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Abstract We report on the measurement of the inclusive
J/ψ polarization parameters in pp collisions at a center of
mass energy

√
s = 8 TeV with the ALICE detector at the

LHC. The analysis is based on a data sample corresponding
to an integrated luminosity of 1.23 pb−1. J/ψ resonances are
reconstructed in their di-muon decay channel in the rapidity
interval 2.5 < y < 4.0 and over the transverse-momentum
interval 2 < pT < 15 GeV/c. The three polarization param-
eters (λθ , λϕ , λθϕ) are measured as a function of pT both
in the helicity and Collins-Soper reference frames. The mea-
sured J/ψ polarization parameters are found to be compatible
with zero within uncertainties, contrary to expectations from
all available predictions. The results are compared with the
measurement in pp collisions at

√
s = 7 TeV.

1 Introduction

More than 40 years after the J/ψ discovery, its production
mechanism in hadronic collisions remains an open issue [1].
Quarkonia states constitute an important test bench for the
study of Quantum ChromoDynamics (QCD) both in the
vacuum and in high-energy density environments, as those
produced in heavy-ion collisions, where the creation of the
Quark–Gluon Plasma (QGP) is observed [2]. Consequently,
the understanding of the J/ψ production mechanism is an
important scientific question in the sense that it addresses
basic concepts of QCD, the theory of the strong interaction,
and its application to heavy-ion collisions allows the charac-
terisation of the QGP properties created in the laboratory.

Different theoretical models have been developed in an
attempt to describe the whole production mechanism from
partonic interaction to heavy-quark pair (QQ) hadronisation
in quarkonia. All approaches are based on the factorisation
hypothesis between hard and soft scales. First phenomeno-
logical attempts (e.g. the Color Evaporation Model [3]) have

� e-mail: alice-publications@cern.ch

been replaced by a rigorous effective field theory, the Non-
Relativistic QCD (NRQCD) [4]. In this framework, two
models can be derived according to the sub-processes taken
into account: the Color-Singlet Model (CSM) [5,6] and
the Color-Octet Mechanism (COM) [4]. The CSM assumes
no evolution of the quantum color-singlet state between the
QQ production and the quarkonium formation, with a wave
function computed at zero QQ separation, i.e. without any
free parameter. The COM introduces Long-Distance Matrix
Elements (LDMEs) for the hadronisation probability in a
quarkonium state. The LDMEs are free parameters of the
theory which must be fixed from experimental data.

Recent measurements at the LHC confirm that color-octet
terms are crucial for a good description of the J/ψ and ψ(2S)
differential production cross sections [7]. However, the fail-
ure in predicting the ηc production cross section [8,9] poses
serious challenges to the NRQCD approach.

In this context, alternative measurements at different ener-
gies and in different rapidity regions can help to disentangle
tensions between quarkonium measurements and the the-
oretical predictions. One of the most relevant observables
apart from the production cross section is the polarization
of quarkonia. The polarization of JPC = 1− states like the
J/ψ is specified by three polarization parameters (λθ , λϕ ,
λθϕ), which are a function of the three decay amplitudes
with respect to the three angular momentum states. The two
cases (λθ = 1, λϕ = 0, λθϕ = 0) and (λθ = −1, λϕ = 0,
λθϕ = 0) correspond to the so-called transverse and lon-
gitudinal polarizations, respectively. Theoretical models at
Next-to-Leading Order (NLO) predict strongly transverse-
momentum dependent polarization states with a partial lon-
gitudinal polarization in the CSM and a partial transverse
polarization when color-octet contributions are included in
the NRQCD calculation [10].

Experimentally, the polarization parameters can be deter-
mined in the quarkonium dilepton decay channel by studying
the angular distribution (W ) of the leptons in the quarkonium
rest-frame [11]:
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W (cos θ, ϕ) ∝ 1

3 + λθ

[
1 + λθ cos2 θ + λϕ sin2 θ cos(2ϕ)

+λθϕ sin(2θ) cos ϕ
]

(1)

where θ and ϕ are the polar and the azimuthal angles, respec-
tively, defining the orientation of one lepton (for instance the
negative one) in the quarkonium rest-frame with respect to
a reference axis. In the analysis presented here, the selected
reference axes are: (1) the helicity axis corresponding to the
quarkonium flight direction in the center-of-mass of the col-
liding beams, and (2) the Collins-Soper axis defined by the
direction of the relative velocity of the colliding beams in the
quarkonium rest-frame. In the following, the J/ψ rest-frame
associated to the helicity axis will be referred to as helicity
(HX) frame and the one defined from the Collins-Soper axis
will be called Collins-Soper (CS) frame.

Since the beginning of the LHC operations, the study of the
J/ψ polarization in pp collisions has been carried out at

√
s =

7 TeV both at midrapidity by the CMS [12] experiment, and
at forward rapidity by the ALICE [13] and LHCb [14] experi-
ments. The midrapidity and forward rapidity results are com-
plementary in terms of the explored transverse-momentum
(pT) interval, which is 14 < pT < 70 GeV/c for CMS,
2 < pT < 15 GeV/c for LHCb and 2 < pT < 8 GeV/c for
ALICE.

In this paper we present the polarization measurement of
inclusively-produced J/ψ mesons in pp collisions at

√
s =

8 TeV in the transverse-momentum interval 2 < pT <

15 GeV/c. This is the first measurement of the J/ψ polariza-
tion at this energy, and extends the pT reach of the previous
ALICE measurement at

√
s = 7 TeV [13]. The paper starts

with a brief description of the experimental apparatus and the
used data sample in Sect. 2, followed by a description of the
analysis in Sect. 3, including a discussion of the systematic
uncertainties. The results are presented in Sect. 4 and com-
pared with those obtained from

√
s = 7 TeV and with model

calculations. Conclusions are finally drawn in Sect. 5.

2 Experimental apparatus and data sample

The ALICE apparatus and its performance are described in
detail in [15] and [16], respectively. In this paper we focus on
the two sub-detectors relevant for the analysis: the forward
muon spectrometer [17] and the first two layers of the Inner
Tracking System (ITS) [18].

The muon spectrometer detects muons in the pseudora-
pidity range1 −4.0 < η < −2.5. It consists of five track-

1 Although the muon spectrometer covers negative pseudorapidities
(η) in the ALICE reference frame, we use positive rapidity values when
referring to the rapidity (y) of quarkonium states reconstructed via their
di-muon decay channel.

ing stations with two detection planes of multi-wire propor-
tional chambers with cathode pad readout and two trigger
stations, each comprising of two detection planes of resistive
plate chambers. A set of absorbers completes the system, to
decrease the hadronic background: the front-absorber (before
the first tracking station) reduces the contamination of light
hadron decays, a shield surrounding the beam pipe decreases
the background from particles produced in the interaction at
large pseudorapidity, and an iron wall shields the trigger sta-
tions from residual punch through. The momenta of charged
tracks are measured with the help of a 3 T·m dipole magnet
surrounding the third tracking station.

The ITS consists of six layers of silicon detectors with
cylindrical geometry surrounding the beam pipe, with radii
ranging from 3.9 to 43 cm from the beam axis. This analysis
makes use of the two innermost layers that are equipped with
Silicon Pixel Detectors (SPD) and cover the pseudorapidity
ranges |η| < 2 and |η| < 1.4 for the first and the second layer,
respectively. The SPD is used to reconstruct the position of
the primary vertex of the collision.

The data used for this analysis were collected in 2012. The
online event selection is based on the opposite-sign di-muon
trigger, with a pT threshold of about 1 GeV/c applied on each
muon candidate. This di-muon trigger runs in coincidence
with the crossing of two beam bunches at the interaction
point. The data sample recorded with this trigger configura-
tion is the same as in [19] and corresponds to an integrated
luminosity of about 1.23 pb−1.

3 Analysis

Track selection. The opposite-sign di-muon pair candidates
are reconstructed with the following track selection criteria
(see [19] for details):

– the track pseudorapidity must be in the range correspond-
ing to the muon spectrometer acceptance −4 < η <

−2.5,
– the polar angle θabs measured at the rear-end plane of the

front absorber must be in the interval 170 < θabs < 178◦,
– the maximum allowed value for the pDCA variable,

defined as the product of the total momentum p of the
track and its distance of closest approach DCA to the
primary vertex in the transverse plane, must be less than
6 × σpDCA, where the resolution σpDCA is 54 cm·GeV/c
for 170 < θabs < 177◦ and 80 cm·GeV/c for 177 ≤
θabs < 178◦,

– each track reconstructed in the muon tracking system
must match a track in the trigger system and in addition
must pass the low-pT trigger threshold of ∼ 1 GeV/c.
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Finally, each unlike-sign di-muon pair is required to be in the
rapidity interval 2.5 < y < 4.0.

J/ψ polarization formalism. A polarization analysis per-
formed by fitting for each pT interval the two-dimensional
angular distribution of Eq. (1) requires a large reconstructed
J/ψ sample. In the present analysis, given the limited statis-
tics, the two-dimensional angular distribution is integrated
over one angle at a time, to obtain the three following nor-
malised one-dimensional distributions:

W1(cos θ) = 3N

2(3 + λθ )

[
1 + λθ cos2 θ

]
(2)

W2(ϕ) = N

2π

[
1 + 2λϕ

3 + λθ

cos(2ϕ)

]
(3)

W3(ϕ̃) = N

2π

[
1 +

√
2λθϕ

3 + λθ

cos ϕ̃

]
(4)

with ϕ̃ = ϕ − 3
4π for cos θ < 0 and ϕ̃ = ϕ − 1

4π for
cos θ > 0, while N corresponds to the normalisation factor
common to the three distributions.

Analysis strategy. In order to extract the polarization param-
eters as a function of pT, the three angular distributions
W1(cos θ), W2(ϕ) and W3(ϕ̃) are built by classifying the di-
muon candidates in cos θ , ϕ and ϕ̃ intervals, respectively, for
each pT interval. The raw number of J/ψ mesons is extracted
in each interval of pT and angle via a fit of the corresponding
invariant mass distribution. The fit is performed in the invari-
ant mass range 2 < Mμ+μ− < 5 GeV/c2 using a variable-
width Gaussian function to describe the background shape
and two extended Crystal Ball functions [20] to describe
the J/ψ and ψ(2S) resonances. The total number of J/ψ in
the analyzed data sample is about 50, 000 in the transverse
momentum range 2 < pT < 15 GeV/c. The extracted raw
yields are then corrected for the acceptance and efficiency of
the detector (A × ε).

Acceptance and efficiency evaluation. This is estimated with
Monte Carlo (MC) simulations of unpolarized J/ψ mesons
with pT and rapidity input distributions parameterized from
the measured ones at the same energy [19]. Next, the J/ψ
mesons are forced to decay into μ+μ− pairs [21], including
a fraction (5.4%) of radiative decays μ+μ−γ [22] in agree-
ment with the prediction from [23]. In the simulation, the
particles are propagated through the ALICE apparatus using
GEANT 3.21 [24] with a realistic description of the detector
response. The (A × ε) factor is calculated in each interval
of pT and angle as the ratio of reconstructed J/ψ satisfying
the selection criteria to the number of generated J/ψ in the
rapidity range 2.5 < y < 4.0. As an example, Fig. 1 (left)
shows the (A × ε) map in the plane (cos θ , pT) for the CS
frame. A similar map is obtained in the HX frame, but with

a vanishing (A × ε) in the interval 0.9 < | cos θ | < 1 for
2 < pT < 15 GeV/c. The maps as a function of ϕ and ϕ̃

in both frames do not exhibit any hole in the (A × ε), as
illustrated in Fig. 1 (right) in the plane (ϕ, pT) for the CS
frame. Due to the natural symmetry of the angular distribu-
tions the analysis is performed in the intervals 0 ≤ cos θ ≤ 1,
0 ≤ ϕ ≤ π

2 and 0 ≤ ϕ̃ ≤ π . The pT interval explored in
this analysis is constrained by a vanishing (A × ε) at low
pT and high | cos θ |, and by the limited statistics at high pT.
The angular distribution intervals for the analysis are defined
in order to have a significance2 larger than five. The grid in
Fig. 1 shows the defined pT ranges as well as the cos θ (left
plot) and ϕ (right plot) intervals in the CS frame.

Extraction of the polarization parameters. After acceptance
and efficiency correction of the number of reconstructed J/ψ
candidates, a simultaneous fit of the three angular distribu-
tions is performed by minimizing the following χ2-function
for each pT interval

χ2 =
ncos θ∑
i=1

(
N J/ψ
i − W1(cos θ ; N , λθ )

σi

)2

+
nϕ∑
j=1

(
N J/ψ

j − W2(ϕ ; N , λθ , λϕ)

σ j

)2

+
nϕ̃∑
k=1

(
N J/ψ
k − W3(ϕ̃ ; N , λθ , λθϕ)

σk

)2

(5)

with four free parameters: the normalization factor N com-
mon to the three distributions and the three polarization
parameters (λθ , λϕ , λθϕ). In this expression, N J/ψ

i, j,k and σi, j,k
are the corrected numbers of J/ψ and their associated statis-
tical uncertainties in the i th, j th and kth bins of the angular
distributions W1(cos θ), W2(ϕ) and W3(ϕ̃), with a total num-
ber of bins ncos θ , nϕ and nϕ̃ , respectively. Figure 2 illustrates
the fit results of the angular distributions in the HX frame for
the transverse-momentum range 4 < pT < 5 GeV/c (similar
fits are obtained in all pT intervals and in both frames).

Systematic uncertainty evaluation. The J/ψ signal is extracted
using five different fitting approaches. The initial approach of
the invariant mass fit presented above is varied in the follow-
ing way. The range of the fit is increased to 1.5 < Mμ+μ− <

6 GeV/c2 or decreased to 2.2 < Mμ+μ− < 4.5 GeV/c2.
The product of a Gaussian and an exponential is used as
an alternative background shape, and finally the two Crys-
tal Ball functions are replaced by the function used by the
NA60 Collaboration [20]. For each approach the analysis is

2 The significance is defined as S = S/
√
S + B with S the number of

signal events and B the number of background events in the mass range
of ±3σ around the J/ψ mass peak, σ being the J/ψ mass resolution.
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Fig. 2 Acceptance corrected angular distributions of J/ψ reconstructed
in the di-muon decay channel W1(cos θ), W2(ϕ) and W3(ϕ̃) in the helic-
ity frame for the transverse momentum interval 4 < pT < 5 GeV/c,

together with the results of the simultaneous fit (see text for details).
Vertical bars correspond to statistical uncertainties

repeated and the polarization parameters are determined. The
final values of the polarization parameters λα (with α = θ

or ϕ or θϕ) correspond to the mean values λα of the five sets
of results, and the associated statistical uncertainties are the
mean values of the statistical uncertainties returned by each
fit. The systematic uncertainties on the λα parameters due to
the signal extraction are the sum of the quadratic difference
of each configuration result with respect to the mean values.
The uncertainties range from 0.012 to 0.108 (see Table 1)
with the biggest effect observed on λϕ in the HX frame.

An exhaustive investigation of potential biases in the
(A × ε) map is carried out. Firstly, the input distributions of
the J/ψ in the MC simulation are modified by: (1) varying the
pT and (2) the y shapes of the J/ψ parameterization within the
uncertainties of the measured cross sections [19], (3) remov-
ing the radiative decay part, (4) varying the λθ parameter in

the range −0.2 < λθ < 0.2, corresponding to 1-sigma devi-
ation of the measured value of λθ in the HX frame on average
over the whole pT interval. The four corresponding uncer-
tainties on the λα are summed quadratically to get the total
simulation input uncertainties ranging from 0.004 to 0.175.
This is the main systematic uncertainty for the λθ parameter,
dominated by the variation of its input value in simulation,
especially at low pT. Secondly, any uncertainty in the simu-
lation of the trigger threshold of ∼ 1 GeV/c could bias the
(A×ε) estimation. To evaluate this effect, the full simulation
of the trigger response function is replaced with a parame-
terization of the trigger response function as a function of
transverse momenta. The parameterization is obtained both
in MC and in data by using minimum bias events recorded in
parallel with the triggered data sample. The analysis is then
repeated using either of the two parameterizations, and the
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Table 1 Absolute systematic uncertainties on J/ψ polarization param-
eters in the HX and CS frames. The four different uncertainty sources
are the signal extraction (signal), the input distributions of the J/ψ in

the MC simulations (inputs), the low-pT trigger response (trigger) and
the detector efficiency (efficiency). The last three sources enter in the
computation of the acceptance and efficiency factor (A × ε)

Source λHX
θ λHX

ϕ λHX
θϕ λCS

θ λCS
ϕ λCS

θϕ

Signal 0.035–0.087 0.021–0.108 0.014–0.032 0.022–0.074 0.022–0.052 0.012–0.063

Inputs 0.076–0.155 0.007–0.024 0.006–0.033 0.013–0.175 0.006–0.040 0.004–0.018

Trigger 0.001–0.064 0.001–0.060 0.005–0.020 0.006–0.036 0.007–0.070 0.006–0.017

Efficiency 0.076–0.133 0.046–0.069 0.064–0.076 0.081–0.121 0.058–0.072 0.073–0.081

resulting difference is taken as the systematic uncertainty.
The effect is small (< 0.022) for pT > 4 GeV/c, and a max-
imum uncertainty of 0.070 is estimated for λϕ in the first
pT interval of the CS frame. Thirdly, the uncertainty on the
detector efficiency includes the uncertainty on the tracking
efficiency, the trigger chamber efficiency and the matching
between tracks reconstructed in the tracker and in the trigger
system. The resulting uncertainty on the J/ψ yields is eval-
uated with the same procedure as the one described in [25]
and is propagated to the corrected yields of the angular dis-
tributions by adding it in quadrature with the statistical ones.
Finally, the fits are redone and the associated uncertainty on
λα parameters is estimated as the square root of the quadratic
difference between the new uncertainty returned by the fit and
the statistical one. Its value ranges from 0.046 to 0.133. This
is the main uncertainty for the λθϕ parameter.

The different sources of systematic uncertainties are sum-
marized in Table 1. The four sources of systematics are inde-
pendent and can be summed in quadrature to obtain the total
systematic uncertainty on each λα parameter. Systematic
uncertainties are considered uncorrelated among the three
polarization parameters and among the pT intervals.

4 Results

The inclusive J/ψ polarization parameters in the interval
2.5 < y < 4.0 and 2 < pT < 15 GeV/c measured in
pp collisions at

√
s = 8 TeV are shown in Fig. 3 for the HX

(right) and the CS (left) frames and summarized in Tables 2
and 3, respectively. In the figure, the error bars represent
the total uncertainties computed by adding in quadrature the
statistical and systematic uncertainties. This is the first mea-
surement of the J/ψ polarization parameters at this energy
and extends the pT reach of the previous ALICE measure-
ment at

√
s = 7 TeV from 8 to 15 GeV/c. The results show

that the polarization of inclusive J/ψ mesons is compatible
with zero within uncertainties, with a maximum deviation of
1.8 standard deviations away from zero for the highest pT

interval for the λθ and λθϕ parameters in the HX frame.
As the differences between the J/ψ polarization in pp

collisions at
√
s = 7 TeV and 8 TeV are expected to be

negligible (see Kniehl et al. predictions in Ref. [14] and
in this paper), the measurements at the two energies can
be directly compared. This comparison is shown in Fig. 3
with the published results by ALICE [13] (inclusive J/ψ)
and LHCb [14] (prompt J/ψ , i.e. without the contribution
from b-hadron decays) in the same rapidity interval for pp
collisions at

√
s = 7 TeV. The two ALICE measurements

agree within one standard deviation. Concerning the com-
parison between ALICE and LHCb results, a rather good
agreement is observed for all polarization parameters over
the full pT interval. The observed agreement between the
ALICE and LHCb results seems to indicate that J/ψ from
b-hadron decays do not introduce any observable difference
in the polarization parameters.

Figure 4 shows the comparison of all the measured polar-
ization parameters with the NLO CSM (blue filled band)
and NRQCD (red shaded band) predictions from [10] and
with another NRQCD (light blue hatched band) prediction
from [26] for λθ in the helicity frame (labeled as NLO
NRQCD2 in Fig. 4). The shown error bands of the models
are evaluated by adding in quadrature the uncertainties due to
the different scale variations (renormalization, factorization
and NRQCD scales) in the calculation and LDME variations.
The difference between the two NRQCD calculations origi-
nates from the data used to compute the LDMEs. Moreover,
in [10] only direct J/ψ (i.e. without feed-down from excited
states) are considered, while in [26] feed-down from excited
states is included in the J/ψ prediction.

The CSM and NRQCD calculations from [10] predict an
opposite pT trend for all polarization parameters in the two
frames. The pT dependence is relatively small over the con-
sidered pT interval, except for the λθ parameter in the HX
frame. The NRQCD calculation including both color-singlet
and color-octet contributions provides a qualitatively better
description of the J/ψ polarization measurement, except for
λθ in the HX frame where the large transverse J/ψ polar-
ization predicted by the NRQCD [10] is in contradiction
with the experimental observations. The NRQCD prediction
from [26] favours either zero or small longitudinal polariza-
tion, with large theoretical uncertainties, and shows a good
agreement with the measurements in the intermediate pT

interval (5 < pT < 15 GeV/c), but gives no prediction
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Fig. 3 ALICE inclusive J/ψ polarization parameters in pp collisions
at

√
s = 8 TeV (black points) compared with ALICE [13] inclusive J/ψ

(orange squares, shifted horizontally by −0.3 GeV/c) and LHCb [14]
prompt J/ψ (blue open diamonds, shifted horizontally by +0.3 GeV/c)

measurements at
√
s = 7 TeV in the rapidity interval 2.5 < y < 4.0.

The error bars represent the total uncertainties. Left and right plots show
results in the Collins-Soper and helicity frames, respectively, for λθ (top
plots), λϕ (middle plots) and λθϕ (bottom plots)

Table 2 Inclusive J/ψ
polarization parameters in the
HX frame in the rapidity
interval 2.5 < y < 4.0. The first
uncertainty is statistical and the
second systematic

pT (GeV/c) λHX
θ λHX

ϕ λHX
θϕ

2–3 0.035 ± 0.048 ± 0.215 −0.037 ± 0.025 ± 0.093 −0.024 ± 0.032 ± 0.082

3–4 −0.085 ± 0.053 ± 0.189 −0.065 ± 0.026 ± 0.134 −0.080 ± 0.035 ± 0.077

4–5 0.083 ± 0.066 ± 0.188 −0.003 ± 0.033 ± 0.096 −0.024 ± 0.043 ± 0.080

5–7 −0.036 ± 0.058 ± 0.154 0.055 ± 0.029 ± 0.069 −0.001 ± 0.039 ± 0.078

7–10 −0.092 ± 0.078 ± 0.168 0.090 ± 0.039 ± 0.056 0.089 ± 0.055 ± 0.082

10–15 −0.329 ± 0.121 ± 0.130 −0.003 ± 0.070 ± 0.052 0.222 ± 0.099 ± 0.079
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Table 3 Inclusive J/ψ
polarization parameters in the
CS frame in the rapidity interval
2.5 < y < 4.0. The first
uncertainty is statistical and the
second systematic

pT (GeV/c) λCS
θ λCS

ϕ λCS
θϕ

2–3 0.002 ± 0.046 ± 0.228 −0.030 ± 0.024 ± 0.095 0.041 ± 0.032 ± 0.076

3–4 −0.011 ± 0.052 ± 0.185 −0.065 ± 0.026 ± 0.098 −0.075 ± 0.035 ± 0.084

4–5 0.001 ± 0.056 ± 0.124 −0.019 ± 0.030 ± 0.086 0.006 ± 0.041 ± 0.080

5–7 0.063 ± 0.048 ± 0.088 −0.020 ± 0.031 ± 0.087 −0.042 ± 0.041 ± 0.082

7–10 0.175 ± 0.070 ± 0.096 0.001 ± 0.045 ± 0.082 −0.009 ± 0.060 ± 0.096

10–15 −0.021 ± 0.110 ± 0.106 −0.052 ± 0.084 ± 0.077 −0.065 ± 0.110 ± 0.098

)c (GeV/
T

p
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T

p
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NLO NRQCD
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Fig. 4 Inclusive J/ψ polarization parameters in pp collisions at
√
s =

8 TeV (black points, error bars represent the total uncertainties) com-
pared with model predictions: NLO CSM [10] (blue filled bands),
NRQCD [10] (red shaded bands) and NRQCD2 [26] (light blue hatched

band). Left and right plots show the results in the Collins-Soper and
helicity frames, respectively, for λθ (top plots), λϕ (middle plots) and
λθϕ (bottom plots)
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Fig. 5 Inclusive J/ψ
frame-invariant quantity λ̃ in pp
collisions at

√
s = 8 TeV in the

Collins-Soper (red points,
shifted horizontally by
−0.1 GeV/c) and helicity
(green squares, shifted
horizontally by +0.1 GeV/c)
frames compared with the NLO
CSM (blue full band) and
NRQCD (red shaded band)
model predictions from [10]

)c (GeV/
T

p
0 2 4 6 8 10 12 14

λ∼

-1

-0.5

0

0.5

1

1.5 ψ<4, inclusive J/y = 8 TeV, 2.5<sALICE pp 

Helicity frame
Collins-Soper frame

NLO CSM
NLO NRQCD

for pT < 5 GeV/c. This agreement is not surprising because
this model includes the measurements of the J/ψ polariza-
tion performed at Tevatron [27,28] to determine the LDMEs.
As this model gives no prediction for the other polarization
parameters in the HX frame, as well as for the whole set of
polarization parameters in the CS frame, it is difficult to draw
a clear conclusion about its ability to describe the measure-
ments.

As shown by Faccioli et al. [11], frame-invariant observ-
ables do exist and the most commonly considered one is

λ̃ = λθ + 3λϕ

1 − λϕ

. (6)

Figure 5 shows the pT dependence of this invariant quan-
tity for both frames in comparison with the NLO CSM and
NRQCD predictions from [10]. To propagate the uncertain-
ties on λθ and λϕ to the frame-invariant quantity λ̃, the cor-
relation coefficient ρλθ ,λϕ returned by the simultaneous fit of
the angular distributions are taken into account to compute
the statistical uncertainties, while the systematic uncertain-
ties are assumed to be uncorrelated. For the model predic-
tions, the quoted error bands are computed by adding the
uncertainties due to the different scales and LDME varia-
tions in quadrature, after propagation of the correlated effects
between λθ and λϕ . The comparison of the frame-invariant
quantity λ̃ shows that the ALICE measurements in both
frames are in good agreement within uncertainties, confirm-
ing the consistency of the results. Both the CSM and the
NRQCD model respect the frame invariance for λ̃, but clearly
none of them is able to describe the measured pT depen-
dence, even if the NRQCD prediction shows a better agree-
ment with data (χ2

/NDF = 1.7 compared to χ2
/NDF = 2.0

by CSM), although with large uncertainties especially for
pT < 6 GeV/c.

Table 4 Average pT-integrated (over 2 < pT < 15 GeV/c in the
rapidity range 2.5 < y < 4.0) inclusive J/ψ polarization parameters
〈λθ 〉, 〈λϕ〉 and 〈λθϕ〉 in the HX and CS frames

Parameter HX frame CS frame

〈λθ 〉 −0.006 ± 0.115 0.012 ± 0.116

〈λϕ〉 −0.024 ± 0.058 −0.036 ± 0.053

〈λθϕ〉 −0.029 ± 0.047 −0.006 ± 0.047

Using the ALICE inclusive J/ψ cross section measure-
ment at

√
s = 8 TeV [19], an average value for the polariza-

tion parameters over pT can be computed in the following
way

〈λα〉 = 1

σtot

6∑
j=1

σ jλ
j
α, (7)

with

σtot =
6∑
j=1

σ j . (8)

In these equations, j is running over the six pT bins of this
analysis, σ j is the integrated inclusive J/ψ cross section in

the pT bin j and λ
j
α is the measured polarization parameter

in the corresponding bin. The resulting average values of the
polarization parameters over 2 < pT < 15 GeV/c are sum-
marized in Table 4. The uncertainties are computed by prop-
agating the total uncertainty on the polarization parameters
and the uncorrelated uncertainty on the cross section mea-
surements from [19]. All averaged values of the polarization
parameters are consistent with zero within uncertainties.
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Fig. 6 Average pT-integrated (in rapidity range 2.5 < y < 4.0) inclu-
sive J/ψ polarization parameters 〈λθ 〉, 〈λϕ〉 and 〈λθϕ〉 in allowed 2-D
regions (white areas) for 3 < pT < 15 GeV/c. Full (dashed) ellipses
show 1-σ (2-σ ) contours in Collins-Sopper (CS, red) and helicity (HX,

green) frames. Model predictions [10] are represented by filled con-
tours, full filled for the CSM and shaded filled for the NRQCD model,
in green for the HX frame and in red for the CS frame

The pT-integrated values can be used to check the consis-
tency of the measured polarization parameters with respect
to the theoretically allowed parameter space in 2-D plots,
as shown in Fig. 6 for 3 < pT < 15 GeV/c. This figure
takes into account the correlation coefficients ρλθ ,λϕ , ρλθ ,λθϕ

and ρλϕ,λθϕ between the polarization parameters returned by
the simultaneous fit of the angular distributions. Their val-
ues are averaged over pT as for the λα . The average coef-
ficient correlations, in both HX and CS frames, are in the
range [−0.05 ; 0.05] for ρλθ ,λθϕ and ρλϕ,λθϕ , while ρλθ ,λϕ

is about 0.2. Contour ellipses show that the pT-integrated
polarization parameters are well within the allowed theo-
retical parameter-space and highlight the observed absence
of polarization of inclusive J/ψ at forward rapidity in pp
collisions at

√
s = 8 TeV. The comparison with the pT-

integrated NLO CSM and NRQCD predictions is shown in
Fig. 6 (right). These 2-D plots confirm the difficulty of the
models to reproduce the ALICE measurements and show also
that the discrepancy from data is larger for the CSM than for
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the NRQCD calculation, especially in the plane (λθ , λϕ) in
the CS frame.

5 Conclusion

The polarization parameters of inclusive J/ψ mesons are
measured with the ALICE detector at forward rapidity (2.5 <

y < 4.0) in pp collisions at
√
s = 8 TeV. Detailed inves-

tigations of their transverse momentum dependence in the
interval 2 < pT < 15 GeV/c show that no polarization is
observed for the measured J/ψ mesons. This result is further
highlighted by the pT-integrated polarization parameters.
The comparisons with the theoretical predictions from the
Color-Singlet Model and the Non-Relativistic QCD model
show that none of the two approaches is able to describe all
polarization parameters over the studied pT interval. It fol-
lows that a full understanding of the production mechanism
of J/ψ in hadronic collisions remains an open question.
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