collisions 
[73] was found to be negligible.

The contribution of electrons from W-boson and Z/γ ∗ decays 
was estimated using the cross section obtained from the POWHEG 
event generator [74] for pp collisions and scaled with 〈TAA〉 assum-
ing RAA = 1. The contribution is pT dependent and for W-bosons it 
increases from 1% at 10 GeV/c to about 6% at 17 GeV/c whereas 
the contribution from Z/γ ∗ is below 1% for pT < 10 GeV/c and 
increases to 2.4% at 17 GeV/c.

The heavy-flavour decay electron yield was reconstructed from 
the inclusive electron yield by first subtracting the photonic elec-
tron yield, then correcting the result of the subtraction for the 
efficiency, and finally, by subtracting the feed-down electrons from 
J/ψ and W, Z/γ ∗ decays.

3. Systematic uncertainties

The sources of systematic uncertainty on the reconstructed 
heavy-flavour decay electron pT spectrum can be grouped into 
three categories:

– event selection (the event normalisation, including the scaling 
of the EMCal trigger events and the event centrality selection);

– electron signal extraction (uncertainties originating from cor-
rections related to tracking and particle identification);

– non-heavy-flavour background determination.

An overview of the systematic uncertainties is presented in Ta-
ble 2. For sources that depend on centrality (all but “tracking/ma-
terial” from Table 2) the uncertainties were evaluated separately in 
each event class. In every case a weak centrality dependence was 
found (deviations of less than 3%). In the figures of Section 4 the 
systematic uncertainties are represented as shaded boxes around 
the data points.

Event normalisation. A comparison of the event normalisation 
obtained with the EMCal clusters and the normalisation obtained 
from the inclusive electrons showed a maximum deviation of 8.5%. 
This deviation, independent of centrality and pT, is included as 
the uncertainty on the yield obtained with the triggered data. The 

Table 2
Summary of systematic uncertainties on the heavy-flavour electron yields grouped 
according to their sources. Where applicable the uncertainty was estimated for two 
pT values, 3 and 10 GeV/c (for the latter numbers are shown in parentheses). For 
details on the extraction of the uncertainties see text.

Source pT dependence (GeV/c) Uncertainty (%)

EMCal trigger correction only high-pT 8.5
Centrality estimation n/a <0.1–3
Tracking/material weak within 3–14 5
E/p 3 (10) 3 (3)
nTPC
σ 3 (10) 3 (7)

Photonic background 3 (10) 5 (5)
J/ψ electron background 3 (10) 1 (<1)
W electron background 3 (10) 0 (<1)
Z/γ ∗ electron backgrounds 3 (10) <1 (<2)

contribution to the systematic uncertainty due to the 1.1% relative 
uncertainty on the fraction of hadronic cross section used in the 
Glauber fit to determine the centrality is less than 0.1% in the cen-
tral event class (0–10%) and 3% in the semi-peripheral centrality 
class (50–80%) [47,75].

Electron identification. The systematic uncertainties on the 
corrections for track reconstruction, track selection and electron 
identification were assessed via multiple variations of the analysis 
selections. For each set of cuts the analysis was repeated and com-
pared to the results obtained with the default set of cuts. These 
variations included changes in track quality cuts, such as the min-
imum number of the space points in the TPC and associated hits 
in the ITS. The uncertainties were estimated as a function of track 
pT and for each centrality class separately. In addition, the elec-
tron identification cuts in the TPC (nTPC

σ ) and EMCal (E/p range) 
were varied around their nominal values. The uncertainty originat-
ing from the knowledge of the material budget was estimated via 
complete detector simulations with the radiation length varied by 
±7% [76].

Subtraction of photonic background. The uncertainty on the 
subtracted background electrons from photon conversions and 
Dalitz decays was obtained by varying the invariant mass cut on 
the electron pairs within 0.07 < minv < 0.15 GeV/c2 and the mini-
mum pT of the tracks paired with electron candidates between 0.3 
and 0.6 GeV/c.

Subtraction of electrons from J/ψ . The uncertainty on the sub-
tracted background electrons from J/ψ decays was estimated from 
the experimental uncertainties on measured production yields in 
heavy-ion collisions [71,77].

Electrons from W and Z/γ ∗ . The yield of electrons from W de-
cays was varied by ± 15% on the basis of the comparison of the W
production cross section as given by the POWHEG event generator 
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Fig. 4. Differential yields of electrons from semi-leptonic decays of heavy-flavour 
hadrons in classes of centrality of Pb–Pb collisions at √sNN = 2.76 TeV.

and the existing measurements in pp collisions at the LHC [78]. 
The contribution from Z/γ ∗ di-electron decays and its uncertainty 
was estimated using the POWHEG event generator and considered 
together with the uncertainties on the process production cross 
section measured in pp collisions [79]. Given the small contribu-
tion of the electrons from Z/γ ∗ decays to the electron spectrum 
of this analysis the derived uncertainty was found below 1% at the 
highest momentum considered.

4. Results

The pT-differential invariant yields of heavy-flavour decay elec-
trons corrected for acceptance and efficiency in the 0–10%, 10–20%, 
30–40%, 40–50% and 50–80% centrality classes in Pb–Pb collisions 
at 

√
sNN = 2.76 TeV are shown in Fig. 4. Only the EMCal triggered 

data are shown for the 50–80% centrality class due to a lack of 
statistics in the minimum bias data sample.

The production cross section of heavy-flavour decay electrons 
in pp collisions at 

√
s = 2.76 TeV, needed to compute the nuclear 

modification factor RAA (Eq. (1)), was obtained from measurements 

and FONLL pQCD calculations [80,81]. For pT < 12 GeV/c the mea-
surement at 

√
s = 2.76 TeV was used [30]. For pT > 12 GeV/c there 

is no measurement at this energy. Thus, an extrapolated cross sec-
tion was constructed from the measurement at 

√
s = 7 TeV by the 

ATLAS Collaboration [82,83] and the ratio of cross sections at the 
two collision energies obtained from FONLL [84]. The uncertainties 
of the pp references are about 20% for pT < 12 GeV/c and about 
15% for pT > 12 GeV/c, including the uncertainty from the scaling 
with 

√
s, which was estimated by consistently varying the FONLL 

calculation parameters at the two energies [84].
Fig. 5 shows the resulting RAA of heavy-flavour decay electrons 

for all centrality classes. The uncertainty on the average nuclear 
overlap function 〈TAA〉 for each centrality selection was taken as 
determined in [53]. It varies from 4% in the 10% most central 
events to 7% in the 50–80% centrality class, and it is shown as 
a box at RAA = 1 in the figure. In all cases, taking into account
the pT trend of the RAA and the statistical uncertainties of the 
measurement at high-pT, the electron production yields are sup-
pressed relative to an incoherent superposition of pp collisions. In 
the 10% most central events the RAA reaches values below 0.4, 
while for the more peripheral events the suppression is weaker. 
This centrality dependence of the suppression pattern is qualita-
tively consistent with in-medium energy loss of heavy quarks due 
to a decrease of medium’s initial energy density and the system 
size from central to peripheral collisions.

In proton–lead collisions, where formation of a hot, dense and 
long lived QGP is not expected, the suppression is not observed. 
The nuclear modification factor RpPb measured for electrons from 
heavy-flavour hadron decays is consistent with unity [61]. This 
control measurement in p–Pb collisions confirms that the strong 
suppression in Pb–Pb collisions is a result of final state effects. 
The left panel of Fig. 6 shows the comparison between RpPb for 
minimum-bias p–Pb collisions at 

√
sNN = 5.02 TeV and RAA for 

the 10% most central Pb–Pb collisions. The result reported here for 
electrons at mid-rapidity is consistent with the measurement of 
the suppression pattern for muons from the semi-leptonic decays 
of heavy-flavour hadrons at forward rapidity [31], in both, most 
central and semi-peripheral collisions (see Fig. 6). The lepton mea-
Fig. 5. RPbPb of electrons from heavy-flavour hadron decays in centrality bins of Pb–Pb collisions at √sNN = 2.76 TeV. The solid band at RPbPb = 1 brackets the uncertainty 
on the average nuclear overlap function (〈TAA〉).
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Fig. 6. Left: RPbPb of electrons and muons [31] from heavy-flavour hadron decays in 10% most central Pb–Pb collisions shown together with R pPb of electrons from minimum 
bias proton–lead collisions at √sNN = 5.02 TeV [61]. Right: RPbPb of electrons in semi-peripheral Pb–Pb collisions (50–80% selection for electrons and 40–80% for muons.
Fig. 7. RPbPb of electrons from heavy-flavour hadron decays measured in 10% most 
central Pb–Pb collisions at √sNN = 2.76 TeV compared to various theoretical calcu-
lations [86–98].

surements show remarkable similarity in the suppression pattern 
that, within the uncertainties, does not exhibit a rapidity depen-
dence.

The pT spectrum of electrons is sensitive to both charm and 
beauty quark energy loss. From the decay kinematics and the 
pT-differential cross sections of parent hadrons with charm and 
beauty, it follows that electrons of pT below 5 GeV/c are mostly 
sensitive to charm energy loss. On the other hand, in pp col-
lisions a large fraction (more than 60%) of the electrons with 
pT > 10 GeV/c originate from b-quarks [82,66,30,85,81]. The elec-
tron yield at high-pT is therefore expected to contain a significant 
contribution from B mesons with pT up to 30 GeV/c. Consequently, 
the strong suppression of electrons for pT > 10 GeV/c is consistent 
with in-medium energy loss of b-quarks.

5. Comparison with models

The RAA of electrons from heavy-flavour hadron decays in the 
most central Pb–Pb collisions is compared to theoretical models 
that include heavy quark interactions with the medium in Fig. 7. 
Most of these models were previously compared to the RAA of D 
mesons in most central Pb–Pb collisions [75,48] as well as the 
positive elliptic flow of the D mesons and electrons from heavy-
flavour hadron decays in semi-central Pb–Pb collisions [99,100]. 

We note that these models differ in the theoretical realisation of 
the medium properties, and of its dynamics, and also in imple-
mentations of the hadronisation and of hadron–hadron interactions 
in the late stages of the heavy-ion collision. Also the heavy-quark 
cross-section used as input to the calculation may differ between 
the models (PYTHIA, FONLL and POWHEG).

Djordjevic. The calculation by Djordjevic et al. [86] at pT >

5 GeV/c is consistent with the measurement within the uncertain-
ties including the slow increase of the RAA as a function of electron 
pT. The model takes into account both radiative and collisional 
contributions to parton energy loss. Specifically, the radiative en-
ergy loss calculations are an extension of the DGLV [101] model 
towards a finite size dynamical medium, finite magnetic mass, and 
running coupling. The model does equally well in reproducing the 
magnitude and pT dependence of the D mesons RAA[48].

Vitev. The calculations by Vitev et al. [90] also capture the mag-
nitude of the suppression and reproduce the pT dependence of 
the electrons seen in the data. The in-medium modification of the 
heavy quark distribution and decay probabilities are evaluated in 
a co-moving plasma. The predictions for heavy-flavour decay elec-
tron suppression are obtained with an improved perturbative QCD 
description of heavy flavour dynamics in a thermal medium where 
the formation and dissociation of heavy-flavour mesons are com-
bined with parton-level charm and beauty quark radiative energy 
loss. The model including the dissociation of heavy-flavour hadrons 
captures also the suppression of D mesons.

WHDG. The band corresponding to the WHDG model calcula-
tions [87–89] is consistent with the measurement within the un-
certainties; however, it systematically underpredicts the suppres-
sion below 12 GeV/c. Interestingly, the same calculation compared 
to the D mesons RAA reproduced the data very well. The model 
includes elastic as well as inelastic energy loss of heavy-quarks, 
and the path length (geometric) fluctuations within a static ther-
mal coloured medium with its density as the only free parameter 
determined via a statistical comparison of the model with the 
charged particle production in heavy-ion collisions.

TAMU. The RAA obtained within the TAMU model of heavy 
quark transport within a strongly coupled thermal medium in-
cluding the elastic scatterings with the medium (resonance scat-
tering and coalescence processes) [91] underpredicts the suppres-
sion at low-pT while it captures the magnitude of the data for 
pT > 12 GeV/c. We note that TAMU also underpredicts the D 
mesons RAA and its success for the electrons at high-pT may be re-
lated to the b-quark energy loss for which the fraction from elastic 
processes is increased as compared to charm quarks. On the other 
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hand, TAMU reproduces the measured v2 of D mesons and elec-
trons from heavy-flavour hadron decays accurately [99,100].

BAMPS. The BAMPS [96–98] calculation, which is a partonic 
transport model using the Boltzmann equation, is shown for two 
scenarios. The BAMPS coll. calculation considering only the colli-
sional energy loss in an expanding quark-gluon plasma overesti-
mates the magnitude of the suppression within the region covered 
by the measurement. The calculation obtained within the same 
framework where both the elastic and radiative processes were 
considered (BAMPS coll.+rad.) describes the data rather well. A sim-
ilar conclusion can be drawn from the comparison to the D-meson 
RAA. On the other hand, the BAMPS coll. reproduces qualitatively 
the v2 of D mesons and electrons from heavy-flavour hadron de-
cays, but the BAMPS coll.+rad. underestimates the D meson v2 [99,
100].

MC@sHQ+EPOS2. The results of the Monte Carlo model in-
cluding a hydrodynamic calculation of the medium coupled with 
collisional and radiative parton energy loss MC@sHQ+EPOS2 [93]
are consistent with the measurement within the uncertainties. The 
model best describes the data at pT > 12 GeV/c. This model also 
works better for the D mesons RAA at pT > 10 GeV/c as compared 
to lower momentum (meson pT below 10 GeV/c). The authors of 
the model emphasise that the scattering in the hadronic phase is 
not present in their calculation and can have substantial effect on 
the low-pT suppression and elliptic flow calculations that under-
predicts the measurement [99,100].

Cao, Qin, Bass. The calculation by Cao, Qin, and Bass [92] re-
produces the measured RAA at high-pT (above 12 GeV/c) while 
it underpredicts the suppression for low-pT. The model evaluates 
the dynamics of energy loss and flow of heavy quarks within the 
framework of a Langevin equation coupled to a (2+1)-dimensional 
viscous hydrodynamic model that simulates the space–time evolu-
tion of the produced hot and dense QCD matter. This calculation 
reproduced the suppression of D mesons very accurately, both in 
strength and the pT-dependence.

POWLANG. The result of the heavy-quark transport calculation 
using the relativistic Langevin equation with collisional energy loss, 
POWLANG [94,95], is shown for two choices of heavy-flavour trans-
port coefficients within the quark-gluon plasma. In the POWLANG 
HTL [94] the coefficients are evaluated by matching the weak-
coupling calculations with hard-thermal-loop (HTL) result for soft 
collisions with a perturbative QCD calculation for hard scatterings. 
This HTL variant predicts a falling trend with pT of the electrons 
that is incompatible with the data and overpredicts the suppres-
sion at high momentum. Conversely, the calculation that includes 
the transport coefficients obtained from the Lattice QCD simula-
tions [95] predicts the rising RAA. However, it reports larger values 
than the measured ones and it is incompatible with the measured 
magnitude of the suppression. The width of the theory curves 
envelopes the spread in the results of the calculation that is ob-
tained when considering two different decoupling temperatures 
Tdec (155 MeV and 170 MeV) from the hydrodynamic evolution 
of the fireball. The relatively small width of the bands suggests a 
weak sensitivity of the suppression to the Tdec . Similar to the elec-
tron case, POWLANG HTL captures the suppression for D mesons 
below 5 GeV/c predicting much lower RAA at high-pT than ob-
served in the data. Interestingly, as in the case of the TAMU model, 
the POWLANG HTL calculations provide a fair description of the D 
mesons v2 measured at the LHC.

Given the level of agreement of the theoretical models with the 
data on v2 and RAA of prompt D mesons [75,48,99] and electrons 
from heavy-flavour decays, the following general conclusions arise:

– models incorporating the complete dynamical and thermal 
evolution of the medium are favoured by the data;

– the measurement indicates the need for both, collisional and 
radiative, energy loss of heavy quarks to be considered to ex-
plain the magnitude and the pT dependence of the suppres-
sion.

6. Summary

The pT-differential yields of electrons from semi-leptonic de-
cays of charm and beauty hadrons were measured at 3 < pT <

18 GeV/c in several centrality classes of Pb–Pb collisions at 
√

sNN =
2.76 TeV at mid-rapidity. The nuclear modification factor RAA for 
the 10% most central events shows a strong suppression of elec-
trons from heavy-flavour hadron decays. Consistent with the ex-
pectation of a decrease of the medium’s initial energy density and 
a decreasing system size from central to peripheral collisions, the 
suppression is significantly weaker in more peripheral events. No 
significant suppression is observed in p–Pb collisions, indicating a 
strong in-medium energy loss of both charm and beauty quarks 
in Pb–Pb collisions. In particular, the strong suppression at high-
momentum indicates that b-quarks lose a substantial fraction of 
their energy. The suppression of electrons is quantitatively con-
sistent with measurements of RAA of muons from semi-leptonic 
heavy-flavour decays in 2.5 < y < 4, disfavouring a strong depen-
dence of energy loss on rapidity in the range |y| < 4. Theoretical 
calculations that include collisional and radiative in-medium en-
ergy loss for both charm and beauty quarks reproduce the experi-
mental findings. In particular, models incorporating the dynamical 
evolution of the medium are preferred by the data.
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