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1 Introduction

The primary goal of ultrarelativistic heavy-ion collisions is to study the properties of the

Quark-Gluon Plasma (QGP), a state of matter predicted by Quantum Chromodynamics

to exist at high temperatures and energy densities [1, 2]. An important experimental ob-

servable used to accomplish this goal is the azimuthal anisotropy of particles emitted in

the transverse plane. In non-central heavy-ion collisions, the overlap region of the Lorentz-

contracted nuclei is roughly almond-shaped. Nucleons contained in such anisotropic over-

lap region interact with each other and give rise to a system of high energy density which

expands anisotropically. These interactions convert the initial spatial asymmetry into a

final-state momentum anisotropy of the produced particles, a phenomenon referred to

as collective anisotropic flow [3–5]. Anisotropic flow is characterised using a Fourier de-

composition of the azimuthal distribution of particles with respect to the flow symmetry

planes [6, 7]

E
d3N

d3~p
=

1

2π

d2N

pTdpTdη

(
1 + 2

∞∑
n=1

vn cos[n(ϕ−Ψn)]

)
, (1.1)

where N is the number of produced particles, E is the energy, ~p the momentum, pT the

transverse momentum, ϕ the azimuthal angle and η the pseudorapidity of the particle. The

nth order flow (vector) Vn is defined as: Vn ≡ vn einΨn , where vn is the flow coefficient, and

Ψn represents the azimuth of Vn in momentum space (flow angle). For a uniform matter

distribution in the initial stage of a heavy-ion collision, Ψn for n ≥ 1 coincides with the

reaction plane defined by the beam direction and impact parameter. Due to event-by-event

fluctuations of the participating nucleons distribution inside the overlap region, the Ψn may
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deviate from the reaction plane and the odd flow coefficients v2n−1 are non-vanishing [8–14].

Large flow coefficients were observed at the Relativistic Heavy-Ion Collider (RHIC) [15–18]

and the Large Hadron Collider (LHC) [19–29]. These measurements constrain the initial

conditions (e.g. energy and entropy density) and transport coefficients of the system (such

as shear viscosity over entropy density ratio, η/s). The recent measurements of correla-

tions between different order flow coefficients and flow angles [23, 30], together with the

comparisons to theoretical calculations, indicate that the matter created in ultrarelativistic

heavy-ion collisions behaves as a nearly perfect fluid (almost zero η/s) whose constituent

particles interact strongly [31].

Traditionally the final-state symmetry plane angles are estimated event-by-event from

the particle azimuthal distribution over a large range in pT. However, hydrodynamic

calculations indicate a pT dependence of the flow vector Vn due to event-by-event fluc-

tuations in the initial energy density of the nuclear collisions [32, 33]. These flow vector

fluctuations could be responsible for the experimentally observed breakdown of the fac-

torisation [25, 27, 34]. They might also affect the measured pT-differential anisotropic flow

vn(pT) [33]. Therefore, searches for pT-dependent flow vector fluctuations become impor-

tant and these measurements together with the comparisons to theoretical calculations not

only constrain the transport properties, but also shed light on the initial conditions in

heavy-ion collisions.

Studies of azimuthal correlations are performed also in p–Pb collisions at the LHC. The

original goal of p–Pb collisions was to provide reference data for the high energy Pb–Pb

collisions. However, indications of collective behaviour have been discovered by the AL-

ICE, ATLAS, CMS and LHCb collaborations [35–46]. If the azimuthal correlations in small

collision systems reveal the onset of hydrodynamic flow behaviour, the breakdown of fac-

torisation should be expected in small collision systems and reproduced by hydrodynamic

calculations as well.

The first experimental indication of pT-dependent flow vector fluctuations was ob-

served by ALICE in studies of the decomposition of Fourier harmonics of the two-particle

azimuthal correlations [34]. Fits to the azimuthal correlations, assuming factorisation of the

two-particle Fourier harmonics, agree well with data up to p a
T ∼ 3–4 GeV/c, deviations at

higher pT are interpreted, as at least partially, due to away-side recoil jet contributions [34].

A systematic study of the factorisation of long-range two-particle Fourier harmonic into

the flow coefficients is also performed in both Pb–Pb and p–Pb collisions by CMS [41, 47].

In this paper, the pT-dependent flow vector fluctuations are investigated in more detail

using novel observables for azimuthal correlations, for charged particles in Pb–Pb collisions

at
√
sNN = 2.76 TeV and p–Pb collisions at

√
sNN = 5.02 TeV with the ALICE detector. The

definitions of the observables are given in section 2. The experimental setup is described in

section 3. The results are reported in multiple centrality classes for Pb–Pb collisions and

multiplicity classes for p–Pb collisions for several transverse momentum intervals. Details

of the event and track selections are given in section 4. Section 5 shows the study of

systematic uncertainties of the aforementioned observables. Section 6 presents results and

discussions while section 7 summarizes and concludes this work.

– 2 –
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2 Probes of pT-dependent flow vector fluctuations

The traditional approach used to measure anisotropic azimuthal correlations is as follows:

first, the flow coefficient of reference particles (RPs), called reference flow, is determined

over a wide kinematic range, and then the transverse momentum differential flow coefficient

is calculated by correlating the particles of interest (POIs) with respect to the reference flow

obtained in the first step. Usually a pseudorapidity gap |∆η| is applied between the two

correlated particles to suppress non-flow effects, which comprise azimuthal correlations

not associated with flow symmetry planes, e.g. resonance decays and jet contributions.

This approach has commonly been used to measure the anisotropic flow at the LHC [20,

25, 28]. Considering possible pT-dependent flow angle and/or magnitude fluctuations and

neglecting non-flow contributions, the flow coefficient from pT interval a measured with

2-particle correlations can be expressed as

vn{2}(paT) =
〈〈cos [n (ϕ a

1 − ϕ ref
2 )]〉〉√

〈〈cos [n (ϕ ref
1 − ϕ ref

2 )]〉〉
=
〈vn(p a

T) v ref
n cos [n (Ψn(p a

T)−Ψn)]〉√
〈v ref

n
2〉

. (2.1)

Here, a single set of angular brackets denotes averaging over events, and a double set

indicates averaging over both particles and events. The ϕref and ϕa represent the azimuthal

angle of RPs and POIs, respectively. The v ref
n stands for the reference flow, and Ψn(paT)

denotes the pT differential symmetry plane angle at paT, which might fluctuate around

the pT integrated symmetry plane angle Ψn. The cosine term 〈cos [n (Ψn(p a
T) − Ψn)]〉

shows the effects of the difference between Ψn(pT) and Ψn, due to the pT-dependent flow

angle fluctuations. Additionally, 〈vn(paT) vref
n 〉 cannot be factorised into the product of√

〈vn(p a
T)2〉 and

√
〈v ref

n
2〉 if there are pT-dependent flow coefficient fluctuations.

A new type of two-particle azimuthal correlations from p a
T, denoted as vn[2](paT), is

proposed in [33]:

vn[2](p a
T) =

√
〈〈cos [n (ϕ a

1 − ϕ a
2 )]〉〉

=
√
〈〈cos [n(ϕ a

1 −Ψn(p a
T))− n (ϕ a

2 −Ψn(p a
T))]〉〉

=
√
〈vn(p a

T)2〉.

(2.2)

The difference between vn{2}(paT) and vn[2](paT) is that the former takes the flow of RPs

from a wide pT range and the POIs from a certain pT interval, while the latter is essentially

the reference flow calculated within a narrow pT range. The ratio of vn{2} and vn[2] allows

pT-dependent flow vector fluctuations

vn{2}
vn[2]

(p a
T) =

〈vn(p a
T) v ref

n cos [n (Ψn(p a
T)−Ψn)]〉√

〈vn(p a
T) 2〉

√
〈v ref

n
2〉

. (2.3)

When the correlations are dominated by flow, a ratio value smaller than unity shall indicate

the presence of pT-dependent flow vector fluctuations.

– 3 –
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Another observable to probe the pT-dependent flow vector fluctuations is the factori-

sation ratio rn [32, 33]. It can be calculated using the two-particle Fourier harmonic as

rn =
Vn∆(p a

T, p
t
T)√

Vn∆(p a
T, p

a
T)Vn∆(p t

T, p
t
T)
, (2.4)

where Vn∆(p a
T, p

t
T) is the nth-order Fourier harmonic of the two-particle azimuthal corre-

lations of triggered and associated particles from p t
T and p a

T, and is calculated as

Vn∆(p a
T, p

t
T) = 〈〈cos [n (ϕ a

1 − ϕ t
2)]〉〉 = 〈vn(p a

T) vn(p t
T) cos [n(Ψn(p a

T)−Ψn(p t
T))]〉, (2.5)

where Ψn(p a
T) and Ψn(p t

T) represent the flow angles at p a
T and p t

T, respectively. The sub-

script ∆ indicates that a pseudorapidity gap is usually applied to minimise contamination

from non-flow effects. If both triggered and associated particle are from the same pT

interval ptT, eq. (2.5) reduces to

Vn∆(p a
T, p

a
T) = 〈〈cos [n (ϕ a

1 − ϕ a
2 )]〉〉 = 〈vn(p a

T) 2〉. (2.6)

Similarly, we have

Vn∆(p t
T, p

t
T) = 〈〈cos [n (ϕ t

1 − ϕ t
2)]〉〉 = 〈vn(p t

T) 2〉 . (2.7)

In the end rn is equivalent to

rn =
〈vn(p a

T) vn(p t
T) cos [n(Ψn(p a

T)−Ψn(p t
T))]〉√

〈vn(p a
T) 2〉〈vn(p t

T) 2〉
. (2.8)

It can be seen that rn = 1 does not always hold true, i.e. most of the known sources of

non-flow effects do not factorise at low pT, which is confirmed by Monte Carlo studies [48].

In a flow-dominated system, rn ≤ 1 due to the Cauchy-Schwarz inequality. Factorisation

implies rn = 1, while rn < 1 shows the breaking of factorisation, suggesting the presence

of pT-dependent flow vector fluctuations [32, 33].

Note that eqs. (2.3) and (2.8) look very similar. The ratios vn{2}/vn[2] include the

pT integrated information and probe the pT-differential flow vector with respect to the

pT integrated flow vector. The rn carries more detailed information on the 2-particle

correlation structure for triggered and associated particle from narrow pT intervals, and

probe the fluctuations of flow vector at paT and ptT; however, it also has larger statistical

uncertainties. If the triggered particles are selected from a very wide kinematic range, the

observable rn becomes identical with vn{2}/vn[2]. In this paper, we study vn{2}/vn[2] up

to n = 4 and rn up to n = 3.

3 Experimental setup

A Large Ion Collider Experiment (ALICE) [49] is the dedicated heavy-ion experiment at the

LHC designed to study strongly interacting matter at extreme energy densities. It was built

to cope with the large charged-particle multiplicity density in central Pb–Pb collisions at
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the LHC, with several thousand tracks per unit of pseudorapidity. The ALICE apparatus

consists of a central barrel that measures hadrons, electrons, muons and photons, and

a forward spectrometer for the identification of muons. Several smaller detectors in the

forward region are used for triggering and global event characterization. The central barrel

is located inside a solenoidal magnet that provides a magnetic field of up to 0.5 T. Charged

tracks are reconstructed using the Time Projection Chamber (TPC) [49, 50] and the Inner

Tracking System (ITS) [49, 51] with a track momentum resolution better than 2% for the

momentum range 0.2 < pT < 5.0 GeV/c [52]. The TPC is the main tracking detector of

the central barrel, sufficient with full azimuthal coverage in the range of |η| < 0.9. The

ITS consists of six layers of silicon detectors placed at radii between 3.9 cm and 43 cm

and matching the pseudorapidity acceptance of the TPC. Three different technologies are

employed in the ITS: the two innermost layers are equipped with Silicon Pixel Detectors

(SPD), the following two layers have Silicon Drift Detectors (SDD) and the two outer

layers are double-sided Silicon Strip Detectors (SSD). The V0 detector [49, 53] was used

for triggering and the determination of the event centrality. It consists of two arrays

called V0-A and V0-C, each built from 32 scintillator counters and providing full azimuthal

coverage, positioned on each side of the interaction point. The V0-A is situated at z = 3.4 m

(2.8 < η < 5.1) and the V0-C is located at z = −0.9 m (−3.7 < η < −1.7). Each V0 counter

provides the signal amplitude and timing information with a time resolution better than

1 ns [49, 53]. Two Zero Degree Calorimeters (ZDCs) [49] were used in the offline event

selection. The ZDCs are a pair of hadronic calorimeters, one for detecting non-interacting

neutrons (ZN) and one for spectator protons (ZP), located at 112.5 m on either side of the

interaction point.

4 Event and track selection

The data samples analyzed in this article were recorded by ALICE during the 2010 Pb–

Pb and 2013 p–Pb runs of the LHC at centre-of-mass energies of
√
sNN = 2.76 TeV and

√
sNN = 5.02 TeV, respectively. The Pb–Pb run had equal beam energies, while the p–

Pb run had beam energies of 4 TeV for protons and 1.58 TeV per nucleon for lead nuclei,

which resulted in a rapidity shift of −0.465 of the centre-of-mass system with respect to

the ALICE laboratory system. In the following, all kinematic variables are reported in the

laboratory system. Minimum bias Pb–Pb and p–Pb events were triggered by the coinci-

dence of signals in both V0 detectors. The trigger efficiency is 99.7% for non-diffractive

Pb–Pb collisions [54] and 99.2% for non-single-diffractive p–Pb collisions [55]. Beam back-

ground events were rejected in an offline event selection for all data samples using the

timing information from the V0 and ZDC detectors and by correlating reconstructed SPD

clusters and tracklets. The remaining beam background was found to be smaller than

0.1% and was neglected. More details about the offline event selection can be found in [52].

The fraction of pile-up events in the data sample is found to be negligible after applying

dedicated pile-up removal criteria [52]. Only events with a reconstructed primary vertex

within |zvtx| < 10 cm with respect to the nominal interaction point were selected. The

position of the primary vertex was estimated using tracks reconstructed by the ITS and

– 5 –
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TPC. The Pb–Pb collision centrality was determined from the measured V0 amplitude

distribution [54]. The dataset of p–Pb collisions is divided into several multiplicity classes

defined as fractions of the analysed event sample, based on the charge deposition in the

V0-A detector. These multiplicity classes are denoted as “0–20%”, “20–40%”, “40–60%”,

and “60–100%”, from the highest to the lowest multiplicity. About 13 million Pb–Pb and

92 million p–Pb minimum bias events passed all event selection criteria.

This analysis used tracks that were reconstructed based on the combined information

from the TPC and ITS detectors. Primary charged tracks were required to have a distance

of closest approach to the primary vertex in the longitudinal (z) direction and transverse

(xy) plane smaller than 3.2 cm and 2.4 cm, respectively. Tracks with 0.2 < pT < 5.0 GeV/c

were selected in the pseudorapidity range |η| < 0.8, in order to exclude non-uniformities due

to the detector boundaries. Additional track quality cuts were applied to remove secondary

particles (i.e. particles originating from weak decays, photon conversions and secondary

hadronic interactions in the detector material) while maintaining good track reconstruction

efficiency. Tracks were required to have at least 70 TPC space points out of the maximum

of 159. The χ2 of the track fit per degree of freedom in the TPC reconstruction was required

to be below 2.

5 Systematic uncertainties

The evaluation of systematic uncertainties was performed by varying the event and track

selection cuts and by studying the detector response with Monte Carlo (MC) simulations.

For Pb–Pb, the track selection criteria were changed to only require tracks reconstructed in

the TPC alone. This led to a significant difference in most of the observables (up to 10 %),

which was taken into account in the estimation of the systematic uncertainties. Altering

the number of TPC space points from 70 to 80, 90 and 100 resulted in a maximum 0.5%

variation of vn results. The variation of the vn results when using other detectors, e.g.

the SPD or TPC, to determine the centrality, is less than 0.5%. No significant variation

of the vn results was seen when altering the polarity of the magnetic field of the ALICE

detector, or when narrowing the nominal |zvtx| range from 10 cm to |zvtx| < 7, 8, and

9 cm. The contribution from pileup events to the final systematic uncertainty was found

to be negligible. Systematic uncertainties due to detector inefficiencies were investigated

using HIJING [56] and AMPT [57] MC simulations. The calculations for a sample at the

event generator level (i.e. without invoking either the detector geometry or the reconstruc-

tion algorithm) were compared with the results of the analysis of the output of the full

reconstruction with a GEANT3 [58] detector model, in a procedure referred to as an MC

closure test. A difference of up to 4% for vn is observed, which is included in the final

systematic uncertainty. Most of the systematic uncertainties described above cancelled out

for vn{2}/vn[2] and rn as indicated in table 2.

For p–Pb collisions, the approach used to evaluate the systematic uncertainty is sim-

ilar. Different track quality cuts are applied, including varying the number of TPC space

points, and using tracks reconstructed with the required TPC detector only instead of

combined information from TPC and ITS. This leads to a systematic uncertainty of up to

– 6 –
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Pb–Pb sources v2{2} v2[2] v3{2} v3[2] v4{2} v4[2]

Track type < 4% < 4% < 10% < 8% < 8% < 8%

MC closure < 4% < 4% < 4% < 4% < 4% < 4%

Total < 5.7% < 5.7% < 10.7% < 9% < 9% < 9%

Table 1. Summary of systematic uncertainties of vn for Pb–Pb collisions.

Pb–Pb sources v2{2}/v2[2] v3{2}/v3[2] v4{2}/v4[2] r2 r3

Track type — — — < 2% < 5%

MC closure < 1% < 1% < 1% < 1% < 1%

Total < 1% < 1% < 1% < 2.2% < 5.1%

Table 2. Summary of systematic uncertainties of vn{2}/vn[2] and rn for Pb–Pb collisions.

p–Pb sources v2{2} v2[2] v3{2} v3[2] v2{2}/v2[2] r2

Track type < 6% < 1% — — < 1% < 1%

MC closure < 9% < 8% < 3% < 2% — < 1%

Total < 10.8% < 8.1% < 3% < 2% < 1% < 1.4%

Table 3. Summary of systematic uncertainties for p–Pb collisions.

6% depending on the multiplicity and pT range. It was also found that varying the event

selection, which includes the cut on the |zvtx|, and the cuts to reject pileup events, yields

negligible contributions to the final systematic uncertainty. The analysis was repeated us-

ing the energy deposited in the neutron ZDC (ZNA) which is located at 112.5 m from the

interaction point, instead of using V0-A for the event classes determination. The observed

differences with respect to the one using V0-A for event class determination is not included

as systematic uncertainty, following the previous paper [36]. In addition, the MC closure

is investigated with DPMJET simulations [59] combined with GEANT3; this leads to a

systematic uncertainty of less than 9% for pT < 0.8 GeV/c and 2% for higher pT.

The dominant sources of systematic uncertainty are summarized in tables 1, 2 and 3.

The systematic uncertainties evaluated for each of the sources mentioned above were added

in quadrature to obtain the total systematic uncertainty of the measurements.

6 Results and discussion

6.1 Pb–Pb collisions

Figures 1 and 2 show the pT dependence of v2{2} and v2[2] with three different pseudorapid-

ity gaps, for centrality classes from 0–5% to 70–80%. The analysed events are divided into

two sub-events A and B, separated by a pseudorapidity gap. Note that |∆η| > 0 suggests

that there is no separation in pseudorapidity between the two sub-events. Short-range

correlations, one of the main sources of non-flow effects, are expected to be suppressed

– 7 –
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Figure 1. v2{2} with |∆η| > 0 (circles), |∆η| > 0.4 (diamonds) and |∆η| > 0.8 (squares) for

various centrality classes in Pb–Pb collisions at
√
s
NN

= 2.76 TeV. Hydrodynamic calculations with

MC-Glauber initial conditions and η/s = 0.08 [33], with MC-KLN initial conditions and η/s =

0.20 [33], with Trento initial conditions and temperature dependent η/s [60] and AMPT initial

conditions and η/s = 0.08 [60] are shown in green dot-dash, orange dashed curves, and magenta

and grey shaded areas, respectively.

when using a large pseudorapidity gap. It is observed that v2{2} and v2[2] using various

pseudorapidity gaps do not change significantly for central and semi-central collisions. The

decrease of v2 with larger pseudorapidity gaps is more prominent in the most peripheral

collisions, mainly due to the suppression of non-flow effects. The results are also compared

to the original predictions within the VISH2+1 hydrodynamic framework with: 1) Monte

Carlo Glauber (MC-Glauber) initial conditions and η/s = 0.08; 2) Monte Carlo Kharzeev-

Levin-Nardi (MC-KLN) initial conditions and η/s = 0.20 [33]. In addition, the comparisons

to recently released calculations from the iEBE-VISHNU hydrodynamic framework with: 1)

Trento initial conditions, temperature dependent shear and bulk viscosities, η/s(T) and

ζ(T); and 2) AMPT initial conditions with η/s = 0.08 [60] are also presented. These com-

binations of various initial conditions and η/s are chosen due to the fact that they give the

best descriptions of the particle spectra and the integrated flow measurements [60, 61]. The

four hydrodynamic calculations describe the v2{2} very well up to pT ≈ 2 GeV/c at least

for central and semi-central collisions, as do the calculations with MC-Glauber, MC-KLN

and AMPT initial conditions for the v2[2]. For central and mid-central collisions, calcula-

tions with MC-KLN and AMPT initial conditions predict both v2{2} and v2[2] better for

higher pT than those with MC-Glauber and Trento initial conditions. For more peripheral

collisions, the experimental v2 data in both cases fall between the four sets of predictions.

In order to probe the pT-dependent flow vector fluctuations quantitatively, the ratio

v2{2, |∆η| > 0.8}/v2[2, |∆η| > 0.8] using eq. (2.3) is presented as a function of pT for
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Figure 2. v2[2] with |∆η| > 0 (circles), |∆η| > 0.4 (diamonds) and |∆η| > 0.8 (squares) for various

centrality classes in Pb–Pb collisions at
√
s
NN

= 2.76 TeV. Hydrodynamic calculations with MC-

Glauber initial conditions [33] and η/s = 0.08, with MC-KLN initial conditions and η/s = 0.20 [33],

with Trento initial conditions and temperature dependent η/s [60] and AMPT initial conditions

and η/s = 0.08 [60] are shown in green dot-dashed and orange dashed curves, and magenta and

grey shaded areas, respectively.

different centrality classes in figure 3. This ratio is consistent with unity up to pT ≈
2 GeV/c and starts to deviate from unity in the higher pT region in the most central

collisions. The deviations from unity are weak and within 10% in non-central collisions

in the presented pT range. To better understand whether such deviations from unity

are caused by non-flow effects, the like-sign technique, which suppresses contributions from

resonance decays by correlating only particles with same charge, is applied. The differences

of the measured v2{2, |∆η| > 0.8}/v2[2, |∆η| > 0.8] from like-sign and all charged particles

are found to be less than 0.5%. This shows that deviations of v2{2, |∆η| > 0.8}/v2[2, |∆η| >
0.8] from unity cannot be explained solely by non-flow effects from resonance decays. It

is also seen in figure 3 that the hydrodynamic calculations with MC-KLN, Trento and

AMPT initial conditions describe the data fairly well for all centrality classes except for

the most peripheral collisions, while MC-Glauber calculations reproduce the data only for

mid-central and peripheral collisions. This indicates that hydrodynamic calculations with

AMPT and MC-KLN initial conditions and η/s = 0.20 not only generate reasonable v2

values, but also reproduce the measured v2{2, |∆η| > 0.8}/v2[2, |∆η| > 0.8].

The higher order anisotropic flow coefficients, which were first measured in [20], are

shown to be more sensitive to the initial conditions and η/s [12]. In figures 4 and 5, v3{2}
and v3[2] are shown with three different pseudorapidity gaps for several centrality classes.

Similar to what was presented in figures 1 and 2, both v3{2} and v3[2] show a decreasing
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Figure 3. The ratio v2{2, |∆η| > 0.8}/v2[2, |∆η| > 0.8] in Pb–Pb collisions at
√
sNN = 2.76 TeV.

The different panels show the centrality evolution of the measurements. Hydrodynamic calculations

with MC-Glauber initial conditions and η/s = 0.08 [33], with MC-KLN initial conditions and η/s =

0.20 [33], with Trento initial conditions and temperature dependent η/s [60] and AMPT initial

conditions and η/s = 0.08 [60] are shown in green dot-dashed and orange dashed curves, and

magenta and grey shaded areas, respectively.

trend as the pseudorapidity gap increases, in particular in more peripheral collisions. Only

a weak centrality dependence is observed for both v3{2} and v3[2]. The comparison to

hydrodynamic calculations demonstrates that although hydrodynamic calculations with

MC-Glauber and MC-KLN initial conditions roughly describe v2{2} and v2[2], they cannot

describe v3{2} and v3[2] over the full pT range and for all centrality classes, and tend to

overpredict or underpredict the data. Similar as v2, the hydrodynamic calculation with

Trento initial conditions overestimates both v3{2} and v3[2] measurements, while the one

with AMPT initial conditions quantitatively describe the measured v3 for presented pT

and centrality intervals.

The ratio v3{2, |∆η| > 0.8}/v3[2, |∆η| > 0.8] is shown together with hydrodynamic

calculations in figure 6. Wider pT intervals were used for the ratio than for the individual

v3 measurements in order to suppress statistical fluctuations. It was found that the ratio

agrees with unity over a wide pT range, as opposed to v2{2, |∆η| > 0.8}/v2[2, |∆η| >
0.8]. No clear indication of pT-dependent V3 flow vector fluctuations are observed for the

presented centrality and pT regions within the large uncertainties. Despite the fact that

the hydrodynamic calculations with MC-Glauber and MC-KLN initial conditions cannot

reproduce the magnitude of v3{2} and v3[2], the validity of the two sets of initial conditions

could be examined also by the comparison of the predicted v3{2}/v3[2] ratio to data, which

should be independent of the magnitude of v3. Hydrodynamic calculations from VISH2+1,
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Figure 4. v3{2} with different |∆η| gaps is presented in Pb–Pb collisions at
√
s
NN

= 2.76 TeV.

v3{2, |∆η| > 0}, v3{2, |∆η| > 0.4}, and v3{2, |∆η| > 0.8} are represented by circles, diamonds

and squares, respectively. The different panels show the centrality evolution of the measurements.

Hydrodynamic calculations with MC-Glauber initial conditions and η/s = 0.08 [33], with MC-KLN

initial conditions and η/s = 0.20 [33], with Trento initial conditions and temperature dependent

η/s [60] and AMPT initial conditions and η/s = 0.08 [60] are shown in green dot-dash, orange

dashed curves, and magenta and grey shaded areas, respectively.
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Figure 5. v3[2] with different |∆η| gaps is presented in Pb–Pb collisions at
√
sNN = 2.76 TeV.

v3[2, |∆η| > 0], v3[2, |∆η| > 0.4], and v3[2, |∆η| > 0.8] are represented by circles, diamonds, and

squares, respectively. The different panels show the centrality evolution of the measurements. Hy-

drodynamic calculations with MC-Glauber initial conditions and η/s = 0.08 [33] and with MC-KLN

initial conditions and η/s = 0.20 [33], with Trento initial conditions and temperature dependent

η/s [60] and AMPT initial conditions and η/s = 0.08 [60] are shown in green dot-dash, orange

dashed curves, and magenta and grey shaded areas, respectively.
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Figure 6. The ratio v3{2, |∆η| > 0.8}/v3[2, |∆η| > 0.8] in Pb–Pb collisions at
√
sNN = 2.76 TeV.

The different panels show the centrality evolution of the measurements. Hydrodynamic calculations

with MC-Glauber initial conditions and η/s = 0.08 [33] and with MC-KLN initial conditions and

η/s = 0.20 [33], with Trento initial conditions and temperature dependent η/s [60] and AMPT

initial conditions and η/s = 0.08 [60] are shown in green dot-dash, orange dashed curves, and

magenta and grey shaded areas, respectively.

especially the one with MC-KLN initial conditions, overestimate the possible pT-dependent

V3 flow vector fluctuations, despite the good description for the second harmonic. A good

agreement between data and hydrodynamic calculations from iEBE-VISHNU is found for

all centrality intervals. This is expected for AMPT initial conditions as the calculations

quantitatively reproduce both measured v3{2} and v3[2] as discussed above. However, the

calculations with Trento initial conditions, which overestimate both v3{2} and v3[2], are

consistent with the measured v3{2, |∆η| > 0.8}/v3[2, |∆η| > 0.8] ratio. This accidental

agreement needs further investigations in the iEBE-VISHNU framework to understand the

physics mechanism responsible for this behaviour.

The centrality dependence of v4{2} and v4[2] with three different pseudorapidity gaps

are shown in figures 7 and 8. Decreasing trends with increasing |∆η| gaps and a weak

centrality dependence are observed for both measurements. The hydrodynamic calcula-

tions with MC-Glauber and Trento initial conditions overestimate the measurements of

v4{2} and v4[2], while the calculations with MC-KLN initial conditions underestimate the

measurements, similar to what was seen for the v3 observables. On the other hand, the

hydrodynamic calculations from AMPT initial conditions agree with the measurements of

v4{2} and v4[2]. Moreover, the ratio v4{2, |∆η| > 0.8}/v4[2, |∆η| > 0.8] shown in figure 9

is in agreement with unity albeit with large uncertainties for the presented pT range and

centrality classes. The validity of the hydrodynamic calculations cannot be judged due to

the large uncertainties of the v4{2, |∆η| > 0.8}/v4[2, |∆η| > 0.8] measurements.

Alternatively, one can search for pT-dependent flow vector fluctuations via the mea-

surement of the factorisation ratio, rn. The results of r2 and r3 are presented in figures 10
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Figure 7. v4{2} with different |∆η| gaps is presented in Pb–Pb collisions at
√
s
NN

= 2.76 TeV.

v4{2, |∆η| > 0}, v4{2, |∆η| > 0.4} and v4{2, |∆η| > 0.8} are represented by circles, diamonds,

and squares, respectively. The different panels show the centrality evolution of the measurements.

Hydrodynamic calculations with MC-Glauber initial conditions and η/s = 0.08 [33], with MC-KLN

initial conditions and η/s = 0.20 [33], with Trento initial conditions and temperature dependent

η/s [60] and AMPT initial conditions and η/s = 0.08 [60] are shown in green dot-dash, orange

dashed curves, and magenta and grey shaded areas, respectively.
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Figure 8. v4[2] with different |∆η| gaps is presented in Pb–Pb collisions at
√
s
NN

= 2.76 TeV.

v4[2, |∆η| > 0], v4[2, |∆η| > 0.4], and v4[2, |∆η| > 0.8] are represented by circles, diamonds, and

squares, respectively. The different panels show the centrality evolution of the measurements. Hy-

drodynamic calculations with MC-Glauber initial conditions and η/s = 0.08 [33] and with MC-KLN

initial conditions and η/s = 0.20 [33], with Trento initial conditions and temperature dependent

η/s [60] and AMPT initial conditions and η/s = 0.08 [60] are shown in green dot-dash, orange

dashed curves, and magenta and grey shaded areas, respectively.
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Figure 9. The ratio v4{2, |∆η| > 0.8}/v4[2, |∆η| > 0.8] in Pb–Pb collisions at
√
sNN = 2.76 TeV.

The different panels show the centrality evolution of the measurements. Hydrodynamic calculations

with MC-Glauber initial conditions and η/s = 0.08 [33] and with MC-KLN initial conditions and

η/s = 0.20 [33], with Trento initial conditions and temperature dependent η/s [60] and AMPT

initial conditions and η/s = 0.08 [60] are shown in green dot-dash, orange dashed curves, and

magenta and grey shaded areas, respectively.

and 11 as a function of ptT and p a
T with |∆η| > 0.8 for three centrality classes in Pb–Pb

collisions at
√
sNN = 2.76 TeV. By construction, rn = 1 when the triggered and associated

particles are from the same pT interval. In contrast to the previous analysis [34], there

is no ptT ≥ p a
T cut applied here to avoid auto-correlations (taking the same particle as

both triggered and associated particles in the two-particle azimuthal correlations). The

triggered particles are always selected from the negative pseudorapidity region and the

associated particles are from the positive pseudorapidity region. The r2 value deviates

significantly from unity for the most central collisions. This effect becomes stronger with

an increasing difference between ptT and p a
T. The previous results indicated that factorisa-

tion holds approximately for n ≥ 2 and pT below 4 GeV/c, while deviations emerging at

higher pT were ascribed to recoil jet contributions [34]. This analysis, however, shows that

factorisation breaks down at lower pT when the more sensitive observable, r2, is used. The

deviation reaches 10% for the lowest p a
T in the 0–5% centrality range, for 2.5 < ptT <

3 GeV/c. One explanation from [32] is that this deviation is due to the pT-dependent V2

flow vector fluctuations, which originate from initial event-by-event geometry fluctuations.

Hydrodynamic calculations [33] are compared to data for the presented centrality classes

and for selected pT bins. Both hydrodynamic calculations from VISH2+1 and iEBE-VISHNU

frameworks qualitatively predict the trend of r2, while the data agree quantitatively better

with iEBE-VISHNU. In addition, the CMS measurements [41, 47] are consistent with our

measurements.

For r3, the results are compatible with unity, and can be described by hydrodynamic

calculations from both VISH2+1 and iEBE-VISHNU frameworks, albeit with large statistical
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Figure 10. The factorisation ratio r2, as a function of p a
T in bins of ptT for 0–5%, 20–30% and

40–50% centralities in Pb–Pb collisions at
√
sNN = 2.76 TeV, is presented (solid circles). CMS

measurements are presented by open square [41]. Hydrodynamic calculations with MC-Glauber

initial conditions and η/s = 0.08 [33] and with MC-KLN initial conditions and η/s = 0.20 [33],

with Trento initial conditions and temperature dependent η/s [60] and AMPT initial conditions

and η/s = 0.08 [60] are shown in green dot-dash, orange dashed curves, and magenta and grey

shaded areas, respectively.

uncertainties. The factorisation is valid over a wider range of p a
T, ptT and centrality ranges,

as opposed to r2. The possible breakdown of factorisation, if it exists, is within 10% when

both p a
T and ptT are below 3 GeV/c. The CMS measurements [41, 47] are consistent with

the r3 results presented here despite the fact that the pseudorapidity gaps are different

between the two measurements. Better agreements with hydrodynamic calculations are

observed with VISH2+1.
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Figure 11. The factorisation ratio r3, as a function of p a
T in bins of ptT for 0–5%, 20–30% and

40–50% centralities in Pb–Pb collisions at
√
s
NN

= 2.76 TeV, is presented (solid circles). CMS

measurements [41] are presented by open squares. Hydrodynamic calculations with MC-Glauber

initial conditions and η/s = 0.08 [33] and with MC-KLN initial conditions and η/s = 0.20 [33],

with Trento initial conditions and temperature dependent η/s [60] and AMPT initial conditions

and η/s = 0.08 [60] are shown in green dot-dash, orange dashed curves, and magenta and grey

shaded areas, respectively.

6.2 p–Pb collisions

Figure 12 presents v2{2} and v2[2] with |∆η| > 0 and |∆η| > 0.8 for various multiplic-

ity classes in p–Pb collisions at
√
sNN = 5.02 TeV. It is shown that, after applying the

pseudorapidity gap |∆η| > 0.8, both v2{2} and v2[2] decrease substantially, in particular

for more peripheral collisions, mainly due to the reduction of non-flow effects. The ratio

v2{2, |∆η| > 0.8}/v2[2, |∆η| > 0.8], shown in figure 13, displays hints of deviations from
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Figure 12. v2{2, |∆η| > 0}, v2[2, |∆η| > 0], v2{2, |∆η| > 0.8} and v2[2, |∆η| > 0.8] for various

multiplicity classes of p–Pb collisions at
√
s
NN

= 5.02 TeV. DPMJET calculations are presented by

red shaded lines for v2{2, |∆η| > 0.8} and blue shaded lines for v2[2, |∆η| > 0.8]. Hydrodynamic

calculations (MUSIC) [62] with modified MC-Glauber initial conditions and η/s = 0.08 for v2{2}
and v2[2] are shown in solid blue and dashed red lines.

unity above pT ≈ 2 GeV/c, but the statistical uncertainties are still too large to draw a firm

conclusion. The DPMJET model [59], which is an implementation of the two-component

Dual Parton Model for the description of interactions involving nuclei, and contains no

collective effects, has been used as a benchmark to study the influence of non-flow in p–Pb

collisions [38]. The calculations based on DPMJET simulations are compared to data. It is

observed in figure 12 that DPMJET overestimates v2 significantly for the presented multi-

plicity classes, and generates higher v2 coefficients in lower multiplicity regions. Meanwhile,

figure 13 shows that for v2{2}/v2[2] the agreement between data and DPMJET is better

in low multiplicity p–Pb collisions, where no evidence of anisotropic collectivity is achieved

from previous measurements [36, 38]. In addition, the hydrodynamic calculations [62] from

MUSIC v2.0 using a modified MC-Glauber initial state and η/s = 0.08 are also presented in

figures 12 and 13. These calculations in general underpredict the measured v2 coefficients

but agree better with the data in high multiplicity than in low multiplicity classes. It should

be emphasized that in contrast to hydrodynamic calculations, the measured v2{2} and v2[2]

increase (albeit very slightly in particular when the |∆η| gap is applied) from 0–20% to

40–60% multiplicity classes, which indicates that non-flow effects might play a more impor-

tant role in low multiplicity events. This could explain the increasing deviation between

data and hydrodynamic calculations with pT and towards lower multiplicity classes, shown

in figure 12. The hydrodynamic calculations reproduce the v2{2}/v2[2] measurements in

the 0–20 % multiplicity class, which seems to indicate that hydrodynamic collectivity is

present in high multiplicity p–Pb collisions. However, it is still unclear at the moment why

the measured ratio is still reproduced by hydrodynamic calculations for multiplicity class

above 20%, where no significant flow signal is expected to be produced [38]. The agree-

ment might be accidental since the DPMJET and hydrodynamic calculations also agree

with each other in this class.

The v3{2} and v3[2] measured with |∆η| > 0 and |∆η| > 0.8 in p–Pb collisions at
√
sNN = 5.02 TeV are shown in figure 14. Both v3{2, |∆η| > 0} and v3[2, |∆η| > 0] in-

crease with pT and also with decreasing multiplicity. The measured v3{2} and v3[2] with

a pseudorapidity gap of |∆η| > 0.8 are much smaller than those with |∆η| > 0, with the
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Figure 14. v3{2, |∆η| > 0}, v3[2, |∆η| > 0], v3{2, |∆η| > 0.8} and v3[2, |∆η| > 0.8] for various

multiplicity classes in p–Pb collisions at
√
s
NN

= 5.02 TeV. Hydrodynamic calculations (MUSIC) [62]

with modified MC-Glauber initial conditions and η/s = 0.08 for v2{2} and v2[2] are shown as solid

blue and dashed red lines.

deviation increasing as a function of pT. The relative influence of non-flow effects appears

to be stronger in v3 than in v2 measurements. A similar qualitative behaviour was observed

for pT-integrated two-particle cumulants c2{2} and c3{2} in p–Pb collisions, measured as

functions of multiplicity for different |∆η| gaps [36]. It might be worth noting that part of

the remaining non-flow contamination with |∆η| > 0.8, the recoil jet ridge, has a positive

sign contribution for v2 and a negative sign one for v3 for pT > 2 GeV/c. In addition, it

is found that hydrodynamic calculations describe the data better at high multiplicity than

at low multiplicity, while DPMJET generates negative (v3[2])2 values for all multiplicity

classes and thus cannot be shown here for comparison. Furthermore, the deviations be-

tween v3{2, |∆η| > 0.8} and v3[2, |∆η| > 0.8] are not observed for the presented pT region.

There is no indication of pT-dependent V3 flow vector fluctuations in p–Pb collisions.

Figure 15 shows r2(|∆η| > 0.8) measurements as a function of p a
T in three ptT intervals

for multiplicity classes 0–20%, 20–40% and 40–60% in p–Pb collisions at
√
sNN = 5.02 TeV.

The r2(|∆η| > 0.8) deviates from unity when the p t
T and p a

T are well away from each

other (most pronouncedly in the lowest and highest p t
T bins) with the trend being simi-

lar for all multiplicity classes. As mentioned earlier, the deviation is more significant at

high multiplicity. In overlapping p t
T and p a

T intervals, the r2 measurements in the highest
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multiplicity p–Pb events are consistent with those made by CMS collaboration [47]. The

breakdown of factorisation is more pronounced in high multiplicity p–Pb collisions than

in the 40–50% centrality class in Pb–Pb collisions (see figure 10). The DPMJET calcu-

lations are presented for comparison. It is clearly seen that DPMJET overestimates the

deviations of r2 from unity in the high multiplicity region, nevertheless, the calculation

describes the data better in low multiplicity events in which non-flow effects are dominant.

At the same time, these measurements are found to be compatible with hydrodynamic

calculations using modified MC-Glauber initial conditions and η/s = 0.08. When selecting

the triggered particles from 0.6 < p t
T <1.0 GeV/c or 1.0 < p t

T < 1.5 GeV/c, the trend of

r2 looks similar to that of v2{2}/v2[2], mainly because the mean pT of charged particles is

within 0.6 < 〈pT〉 < 1.0 GeV/c [63].

7 Summary

Searches for pT-dependent flow vector fluctuations are performed by measuring vn{2}/vn[2]

and rn in Pb–Pb collisions at
√
sNN = 2.76 TeV and p–Pb collisions at

√
sNN = 5.02 TeV.

In Pb–Pb collisions, both v2{2}/v2[2] and r2 show deviations from unity, and the r2 results

are consistent with previous measurements from the CMS collaboration. These effects are

more pronounced in the most central collisions and cannot be explained solely by non-flow

effects. Therefore, these results suggest the presence of possible V2 vector fluctuations in

Pb–Pb collisions. It further implies that the traditional v2{2} results should be interpreted

precisely as the correlations of the azimuthal angle of produced particles with respect to

the pT integrated flow vector over a certain kinematic region. Future comparisons between

theoretical calculations and experimental measurements should be based on the same kine-

matic conditions. These comparisons, performed under carefully defined precisely matching

kinematic conditions, are crucial to constrain the initial conditions and precisely extract

the transport properties of the produced matter, without possible bias from additional pT-

dependent flow vector fluctuations. Meanwhile, no significant deviation of v3{2}/v3[2] or

v4{2}/v4[2] from unity was observed, meaning that there is no indication of pT-dependent

V3 and V4 vector fluctuations. The comparison to hydrodynamic calculations shows only

the calculations from iEBE-VISHNU with AMPT initial conditions could describe the data

quantitatively. The measurements presented in this paper provide a unique approach to

constrain the initial conditions and transport properties, e.g. shear viscosity over entropy

density ratio η/s of the QGP, complementing the previous anisotropic flow measurements.

The results therefore bring new insights into the properties of the QGP produced in rela-

tivistic heavy ion collisions at the CERN Large Hadron Collider.

Similar studies were performed in various multiplicity classes in p–Pb collisions. De-

viations of v2{2}/v2[2] and r2 from unity are observed, although with relatively large

statistical fluctuations. For the highest p–Pb multiplicity class, the deviations are sig-

nificantly overestimated by DPMJET; however, they are compatible with hydrodynamic

calculations using modified MC-Glauber initial conditions and η/s = 0.08. Meanwhile for

low multiplicity p–Pb collisions, the data sits between calculations from DPMJET and hy-

drodynamics. Neither the DPMJET model, which does not incorporate anisotropic flow,
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Figure 15. The factorisation ratio r2, as a function of p a
T in bins of ptT for multiplicity classes 0–20%,

20–40% and 40–60% in p–Pb collisions at
√
sNN = 5.02 TeV, are presented by solid magenta circles.

DPMJET calculations are presented by pink shaded areas. Hydrodynamic calculations (MUSIC)

with modified MC-Glauber initial conditions and η/s = 0.08 are shown as magenta lines [62].

nor the hydrodynamic model, which does not include non-flow contributions, could provide

a quantitative description of the data. Future theoretical developments together with com-

parisons to high-precision measurements are crucial to give a certain answer concerning

pT-dependent vector Vn fluctuations in p–Pb collisions.
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P. Antonioli54, R. Anwar127, L. Aphecetche117, H. Appelshäuser71, S. Arcelli27, R. Arnaldi59,
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B. Sahoo48, P. Sahoo49, R. Sahoo49, S. Sahoo68, P.K. Sahu68, J. Saini139, S. Sakai51,133,

M.A. Saleh141, J. Salzwedel18, S. Sambyal103, V. Samsonov85,98, A. Sandoval75, D. Sarkar139,

N. Sarkar139, P. Sarma44, M.H.P. Sas64, E. Scapparone54, F. Scarlassara29, R.P. Scharenberg108,

H.S. Scheid71, C. Schiaua89, R. Schicker106, C. Schmidt109, H.R. Schmidt105, M.O. Schmidt106,

M. Schmidt105, S. Schuchmann106, J. Schukraft35, Y. Schutz35,135,117, K. Schwarz109,

K. Schweda109, G. Scioli27, E. Scomparin59, R. Scott130, M. Šefč́ık40, J.E. Seger99,
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28 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy
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Grenoble, France
84 Lawrence Berkeley National Laboratory, Berkeley, California, United States
85 Moscow Engineering Physics Institute, Moscow, Russia
86 Nagasaki Institute of Applied Science, Nagasaki, Japan
87 National and Kapodistrian University of Athens, Physics Department, Athens, Greece
88 National Centre for Nuclear Studies, Warsaw, Poland
89 National Institute for Physics and Nuclear Engineering, Bucharest, Romania
90 National Institute of Science Education and Research, Bhubaneswar, India
91 National Nuclear Research Center, Baku, Azerbaijan
92 National Research Centre Kurchatov Institute, Moscow, Russia
93 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
94 Nikhef, Nationaal instituut voor subatomaire fysica, Amsterdam, Netherlands
95 Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
96 Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež u Prahy, Czech Republic
97 Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
98 Petersburg Nuclear Physics Institute, Gatchina, Russia
99 Physics Department, Creighton University, Omaha, Nebraska, United States

100 Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
101 Physics Department, Panjab University, Chandigarh, India
102 Physics Department, University of Cape Town, Cape Town, South Africa
103 Physics Department, University of Jammu, Jammu, India
104 Physics Department, University of Rajasthan, Jaipur, India

– 31 –



J
H
E
P
0
9
(
2
0
1
7
)
0
3
2

105 Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany
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