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We present a measurement of azimuthal correlations between inclusive J/ψ and charged hadrons in p–Pb
collisions recorded with the ALICE detector at the CERN LHC. The J/ψ are reconstructed at forward (p-
going, 2.03 < y < 3.53) and backward (Pb-going, −4.46 < y < −2.96) rapidity via their μ+μ− decay 
channel, while the charged hadrons are reconstructed at mid-rapidity (|η| < 1.8). The correlations are ex-
pressed in terms of associated charged-hadron yields per J/ψ trigger. A rapidity gap of at least 1.5 units is 
required between the trigger J/ψ and the associated charged hadrons. Possible correlations due to collec-
tive effects are assessed by subtracting the associated per-trigger yields in the low-multiplicity collisions 
from those in the high-multiplicity collisions. After the subtraction, we observe a strong indication of re-
maining symmetric structures at �ϕ ≈ 0 and �ϕ ≈ π , similar to those previously found in two-particle 
correlations at middle and forward rapidity. The corresponding second-order Fourier coefficient (v2) in 
the transverse momentum interval between 3 and 6 GeV/c is found to be positive with a significance 
of about 5σ . The obtained results are similar to the J/ψ v2 coefficients measured in Pb–Pb collisions at √

sNN = 5.02 TeV, suggesting a common mechanism at the origin of the J/ψ v2.
© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The measurement of angular correlations between particles 
produced in hadron and nucleus collisions is a powerful tool to 
study the particle production mechanisms. Usually the two-particle 
correlation function is expressed in terms of differences in the 
azimuthal angle (�ϕ) and pseudorapidity (�η) of the emitted 
particles. In minimum-bias proton–proton (pp) collisions, the dom-
inant structures in the correlation function are a near-side peak 
at (�ϕ, �η) ≈ (0, 0) and an away-side ridge located at �ϕ ≈ π
and elongated in �η [1]. The near-side peak originates from jet 
fragmentation, resonance decays and femtoscopic correlations. The 
away-side ridge results from fragmentation of recoil jets. In colli-
sions of heavy ions, the two-particle correlation function exhibits 
additional long-range structures elongated in �η [2]. These struc-
tures are usually interpreted as signatures of collective particle 
flow produced during the hydrodynamic evolution of the fireball. 
They are analyzed in terms of the Fourier coefficients of the rel-
ative angle distributions. Assuming factorization, these coefficients 
are then related to the Fourier coefficients (vn) of the particle az-
imuthal distribution relative to the common symmetry plane of 
the colliding nuclei’s overlap area.

� E-mail address: alice -publications @cern .ch.

The discovery of a near-side ridge in high-multiplicity pp [3]
and p–Pb [4] collisions has increased the interest in two-particle 
angular correlations in small collision systems. These discoveries 
were followed by the observation that the near-side ridge in p–Pb 
collisions is accompanied by an away-side one [5,6]. Long-range 
structures have also been reported in two-particle correlations in 
d–Au collisions at RHIC [7,8]. Further studies using multi-particle 
correlations have proven that the observed long-range correla-
tions are of a collective origin [9–11]. Moreover, the transverse-
momentum and particle-mass dependencies of the vn coefficients 
in p–Pb collisions have been found to be similar to those measured 
in A–A collisions, suggesting a common hydrodynamic origin of the 
observed correlations [12,13]. Alternative interpretations, including 
Color-Glass Condensate based models [14] and final-state parton–
parton scattering [15], have also been proposed. Long-range corre-
lations of forward and backward muons with mid-rapidity hadrons 
have also been found in p–Pb collisions at a center-of-mass en-
ergy per nucleon pair 

√
sNN = 5.02 TeV [16]. The results show that 

these correlations persist across wide rapidity ranges and extend 
into the high muon transverse-momentum interval, which is dom-
inated by decays of heavy flavors.

In pp collisions, the J/ψ resonance is formed mainly from pairs 
of c and c̄ quarks produced in hard scattering reactions during the 
initial stage of the collision. The theoretical models describing the 

https://doi.org/10.1016/j.physletb.2018.02.039
0370-2693/© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.
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J/ψ production combine calculations of the production of cc̄ pairs 
within a perturbative Quantum Chromodynamics approach with 
the subsequent non-perturbative formation of the cc̄ bound state 
[17]. In p–Pb collisions, the production is affected by the modifi-
cation of parton distribution functions inside the nucleus [18] as 
well as possible energy loss and inelastic scattering inside nuclear 
matter [19,20]. In A–A collisions, there are two additional com-
peting phenomena that influence the J/ψ production. First is the 
suppressed production due to the dissociation of the cc̄ pairs in 
the quark–gluon plasma [21]. Second is the J/ψ enhancement via 
recombination of charm quarks thermalized in the medium [22,
23]. The recombination is expected to become prevalent in central 
collisions at the LHC energies.

Recently, the ALICE Collaboration has published a precise mea-
surement of the second-order Fourier coefficient, v2, of the az-
imuthal distribution of the J/ψ production in Pb–Pb collisions at √

sNN = 5.02 TeV [24]. The results show significant v2 in central 
and semi-central collisions. The measured J/ψ v2 at low and inter-
mediate transverse momentum can be qualitatively described by 
a transport model in which the J/ψ azimuthal anisotropy is in-
herited from that of recombined charm quarks [25,26]. However, 
at higher transverse momentum the data still indicates significant 
v2 while the transport model predicts significantly smaller val-
ues coming mostly from path-length dependent suppression in the 
almond-shaped interaction region of the colliding nuclei and from 
non-prompt J/ψ produced from b-hadron decays assuming ther-
malized b quarks. Given these results in Pb–Pb collisions, it is of 
interest to study the J/ψ-hadron azimuthal correlations also in the 
smaller p–Pb system. The recombination of charm quarks, if any, 
should have much smaller impact, due to the smaller number of 
initially produced charm quarks with respect to Pb–Pb collisions. 
The small system size should not lead to a sizeable path-length 
dependent suppression. Nevertheless, the study of the J/ψ-hadron 
azimuthal correlations could allow to determine whenever J/ψ
production is affected by the medium possibly created in these 
collisions [27–29].

In this Letter, we present results for long-range correlations 
between forward (p-going, 2.03 < y < 3.53) and backward (Pb-
going, −4.46 < y < −2.96) inclusive J/ψ and mid-rapidity charged 
hadrons in p–Pb collisions at 

√
sNN = 5.02 and 8.16 TeV. Inclu-

sive J/ψ refers to both prompt J/ψ (direct and decays from higher 
mass charmonium states) and non-prompt J/ψ (feed down from 
b-hadron decays).

2. Experimental setup and data samples

A detailed description of the ALICE apparatus can be found in 
Ref. [30]. Below, we briefly describe the detector systems essential 
for the present analysis.

In the following, η and ylab will denote the pseudorapidity and 
rapidity in the ALICE laboratory system. The muons are recon-
structed in the muon spectrometer covering the range of −4 < η <

−2.5. The spectrometer contains a front absorber located between 
0.9 and 5 m from the nominal interaction point. The absorber is 
followed by five tracking stations, each made of two planes of 
Cathode Pad Chambers. The third station is placed inside a dipole 
magnet with 3 Tm field integral. The tracking stations are followed 
by an iron wall with a thickness of 7.2 interaction lengths and two 
trigger stations, each one consisting of two planes of Resistive Plate 
Chambers.

The position of the interaction point is obtained using the clus-
ters reconstructed in the Silicon Pixel Detector (SPD) [31,32]. The 
SPD is located in the central barrel of the ALICE apparatus and op-
erated inside a large solenoidal magnet providing a uniform 0.5 T 
magnetic field parallel to the beam line. The SPD consists of two 

cylindrical layers which cover |η| < 2.0 and |η| < 1.4 with respect 
to the nominal interaction-point, for the inner and outer layer, 
respectively. The associated charged hadrons at mid-rapidity are 
reconstructed via the so-called SPD tracklets, short track segments 
formed from the clusters in the two layers of the SPD and the pri-
mary vertex [32].

The V0 detector [33] consists of two rings of 32 scintillator 
counters each, covering 2.8 < η < 5.1 (V0-A) and −3.7 < η < −1.7
(V0-C), respectively. It is used for triggering and event-multiplicity 
estimation.

The data samples presented here were collected during the 
2013 and 2016 p–Pb LHC runs. The collision energy was 

√
sNN =

5.02 and 8.16 TeV for the 2013 and 2016 data samples, respec-
tively. Part of the 5.02 TeV data were collected during the 2016 
p–Pb run. Data with both beam configurations, namely Pb–nucleus 
momentum (denoted as Pb–p collisions) or proton momentum (de-
noted as p–Pb collisions) oriented towards the muon spectrometer, 
have been analyzed. The asymmetric beam energies, imposed by 
the two-in-one LHC magnet design, resulted in collisions whose 
nucleon–nucleon center-of-mass reference system is shifted in ra-
pidity by 0.465 in the direction of the proton beam with respect 
to the ALICE laboratory system. The data were taken with a trig-
ger that required coincidence of minimum-bias (MB) and dimuon 
triggers. The MB trigger was provided by the V0 detector request-
ing a signal in both V0-A and V0-C rings. Its efficiency is found 
to be about 98% [34]. The dimuon trigger required at least a pair 
of opposite-sign track segments in the muon trigger system, each 
with a transverse momentum (pT) above the threshold of the on-
line trigger algorithm. This threshold was set to provide 50% effi-
ciency for muon tracks with pT = 0.5 GeV/c.

The collected data samples of p–Pb and Pb–p collisions at 
5.02 TeV (8.16 TeV) correspond to integrated luminosities of 8.1 
and 5.8 (8.7 and 12.9) nb−1, respectively. The maximum interac-
tion pile-up probability ranged up to 3% and 8% during 2013 and 
2016 data taking, respectively.

3. Event, track and dimuon selection

The beam-induced background is rejected by requiring that the 
timing signals from both rings of the V0 detector are compati-
ble with particles coming from collision events. Events containing 
multiple collisions (pile-up) are rejected by requiring one single 
interaction vertex reconstructed in the SPD and by exploiting the 
correlation between the number of clusters in the two layers of 
the SPD and the number of the reconstructed SPD tracklets.

The longitudinal position of the reconstructed primary vertex 
(zvtx) is required to be within ±10 cm from the nominal inter-
action point. The reconstructed SPD tracklets are selected by ap-
plying a zvtx-dependent pseudorapidity cut. The cut is adjusted 
to exclude the contribution from the edges of the SPD where 
the detector acceptance is low. For example, we select tracklets 
within −1.8 < η < 0.5, −1.3 < η < 1.3 and −0.5 < η < 1.8 for 
events with zvtx = 10, 0 and −10 cm, respectively. The contribu-
tion from fake and secondary tracklets is reduced by applying a 
|�	| < 5 mrad cut on the difference between the azimuthal an-
gles of the clusters in the two layers of the SPD with respect to 
the primary vertex. With this cut, the mean pT of the selected 
charged hadrons is found to be approximately 0.75 GeV/c [16].

The tracks reconstructed in the muon spectrometer are required 
to emerge at a radial transverse position between 17.6 and 89.5 cm 
from the end of the front absorber in order to avoid regions with 
higher material budget. The tracks reconstructed in the tracking 
chambers are identified as muons by requiring their matching 
with corresponding track segments in the trigger chambers. Back-
ground tracks are removed with a selection on the product of 
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Fig. 1. The Mμμ distribution in the 3 < pμμ
T < 6 GeV/c interval fitted with a combination of a CB2 function for the signal and a VWG function for the background, for 

high-multiplicity (left panel) and low-multiplicity (right panel) p–Pb collisions at √sNN = 8.16 TeV.
the total track momentum and the distance of closest approach 
to the primary vertex in the transverse plane [35]. The selected 
dimuons are defined as pairs of opposite-sign muon tracks hav-
ing −4 < yμμ

lab < −2.5, transverse momentum pμμ
T between 0 and 

12 GeV/c and invariant mass Mμμ between 1 and 5 GeV/c2. Only 
events with at least one dimuon satisfying these selection criteria 
are considered.

The data samples are split into multiplicity classes based on the 
total charge deposited in the two rings (V0-A and V0-C) of the V0 
detector (V0M) [34]. The high-multiplicity (low-multiplicity) event 
class is defined as 0–20% (40–100%) of the MB trigger event sam-
ple.

4. Analysis

The Mμμ distribution in each event-multiplicity class and pμμ
T

bin is fit with the combination of an extended Crystal Ball (CB2) 
function for the J/ψ signal and a Variable-Width Gaussian (VWG) 
function for the background [36]. The tail parameters of the CB2 
function were fixed to the values used in [37,38]. The J/ψ peak 
position and width were obtained from the fit in the 0–100% 
event class and fixed to these values in the other event-multiplicity 
classes. Examples of the Mμμ fit in the 0–20% and the 40–100% 
event classes in the 3 < pμμ

T < 6 GeV/c interval are shown in 
Fig. 1.

The angular correlations between J/ψ and charged hadrons are 
obtained from the associated-particle (SPD tracklets) yields per 
dimuon trigger. The yields are defined as

Y i(zvtx, Mμμ, pμμ
T ,�ϕ,�η)

= 1

Ni
trig(zvtx, Mμμ, pμμ

T )

d2Ni
assoc(zvtx, Mμμ, pμμ

T )

d�ϕd�η

= 1

Ni
trig(zvtx, Mμμ, pμμ

T )

S Ei(zvtx, Mμμ, pμμ
T ,�ϕ,�η)

M Ei(zvtx, Mμμ, pμμ
T ,�ϕ,�η)

, (1)

where Ni
trig(zvtx, Mμμ, pμμ

T ) is the number of dimuons, Ni
assoc(zvtx,

Mμμ, pμμ
T ) is the number of associated SPD tracklets corrected for 

acceptance and combinatorial effects (as shown in the second line 
of the equation and described below), �ϕ and �η = yμμ

lab −ηtracklet

are the azimuthal angle and (pseudo)rapidity difference between 
the trigger dimuon and the associated SPD tracklet. The yields 
are calculated separately in each event-multiplicity class (index i) 

and 1 cm-wide zvtx interval. The distribution

S Ei(zvtx, Mμμ, pμμ
T ,�ϕ,�η) = d2Ni

same(zvtx, Mμμ, pμμ
T )

d�ϕd�η

is the yield of associated SPD tracklets from the same event. The 
distribution

M Ei(zvtx, Mμμ, pμμ
T ,�ϕ,�η)

= αi(zvtx, Mμμ, pμμ
T )

d2Ni
mixed(zvtx, Mμμ, pμμ

T )

d�ϕd�η

is constructed using the event-mixing technique, i.e. combining 
dimuons from one event with SPD tracklets from other events 
selected in the same event-multiplicity class and zvtx interval. It 
serves both to correct for detector acceptance and efficiency and to 
take into account the combinatorial background. The normalization 
factor αi(zvtx, Mμμ, pμμ

T ) is defined as 1/(d2 Ni
mixed(zvtx, Mμμ,

pμμ
T )/d�ϕd�η) in the �η region corresponding to the maximal 

acceptance [16].
Within each event-multiplicity class and bin of Mμμ , pμμ

T , �ϕ

and �η, the yields Y i averaged over zvtx are obtained by fitting the 
distribution Y i Ntrig(zvtx)

i M Ei(zvtx) to the distribution S Ei(zvtx). 
A Poisson likelihood fit is used in order to properly deal with the 
cases of low number of tracklets. Then, the average yields are pro-
jected on the �ϕ axis in the range of 1.5 < |�η| < 5 using the 
method described in [16].

In order to extract the yields per J/ψ trigger, the yields per 
dimuon trigger in each event-multiplicity class, pμμ

T and �ϕ bins 
are fit as a function of Mμμ using the following superposition

Y i(Mμμ) = S

S + B
Y i

J/ψ + B

S + B
Y i

B(Mμμ), (2)

where S and B are the number of J/ψ and the background 
dimuons in each bin of Mμμ obtained from the invariant mass 
fit (using a CB2 function for the J/ψ signal and a VWG function 
for the background) described above, Y J/ψ is the associated yield 
corresponding to the J/ψ trigger and Y B(Mμμ) is a second-order 
polynomial function aimed to describe the associated yields cor-
responding to the background. The fit range is chosen between 
1.5 and 4.5 GeV/c2. Examples of fits in high-multiplicity and low-
multiplicity event classes are shown in Fig. 2.

Fig. 3 shows the obtained associated tracklet yields per J/ψ trig-
ger for p–Pb and Pb–p collisions at 

√
sNN = 5.02 and 8.16 TeV. 
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Fig. 2. Example of associated tracklet yields per dimuon trigger in the 3 < pμμ
T < 6 GeV/c interval for high-multiplicity (left panel) and low-multiplicity (right panel) p–Pb 

collisions at √sNN = 8.16 TeV. The result of the fit with the function from Eq. (2) is represented with the blue solid line. The dashed red line corresponds to the associated 
tracklet yields per background dimuon. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
As expected, in low-multiplicity collisions we observe a signifi-
cant correlation structure on the away side (Fig. 3, top panels), 
presumably originating from the fragmentation of recoil jets. In 
high-multiplicity collisions (Fig. 3, middle panels), a possible en-
hancement on both near (�ϕ ≈ 0) and away (�ϕ ≈ π ) side can 
be spotted on top of the away-side structure. In order to isolate 
possible correlations due to collective effects between the J/ψ and 
the associated tracklets, we apply the same subtraction method as 
in previous measurements [5,6,12,16], namely subtracting the Y J/ψ
yields in low-multiplicity collisions from those in high-multiplicity 
collisions (Fig. 3, bottom panels). The subtraction method relies 
on the assumptions that the jet correlations on the away side re-
main unmodified as a function of the event multiplicity and that 
there are no significant correlations due to collective effects in 
low-multiplicity collisions (see discussion in Section 6).

In order to quantify the remaining correlation structures, the 
subtracted yields Y sub

J/ψ (�ϕ) are fit with

a0 + 2a1 cos�ϕ + 2a2 cos 2�ϕ. (3)

The second-order Fourier coefficient V 2{J/ψ − tracklet, sub} of the 
azimuthal correlation between the J/ψ and the associated charged 
hadrons is finally calculated as a2/bhigh

0 . The denominator bhigh
0 =

a0 + blow
0 corresponds to the combinatorial baseline of the high-

multiplicity collisions, where the parameter blow
0 is the combina-

torial baseline of the low-multiplicity collisions obtained at the 
minimum of the per-trigger yields, namely in �ϕ < π/6. The pa-
rameter blow

0 is the normalization factor used in Fig. 3. The param-
eter a1, which describes the strength of the remaining away-side 
correlation structure, is found to be compatible with zero in prac-
tically all pJ/ψ

T intervals, in both p–Pb and Pb–p collisions at both 
5.02 and 8.16 TeV.

As an alternative extraction method, the calculation of blow
0 , 

the subtraction of low-multiplicity from high-multiplicity collision 
yields and the fit to Eq. (3) is done in each bin of Mμμ separately. 
Then the V 2{J/ψ − tracklet, sub} coefficient is extracted by fitting 
V 2{μμ − tracklet, sub}(Mμμ) with a superposition similar to the 
one defined in Eq. (2)

V 2{μμ − tracklet, sub}(Mμμ)

= S

S + B
V 2{J/ψ − tracklet, sub}

+ B

S + B
V B

2 {μμ − tracklet, sub}(Mμμ), (4)

where the V B
2 {μμ − tracklet, sub}(Mμμ) is the second-order 

Fourier coefficient of the azimuthal correlation between the back-
ground dimuons and associated tracklets. The background co-
efficient V B

2 {μμ − tracklet, sub}(Mμμ) is parameterized with a 
second-order polynomial function. This parameterization is cho-
sen since it reproduces the dimuon v2(Mμμ) constructed from 
the measured muon v2 coefficient [16] assuming that the domi-
nant part of the background is combinatorial. An example of the 
V 2{μμ − tracklet, sub}(Mμμ) fit is shown in Fig. 4.

Following the procedure used in Refs. [5,12,16], the V 2{J/ψ −
tracklet, sub} coefficient is factorized into a product of J/ψ and 
charged-hadron v2 coefficients. Thus, the J/ψ second-order Fourier 
azimuthal coefficient v J/ψ

2 {2, sub} is obtained as

v J/ψ
2 {2, sub} = V 2{J/ψ − tracklet, sub}/vtracklet

2 {2, sub}, (5)

where the vtracklet
2 {2, sub} is the tracklet second-order Fourier az-

imuthal coefficient obtained by performing the analysis consid-
ering SPD tracklets as both trigger and associated particles. The 
obtained values of vtracklet

2 {2, sub} are between 0.067 and 0.069 
depending on the beam configuration and collision energy, with 
1–2% relative statistical uncertainty and 5–6.5% relative systematic 
uncertainty.

5. Systematic uncertainties

The combined statistical and systematic uncertainties of the 
measured vtracklet

2 {2, sub} coefficient for each beam configuration 
and collision energy are taken as global systematic uncertainties of 
the corresponding v J/ψ

2 {2, sub} coefficients.

All the other systematic uncertainties of the v J/ψ
2 {2, sub} coeffi-

cients are obtained for each data sample and pT interval separately. 
The following sources are considered.

A possible inaccurate correction for the SPD acceptance is as-
sessed by varying the zvtx range between ±8 and ±12 cm. Sys-
tematic uncertainties are assigned only in the cases of a significant 
change of the results. The significance is defined according to the 
procedure described in Ref. [39].

The systematic effect related to the uncertainty of the shape of 
the dimuon background yields Y B (Mμμ) is estimated by perform-
ing the fit with Eq. (2) using a linear function for the background 
term and varying the fit range. The systematic effect coming from 
the uncertainty of the signal-to-background ratio S/B is checked 
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Fig. 3. Associated tracklet yields per J/ψ trigger in 3 < pJ/ψ
T < 6 GeV/c in p–Pb and Pb–p collisions at √sNN = 5.02 TeV (left panels) and 8.16 TeV (right panels). The top 

and the middle panels correspond to the low-multiplicity and the high-multiplicity event classes, respectively. The bottom panels show the yields after the subtraction of 
the low-multiplicity collision yields from the high-multiplicity collision ones. The solid line represent the fit to the data as described in the text. The dashed, dot-dashed 
and dotted lines correspond to the individual terms of the fit function defined in Eq. (3). All the yields are normalized to the value in �ϕ < π/6 in the low-multiplicity 
(40–100%) event class. Only the statistical uncertainties are shown. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
by employing various invariant mass fit functions, both for the 
background and for the J/ψ signal. The maximal difference of the 
results obtained with the above checks with respect to the default 
approach is taken as the corresponding systematic uncertainty.

The uncertainty arising from the employed analysis approach 
is obtained as the difference between the two extraction methods 
described in Section 4.

As described in Section 4, by default the mixed-event distribu-
tion M E(�ϕ, �η) is normalized to unity in the �η region corre-
sponding to the maximal acceptance. As an alternative approach, 
normalizing the integral of M E(�ϕ, �η) to unity is used. No sig-

nificant effect on the obtained results is observed and thus no 
systematic uncertainty is assigned.

The used event-mixing technique can introduce systematic bi-
ases. The event multiplicity distribution of the selected dimuons 
(1 < Mμμ < 5 GeV/c2) differs from that of the J/ψ signal. Since 
the charged-hadron spectra and the charged-hadron density as a 
function of η change with event multiplicity [34], the non-uniform 
(both in the azimuthal and longitudinal directions) SPD acceptance 
can introduce a bias. The corresponding systematic uncertainty is 
evaluated by doing the event mixing in finer event-multiplicity 
bins.
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Table 1
Summary of absolute systematic uncertainties of the v J/ψ

2 {2, sub} coefficients. The uncertainties vary within the indicated ranges depending on pJ/ψ
T . The values not preceded 

by a sign represent double-sided uncertainties.

Source of systematics
√

sNN = 5.02 TeV
√

sNN = 8.16 TeV

p–Pb Pb–p p–Pb Pb–p

Acceptance correction 0 to 0.019 0 to 0.057 0 to 0.011 0 to 0.007
Background shape 0.007 to 0.013 0.015 to 0.056 0.011 to 0.013 0.003 to 0.012
Extraction method 0.003 to 0.015 0.010 to 0.040 0.002 to 0.011 0.008 to 0.018
Event mixing 0.003 to 0.015 0.004 to 0.025 0.002 to 0.008 0.004 to 0.012
Residual away-side 
jet correlation

– −0.030 to 0 −0.018 to 0 –

Total
+0.009 to +0.024 +0.024 to +0.084 +0.013 to +0.019 +0.015 to +0.021
−0.009 to −0.024 −0.024 to −0.090 −0.015 to −0.026 −0.015 to −0.021
Fig. 4. Example of the fit from Eq. (4) in the 3 < pμμ
T < 6 GeV/c interval for

p–Pb collisions at √sNN = 8.16 TeV. The dashed line corresponds to the V B
2 {μμ −

tracklet, sub}(Mμμ).

The non-uniform acceptance of the muon spectrometer coupled 
to sizeable correlations between the dimuons and SPD tracklets 
can bias azimuthally the sample of SPD tracklets used for event 
mixing. In order to check for possible effects on our measurement, 
the event mixing is performed in intervals of azimuthal angle of 
the selected dimuons. We observe no significant systematic effect 
as the obtained results show negligible deviations with respect to 
the results using the default event-mixing technique.

The effect of a possible residual near-side peak is checked by 
varying the rapidity gap between the trigger dimuons and asso-
ciated charged-hadrons from 1.0 to 2.0 units. We observe no in-
dication of increasing v2 with reduced gap and thus consider the 
default gap of 1.5 units sufficient to eliminate any significant resid-
ual near-side peak contribution.

As shown in Section 4, the recoil-jet away-side correlation 
structure in the high-multiplicity event class is greatly diminished 
after the subtraction of the low-multiplicity event class. By de-
fault, any remaining away-side structure is supposed to be taken 
into account by the cos �ϕ term in Eq. (3). In order to check for 
residual effects we proceed in the following way. First, the cor-
relation function in the low-multiplicity event class is fit with a 
Gaussian function centered at �ϕ = π . Then, the correlation func-
tion in the high-multiplicity event class is fit with the function 
from Eq. (3), where the cos�ϕ term is replaced by a Gaussian 
function with a width fixed to the value obtained from the fit 
in the low-multiplicity collisions. No clear signature of systematic 
change of the results is seen, except some hints of a possible effect 
in the highest pJ/ψ

T interval. Conservatively, we assign systematic 
uncertainty as the difference with respect to the default analy-

sis approach. Since the typical values of the Gaussian width are 
around 1 rad, one-sided (negative) systematic uncertainty is as-
signed.

In Table 1 we present a summary of the assigned systematic 
uncertainties of the v J/ψ

2 {2, sub} coefficients. No sizeable correla-

tions between the pJ/ψ
T intervals are observed and therefore in the 

following the uncertainties are considered uncorrelated.
Our measurement is for inclusive J/ψ . The fraction of J/ψ from 

decays of b-hadrons reaches up to about 15% at pJ/ψ
T ≈ 6 GeV/c in 

p–Pb collisions at 
√

sNN = 5.02 [40] and 8.16 TeV [41]. Therefore 
the feed-down contribution is unlikely to influence significantly 
our results. In principle, a possible strong multiplicity dependence 
of the feed-down fraction can potentially affect the subtraction 
approach. However, no evidence for such a strong dependence is 
observed in pp collisions [42].

As additional cross-checks the analysis is done using alterna-
tive event-multiplicity estimators, varying the tracklet |�	| cut, 
applying a cut on the asymmetry of transverse momentum of the 
two muon tracks, removing the pile-up cuts and excluding the SPD 
regions with non-uniform acceptance in pseudorapidity. The corre-
sponding results are found to be compatible with those obtained 
with the default analysis approach and therefore no further sys-
tematic uncertainties are assigned.

6. Results

In Fig. 5 we report the measured v J/ψ
2 {2, sub} coefficients as 

a function of pJ/ψ
T for p–Pb and Pb–p collisions at 

√
sNN = 5.02

and 8.16 TeV. Up to pJ/ψ
T of 3 GeV/c, no significant deviation from 

zero is observed for either p–Pb or Pb–p collisions at the two colli-
sion energies. On the contrary, in the pJ/ψ

T interval between 3 and 
6 GeV/c, the v J/ψ

2 {2, sub} is found to be positive although with 
large uncertainties. As also shown in Fig. 5, the v J/ψ

2 coefficients in 
2.5 < y < 4 in central Pb–Pb collisions at 

√
sNN = 5.02 TeV reach 

maximal values in the same pJ/ψ
T interval [24].

Two methods are employed in order to obtain the probability 
that the v J/ψ

2 {2, sub} is zero in the 3 < pJ/ψ
T < 6 GeV/c interval. In 

the first method, the v J/ψ
2 {2, sub} values in the two pJ/ψ

T intervals 
(3 < pJ/ψ

T < 4 GeV/c and 4 < pJ/ψ
T < 6 GeV/c) are combined into 

a weighted average for each rapidity and collision energy. The ob-
tained probabilities are 0.13% and 0.13% (7.8% and 0.23%) for p–Pb 
and Pb–p collisions, respectively, at 

√
sNN = 8.16 TeV (5.02 TeV). 

Combining all eight v J/ψ
2 {2, sub} values yields a total probabil-

ity of 1.7 × 10−7. This corresponds to a 5.1σ significance of the 
measured positive v J/ψ

2 {2, sub} coefficient. The second method is 
Fisher’s combined probability test [43]. With this method one ob-
tains probabilities of 0.14% and 0.23% (10.3% and 0.41%) for p–Pb 
and Pb–p collisions at 

√
sNN = 8.16 TeV (5.02 TeV), respectively. 
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Fig. 5. v J/ψ
2 {2, sub} in bins of pJ/ψ

T for p–Pb, 2.03 < y < 3.53 (left panels), and Pb–p, −4.46 < y < −2.96 (right panels), collisions at √sNN = 5.02 TeV (top panels) and 
8.16 TeV (bottom panels). The results are compared to the v J/ψ

2 {EP} coefficients measured in central Pb–Pb collisions at √sNN = 5.02 TeV in forward rapidity (2.5 < y < 4) 
using event plane (EP) based methods [24]. The statistical and uncorrelated systematic uncertainties are represented by lines and boxes, respectively. The quoted global 
systematic uncertainties correspond to the combined statistical and systematic uncertainties of the measured vtracklet

2 {2, sub} coefficient.
The total probability is 1.4 × 10−6 which corresponds to a 4.7σ
significance. In the calculation of the above probabilities, both sta-
tistical and systematic uncertainties of the measured values are 
taken into account. The global systematic uncertainty is not taken 
into account as it is irrelevant in the case of the zero hypothesis.

The analysis method presented in this Letter relies on the as-
sumption that there are no significant correlations due to collective 
effects in the low-multiplicity event class. In case of a presence of 
such correlations, the measured V 2{J/ψ − tracklet, sub} is equal to

V 2{J/ψ − tracklet,high} − blow
0

bhigh
0

V 2{J/ψ − tracklet, low}, (6)

where V 2{J/ψ − tracklet,high} and V 2{J/ψ − tracklet, low} are the 
second-order Fourier coefficients of the azimuthal correlation be-
tween the J/ψ and the associated charged hadrons in the high-
multiplicity and the low-multiplicity collisions, respectively, and 
blow

0 /bhigh
0 ≈1/3 is the ratio of the combinatorial baseline in the 

low-multiplicity and high-multiplicity collisions (see Fig. 3). As is 
demonstrated in Ref. [44], the assumption of no significant collec-
tive correlations in the low-multiplicity collisions is certainly ques-
tionable for light-flavor hadrons. Our data indicates the same, as 
we observe a statistically significant increase of the measured val-
ues of vtracklet

2 {2, sub} when subtracting a lower event-multiplicity, 
e.g. 60–100%, class. Ultimately, the value of the vtracklet

2 coefficient 
is found to be about 17% higher in case no subtraction is applied. 
Therefore, replacing the subtracted vtracklet

2 {2, sub} coefficient in 
Eq. (5) by the non-subtracted coefficient would mean that the v J/ψ

2
coefficients are up to 17% lower with respect to the measured 
v J/ψ

2 {2, sub} coefficients. However, assuming that the v J/ψ
2 coeffi-

cients follow the same trend as a function of event multiplicity as 
the vtracklet

2 coefficient, they would be up to 17% higher with re-

spect to the measured v J/ψ
2 {2, sub} coefficients. Subtracting lower 

event-multiplicity classes in the measurement of the v J/ψ
2 {2, sub}

coefficient does not improve the precision of our measurement, be-
cause of the limited amount of J/ψ signal in the low-multiplicity 
collisions.

The nuclear modification factor of J/ψ in p–Pb and Pb–p colli-
sions [37,38] as well as the charged-particle v2 coefficient [45–47]
in pp collisions show no significant 

√
sNN dependence. As seen in 

Fig. 5, the measured v J/ψ
2 {2, sub} coefficients at 

√
sNN = 5.02 and 

8.16 TeV also appear to be consistent with each other. The largest 
absolute difference between the results at the two collision en-
ergies is observed in Pb–p collisions in the 3 < pJ/ψ

T < 6 GeV/c
interval. The significance of this difference is rather low (below 
1.5σ ), because of the large uncertainties of the measurement at √

sNN = 5.02 TeV. Hence, the data for the two collision energies 
are combined as a weighted average taking into account both sta-
tistical and systematic uncertainties. In Fig. 6, we present these 
combined results for p–Pb and Pb–p collisions together with mea-
surements and model calculations for Pb–Pb collisions at 

√
sNN =

5.02 TeV [25].
In Pb–Pb collisions, the positive v J/ψ

2 coefficients at pJ/ψ
T be-

low 3–4 GeV/c are believed to originate from the recombination of 
charm quarks thermalized in the medium and are described fairly 
well by the transport model [25] (see Fig. 6). In p–Pb collisions, 
the amount of produced charm quarks is small and therefore the 
contribution from recombination should be negligible. Our mea-
sured values at pJ/ψ

T < 3 GeV/c are compatible with zero, in line 
with this expectation. There is one publication [28] which suggests 
that even in p–Pb collisions a sizeable contribution from recom-
bination could occur due to canonical enhancement effects. The 
uncertainties of our results do not allow to confirm or to rule out 
this scenario.

In Pb–Pb collisions, the measured v J/ψ
2 coefficients exceed sub-

stantially the theoretical predictions at pJ/ψ
T > 4 GeV/c, where the 
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Fig. 6. Combined v J/ψ
2 {2, sub} coefficients in p–Pb and Pb–p collisions compared 

to the results in central and semi-central Pb–Pb collisions at √
sNN = 5.02 TeV 

[24] and the transport model calculations for semi-central Pb–Pb collisions at √
sNN = 5.02 TeV [25]. The solid line corresponds to the contribution from path-

length dependent suppression inside the medium. The band shows the resulting 
v J/ψ

2 including also the recombination of thermalized charm quarks and the feed-
down from b-hadron decays assuming thermalization of b quarks.

main contribution to v J/ψ
2 is expected to come from path-length 

dependent suppression inside the medium [25] (see Fig. 6). In 
p–Pb collisions, the medium, if any, has a much smaller size [48]
and hence very little, if any, path-length dependent effects are 
expected. In principle, the feed-down from decays of b-hadrons 
can give a positive v J/ψ

2 at high transverse momentum in case of 
a positive b quark v2. However, the latter would have to reach 
unreasonably high values given the magnitude of the measured 
v J/ψ

2 {2, sub} and the small feed-down fraction. Despite these con-

siderations, the measured positive v J/ψ
2 coefficients would imply 

that the J/ψ participates in the collective behavior of the p–Pb col-
lision system.

7. Summary

We presented a measurement of the angular correlations 
between forward and backward J/ψ and mid-rapidity charged 
hadrons in p–Pb and Pb–p collisions at 

√
sNN = 5.02 and 8.16 TeV. 

The data indicate persisting long-range correlation structures at 
�ϕ ≈ 0 and �ϕ ≈ π , reminiscent of the double ridge previously 
found in charged-particle correlations at mid- and forward ra-
pidity. The corresponding v J/ψ

2 {2, sub} coefficients in 3 < pJ/ψ
T <

6 GeV/c are found to be positive with a total significance of 
4.7σ to 5.1σ . The obtained values, albeit with large uncertain-
ties, are comparable with those measured in Pb–Pb collisions at √

sNN = 5.02 TeV in forward rapidity. Although the underlying 
mechanism is not understood, the comparable magnitude of the 
v J/ψ

2 coefficients at high transverse momentum in p–Pb and Pb–Pb 
collisions indicates that this mechanism could be similar in both 
collision systems.
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P. Antonioli 53, L. Aphecetche 114, H. Appelshäuser 70, S. Arcelli 27, R. Arnaldi 58, O.W. Arnold 105,36, 
I.C. Arsene 21, M. Arslandok 104, B. Audurier 114, A. Augustinus 35, R. Averbeck 106, M.D. Azmi 17, 
A. Badalà 55, Y.W. Baek 60,78, S. Bagnasco 58, R. Bailhache 70, R. Bala 101, A. Baldisseri 75, M. Ball 45, 
R.C. Baral 67,88, A.M. Barbano 26, R. Barbera 28, F. Barile 33, L. Barioglio 26, G.G. Barnaföldi 140, 
L.S. Barnby 93, V. Barret 131, P. Bartalini 7, K. Barth 35, E. Bartsch 70, N. Bastid 131, S. Basu 139, G. Batigne 114, 
B. Batyunya 77, P.C. Batzing 21, J.L. Bazo Alba 111, I.G. Bearden 91, H. Beck 104, C. Bedda 63, N.K. Behera 60, 
I. Belikov 133, F. Bellini 27,35, H. Bello Martinez 2, R. Bellwied 124, L.G.E. Beltran 120, V. Belyaev 83, 
G. Bencedi 140, S. Beole 26, A. Bercuci 87, Y. Berdnikov 96, D. Berenyi 140, R.A. Bertens 127, D. Berzano 35, 
L. Betev 35, A. Bhasin 101, I.R. Bhat 101, B. Bhattacharjee 44, J. Bhom 118, A. Bianchi 26, L. Bianchi 124, 
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J. Kumar 48, L. Kumar 99, S. Kumar 48, S. Kundu 88, P. Kurashvili 86, A. Kurepin 62, A.B. Kurepin 62, 
A. Kuryakin 108, S. Kushpil 94, M.J. Kweon 60, Y. Kwon 142, S.L. La Pointe 42, P. La Rocca 28, 
C. Lagana Fernandes 121, Y.S. Lai 82, I. Lakomov 35, R. Langoy 41, K. Lapidus 141, C. Lara 69, A. Lardeux 21, 
A. Lattuca 26, E. Laudi 35, R. Lavicka 39, R. Lea 25, L. Leardini 104, S. Lee 142, F. Lehas 92, S. Lehner 113, 
J. Lehrbach 42, R.C. Lemmon 93, E. Leogrande 63, I. León Monzón 120, P. Lévai 140, X. Li 14, J. Lien 41, 
R. Lietava 110, B. Lim 19, S. Lindal 21, V. Lindenstruth 42, S.W. Lindsay 126, C. Lippmann 106, M.A. Lisa 18, 
V. Litichevskyi 46, W.J. Llope 139, D.F. Lodato 63, P.I. Loenne 22, V. Loginov 83, C. Loizides 95,82, P. Loncar 117, 
X. Lopez 131, E. López Torres 9, A. Lowe 140, P. Luettig 70, J.R. Luhder 71, M. Lunardon 29, G. Luparello 59,25, 
M. Lupi 35, T.H. Lutz 141, A. Maevskaya 62, M. Mager 35, S.M. Mahmood 21, A. Maire 133, R.D. Majka 141, 
M. Malaev 96, L. Malinina 77,iii, D. Mal’Kevich 64, P. Malzacher 106, A. Mamonov 108, V. Manko 90, 
F. Manso 131, V. Manzari 52, Y. Mao 7, M. Marchisone 132,76,128, J. Mareš 66, G.V. Margagliotti 25, 
A. Margotti 53, J. Margutti 63, A. Marín 106, C. Markert 119, M. Marquard 70, N.A. Martin 106, 
P. Martinengo 35, J.A.L. Martinez 69, M.I. Martínez 2, G. Martínez García 114, M. Martinez Pedreira 35, 
S. Masciocchi 106, M. Masera 26, A. Masoni 54, E. Masson 114, A. Mastroserio 52, A.M. Mathis 105,36, 
P.F.T. Matuoka 121, A. Matyja 127, C. Mayer 118, J. Mazer 127, M. Mazzilli 33, M.A. Mazzoni 57, F. Meddi 23, 
Y. Melikyan 83, A. Menchaca-Rocha 74, E. Meninno 30, J. Mercado Pérez 104, M. Meres 38, S. Mhlanga 100, 
Y. Miake 130, M.M. Mieskolainen 46, D.L. Mihaylov 105, K. Mikhaylov 77,64, A. Mischke 63, A.N. Mishra 49, 
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V. Peskov 70, Y. Pestov 5, V. Petráček 39, V. Petrov 112, M. Petrovici 87, C. Petta 28, R.P. Pezzi 73, S. Piano 59, 
M. Pikna 38, P. Pillot 114, L.O.D.L. Pimentel 91, O. Pinazza 53,35, L. Pinsky 124, D.B. Piyarathna 124, 
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107 Rudjer Bošković Institute, Zagreb, Croatia
108 Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
109 Saha Institute of Nuclear Physics, Kolkata, India
110 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
111 Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
112 SSC IHEP of NRC Kurchatov institute, Protvino, Russia
113 Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
114 SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, Nantes, France
115 Suranaree University of Technology, Nakhon Ratchasima, Thailand
116 Technical University of Košice, Košice, Slovakia
117 Technical University of Split FESB, Split, Croatia
118 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
119 The University of Texas at Austin, Physics Department, Austin, TX, United States
120 Universidad Autónoma de Sinaloa, Culiacán, Mexico
121 Universidade de São Paulo (USP), São Paulo, Brazil
122 Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
123 Universidade Federal do ABC, Santo Andre, Brazil
124 University of Houston, Houston, TX, United States
125 University of Jyväskylä, Jyväskylä, Finland
126 University of Liverpool, Liverpool, United Kingdom
127 University of Tennessee, Knoxville, TN, United States
128 University of the Witwatersrand, Johannesburg, South Africa
129 University of Tokyo, Tokyo, Japan
130 University of Tsukuba, Tsukuba, Japan
131 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
132 Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, Lyon, France
133 Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
134 Università degli Studi di Pavia, Pavia, Italy
135 Università di Brescia, Brescia, Italy
136 V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia
137 Variable Energy Cyclotron Centre, Kolkata, India
138 Warsaw University of Technology, Warsaw, Poland
139 Wayne State University, Detroit, MI, United States
140 Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
141 Yale University, New Haven, CT, United States
142 Yonsei University, Seoul, Republic of Korea
143 Zentrum für Technologietransfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms, Germany

i Deceased.
ii Dipartimento DET del Politecnico di Torino, Turin, Italy.

iii M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics, Moscow, Russia.
iv Department of Applied Physics, Aligarh Muslim University, Aligarh, India.
v Institute of Theoretical Physics, University of Wroclaw, Poland.


	Search for collectivity with azimuthal J/ψ-hadron correlations in high multiplicity p-Pb collisions at √sNN = 5.02 and 8.16 TeV
	1 Introduction
	2 Experimental setup and data samples
	3 Event, track and dimuon selection
	4 Analysis
	5 Systematic uncertainties
	6 Results
	7 Summary
	Acknowledgements
	References
	ALICE Collaboration


