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Static and dynamic aspects of the fission process of 226Th are analyzed in a self-consistent framework based
on relativistic energy density functionals. Constrained relativistic mean-field calculations in the collective space
of axially symmetric quadrupole and octupole deformations, based on the energy density functional PC-PK1 and
a δ-force pairing, are performed to determine the potential energy surface of the fissioning nucleus, the scission
line, the single-nucleon wave functions, energies, and occupation probabilities, as functions of deformation
parameters. Induced fission dynamics is described using the time-dependent generator coordinate method in
the Gaussian overlap approximation. A collective Schrödinger equation, determined entirely by the microscopic
single-nucleon degrees of freedom, propagates adiabatically in time the initial wave packet built by boosting the
ground-state solution of the collective Hamiltonian for 226Th. The position of the scission line and the microscopic
input for the collective Hamiltonian are analyzed as functions of the strength of the pairing interaction. The effect
of static pairing correlations on the preneutron emission charge yields and total kinetic energy of fission fragments
is examined in comparison with available data, and the distribution of fission fragments is analyzed for different
values of the initial excitation energy.

DOI: 10.1103/PhysRevC.96.024319

I. INTRODUCTION

A microscopic description of fission presents one of the
most complex problems in low-energy theoretical nuclear
physics [1,2]. For a comprehensive recent review and an
exhaustive list of references, we refer the reader to Ref. [1].
The spontaneous or induced fission process in which a heavy
nucleus splits into fragments is out of reach for ab initio
methods and, therefore, modern microscopic approaches are
based on the framework of nuclear energy density functionals
(NEDFs). Nuclear density functional theory (DFT) and its
time-dependent (TD) generalization have enabled a self-
consistent treatment of both static and dynamic aspects of
fission [3–11]. The slow large-amplitude collective motion of
the compound system that eventually leads to the formation of
the final fragments can be described, in a first approximation,
as an adiabatic process in which the intrinsic nucleonic degrees
of freedom are decoupled from macroscopic collective degrees
of freedom such as multipole moments (deformations) of the
mass distribution and pairing fields [1].

Numerous studies of spontaneous fission, based on NEDFs,
have analyzed the effects of the choice of collective coordinates
(shape degrees of freedom), approximations used to calculate
the collective inertia, and coupling between shape and pairing
degrees of freedom on fission half-lives [12–18]. A quanti-
tative description of induced fission is, in this framework,
conceptually and computationally more challenging and this
process has been explored less systematically. In particular,
several recent studies have used the time-dependent generator
coordinate method (TDGCM) [19] to compute the induced
fission fragment charge and mass distributions [20–24]. In
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this approach the nuclear wave function is described as a
linear superposition of many-body functions parametrized by
a vector of collective coordinates. Assuming that the norm
kernels of these many-body functions can be approximated
by a Gaussian form factor [Gaussian overlap approximation
(GOA)], the GCM Hill-Wheeler equation reduces to a local,
time-dependent, Schrödinger-like equation in the space of
collective coordinates. In this approach the dynamics of
the fissioning system essentially depends on the choice of
the collective coordinates, energy density functional, pairing
interaction, and approximations used to calculate the effective
inertia [23].

Applications of the TDGCM+GOA have so far been based
on nonrelativistic Skyrme and Gogny functionals. Relativistic
functionals, equally successful in mean-field and beyond
mean-field (GCM) nuclear structure applications [25–28],
have only been employed in analyses of fission barriers
and spontaneous fission [29–44]. Several recent studies have
performed multidimensionally constrained self-consistent rel-
ativistic mean-field calculations of deformation energy sur-
faces and fission barriers of actinide nuclei [31,32,40,44]
and superheavy nuclei [41,42,44]. We have also analyzed
the effects of triaxial and octupole deformations [33], and
the coupling between shape and pairing degrees of freedom
[34] on dynamic spontaneous fission paths and half-lives. In
this paper we extend our approach and apply the framework
of relativistic EDFs and the corresponding collective Hamil-
tonian to an analysis of induced fission dynamics, making
use of a recent implementation of the TDGCM+GOA [22].
Section II presents an outline of the model used to calculate
the potential energy surface, collective inertia, and the time
evolution of the fissioning system. An illustrative calculation
of induced fission of 226Th, for which the charge distribution of
fission fragments displays symmetric and asymmetric peaks,
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is discussed in Sec. III. In particular, we study the sensitivity
of preneutron emission charge yields and total kinetic energy
of fission fragments on static pairing correlations. Section IV
contains a summary of results and an outlook for future studies.

II. THEORETICAL FRAMEWORK

A. Time-dependent Schrödinger-like equation
for fission dynamics

Nuclear fission can be modeled as a slow adiabatic process
determined by only a few collective degrees of freedom.
In the present study we consider the axial deformation
parameters: quadrupole β2 and octupole β3. A time-dependent
Schrödinger-like equation describes low-energy fission dy-
namics, and this equation can be derived using the time-
dependent generator coordinate method (TDGCM) in the
Gaussian overlap approximation (GOA) [1,23]:

ih̄
∂

∂t
g(β2,β3,t) =

[
− h̄2

2

∑
kl

∂

∂βk

Bkl(β2,β3)
∂

∂βl

+ V (β2,β3)

]

× g(β2,β3,t), (1)

where g(β2,β3,t) denotes the complex wave function of
the collective variables (β2,β3) and time t . V (β2,β3) and
Bkl(β2,β3) are the collective potential and mass tensor,
respectively, and they completely determine the dynamics of
the fission process in the TDGCM+GOA framework. These
quantities will here be calculated in a self-consistent mean-
field approach based on relativistic energy density functionals,
as detailed in Sec. II B. For the time-evolution we follow the
method of Refs. [22,23] and make use of the software package
FELIX [22] that solves the equations of the TDGCM in N
dimensions under the Gaussian overlap approximation.

From the Schrödinger-like Eq. (1) a continuity equation for
the probability density |g(β2,β3,t)|2 is obtained,

∂

∂t
|g(β2,β3,t)|2 = −∇ · J(β2,β3,t), (2)

where J(β2,β3,t) is the probability current defined by the
relation:

Jk(β2,β3,t) = h̄

2i

3∑
l=2

Bkl(β2,β3)

[
g∗(β2,β3,t)

∂g(β2,β3,t)

∂βl

− g(β2,β3,t)
∂g∗(β2,β3,t)

∂βl

]
. (3)

The collective space is divided into the inner region in
which the nuclear density distribution is whole, and an external
region that contains the two fission fragments. The set of
scission configurations defines the hypersurface that separates
the two regions. The flux of the probability current through
this hypersurface provides a measure of the probability of
observing a given pair of fragments at time t . For a surface
element ξ on the scission hypersurface, the integrated flux
F (ξ,t) is defined as [22]:

F (ξ,t) =
∫ t

t=0
dt

∫
(β2,β3)∈ξ

J(β2,β3,t) · dS. (4)

For each scission point, (AL,AH ) denote the masses of the
lighter and heavier fragments, respectively. Therefore, the
yield for the fission fragment with mass A can be defined
by

Y (A) ∝
∑
ξ∈A

lim
t→+∞ F (ξ,t), (5)

where A is the set of all elements ξ belonging to the scission
hypersurface such that one of the fragments has mass A.

B. Collective parameters

The entire dynamics of the Schrödinger-like Eq. (1) is
governed by the four functions of the intrinsic deformations
β2 and β3: the collective potential V and the three mass
parameters B22, B23, B33. These functions are determined by
performing constrained self-consistent mean-field calculations
for a specific choice of the nuclear energy density functional
and pairing interaction. In the present study the energy density
functional PC-PK1 [45] determines the effective interaction
in the particle-hole channel, and a δ force is used in the
particle-particle channel.

The entire map of the energy surface as function of the
quadrupole and octupole deformations is obtained by imposing
constraints on the quadrupole and octupole mass moments.
The method of quadratic constraints uses an unrestricted
variation of the function

〈H 〉 +
∑
k=2,3

Ck(〈Q̂k〉 − qk)2, (6)

where 〈H 〉 is the total energy, and 〈Q̂k〉 denotes the expectation
value of the mass quadrupole and octupole operators:

Q̂2 = 2z2 − r2
⊥ and Q̂3 = 2z3 − 3zr2

⊥. (7)

qk is the constrained value of the multipole moment, and Ck is
the corresponding stiffness constant [46]. The corresponding
deformation parameters β2 and β3 can be determined from the
following relations:

β2 =
√

5π

3AR2
0

〈Q̂2〉, (8)

β3 =
√

7π

3AR3
0

〈Q̂3〉, (9)

with R0 = r0A
1/3 and r0 = 1.2 fm.

The single-nucleon wave functions, energies and occu-
pation factors, generated from constrained self-consistent
solutions of the relativistic mean-field plus BCS-pairing
equations (RMF+BCS), provide the microscopic input for
the parameters of the Schrödinger-like Eq. (1). The solution
of the single-nucleon Dirac equation is obtained by expanding
the nucleon wave functions in an axially deformed harmonic
oscillator basis, as described in Appendix.

The mass tensor associated with q2 = 〈Q̂2〉 and q3 = 〈Q̂3〉
are calculated in the perturbative cranking approximation
[47,48]

Bkl(q2,q3) = 2

h̄2

[M(1)M−1
(3)M(1)

]
kl
, (10)
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with

M(n),kl(q2,q3) =
∑
i,j

〈i|Q̂k|j 〉〈j |Q̂l|i〉
(Ei + Ej )n

(uivj + viuj )2. (11)

The summation is over the proton and neutron quasiparticle
states. The quasiparticle energies Ei , occupation probabilities
vi , and single-nucleon states are determined by solutions of
the constrained RMF+BCS equations.

The collective energy surface includes the energy of zero-
point motion, which has to be subtracted. The vibrational and
rotational zero-point energy (ZPE) corrections are calculated
in the cranking approximation [49,50]:

�Vvib(β2,β3) = 1
4 Tr

[M−1
(3)M(2)

]
, (12)

and

�Vrot(β2,β3) = 〈Ĵ 2〉
2I , (13)

respectively, where I is the Inglis-Belyaev moment of inertia
[51,52]. The potential V (β2,β3) in the time-dependent collec-
tive Eq. (1) is obtained by subtracting the ZPE corrections
from the total mean-field energy:

V (β2,β3) = Etot(β2,β3) − �Vvib(β2,β3) − �Vrot(β2,β3).

(14)

III. RESULTS AND DISCUSSION

In this section we present the results of an illustrative study
of induced fission of 226Th, for which the charge distribution
of fission fragments exhibits a coexistence of symmetric
and asymmetric peaks [53]. In the first step a large-scale
deformation-constrained self-consistent RMF+BCS calcula-
tion is performed to generate the potential energy surface
and single-nucleon wave functions in the (β2,β3) plane. The
range of collective variables is −0.83−6.01 for β2 with a step
�β = 0.04, and from 0.01–3.53 for β3 with a step �β3 = 0.08.
The energy density functional PC-PK1 [45] is used for the
effective interaction in the particle-hole channel, and a δ-force
pairing with strengths parameters: Vn = 360 MeV fm3 and
Vp = 378 MeV fm3 determined by the empirical pairing gap
parameters of 226Th, calculated using a five-point formula
[54]. The self-consistent Dirac equation for the single-particle
wave functions is solved by expanding the nucleon spinors in
an axially deformed harmonic oscillator basis in cylindrical
coordinates with 20 major shells. The computer code FELIX

[22] is used for modeling the time evolution of the fissioning
nucleus with a time step δt = 5 × 10−4 zs. The parameters of
the additional imaginary absorption potential that takes into
account the escape of the collective wave packet in the domain
outside the region of calculation [22] are: the absorption
rate r = 20 × 1022 s−1, and the width of the absorption band
w = 1.5.

A. Potential energy surface, scission line,
and total kinetic energy

The present RMF+BCS results for the potential energy
surface (PES), scission line, and total kinetic energy of 226Th

FIG. 1. Self-consistent RMF+BCS quadrupole and octupole
constrained deformation energy surface (in MeV) of 226Th in the
β2-β3 plane.

can be compared to those obtained in Ref. [55] using the
Hartree-Fock-Bogoliubov framework based on the Gogny D1S
effective interaction. Figures 1 and 2 display the self-consistent
RMF+BCS quadrupole and octupole constrained energy
surfaces, the static fission path, and density distributions for
selected deformations along the fission path of 226Th. The
lowest minimum is located at (β2,β3) ∼ (0.20,0.17), but is
rather soft against octupole deformation. A triple-humped
fission barrier is predicted along the static fission path, and
the calculated heights are 7.10, 8.58, and 7.32 MeV from the
inner to the outer barrier, respectively. At elongations β2 > 1.5
a symmetric valley extends up to the scission point at β2 ∼ 5.4.
The symmetric and asymmetric fission valleys are separated by

FIG. 2. Same as in the caption to Fig. 1, but plotted as a
contour map. The red curve is the static fission path and the density
distributions for selected deformations along the fission path are also
shown.
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FIG. 3. The scission contour of 226Th in the β2-β3 plane.

a ridge from (β2,β3) = (1.6,0.0) to (3.4, 1.0). One notices that
the overall topography of the PES is similar to that calculated
with the Gogny D1S interaction [55].

When describing fission in the β2-β3 collective space,
scission is characterized by a discontinuity between the two
domains of prescissioned and postscissioned configurations.
Scission can be described using the Gaussian neck operator
Q̂N = exp [−(z − zN )2/a2

N ], where aN = 1 fm and zN is the
position of the neck [56]. It is related to the number of particles
in the neck, and here we follow the prescription of Ref. [23] to
define the prescission domain by 〈Q̂N 〉 > 3 and consider the
frontier of this domain as the scission line. In Fig. 3 we plot the
scission profile for 226Th in the β2-β3 plane. The curve starts
from an elongated symmetric point at β2 ∼ 5.4 and evolves to
a minimal elongation with β2 ∼ 3.2 as asymmetry increases.
From that point β3 increases rapidly along the scission line
and we also note a more gradual increase of the quadrupole
deformation parameter. The general pattern is similar to the
scission lines for 226Th obtained in Refs. [55,56].

The total kinetic energy (TKE) for a particular pair of
fragments can be evaluated from

ETKE = e2ZH ZL

dch
, (15)

where e is the proton charge, ZH (ZL) the charge of the heavy
(light) fragment, and dch the distance between fragment centers
of charge at scission. Figure 4 displays the calculated total
kinetic energies of the nascent fission fragments for 226Th
as a function of fragment mass. For comparison, the data
obtained in photoinduced fission measurement [53] are also
included in the figure. One notices that the theoretical results
qualitatively reproduce the trend of the data, in particular the
maxima for Afrag ∼ 132 and Afrag ∼ 94. On a quantitative
level the calculation exhibits more structure when compared to
experiment. This may be due to the fact that the experimental
values correspond to an excitation energy of the fissioning
nucleus of the order of 11 MeV, whereas formula (15) is
valid only for low-energy fission. As it is well known, the
kinetic energy distribution is generally smoothed out as the

FIG. 4. The calculated total kinetic energy of the nascent fission
fragments for 226Th as a function of fragment mass, in comparison to
the data [53].

fission energy increases. In particular, the kinetic energy in the
symmetric mass region increases [57], which explains why
experimental TKEs display only a very shallow minimum for
Afrag = A/2. We note that the present theoretical results are
consistent with those obtained using the Gogny D1S effective
interaction in Ref. [55].

B. Sensitivity of the fission process to the
choice of pairing strength

A number of model studies, including those based on the
relativistic mean-field framework [40,44], have shown that
the height of calculated fission barriers is rather sensitive
to the strength of pairing interaction. To illustrate the effect
of pairing correlations on fission dynamics, we analyze the
characteristics of the fission process for different strengths
of the pairing interaction. Figure 5 displays the PESs of
226Th for three parametrizations of pairing force: (Vn,Vp) =
(324,340.2), (360, 378), and (396, 415.8) MeV fm3. These
values correspond to 90%, 100%, and 110%, respectively,
of the original pairing strengths that were determined to
reproduce the empirical pairing gaps of 226Th. Even though the
general topography of the PESs does not change significantly
as pairing increases, the barriers are reduced considerably
(see Table I). In particular, the ridge between the symmetric
and asymmetric fission valleys is lowered, and this leads to
pronounced competition between the two fission modes (cf.
Fig. 10).

In Fig. 6 we plot the collective masses B−1
22 and B−1

33 ,
related to vibrations in β2 and β3, respectively, along the
static fission path for the three choices of pairing strengths.
They are elements of the inverse matrix of the mass tensor
Bkl in Eq. (10). In general, the collective masses exhibit a
rather complex behavior for β2 < 1.0, and show very little
variation for large deformations. On the whole B−1

22 gradually
decreases as the nucleus is elongated, while B−1

33 displays
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FIG. 5. Potential energy surfaces of 226Th in the β2-β3 plane, cal-
culated with the functional PC-PK1 and for three parametrizations of
the pairing force: (Vn,Vp) = (324,340.2) (top), (360, 378) (middle),
and (396, 415.8) (bottom), in units of MeV fm3.

TABLE I. The height of the fission barriers (in MeV) with respect
to the corresponding ground-state minima, for different values of the
pairing strengths.

BI B
asy
II B

asy
III B

sym
II B

sym
III

90% pairing 8.23 9.47 7.74 15.64 6.38
100% pairing 7.10 8.58 7.32 14.21 5.72
110% pairing 5.92 7.78 7.09 12.72 5.17

FIG. 6. Collective masses B−1
22 and B−1

33 related to vibrations in
β2 and β3, respectively, along the static fission path for three values
of the pairing strength.

a pronounced decrease only in the region up to β2 ∼ 1.0.
As pairing correlations increase, the collective masses are
reduced and the shell oscillations are also smoothed out. These
effects are illustrated in Fig. 7, where we plot the neutron and
proton pairing gaps along the static fission path for different
pairing strengths. The fluctuations of pairing gaps reflect the
underlying shell structure, and pairing is strongly reduced

FIG. 7. Pairing gaps for neutrons (top) and protons (bottom)
along the static fission path.
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FIG. 8. The scission lines for 226Th in the β2-β3 plane, obtained
in calculations with three different values of the pairing strength.

wherever the level density around the Fermi level is small. As
a result, the mass parameters are locally enhanced in regions
of weak pairing.

Figures 8 and 9 display the scission lines in the β2-β3

plane and the TKEs of nascent fission fragments of 226Th,
respectively, for three different values of the pairing strength.
The pattern of the scission line does not change significantly,
except at the bending points and, overall, a smoother contour
is obtained for stronger pairing. We also note that the scission
points on the static fission path for three values of the pairing
strength are very close to each other, at (β2,β3) ∼ (3.3,2.0).
This result differs from that in 240Pu calculated using the HFB
method with the Skyrme functional SkM∗ [58], where the
quadrupole deformation β2 at the scission point changes by
as much as ∼0.65 when the original pairing strength is varied

FIG. 9. Comparison between experimental and calculated total
kinetic energy of nascent fission fragments for 226Th, as a function of
fragment mass and pairing strength.

FIG. 10. Preneutron emission charge yields for photoinduced
fission of 226Th. The results of calculations for three different values
of the pairing strength are compared to the data [53].

from 90% to 110%. Since the TKEs in the present study are
fully determined by the scission configurations, varying the
pairing strength does not lead to marked differences in the
TKE distribution.

In Fig. 10 we compare the charge yields, obtained with
three different pairing strengths, to the data for photoinduced
fission of 226Th. Following the procedure of Ref. [23], the
initial state is prepared by boosting the collective ground state
in the direction of increasing axial quadrupole deformation.
The amplitude of the boost is determined so that the average
energy of the initial state is ∼1 MeV above the corresponding
asymmetric fission barrier B

asy
II of the collective potential

energy surface [cf. Eq. (14)]. The calculation reproduces the
trend of the data, except that obviously the model cannot
describe the odd-even staggering of the experimental charge
yields. For weak pairing correlations, that is, at 90% of
the original pairing strength, the yields are dominated by
asymmetric fission with peaks at Z = 35 and Z = 55. A broad
peak corresponding to symmetric fission is also predicted but
is too low compared to data. This is because the asymmetric
fission barrier B

asy
II is ∼6 MeV lower than the symmetric one

B
sym
II . The asymmetric peaks are reduced and the symmetric

peak enhanced as pairing correlations increase, and we find
that the data are best reproduced by a pairing strength between
100% and 110% of the original parameters. This can be
attributed to a reduction of the ridge between asymmetric
and symmetric fission valleys when increasing the pairing
strength. Another important effect is that the wavelength
becomes longer because of smaller collective masses for
stronger pairing, and this enhances the collective current in
the symmetric fission valley beyond β2 > 2.5.

Finally, we discuss the fission time for the nucleus by
analyzing the total flux as a function of time in Fig. 11. The total
flux is obtained by integrating the flux F (ξ,t) in Eq. (4) along
the scission line. The fission time is obviously very sensitive to
the pairing strength, and the time for the total flux to reach 1/5
varies from ∼30 to ∼7 zs as the pairing strength changes from
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FIG. 11. Total flux as a function of time for three different pairing
strengths.

90% to 110%. This is easy to understand because the current
is proportional to the mass tensor Bkl [cf. Eq. (3)], which is
enhanced for stronger pairing (cf. Fig. 6).

C. Sensitivity to the initial excitation energy

An interesting quantity to analyze is the energy dependence
of the yields. In Figs. 12 and 13 we show the charge and
mass distributions of fission fragments for different excitation
energies of the initial state, respectively. The original pairing
strength is used. Both for the charge and mass distributions,
one notices the transition from asymmetric to symmetric
fission as the excitation energy increases. With the increase
in energy the current can more directly enter the symmetric
valley and, consequently, the asymmetric peaks are lowered
while the symmetric peak gradually becomes wider. This
result is consistent with the very recent prediction of the

FIG. 12. Charge distribution of fission fragments for different
excitation energies. The original pairing strength is used.

FIG. 13. Same as in the caption to Fig. 12 but for the mass yield.

Metropolis walk method based on microscopic level densities
[59]. At even higher energies, in the macroscopic limit, the
yield distribution will eventually be dominated by symmetric
fission. However, we could not perform such a calculation here
because a boosted collective ground state does not represent a
good choice for the initial state at very high excitation energy.

IV. SUMMARY AND OUTLOOK

The dynamics of induced fission of 226Th has been analyzed
in a theoretical framework based on covariant energy density
functionals and the corresponding collective Hamiltonian,
making use of a recently developed numerical implementation
of the time-dependent generator coordinate method plus
Gaussian overlap approximation [22]. The potential energy
surface, mass tensor, scission line, and total kinetic energies
have been calculated using the multidimensionally constrained
relativistic mean-field model based on the energy density
functional PC-PK1, and with pairing correlations taken into
account in the BCS approximation. The fission process is
described in a two-dimensional axially symmetric collective
space (β2, β3). We note that the overall topography of the PES,
the total kinetic energies for a particular pair of fragments,
and the general pattern of the scission line are consistent
with previous studies based on the Gogny effective interaction
[55,56].

The TDGCM+GOA calculation reproduces the main char-
acteristics of the fission charge and mass distributions, thus
confirming the main conclusion of the analysis presented in
Ref. [23]. By comparing the fission fragment yields for several
values of the initial excitation energy, we have found that
increasing the latter leads to a lowering of asymmetric peaks
and widens the symmetric peak.

The present study is based on the perturbative cranking
approximation for the mass tensor. It was shown, however,
that this approximation underestimates the variation of mass
parameters caused by level crossings [60], and nonperturbative
cranking inertia can significantly modify spontaneous-fission
paths and half-lives as compared to results obtained in the
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perturbative cranking approximation [16,33]. The effects of
nonperturbative cranking inertia on induced fission mass
distributions are presently not known, and this important topic
is a subject for future research.

The importance of pairing correlations for the nuclear
fission process has been demonstrated in numerous studies
[61–64]. For instance, a recent investigation of fission dy-
namics of 240Pu within the real-time microscopic framework
[7] has shown that a number of shape and pairing modes
are excited during the fission process. Studies of spontaneous
fission [34,65] have shown the dramatic effect of the dynamical
coupling between shape and pairing degrees of freedom on
the calculated spontaneous fission lifetimes. In this study we
have analyzed the influence of ground-state pairing on the
preneutron emission charge yields. The increase of static pair-
ing correlations reduces the asymmetric peaks and enhances
the symmetric peak in charge yields distribution. Therefore
a very interesting topic for future studies is dynamic pairing
correlation in induced fission, possibly through the inclusion
of pairing degrees of freedom in the space of TDGCM+GOA
collective coordinates.
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APPENDIX: AXIALLY DEFORMED HARMONIC
OSCILLATOR BASIS

For a deformed axially symmetric shape the densities are
invariant with respect to a rotation around the symmetry axis,
which is taken to be the z axis here. It then turns out to be
useful to work with cylindrical coordinates

x = r⊥ cos ϕ, y = r⊥ sin ϕ, and z. (A1)

The single-nucleon Dirac spinors are expanded in terms of
the eigenfunctions of a deformed axially symmetric oscillator
potential:

V (z,r⊥) = 1
2mω2

zz
2 + 1

2mω2
r r

2
⊥. (A2)

Imposing volume conservation, the two oscillator frequencies
h̄ωz and h̄ωr can be expressed in terms of a deformation
parameter β0:

h̄ωz = h̄ω0 exp

(
−

√
5

4π
β0

)
(A3)

h̄ωr = h̄ω0 exp

(
1

2

√
5

4π
β0

)
. (A4)

FIG. 14. (a) Self-consistent RMF+BCS binding energy of 226Th
for two extremely deformed configurations (β2,β3) = (5.01,0.01) and
(3.01,2.01), as a function of the number of major shells of the axially
deformed harmonic oscillator basis. (b) Self-consistent RMF+BCS
binding energies of 226Th as functions of β2 for different values of a

in Eq. (A13), with Nf = 20 and β3 = 0.01. (c) Same as in the caption
to (b) but for β3 = 1.73.

The corresponding oscillator length parameters are

bz =
√

h̄

mωz

and br =
√

h̄

mωr

. (A5)

The basis is now determined by the two constants h̄ω0

and β0. The eigenfunctions of the deformed harmonic os-
cillator potential are characterized by the set of quantum
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numbers

|α〉 = |nznrmlms〉, (A6)

where ml and ms are the components of the orbital angular
momentum and spin along the symmetry axis, respectively.
The eigenvalue of jz, which is a conserved quantity in this
case, is � = ml + ms . The eigenfunctions of the deformed
harmonic oscillator can be explicitly written in the form:

�α(z,r⊥,ϕ,s,t) = φnz
(z)φml

nr
(r⊥)

1√
2π

eimlϕχms
(s)χtα (t)

= �α(r,s)χtα (t) (A7)

with

φnz
(z) = Nnz√

bz

Hnz
(ζ )e−ζ 2/2 (A8)

φml
nr

(r⊥) = Nml
nr

br

√
2ηml/2Lml

nr
(η)e−η2/2, (A9)

where ζ = z/bz and η = r2
⊥/b2

r . Hnz
(ζ ), and Lml

nr
(η) are the

Hermite polynomials and associated Laguerre polynomials,
respectively. The normalization constants are given by

Nnz
= 1√√

π2nznz!
and Nml

nr
=

√
nr !

(nr + ml)!
. (A10)

The Dirac spinor ψi , characterized by the quantum numbers
�i and isospin projection ti , can be expanded:

ψi(r,t) =
(

fi(r,s)
igi(r,s)

)
χti (t) =

( ∑αmax
α f i

α�α(r,s)

i
∑α̃max

α̃ gi
α̃�α̃(r,s)

)
χti (t),

(A11)

and, of course, the summations in Eq. (A11) have to be
truncated for a given number of shells Nf . Following the
prescription of Ref. [31], for the large component of the Dirac
spinor all the states for which [nz/Qz + (2nr + |ml|)/Qr ] �
Nf are included in the expansion, where Qz = max(1,bz/b0)
and Qr = max(1,br/b0) are constants related to the oscillator
lengths b0 = √

h̄/mω0. To avoid the occurrence of spurious
states, the expansion of the small component is truncated
at Ng = Nf + 1 major shells. In the present calculation, the
parameters h̄ω0 and β0 are chosen as

h̄ω0 = 41A−1/3 MeV, (A12)

β0 =
⎧⎨
⎩

0 for β2 < 0;
aβ2 for 0 � β2 � 1;
a
√

β2 for β2 > 1.
(A13)

For a given number of shells Nf and following the procedure
described above, a larger value of the parameter a in Eq. (A13)
implies an increase in the number of basis states and,
consequently, longer computing times. The convergence check
for different values of Nf and a is illustrated in Fig. 14. It is
found that the choice of the above parameters largely mitigates
basis truncation effects up to the scission point, where we
estimate the error on the total energy to be < 1.0 MeV for
Nf = 20 and a = 0.5.
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[30] Z. P. Li, T. Nikšić, D. Vretenar, P. Ring, and J. Meng, Phys. Rev.
C 81, 064321 (2010).

[31] Bing-Nan Lu, Jie Zhao, En-Guang Zhao, and Shan-Gui Zhou,
Phys. Rev. C 89, 014323 (2014).

[32] J. Zhao, Bing-Nan Lu, Dario Vretenar, En-Guang Zhao, and
Shan-Gui Zhou, Phys. Rev. C 91, 014321 (2015).
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Gui Zhou, Phys. Rev. C 93, 044315 (2016).

[35] T. Burvenich, M. Bender, J. A. Maruhn, and P.-G. Reinhard,
Phys. Rev. C 69, 014307 (2004).

[36] V. Blum, J. Maruhn, P.-G. Reinhard, and W. Greiner, Phys. Lett.
B 323, 262 (1994).

[37] W. Zhang, S.-S. Zhang, S.-Q. Zhang, and J. Meng, Chin. Phys.
Lett. 20, 1694 (2003).

[38] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys.
75, 121 (2003).

[39] H.-F. Lu, L.-S. Geng, and J. Meng, Chin. Phys. Lett. 23, 2940
(2006).

[40] H. Abusara, A. V. Afanasjev, and P. Ring, Phys. Rev. C 82,
044303 (2010).

[41] H. Abusara, A. V. Afanasjev, and P. Ring, Phys. Rev. C 85,
024314 (2012).

[42] S. E. Agbemava, A. V. Afanasjev, D. Ray, and P. Ring, Phys.
Rev. C 95, 054324 (2017).

[43] S.-G. Zhou, Phys. Scr. 91, 063008 (2016).
[44] S. Karatzikos, A. Afanasjev, G. Lalazissis, and P. Ring, Phys.

Lett. B 689, 72 (2010).
[45] P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C 82,

054319 (2010).

[46] P. Ring and P. Schuck, The Nuclear Many-Body Problem
(Springer-Verlag, Heidelberg, 1980).

[47] M. Girod and B. Grammaticos, Nucl. Phys. A 330, 40 (1979).
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