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Abstract

Results on the production of 4He and 4He nuclei in Pb–Pb collisions at √sNN = 2.76 TeV in the rapidity 
range | y |< 1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 
0–10% central events are found to be dN/dy4He = (0.8 ± 0.4 (stat) ± 0.3 (syst)) × 10−6 and dN/dy4He =
(1.1 ± 0.4 (stat) ± 0.2 (syst)) × 10−6, respectively. This is in agreement with the statistical thermal model 
expectation assuming the same chemical freeze-out temperature (Tchem = 156 MeV) as for light hadrons. 
The measured ratio of 4He/4He is 1.4 ± 0.8 (stat) ± 0.5 (syst).
© 2018 Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The production of light (hyper-)nuclei, up to a mass number A = 3, has been reported al-
ready in Pb–Pb collisions at 

√
sNN = 2.76 TeV at the Large Hadron Collider (LHC). This 

includes deuterons, 3He and the hypertriton as well as their corresponding anti-particles [1,2]. 
The observed total yields can be described well by equilibrium thermal models [3–9], with only 
three free parameters: the chemical freeze-out temperature Tchem, the volume V and the baryo-
chemical potential μB . The current best fit to the measured yields at the LHC, including results 
ranging in mass from pions up to 3He, results in a Tchem = 156 MeV [10]. The measurement of 
the production yields of 4He and 4He (A = 4) will put additional constraints on Tchem. Since the 
baryo-chemical potential is consistent with zero (μB = 0.7 ± 3.8 MeV [11]) at LHC energies, 
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the expected anti-baryon to baryon ratio is unity. Therefore, also the ratio is expected to be close 
to unity for particles composed of (anti-)baryons, namely the anti-nuclei and nuclei [6].

Furthermore, 4He is the heaviest anti-nucleus ever observed. It was discovered in Au–Au col-
lisions at RHIC by the STAR Collaboration [12]. Out of 109 Au–Au collisions at centre-of-mass 
energies per nucleon pair (

√
sNN) of 200 GeV and 62.4 GeV, 18 4He have been detected. The 

corresponding yield at a given transverse momentum pT is compared to the prediction of the 
thermal model [13] and the coalescence nucleosynthesis model [14] and found to be consistent 
with both. A confirmation of this observation is still pending as no other experiment has been 
able to detect the 4He particle since then.

Coalescence models have been successfully used to describe the general trends of deuteron 
production [15–25] in relativistic nuclear collisions, albeit with a number of external parameters. 
These models are clearly challenged with the regular pattern observed in the production proba-
bility for light nuclei measured by the STAR [12] and ALICE [1] Collaborations. To extend the 
studies to A = 4 the measurement at LHC energies is obviously of great interest.

In this paper, the measurement of the production yield of the 4He and 4He nuclei with the 
ALICE apparatus is presented. Besides the increase in collision energy, the main difference with 
respect to the measurement by the STAR Collaboration is the usage of a six layer silicon vertex 
detector in ALICE. Together with the other barrel detectors this provides precision information 
on vertex position, particle identification and momentum. The determined yields are compared 
to thermal model expectations.

2. Detector setup and data sample

The two main detectors involved in the identification of the 4He and 4He particles are the Time 
Projection Chamber (TPC) [26] and the Time of Flight (TOF) detector [27], combined with the 
start time detector T0. In addition, V0 detectors ([28,29]) are used for centrality determination 
and the Inner Tracking System (ITS) [30] is employed for tracking and the discrimination be-
tween primary and secondary particles [1,31]. A full description of the ALICE detector can be 
found in [32], whereas the performance of the ALICE sub-detectors is reported in [33].

The measurement of the 4He and 4He particles is performed on the 2011 data set of Pb–Pb 
collisions at 

√
sNN = 2.76 TeV. From this campaign, 38.7 ×106 events in a trigger mix of central, 

semi-central and minimum-bias events are used in this analysis. This leads to 20.7 ×106 events in 
the 0–10% centrality interval, 17.4 × 106 events in the 10–50% centrality interval and 0.6 × 106

events in the 50–80% centrality interval. The combined yields are extrapolated to the 0–10% 
centrality class with the procedure discussed in section 4.

3. Analysis

To ensure high tracking efficiency, high energy-deposit (dE/dx) resolution in the TPC and a 
good track matching between the TPC and TOF detectors, a set of selection criteria is applied. In 
order to select primary particles, the corresponding tracks have to originate from the primary ver-
tex. The primary vertex position is estimated using the ITS and the TPC detectors. The resolution 
of the vertex determination is better than 50 µm in the xy-plane and 150 µm in the z-direction for 
charged particles with momenta above 1 GeV/c. To select primary tracks, the minimum distance 
from the vertex, called Distance-of-Closest-Approach (DCA), is required to be smaller than 1 cm 
along the z-axis, whereas the DCA in the xy-plane must not be greater than 0.1 cm. In addition, 
a hit in the TOF detector is required for a precise time measurement and only those tracks are 
used for the track reconstruction. The selection criteria are summarised in Table 1.
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Table 1
Selection criteria applied for the 4He and 4He analyses.

Track selection criteria value

Number of clusters in TPC ncl > 80
Number of hits in ITS nhits > 2
TPC track quality χ2/cluster < 4
Acceptance in pseudo-rapidity |η| < 0.8
Acceptance in rapidity |y| < 1
DCAz DCAz < 1cm
DCAxy DCAxy < 0.1 cm

PID selection value

TPC PID cut ±3σ

TOF mass window ±3σ

The dE/dx is measured in the TPC as a function of the rigidity p/z, where p is the momentum 
and z is the electric charge in units of the elementary charge e. This distribution of reconstructed 
charged particles is well described by the Bethe–Bloch formula [34,35] and is unique for each 
particle species.

Primarily, all events with at least one particle with a dE/dx corresponding to a 3He and 3He
or a higher mass are selected. To ensure a good track matching between the TPC and the TOF 
detectors, only candidates within 3 standard deviations (σ ) around the mean in the dE/dx (TPC) 
vs. βγ (TOF) plane are accepted. Here, β denotes the relativistic velocity β = v/c and γ is 
the Lorentz factor. In order to select 4He or 4He particles, candidates within a 3σ band of the 
Bethe–Bloch parametrisation in the dE/dx versus p/z distribution are taken into account. At 
higher momenta, the two Bethe–Bloch curves of 4He or 4He and of 3He or 3He approach each 
other. To study a possible contamination from 3He and 3He particles, different narrower cuts for 
the TPC dE/dx selection band are investigated: while the upper cut of the band (3σ ) is fixed, 
the lower cut is restricted progressively going in steps of 0.5 units from −3σ up to 0σ . For all 
these seven cuts the procedure described in the following is carried out and a yield dN /dy is 
determined.

In Fig. 1, the velocity (β) distributions of He candidates are plotted versus rigidity. One 
can clearly see the separation of 3He and 4He. From these data, the m2/z2 (m = mass of 
the particle) distributions are calculated and displayed in the insert of this figure. From the 
insert, the separation of 3He and 4He can be quantitatively asserted. The m2/z2 is differ-
ent for 3He (2.00 GeV2/c4) and 4He (3.48 GeV2/c4). Candidates lying within a window of 
2.86 GeV2/c4 < m2/z2 < 4.87 GeV2/c4 are identified as 4He or 4He particles. This window is 
determined by a fit to the peak in the m2/z2 distribution of the selected tracks. Because of the 
low statistics, the fitting is done simultaneously both for particles and for anti-particles, including 
secondary 4He knocked out from the material. A Gaussian with an exponential tail on the right 
side is used as the fit function. For the background, the sum of a first-order polynomial and an 
exponential shape is assumed. This is necessary to describe the time-signal shape of the TOF 
detector [27]. The polynomial shape is needed to cope with mismatched candidate tracks in the 
signal region. A similar procedure is used in [1].

For the analysis of positively charged 4He, contamination from 4He nuclei which do not orig-
inate from the primary vertex, but stem from the detector material due to knockout processes, 
are taken into account. Monte Carlo studies suggest a cut on p/z > 2 GeV/c to eliminate such 
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Fig. 1. Velocity β measured with the TOF detector as a function of the rigidity p/z. For this figure a selection band of 
−1.5 to 3σ around the mean of the TPC specific energy-loss distribution is required. Negatively (positively) charged 
particles are shown on the left (right) side, with positive tracks in blue and negative tracks in green. The dashed vertical 
line represents the cut on the rigidity p/z = 2 GeV/c (applied only for positively charged particles). The insert shows 
the m2/z2 distributions obtained from the data points shown in the main figure. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)

a background. Note that the background due to knockout processes is steeply falling with mo-
mentum and the signal is rising in this momentum range. Therefore, only 4He candidates with a 
p/z greater than 2 GeV/c are accepted. The contamination at higher momenta is estimated to be 
a maximum of 0.13 counts out of a total count of the order of 10, which is added as a systematic 
uncertainty.

The small number of clear signal counts observed by combining the TPC and TOF information 
does not give any indication of background. In order to estimate an upper limit on the background 
counts from mismatched tracks in the TOF detector underneath the 4He or 4He peak in the TOF 
mass window, a likelihood fit under the assumption of a flat background is performed in the 
dE/dx versus βγ plane outside the ±3σ matching band. In this way, background candidates are 
identified as mismatched particles. (These are usually rejected and only used for this purpose.) 
Due to limited statistics, this procedure cannot be used if a stronger selection criterion is applied 
for the TPC dE/dx selection, since no 4He or 4He candidates are left to apply this technique. 
For these particular cases, we assume a constant ratio of 3He to background counts and use this 
to estimate the number of 4He background.

The background stemming from misidentification of (anti-)3He as (anti-)4He is estimated to 
be more than one order of magnitude smaller than the one from the mismatch of TPC tracks 
when extrapolated to the TOF detector and is therefore considered to be negligible. The esti-
mated background decreases with more stringent TPC dE/dx cuts. The signal-to-background 
ratio improves depending on the tightness of the dE/dx cut from 1.7 to 8.4 for 4He and from 1.7 
to 17.6 for 4He.

To estimate the efficiency for the detection of 4He and 4He, a Monte Carlo simulation is 
generated in which the kinematical distributions of the particles are generated flat both in rapidity 
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y and in transverse momentum pT. The shape of pT spectra in heavy-ion collisions is typically 
described by a blast-wave model [36]. This model assumes an average radial-flow velocity 〈β〉
and a kinetic freeze-out temperature Tkin as described in [37]. Generally, most hadron pT spectra 
measured in heavy-ion collisions can be described well by one common set of parameters [38]. 
Surprisingly, this also works well for the description of deuteron and 3He pT spectra [1]. Hence 
the same prescription is used here for the pT shape of 4He and 4He particles, namely the same 
set of parameters is used, only the mass is changed to the 4He mass.

Since only a small number of 4He and 4He particles (14 4He and 9 4He for the widest TPC 
dE/dx cut) are observed, a pT spectrum can not be measured. It is estimated using the blast-wave 
parameters of deuterons and 3He spectra [1]. The final acceptance × efficiencies are obtained as 
described in [39] and are of the order of 15% for 4He and 20% for 4He. The difference originates 
from the 2 GeV/c rigidity cut applied to 4He candidates.

For the 4He analysis, the absorption in the detector material is taken into account using two 
different transport codes, namely GEANT3 [40] and GEANT4 [41]. These two codes use differ-
ent models for the estimation of the absorption cross section. In GEANT4, a Glauber model based 
on the well known hadronic interaction cross sections for (anti-)protons is implemented [42]. The 
version of GEANT3 used in this analysis is modified [1] such that it calculates the absorption 
based on an empirical parameterisation [43], based on the measurements of anti-deuterons car-
ried out at Serpukhov [44]. The baseline is given by the absorption calculated with GEANT4, 
while the GEANT3 based correction is used in the systematic uncertainty evaluation. The maxi-
mum absorption probability towards low p/z is about 20%. In contrast to GEANT4, which still 
shows an absorption of about 5% at pT = 10 GeV/c, GEANT3 exhibits basically no absorption 
above 3.5 GeV/c.

The main contributions to the systematic uncertainty on the determined production yields are:

– The uncertainty due to the unknown shape of the pT distributions, which is determined by 
using the blast-wave model based on the measured deuteron and 3He spectra [1]. This leads 
to a systematic uncertainty contribution of around 13%.

– Only for 4He: The rigidity cut on p/z greater than 2 GeV/c itself has a systematic un-
certainty of 4 to 13% depending on the TPC PID cut. As mentioned before, the sec-
ondary contamination above this cut is estimated to be a maximum of 0.13 counts. This 
leads to a systematic uncertainty of at minimum 20% and at maximum 49% grow-
ing with stricter TPC PID cut. As the number of observed candidates shrinks with 
stricter TPC dE/dx selection, the systematic uncertainty on the secondary contamination 
grows.

– Only for 4He: The absorption correction has an uncertainty of 7%, estimated from the dif-
ference of the two GEANT implementations.

Other systematic uncertainties are estimated by varying the cuts in the limits consistent with 
the detector resolution. The contributions of these systematic uncertainties are typically found 
to be below the percent range. The systematic uncertainty on the chosen TPC PID cut varies 
between 1% for the most loose cuts and 19% for stricter cuts. This is caused by the stronger 
sensitivity of the stricter cuts, namely the even further reduced low number of candidates, which 
is not reflected in the Monte Carlo simulation.

The final values and the corresponding uncertainties are calculated as a mean from the pre-
viously discussed variations of the selection criteria. The resulting systematic uncertainty on the 
final yield is 35% for 4He and 20% for 4He.
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Fig. 2. dN /dy for protons (A = 1) up to 4He (A = 4) and the corresponding anti-particles in central (0–10%) Pb–Pb 
collisions at √sNN = 2.76 TeV. The blue lines are fits with an exponential function. Statistical uncertainties are shown 
as lines, whereas the systematic uncertainties are represented by boxes.

4. Results

The measurement is performed on a data set including central, semi-central and minimum-bias 
triggered events. To make use of all the data analysed, the semi-central and minimum-bias events 
have been extrapolated to 0–10% centrality interval assuming that the particle and anti-particle 
yields scale linearly with the charged-particle multiplicity dNch/dη. This procedure has already 
been tested to work well for the (anti-)hypertriton production [2]. In addition, d/p and 3He/p 
ratios are measured to be approximately flat versus multiplicity within uncertainties [1]. Thus, for 
each centrality class, the number of analysed events is multiplied by the corresponding measured 
charged-particle density dNch/dη [28]. If this is added up and divided by the total number of 
measured events it leads to a weighting factor of 1034. To get the final yield in the 0–10% 
centrality class the measured yield is multiplied with the dNch/dη for 0–10% centrality (1447.5) 
and divided by the weighting factor, as dN/dy0−10% = dN/dymeasured × 1447.5/1034.

This leads to final values of dN/dy4He = (0.8 ± 0.4 (stat) ± 0.3 (syst)) × 10−6 for 4He and 
dN/dy4He = (1.1 ±0.4 (stat) ±0.2 (syst)) ×10−6 for 4He. For the ratio 4He/4He we obtain 1.4 ±
0.8 (stat) ± 0.5 (syst) (“stat” and “syst” indicate the statistical and the systematic uncertainty).

The measured yields in the 0–10% centrality interval are shown in Fig. 2 together with those 
of (anti-)protons, (anti-)deuterons and (anti-)3He [1,38] (details on the extrapolation to 0–10% 
centrality can be found in [10]). The blue lines are exponential fits with the fit function KeBA

resulting in B = −5.8 ± 0.2, which corresponds to a penalty factor (suppression factor of pro-
duction yield for nuclei with one additional baryon) of around 300. The same penalty factor is 
also obtained if the fit is done up to 3He only [1].

The obtained penalty factor of around 300 for each additional nucleon is consistent with 
Tchem ≈ 160 MeV in the equilibrium thermal models. The measured yields for 4He and 
4He nuclei are consistent with the predictions from the various (equilibrium) thermal models 
(THERMUS [45], GSI [5,46,47] and SHARE [48–50]) with Tchem = 156 MeV, as shown in 
Fig. 3 for complete statistical thermal model fits using the available light flavour data measured 
by the ALICE Collaboration. The fits in Fig. 3 extend the simple exponential model (Fig. 2) by 
incorporating Boltzmann statistics and degeneracy factors for all particles. If instead of all listed 
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Fig. 3. Thermal model fits, with three different implementations, to the light flavour hadron yields in central (0–10%) 
Pb–Pb collisions at √sNN = 2.76 TeV. The data points are taken from [1,2,38,51–54] and details of the fits can be found 
in [10,11]. The upper panel shows the fit results together with the data, whereas the middle panel shows the difference 
between model and data normalised to the model value and the lower panel the difference between model and data 
normalised to the experimental uncertainties.

particles only nuclei (deuterons, 3He and 4He and 4He) are considered for the fit, the resulting 
temperatures are 154 ± 4 MeV. The pure measured yields for 4He and 4He nuclei agree, depend-
ing on the model implementation, within the determined uncertainties with temperatures from 
135 MeV to 177 MeV. Taken together these observations suggest that the relatively heavy 4He 
and 4He nuclei are also produced statistically at the same temperature as the lighter particles.

5. Summary and conclusion

The ALICE Collaboration has measured the production yields of 4He and 4He in central 
(0–10%) Pb–Pb collisions at 

√
sNN = 2.76 TeV. The ratio of the two yields is consistent with 

unity and the results are in good agreement with the prediction of the statistical thermal model 
assuming the same temperature of 156 MeV as is obtained from the fit to the other light flavour 
hadrons.

Data gathered at the current beam energy of 
√

sNN = 5.02 TeV in Pb–Pb collisions at the LHC 
(Run 2) will improve the studies described in this letter thanks to an increase in statistics by a 
factor of about 3. Based on the pilot measurement presented here, we conclude that a precision 
study will be possible in the data taking period starting from 2021 (Run 3 of the LHC), where 
about 5500 4He (4He) particles are expected to be reconstructed [55]. This will allow for the 
measurement of the transverse-momentum spectra. As the unknown shape of the pT distributions 
is one of the major sources of the systematic uncertainty, the measurement of the spectrum will 
decrease the systematic uncertainty of the measured yield. As a consequence the precision of 
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the ratio of 4He/4He will be significantly improved. In addition, a mass difference measurement 
similar to what was done in [56] will be possible.
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