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Radmile Matejčić 2, 51000 Rijeka, Croatia

E-mail: bonora@sissa.it, mcvitan@phy.hr, pprester@phy.uniri.hr,

sgiaccari@phy.hr, tstember@phy.hr

Abstract: In this paper we continue and improve the analysis of the effective actions

obtained by integrating out a scalar and a fermion field coupled to external symmetric

sources, started in the previous paper. The first subject we study is the geometrization of

the results obtained there, that is we express them in terms of covariant Jacobi tensors. The

second subject concerns the treatment of tadpoles and seagull terms in order to implement

off-shell covariance in the initial model. The last and by far largest part of the paper

is a repository of results concerning all two point correlators (including mixed ones) of

symmetric currents of any spin up to 5 and in any dimensions between 3 and 6. In the

massless case we also provide formulas for any spin in any dimension.

Keywords: Higher Spin Gravity, Higher Spin Symmetry, Renormalization Group

ArXiv ePrint: 1709.01738

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP01(2018)080

mailto:bonora@sissa.it
mailto:mcvitan@phy.hr
mailto:pprester@phy.uniri.hr
mailto:sgiaccari@phy.hr
mailto:tstember@phy.hr
https://arxiv.org/abs/1709.01738
https://doi.org/10.1007/JHEP01(2018)080


J
H
E
P
0
1
(
2
0
1
8
)
0
8
0

Contents

1 Introduction 1

2 Geometry in effective actions 3

2.1 Geometrization in terms of Jacobi tensors 5

3 Tadpoles, seagulls and conservation 8

3.1 Fermions — spin 1 10

3.1.1 Odd parity part 12

3.2 Scalars — spin 1 12

3.3 Fermions — spin 2 13

3.3.1 Even parity part 14

3.3.2 Odd parity part 16

3.4 Scalars — spin 2 17

4 Correlators 19

4.1 Fermion amplitudes for spins 3× 3 and 3× 5 24

4.2 Expansions in UV and IR for fermions for spins 3× 3 and 3× 5 26

4.3 All types of correlators 28

5 Conclusion 28

A Spin 2 — expansions 30

B Higher spin traceless actions 32

1 Introduction

This paper is a follow-up of [1]. In that paper we analyzed the two-point functions of

conserved currents of two models (a free scalar and a free Dirac fermion model coupled

to diverse backgrounds) in various dimensions. For a background, represented by a com-

pletely symmetric field, the two-point function of the current minimally coupled to it is

the basic ingredient of its (quadratic) effective action (EA). We found in [1] that the ef-

fective action for any background field obtained in this way is based on the corresponding

linearized Fronsdal kinetic operator, [2, 3], in the nonlocal form introduced by Francia and

Sagnotti, [4, 5]. In view of constructing a covariant action for a completely symmetric

tensor field, this result is promising. It suggests that integrating out scalar or fermion

fields (or any other field by which one can form conserved currents) may be a useful way

to analyze the dynamics of higher spin fields. But of course what we have done in [1] is

only the beginning. The crucial next step is the calculation of the three-point functions

– 1 –



J
H
E
P
0
1
(
2
0
1
8
)
0
8
0

of conserved currents, the analysis of the (lowest order) interaction terms in the effective

actions and their consistency with covariance. Before arriving at the three-point functions,

it is however necessary to improve our analysis of the quadratic EA. In fact in the course

of our research we realized that it inevitably branches out in different directions. At the

same time, in [1], several aspects and questions were left behind. In this and a subsequent

paper we would like to cover as thoroughly as possible any aspect of the quadratic EA’s.

The first issue is the geometrization (at the linear level) of our results in [1]. They were

expressed there mostly in terms of a projection operator, which is very convenient in that

context because it automatically ensures conservation. But, in this way, the geometrical

content of the resulting equations of motion or the EA remains implicit. Now the formu-

lation of our results in terms of geometrical objects is essential, if our target is to arrive at

covariant EA’s. One first aim of this paper will be to geometrize the results of [1]. We will

do it in terms of Jacobi tensors.

A second related important point is related to local subtractions. In [1] we found

several violations of the Ward Identities induced by the conservation of the initial current

(which induces a gauge invariance of the relevant minimal coupling). Such violations consist

of local terms, so that it is rather elementary to recover conservation by subtracting local

counterterms from the EA. There is nothing special in this, it is a very ordinary procedure.

The interesting point is that it is in general not necessary to do it, because the perturbative

field theory formalism already automatically takes care of covariance, provided one takes

into account not only the two-point bubble diagrams but also other diagrams such as

tadpole and seagull ones. Now, from a practical point of view it is much easier to subtract

easily identifiable local counterterms, than calculating additional diagrams to guarantee

conservation. The latter could appear as an academic exercise for spin 1 and 2, where we

already know the covariant form of the minimal coupling. But, it is important to show

that dimensional regularization, which we use, is giving manifestly covariant expressions

(without subtractions by hand) as was e.g. done in [6] for scalar matter coupled to gravity.

For spin 3 and higher it may be a very useful and even necessary calculation. The reason

is that seagull diagrams are related to terms in the initial action that do not belong to the

minimal model we start with (a scalar or fermion field minimally coupled to a background

field). Conservation (without subtractions) requires the presence of such additional terms

and constraints not only their form but also their coefficients. It is clear, that when we

consider higher spin backgrounds, this remark may be used in order to determine additional

action terms, as well as conditions for their coefficients. This goes in the direction of

constructing an initial off shell covariant model, an important target in itself and a necessary

step in the construction of a covariant EA.

The third important issue is represented by mixed two-point correlators. In [1] we have

considered only two-point functions of each current with itself. Of course this provides basic

information about the relevant EA. However higher spin theories are known to be consistent

only if they encompass an infinite number of fields (although in 3d consistent theories may

exist with a finite number of fields). It is obvious that this requires not only the knowledge

of the two-point correlator of each higher spin current with itself, but also of any two

currents (mixed correlators) coupled to fields that may enter the action. This part has the
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structure of a repository of results about the two point correlators of symmetric currents

of spin up to 5 in dimension 3 ≤ d ≤ 6 for both the massive scalar and fermion theory. In

3d we also consider the odd parity sector which emerges from the parity-breaking fermion

mass term, and we find a nice generalization of Pope and Townsend’s Chern-Simons-like

action in the case when different higher-spin fields are taken into consideration. In the

case of equal spins this is the action considered in [7, 8] and recently discussed by several

authors, see e.g. [9–16].

In this paper we will deal with these three issues. Other topics, such as the discussion of

the ambiguities inherent in the choice of the conserved currents in the initial matter model,

will be included in a subsequent article. This is a good point to mention that our research

is indebted to several preexisting works, in particular with [17–19] as far as the inspiration

is concerned, with [20–29] as far as the methods are concerned and with [4, 5, 30–41] for

HS theories. Other papers of ours, related to the present one are, beside [1, 42, 43]. For

future developments we think that important references are [44–47].

The paper is organized as follows. In the next section we show how to geometrize the

results of [1] and of this paper, that is how to express them in terms of Jacobi tensors.

In section 3 we discuss the issue of tadpole and seagull terms and how they guarantee

covariance without subtractions in the case of spin 1 and 2. Section 4 forms the bulk of the

paper. After an explanatory introduction we list all possible conserved two-point correlators

for currents up to spin 5, including the mixed ones. This part of the paper (section 4.3)

is intended as a source book. Due to its size it is presented in a supplementary material,

although several samples of the results are shown also in the main text in sections 4.1–4.2.

The results of this part consists of the complete correlators as well as their UV and IR

expansions. Several results were already contained in [1]. We have left them here for

completeness. Finally, section 5 is devoted to some conclusions.

2 Geometry in effective actions

The construction of interacting quantum field theories with massless higher spin (s > 2)

fields still poses an interesting theoretical problem. On the one hand, there are different

“no-go” theorems putting serious constraints on such theories, especially in flat space-

time (see e.g. [48] and references within). On the other hand, we have significant higher

spin results: free fields can be constructed in the same manner as in lower spin cases (see,

e.g. [49]); a few cubic interaction terms have been constructed in the literature (see [31–38]);

most notably, a full consistent covariant HS theory in AdS background has been constructed

by Vasilev and collaborators [50–53]. In our previous paper, [1], we remarked that free lower

spin field theories possess conserved higher spin currents which simply ”beg” to be coupled

to higher spin fields. Therefore such simple models seem to be a useful tool to study higher

spin theories. A basic ingredient of the approach in [1] is the connection between the on

shell conservation of the initial free field theory current and the gauge invariance of the

minimal coupling term with the higher spin field, which induces a gauge invariance of the

linearized higher spin EA (or covariance of the corresponding equation of motion). In [1]

this invariance was left somewhat implicit. There is, however, a way to make it explicit,
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by expressing the results in terms of covariant ‘geometric’ tensors constructed out of the

symmetric higher spin fields. In this section we would like to make connection with such a

geometrization program.

In the sequel we first introduce well-known definitions and properties about higher

spin tensors, their linearized eom’s and their possible geometrical formulations. Then we

show how to use this material to express the results obtained in [1, 42] and in this paper

in a geometric language.

Differences between lower spin (s ≤ 2) and higher spin theories emerge already at the

level of classical free field theories. The simplest way to construct a free theory of higher

spin field is provided by the Fronsdal equation, [2, 3, 54–56]:

F ≡ �ϕ− ∂ ∂ · ϕ+ ∂2ϕ′ = 0 (2.1)

where the spin-s field is described by the completely symmetric rank-s tensor field ϕ ≡
ϕµ1···µs . In this expression standard HS conventions from [4, 5, 39, 40] are assumed.1 The

Fronsdal equation (2.1) is invariant under local transformations parametrised by traceless

completely symmetric rank-(s− 1) tensor fields Λ ≡ Λµ1···µs−1

δϕ = ∂Λ (2.2)

with Λ′ = 0. While this gauge symmetry guarantees that the field propagates only free

spin-s excitations, we see that for s ≥ 3 the gauge symmetry is constrained to trace-

free parameters Λ. One can rewrite the Fronsdal equation in an unconstrained form by

introducing a rank-(s − 3) compensator field α transforming on (unconstrained) gauge

transformations (2.2) as δα = Λ′, in the following way

F = ∂3α (2.3)

This equation is invariant under the unconstrained gauge transformations (2.2) because the

variation of α exactly cancels the variation of the Fronsdal tensor. Most important, the

system ϕ, α can be cast in a (local) Lagrangian form. By the partial gauge fixing condition

α = 0 one obtains the original Fronsdal’s equation (2.1).

The generalization F(n) of the Fronsdal differential operator, which is gauge invariant

for n large enough, is given in terms of the recursive equation

F(n+1) = F(n) +
1

(n+ 1)(2n+ 1)

∂2

�
F(n)′ − 1

n+ 1

∂

�
∂ · F(n) (2.4)

with F(0) = �ϕ. So, in particular,

F(1) ≡ F = �ϕ− ∂∂ · ϕ+ ∂2ϕ′ (2.5)

is the original Fronsdal operator. However, the connection with our results cannot be

in terms of the tensor F(n), because the latter does not satisfy a conservation law, while

1Conventions assume symmetrization over free indices with minimal number of terms and without any

symmetry factors. Also, a prime denotes contraction of a pair of indices, so, e.g., ϕ′ ≡ ϕµ1···µs−2
=

ηµ
s−1µsϕµ1···µs

is a completely symmetric rank-(s− 2) tensor field.
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our results are conserved two-point functions. To make the connection one constructs the

Einstein-like tensor

G(n) =
n
∑

p=0

(−1)p
(n− p)!

2pn!
ηp F(n)[p] (2.6)

where the superscript in square bracket denotes the number of time F(n) has been traced,

and η is the Minkowski metric. The association of ϕ with the spin s is as follows:
{

s = 2n s even

s = 2n− 1 s odd

The G(n) tensor is divergenceless

∂ · G(n) = 0 (2.7)

The free (unconstrained) linearized equations of motion for ϕ are

G(n) = 0 (2.8)

Once again, it can be shown that such an equation can be cast in local Lagrangian form,

provided one introduces auxiliary fields (compensators). G(n) are the objects that can be

directly connected with the l.h.s. of (2.15) below.

2.1 Geometrization in terms of Jacobi tensors

In [1] all the two-point correlators and corresponding effective actions are presented in

momentum space and expressed in terms of the projector

π(k)
µν = ηµν −

kµkν
k2

(2.9)

Applied to kν gives 0, so any two-point function expressed in terms of it alone is conserved.

We showed that any conserved correlator for spin s can be written in terms of the following

structures:

Ã
(s)
0 (k, n1, n2) = (n1 ·π(k) ·n2)

s (2.10)

Ã
(s)
1 (k, n1, n2) = (n1 ·π(k) ·n2)

s−2(n1 ·π(k) ·n1)(n2 ·π(k) ·n2) (2.11)

. . . . . . . . .

Ã
(s)
l (k, n1, n2) = (n1 ·π(k) ·n2)

s−2l(n1 ·π(k) ·n1)
l(n2 ·π(k) ·n2)

l (2.12)

. . . . . . . . .

where n1, n2 are generic polarization vectors, and n1 ·π(k) ·n2 = nµ
1π

(k)
µν nν

2 . There are

⌊s/2⌋ independent such terms. The generic term in the final formulas are combinations of

Ã
(s)
l (k, n1, n2) with numerical coefficients al, say

Ẽ(s)(k, n1, n2) =

⌊s/2⌋
∑

l=0

alÃ
(s)
l (k, n1, n2) (2.13)
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preceded by a function of f(|k|,m) and the mass m.2 Eq. (2.13) can be easily translated

into a corresponding differential operator by Fourier anti-transforming

E(s)(∂, n1, n2) =

⌊s/2⌋
∑

l=0

alA
(s)
l (∂, n1, n2) (2.14)

These are the types of differential operators that appear in the EA’s acting on the spin s field

ϕµ1...µs . The corresponding eom will take the following form. Set (ms·ϕ) = 1
s!mµ1...µsϕ

µ1...µs

and n1 = n ≡ {nµ}, n2 = ∂m ≡
{

∂
∂mµ

}

. The eom are

1

s!
(∂n)

sE(s)(∂, n, ∂m)(ms · ϕ) = 0 (2.15)

multiplied by a function of k2 and m.

The purpose of this section is to rewrite the equations such as (2.15) in the geometrical

form of [4, 5].

To this end let us introduce the symbol of G(n), G̃(n)(k, n1, n2), as follows. First we

saturate all its s naked indices of G(n) with n1 polarizations, then we Fourier transform

it and replace the Fourier transform of ϕ, ϕ̃, with a symmetric tensor made out of the

product of s polarizations n2. Finally we define

G(n) ≡ 1

s!
(∂n)

sG(n)(∂, n, ∂m) (ms · ϕ) (2.16)

Then the connection between (2.8) and (2.15) is given by

1

k2
G̃(n)(k, n1, n2) =

⌊s/2⌋
∑

l=0

(−1)l

(

⌊s/2⌋
l

)

Ã
(s)
l (k, n1, n2), (2.17)

which corresponds to a particular choice of the coefficients al in (2.13).

Of course we are interested not only in the relation (2.17), but in expressing all the

Ã
(s)
l (k, n1, n2) in terms of the G̃(n)(k, n1, n2). To do so we have to take the successive traces

of (2.17). We have, for instance

G̃(n)′ = −2⌊s/2⌋(2⌊s/2⌋+D − 4)G̃(n−1) (n2 ·π(k) ·n2) (2.18)

In general

G̃(n)[p] = (−2)p
(2⌊s/2⌋+D − 4)!!(⌊s/2⌋)!

(2⌊s/2⌋+D − 2p− 4)!!(⌊s/2⌋ − p)!
G̃(n−p) (n2 ·π(k) ·n2)

p (2.19)

and

G̃(n)[n] = (−2)n
(2⌊s/2⌋+D − 4)!!(⌊s/2⌋)!

(D − 4)!!
G̃(0) (n2 ·π(k) ·n2)

n (2.20)

2This function can be expanded in series of m/|k| or |k|/m near the IR and UV, respectively, which gives

the tomographic expansions considered in [1]. The latter clearly show that the structures of the two-point

functions (and corresponding linearized EA’s) are determined by the unique Fronsdal operator appropriate

for the given source, although, generally, the operator appears in a nonlocal form and in different gauges.

In this paper we consider only these operators and disregard the function f .

– 6 –



J
H
E
P
0
1
(
2
0
1
8
)
0
8
0

for s even, with G̃(0) = k2, and

G̃(n)[n−1] = (−2)n−1 (2⌊s/2⌋+D − 4)!!(⌊s/2⌋)!
(D − 4)!!

G̃(1) (n2 ·π(k) ·n2)
n−1 (2.21)

for s odd, with G̃(1) = k2(n1 ·π(k) ·n2).

Now, using (2.17), one can write

(n1 ·π(k) ·n2)
s ≡ Ã

(s)
0 (k, n1, n2) =

1

k2
G̃(n)(k, n1, n2) (2.22)

+

⌊s/2⌋−1
∑

l=0

(−1)l

(

⌊s/2⌋
l + 1

)

(n1 ·π(k) ·n1)
l+1(n1 ·π(k) ·n2)

s−2l−2(n2 ·π(k) ·n2)
l+1

for even s, and a similar expression for odd s. Now the strategy consists in repeating the

same step for the second line in (2.22), by using (2.18) and successively (2.20). The end

result is

k2(n1 ·π(k) ·n2)
s =

⌊s/2⌋
∑

p=0

(

−1

2

)p (2⌊s/2⌋+D − 2p− 4)!!

p!(2⌊s/2⌋+D − 4)!!
(n1 ·π(k) ·n1)

p G̃(n)[p](k, n1, n2)

(2.23)

In a similar way one can obtain

k2(n1 ·π(k) ·n2)
s−2l(n1 ·π(k) ·n1)

l(n2 ·π(k) ·n2)
l (2.24)

=
1

(

⌊s/2⌋
l

)

⌊s/2⌋
∑

p=l

(

−1

2

)p
(

p

l

)

(2⌊s/2⌋+D − 2p− 4)!!

p!(2⌊s/2⌋+D − 4)!!
(n1 ·π(k) ·n1)

p G̃(n)[p](k, n1, n2)

In conclusion any expression of the type (2.13), i.e. any conserved structure, can be ex-

pressed in terms of the generalized Einstein symbols G̃(n)(k, n1, n2) and its traces. Thus any

EA (or any eom) we obtain from our models, by integrating out matter, can be expressed

in terms of the generalized Einstein tensor G(n) and its traces preceded by a function of �

and the mass m of the model, with suitable multiples of the operator

ηµν − ∂µ∂ν

�

acting on the traces. Using (2.6) one can replace the dependence on G(n) of such expressions

with the dependence on F(n). The geometrization program can be completed by introducing

the Jacobi tensors Rµ1,...µsν1...νs (one of the possible generalizations of the 4d Riemann

tensor, [7, 57]) by means of

1

(s!)2
(ms ·R(s) ·ns) =

s
∑

l=0

(−1)l

s!(s− l)!l!
(m·∂)s−l(n·∂)l(ml ·ϕ·ns−l) (2.25)

The tensors R(s) are connected to the F(n) as follows:

F(n) =

{

1
�n−1R

(s)[n] s = 2n
1

�n−1∂ ·R(s)[n−1] s = 2n− 1
(2.26)
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where the traces in square brackets refer to the first set of indices. In this way we can

express any EA or any eom in terms of R(s) and traces (in the second set of indices)

thereof. Further formulations of eoms that are local and include mixed symmetry cases

can be found in [58, 59].

Since above we have referred to [4, 5], we feel that, to end this section, it is opportune

for us to clarify the context in which our results are derived and point out the differences

with the spirit of [4, 5, 39, 40]. In these papers the initial purpose was to write down

a generalization of the Fronsdal equations for higher spin in such a way as to avoid the

constraints needed in the original formulation of [2, 3]. The authors of [4, 5] chose to

sacrifice locality in favor of an unconstrained gauge symmetry. The typical (linearized)

non-local equation of motion one obtains in this way is (2.8). As we have already pointed

out, it can be shown that such an equation can be cast in Lagrangian form, provided

one introduces auxiliary fields (compensators). Therefore one can say that the nonlocality

of (2.8) is a gauge artifact, with no physical implication. However equations of motion

invariant under unrestricted gauge symmetry are far from unique. There actually exist

several families of them depending on arbitrary parameters (by the way, this is evident

by reversing the argument above and starting from the generic operator (2.14), instead

of the completely fixed one (2.17)). These are all equally valid as long as the field ϕ is

considered in isolation and the linearized eom is the free one, (2.8). However, if the spin s

system is minimally coupled to a conserved current the question arises as to whether the

propagating degrees of freedom are the truly physical ones, i.e. those corresponding to the

appropriate little group representation for massless fields. The authors of [39, 40] were able

to prove that there exist only one choice for the Einstein-like tensor which is Lagrangian

and satisfies such a physicality condition.

Such ‘physical’ Einstein tensors do not correspond, in general, to the kinetic operators

we find in our effective action in section 4 below. This is not surprising, as our main goal

is covariance: our purpose is to arrive at a covariant EA with respect to a completely

unfolded gauge symmetry. In a logical development the next step will be to introduce

auxiliary fields to eliminate nonlocalities. Following this we would need to gauge-fix the

action and introduce appropriate ghosts to produce the physical propagators. At that

point would the problem handled by [39, 40] come to the surface. However, we would

like to recall that our immediate prospect is to construct the linearized covariant EA in

preparation for the analysis of the three-point function.

3 Tadpoles, seagulls and conservation

In this section we wish to illustrate the role of tadpole and seagull diagrams in implementing

conservation in two-point correlators. In [1], in order to evaluate the two point correlators

of conserved currents we computed only the bubble diagrams formed by two internal scalar

or fermion lines and two vertices. In this way we found several violations of the relevant

Ward identities. Such violations consist of local terms, so that it was rather elementary

to recover conservation by subtracting local counterterms from the EA. However it is in

general not necessary to do this, because the perturbative field theory formalism already

– 8 –
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automatically takes care of it provided one takes into account not only the two-point bubble

diagrams but also other diagrams such as tadpole and seagull ones, [60, 61]. Although this

is a rather well-known fact, we would like to show it in detail here for spin 1 and 2 as

a guide for the more challenging higher spin cases. The reason is that seagull diagrams

reflect the presence in the initial action of additional terms, additional with respect to

the minimal couplings (symbolically
∫

jϕ), which are on-shell covariant, but off-shell non-

covariant. One of the crucial steps in our program is clearly implementing off-shell gauge

covariance of the initial models, that is adding to the minimal couplings in the relevant

actions the terms that render them off-shell covariant, at least to the lowest order in a

perturbative approach to the gauge symmetry. We know such additional terms exactly in

the case of spin 1 and spin 2 (because we know the full covariant action), but not yet for

higher spins. In the latter cases, however, we can implement off-shell current conservation

by satisfying the corresponding two-point function Ward identity. In turn this requires

considering tadpoles and seagull terms. The latter, in particular, originate from the above

additional terms, which in this way may hopefully be identified.3

Hereafter in this section we work out the cases of spin 1 and spin 2 in any dimension

(in 3d for the odd parity part) in detail, showing the role of tadpole and seagull terms in

the Ward identities for two-point functions of spin 1 and 2 respectively, and their origin in

the various terms of the initial actions. We keep the derivation at a pedagogical level and,

for completeness, we analyze the full structure of the relevant two-point functions and, in

particular, their IR and UV expansions, as well as their contributions to the EA’s.

Starting from the generating function

Z[a] = eiW [a] =

∫

DψDψ̄ei(S0+Sint[a]) (3.1)

where a is the external higher spin field, we will compute the effective action for the external

source fields up to the quadratic order:

iW [a] = iW [0] +

∫

ddx aµ1...µs(x)Θ
µ1...µs(x)

+
1

2!

∫

ddxddy aµ1...µs(x)aν1...νs(y)T
µ1...µsν1...νs(x, y) + . . . (3.2)

where

Θµ1...µs(x) =
δ (iW [a])

δaµ1...µs(x)

∣

∣

∣

∣

a=0

(3.3)

is a tadpole (1-point function) and

Tµ1...µsν1...νs(x, y) =
δ2 (iW [a])

δaµ1...µs(x)δaν1...νs(y)

∣

∣

∣

∣

a=0

(3.4)

3An approach related to ours is outlined in [24, 25]. It is based on Weyl quantization. Its main advantage

is that it provides a full quantum action and quantum symmetry for the initial scalar model. It will be

interesting to compare the two approaches.
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is a 2-point function. Using Feynman diagrams we wish to compute the 2-point function

including not only the bubble diagram (as in [1]) but also tadpoles and seagulls.

The one-loop 1-pt correlator for the external field is (up to the linear order):

〈〈Jµ1...µs(x)〉〉 =
δW [a]

δaµ1...µs(x)

= −i

(

Θµ1...µs(x) +

∫

ddy aν1...νs(y)T
µ1...µsν1...νs(x, y) + . . .

)

(3.5)

External spin s fields aµ1...µs are in particular

Spin 1 aµ = Aµ gauge field (3.6)

Spin 2 aµν = hµν graviton field

We will need one-loop conservation which for spin 1 reads

∂µ〈〈Jµ(x)〉〉 = 0 (3.7)

The Ward identity for the two-point function in momentum space can be written as

kµT̃
µν(k) = 0 (3.8)

Furthermore, for spin 2, the energy-momentum tensor is defined with 〈〈Tµν(x)〉〉 =
2√
g

δW
δhµν(x)

. The full conservation law of the energy-momentum tensor is

∇µ〈〈Tµµ(x)〉〉 = 0 (3.9)

Hence, the Ward identity for one-point function is

∂µΘ
µµ(x) = 0 (3.10)

while for two-point correlator we have

∂µT
µµνν(x, y) =

1

2
ηννδ(x− y)∂µΘ

µµ(x) +
1

2
Θνν(x)∂µδ(x− y)

−∂µ (δ (x− y)Θµν (x)) ηµν (3.11)

As we will see, the tadpole contribution is Θ̃µµ(k) = Θ̃ ηµµ where Θ̃ is a constant. The

Ward identity in momentum space is now

kµT̃
µµνν(k) =

[

−kνηµν +
1

2
kµηνν

]

Θ̃ (3.12)

3.1 Fermions — spin 1

The action for the theory of fermions interacting with gauge field can be written as

S =

∫

dx
[

ψ̄ (iγµDµ −m)ψ
]

(3.13)
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where Dµ = ∂µ − i Aµ. There is one fermion-fermion-photon vertex

V µ
ffp : iγµ (3.14)

In the case of fermions coupled to gauge field the tadpole diagram vanishes, while the

seagull is zero because the theory is linear in the gauge field. The only contribution we get

from the 2-pt correlator ((11.7) from [1]) which in the momentum space reads

T̃µν(k) =
2−d+⌊ d

2
⌋ i π− d

2md−2

4m2 − k2
Γ

(

1− d

2

)

×
(

−4m2 + 2F1

[

1, 1− d

2
;
3

2
;
k2

4m2

]

(4m2 + (d− 2)k2)

)

πµν (3.15)

where πµν = ηµν − kµkν

k2
is the projector. Since the 2-point correlator can be expressed

in terms of the projector, it satisfies Ward identity (3.7) We can expand the two-point

correlator in the IR region

T̃µν(k) = −21−d+⌊ d
2
⌋imd−2π− d

2

∞
∑

n=1

nm−2nΓ
(

2n− d
2

)

2n(2n+ 1)!!
k2nπµν (3.16)

Using the Fourier transform of (3.16) in the one-loop 1-point function (3.5) we get

〈〈Jµ(x)〉〉 = 21−d+⌊ d
2
⌋md−2π− d

2

∞
∑

n=1

(−1)nnm−2nΓ
(

2n− d
2

)

2n(2n+ 1)!!
�

n−1∂νF
µν (3.17)

The one-loop 1-point correlator satisfies (3.7) Using the same expansion in the IR (3.16)

for the effective action (3.2) we obtain

W = 2−1−d+⌊ d
2
⌋md−2π− d

2

∞
∑

n=1

(−1)nnm−2nΓ
(

2n− d
2

)

2n(2n+ 1)!!

∫

ddxFµν�
n−1Fµν

IR
= −2−2−d+⌊ d

2
⌋

3
md−4π− d

2Γ

(

2− d

2

)
∫

ddxFµνF
µν (3.18)

So, in the IR region (large m) we get the Maxwell action.

Furthermore, the dominating term in the UV
(

O(m0)
)

of (3.15) corresponds to the

massless case (B.2) from [1]

T̃µν(k)
UV
= −22−2d+⌊ d

2
⌋ π

3
2
− d

2 (d− 2)

(−1 + eiπd) Γ
(

d+1
2

) (k2)
d
2
−1πµν (3.19)

The effective action in the UV is then

W
UV
=

(−1)
d
2 21−2d+⌊ d

2
⌋ π

3
2
− d

2 (d− 2)

(−1 + eiπd) Γ
(

d+1
2

) Fµν
�

d
2
−2Fµν (3.20)
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3.1.1 Odd parity part

For the analysis of the odd parity correlators we will restrict ourselves to d = 3. The odd

part of the two-point correlator is non-vanishing only in 3d and it is given by

T̃µν
o (k) =

m

2πk
ArcCoth

(

2m

k

)

ǫµνλkλ (3.21)

The expansion of (3.21) in the IR reads

T̃µν
o (k) =

1

π

∞
∑

n=0

k2nm−2n

22(n+1)(2n+ 1)
ǫµνλkλ (3.22)

Using the IR expansion in (3.5), the odd part of the one-loop 1-point correlator is now

〈〈Jµ(x)〉〉 = 1

π

∞
∑

n=0

(−1)nm−2n

22n+3(2n+ 1)
ǫµνλ�nFλν (3.23)

and just like the even parity part satisfies (3.7). The effective action in the IR (the domi-

nating term)

W
IR
=

1

8π
ǫµνλ

∫

d3xAµ∂νAλ + . . . (3.24)

corresponds to Chern-Simons term in 3d

SCS =
1

8π

∫

d3xTr

(

A ∧ dA+
2

3
A ∧A ∧A

)

(3.25)

3.2 Scalars — spin 1

The action in the scalar QED model is

S =

∫

ddx
[

Dµϕ
†Dµϕ−m2ϕ†ϕ

]

(3.26)

where Dµ = ∂µ − i Aµ. The full covariant action is

S =

∫

dx
[

∂µϕ
†∂µϕ+ i Aµ

(

ϕ†∂µϕ− ∂µϕ†ϕ
)

+AµA
µϕ†ϕ−m2ϕ†ϕ

]

(3.27)

In the scalar model the scalar-scalar-photon vertex is

V µ
ssp(p, p

′) : −i(p+ p′)µ (3.28)

and we also have scalar-scalar-photon-photon vertex (coming from
∫

ddxAµAµϕ
†ϕ term in

Lagrangian)

V µν
sspp(p, p

′) : 2iηµν (3.29)

The two-point function for the massive scalar in any dimension d for spin s = 1 is

T̃µν(k) = −21−d i π−d/2md−2Γ

(

1− d

2

)(

2F1

[

1, 1− d

2
;
3

2
;
k2

4m2

]

πµν +
kµkν

k2

)

(3.30)
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which has a non-conserved part. However, since the theory is quadratic in the external

photon field A we also have a seagull diagram (which is obtained by joining with a unique

a fermion line the two fermion legs of the vertex (3.29)) for which we obtain

T̃µν
(s) (k) = 21−diπ− d

2md−2Γ

(

1− d

2

)

ηµν (3.31)

After combining (3.30) and (3.31) we can write down the full 2-point function

T̃µν(k) = 21−diπ− d
2md−2Γ

(

1− d

2

)(

1− 2F1

[

1, 1− d

2
;
3

2
;
k2

4m2

])

πµν , (3.32)

which is conserved.

Expanding the two-point function (3.32) in the IR gives

T̃µν(k) = −2−dimd−4π− d
2

∞
∑

n=0

m−2nΓ
(

2 + n− d
2

)

2n(2n+ 3)!!
k2n+2πµν (3.33)

Using the IR expansion together with (3.5), the one-loop 1-point function (3.5) now reads

〈〈Jµ〉〉 = −2−dmd−4π− d
2

∞
∑

n=0

(−1)nm−2nΓ
(

2 + n− d
2

)

2n(2n+ 3)!!
�

n∂νF
µν (3.34)

On the other hand, the dominating term of the effective action in the IR region is

W
IR
= −2−d

3
md−4π− d

2Γ

(

2− d

2

)
∫

ddxFµνF
µν (3.35)

In the IR (for large mass m) we get the Maxwell action.

The leading order term of the expansion in the UV (term m0 corresponds to (B.13)

from [1])

T̃µν(k)
UV
= − 23−2d π

3
2
− d

2 (k2)
d
2
−1

(−1 + eiπd) Γ
(

d+1
2

)πµν (3.36)

Hence, the effective action in the UV is

W
UV
= −i

(−1)
d
2 23−2d π

3
2
− d

2

(−1 + eiπd) Γ
(

d+1
2

)

∫

ddxFµν
�

d
2
−2Fµν (3.37)

3.3 Fermions — spin 2

Let us consider the free fermion theory in a generic dimension d

S =

∫

ddx
√

|g|
[

iψEm
a γa

(

∂m +
1

2
Ωm

)

ψ −mψ̄ψ

]

(3.38)

where Em
a is the inverse vierbein. From now on we will set gµν = ηµν + hµν . Using the

following expansions

gµν = ηµν − hµν + (h2)µν + . . . ,
√

|g| = 1 +
1

2
h+

1

8
h2 − 1

4
hµνhµν + . . . ,

eµa = δµa − 1

2
hµa +

3

8
(h2)µa + . . . , eaµ = δaµ +

1

2
haµ − 1

8
(h2)aµ + . . . (3.39)
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we can expand the parity even part of the action (3.38) in powers of h:

Se =

∫

ddx

[

i

2
ψγm

↔
∂mψ −mψ̄ψ +

1

2
hµµ

(

i

2
ψγm

↔
∂mψ −mψ̄ψ

)

− i

4
ψhma γa

↔
∂mψ

+
1

8

(

(hµµ)
2 − 2hνµh

µ
ν

)

(

i

2
ψγm

↔
∂mψ −mψ̄ψ

)

− i

8
hµµψh

m
a γa

↔
∂mψ +

3i

16
ψ(h2)ma γa

↔
∂mψ + . . .

]

(3.40)

There is one fermion-fermion-graviton vertex:4

V µµ
ffh(p, p

′) : − i

4
(p+ p′)µγµ +

i

4
ηµµ(/p+ /p′ − 2m) (3.41)

and one vertex with two fermions and two gravitons:

V µµνν
ffhh (p, p

′) :
3i

16

(

(p+ p′)µγνηµν + (p+ p′)νγµηµν
)

+
i

8
(/p+ /p′ − 2m) (ηµµηνν − 2ηµνηµν)

− i

8

(

(p+ p′)µγµηνν + (p+ p′)νγνηµµ
)

(3.42)

We can also expand the odd parity part of the action (the latter contains a part proportional

to the completely antisymmetric symbol). We will restrict ourselves to 3d because only

in this case can we get a non-vanishing contribution to the effective action and 1-point

correlator.

So =
1

16

∫

d3x ǫabc∂ahbσh
σ
cψψ (3.43)

The relevant vertex with two fermions and two gravitons is

V µµνν
ǫ,ffhh :

1

16
ηµνǫµνλ (k − k′)λ (3.44)

3.3.1 Even parity part

The tadpole contribution is now

Θ̃µµ(k) = −2−2−d+⌊ d
2
⌋ imdπ

d
2Γ

(

−d

2

)

ηµµ = Θ̃ ηµµ (3.45)

where Θ̃ is a constant. Since the theory of gravity is non-linear we have a contribution

from the seagull term, which can be written as

T̃µµνν
(s) (k) = 2−3−d+⌊ d

2
⌋ imdπ

d
2Γ

(

−d

2

)

(3ηµνηµν − 2ηµµηνν) (3.46)

4We use the convention according to which two repeated identical indices represent a symmetrized couple

of indices, and so on.
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The bubble diagram contributes two parts, the transverse (conserved) part,

T̃µµνν
t (k) = − 1

d(d+ 1)k2
2−2−d+⌊ d

2
⌋ imdπ

d
2Γ

(

1− d

2

)

[(

−8m2 + (d+ 1)k2 + 2F1

[

1,−d

2
,
1

2
,
k2

4m2

]

(8m2 + (d− 1)k2)

)

πµνπµν

+

(

−4m2 + (d+ 1)k2 + 2F1

[

1,−d

2
,
1

2
,
k2

4m2

]

(4m2 − k2)

)

πµµπνν

]

(3.47)

whose expansion in the IR is

T̃µµνν
t (k) = −2−3−d+⌊ d

2
⌋imdπ− d

2

∞
∑

n=1

m−2nΓ
(

n− d
2

)

2n(2n+ 1)!!
k2n ((2n− 1)πµνπµν−πµµπνν) , (3.48)

and the non-transverse (non-conserved) part

T̃µµνν
nt (k) = −2−3−d+⌊ d

2
⌋ imdπ

d
2Γ

(

−d

2

)

(ηµνηµν − ηµµηνν) . (3.49)

Taking formulas (3.45), (3.46), (3.47) and (3.49) and substituting them in (3.12) we can

see that the Ward identity is satisfied for any dimension d.

The one-loop 1-point function (energy-momentum tensor) defined as 〈〈Tµν(x)〉〉 =
2√
g

δW
δhµν(x)

now becomes

〈〈Tµµ(x)〉〉 = −2−1−d+⌊ d
2
⌋mdπ− d

2

[

Γ

(

−d

2

)

gµµ +
∞
∑

n=1

(−1)nm−2nΓ
(

n− d
2

)

2n+1(2n+ 1)!!

×
(

(2n− 1)�n−1Gµµ + (n− 1)�n−2(ηµµ�− ∂µ∂µ)R
)

]

+O(h2) (3.50)

where Gµµ = Rµµ − 1
2ηµµR is the Einstein tensor. The energy-momentum tensor is clearly

divergence free (3.9). For the effective action in the IR we obtain (in the even parity sector)

W
IR
= −2−1−d+⌊ d

2
⌋mdπ− d

2

∫

ddx
√
g ×

[

Γ

(

−d

2

)

− Γ
(

1− d
2

)

24m2
R

−Γ
(

2− d
2

)

80m4

(

RµνλρR
µνλρ − 2RµνR

µν +
1

3
R2

)

+ . . .

]

+O(h3) (3.51)

The divergent part of the effective action for d = 4 (i.e. d = 4 + ε) is

W
IR
=

1

8π2ε

∫

d4x
√
g

(

m4 +
1

12
m2R− 1

40
W2 + . . .

)

+O(h3) (3.52)

The first term is a cosmological constant term and the second is the linearized Einstein-

Hilbert action. The third term (m0 term) is the Weyl density W2 = RµνλρR
µνλρ −

2RµνR
µν + 1

3R
2 (conformal invariant in 4d).
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The dominating term in the UV (O(m0) term corresponds to (B.3) from [1]) of the

transverse part T̃µµνν
t (k) is

T̃µµνν
t (k)

UV
=

2−3−2d+⌊ d
2
⌋ π

3
2
− d

2 (k2)
d
2

(−1 + eiπd) Γ
(

d+3
2

) ((d− 1)πµνπµν − πµµπνν) (3.53)

The effective action in the UV is then

W
UV
= (−1)

d
2

2−4−2d+⌊ d
2
⌋π

3
2
− d

2

(−1 + eiπd)Γ
(

d+3
2

)

∫

ddx
√
g

[

(d− 4)Rµνλρ�
d
2
−2Rµνλρ

+6

(

Rµνλρ�
d
2
−2Rµνλρ − 2Rµν�

d
2
−2Rµν +

1

3
R�

d
2
−2R

)

+ . . .

]

+O(h3) (3.54)

3.3.2 Odd parity part

In 3d the contribution from the seagull diagram with vertex (3.44) becomes

T̃µµνν
(s,o) (k) = − m2

16π
ηµνǫµνλkλ (3.55)

The odd part of the two-point correlator is non-vanishing only in 3d (the vertex is (3.41)).

The transverse part can be written as

T̃µµνν
t,o (k) = − m

64πk

(

(k2 − 4m2)ArcCoth

(

2m

k

)

+ 2mk

)

πµνǫµνλkλ (3.56)

and the expansion of T̃µµνν
t,o (k) in the IR is

T̃µµνν
t,o (k) = − 1

64π

∞
∑

n=0

k2(n+1)m−2n

42n(4(n+ 1)2 − 1)
πµνǫµνλkλ (3.57)

The odd non-transverse part reads5

T̃µµνν
nt,o (k) =

m2

16π
ηµνǫµνλkλ (3.58)

and can be canceled by the seagull contribution (3.55). So, only the transverse odd part

remains. The odd part of the one-loop 1-pt function (energy-momentum tensor)

〈〈Tµµ(x)〉〉 = 1

32π

∞
∑

n=0

(−1)nm−2n

42n(4(n+ 1)2 − 1)
�

nCµµ (3.59)

where Cµµ is linearized the Cotton tensor (A.16). The effective action in the IR (the

dominating term)

W
IR
= − 1

384π
ǫµνλ

∫

d3xhνν
(

∂λ∂
µ∂νhµµ − ∂λ�hνµ

)

+O(h3) (3.60)

corresponds to gravitational Chern-Simons term in 3d

SgCS =
1

192π
ǫµνλ

∫

d3x

(

∂µων
abωba

λ +
2

3
ωµa

bωνb
cωλc

a

)

(3.61)

5In the notation from the previous paper πµνǫµνλkλ corresponds to (n1 · π · n2)ǫ(k · n1 · n2).
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3.4 Scalars — spin 2

Let us consider the action of a scalar field ϕ in a curved space (gµν = ηµν + hµν) with a

scalar curvature coupling

S =

∫

ddx
√
g
(

gµν∂µϕ
†∂νϕ−m2ϕ†ϕ+ ξRϕ†ϕ

)

(3.62)

Let us redefine φ = g
1
4ϕ. The expansion of the action in the external field h is

S =

∫

ddx

[

ηµν∂µφ
†∂νφ−m2φ†φ+ hµν

(

1

4
φ† ↔

∂ µ

↔
∂ ν φ+

(

ξ − 1

4

)

(∂µ∂ν −�ηµν)φ
†φ

)

+hµσhνσ∂µφ
†∂νφ+

1

16
h�hφ†φ+

(

−ξ

4
+

1

8

)

∂µh∂
µhφ†φ− 2ξhµν∂ν∂λh

λ
µφ

†φ

+ξhµν�hµνφ
†φ− ξ∂νh

µν∂λh
λ
µφ

†φ+
3

4
ξ∂λhµν∂

λhµνφ†φ− 1

2
ξ∂λh

µν∂νh
λ
µφ

†φ
(

ξ − 1

4

)

hµν∂µ∂νhφ
†φ+

(

ξ − 1

4

)

∂µh∂νh
µνφ†φ

]

(3.63)

The scalar-scalar-graviton vertex is:

V µµ
ssh(p, p

′) : − i

4
(pµ + p′µ)2 − i

(

ξ − 1

4

)

(

(p′µ − pµ)2 − ηµµ(p′ − p)2
)

(3.64)

and there is a vertex with two scalars and two gravitons:

V µµνν
sshh (p, p′, k, k′) : iηµν

(

p′µpν + pµp′ν
)

− i

[(

ξ − 1

4

)

(ηµµkνkν + ηννkµkµ)

+2

(

ξηµνηµν +
1

16
ηµµηνν

)

k2 − 4ξηµνkµkν
]

−i

[((

1

4
− ξ

2

)

ηµµηνν +
3

2
ξηµνηµν

)

k · k′ (3.65)

+

(

ξ − 1

4

)

(

ηµµkνk′ν + ηννkµk′µ
)

− 2ξηµνkµk′ν − ξηµνkνk′µ
]

The result for the tadpole diagram is

Θ̃µµ = 2−d−1 i π−d/2mdΓ

(

−d

2

)

ηµµ (3.66)

while the contribution from the seagull term is

T̃µµνν
(s) (k) = −2−4−d iπ−d/2md−2Γ

(

−d

2

)

×
(

dk2(1− 4ξ)ηµµηνν + 4ηµνηµν
(

4m2 − dk2ξ
)

+ 8dξηµνkµkν
)

(3.67)
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Furthermore, the transverse part of the bubble diagram reads

T̃µµνν
t (k) = − 1

3d (d2 − 1) k4
i2−d−2e−

1
2
iπdπ−d/2(−m2)d/2m−2Γ

(

1− d

2

)

[(

12
(

d2 − 1
)

k4m2
(

8ξ2 − 8ξ + 1
)

+ d
(

d2 − 1
)

k6
(

24ξ2 − 1
)

+24dk2m4(3− 8ξ)− 192k2m4ξ + 96m6

+
(

−6k4m2
(

d2(1− 4ξ)2 + d(8ξ − 2)− 2
(

8ξ2 − 8ξ + 1
))

+24k2m4(d(8ξ − 2) + 8ξ)− 96m6
)

2F1

[

1,−d

2
;−1

2
;
k2

4m2

])

πµµπνν

+
(

−12d2k4m2 + d
(

d2 − 1
)

k6 + 48dk2m4 − 96k2m4 + 12k4m2 + 192m6

−12m2
(

k2 − 4m2
)2

2F1

[

1,−d

2
;−1

2
;
k2

4m2

])

πµνπµν

]

(3.68)

The expansion of the transverse part T̃µµνν
t (k) in the IR is

T̃µµνν
t (k) = 2−3−dimd−4π− d

2 k4
∞
∑

n=0

m−2nΓ
(

2 + n− d
2

)

2n (2n+ 5)!!
k2n

×
(

πµνπµν +
a(n, ξ)

2
πµµπνν

)

(3.69)

where a(n, ξ) is a constant

a(n, ξ) = (2n+ 5)(2n+ 3)(4ξ − 1)2 + 2(2n+ 5)(4ξ − 1) + 1 (3.70)

The non-transverse part of the bubble diagram is

T̃µµνν
nt (k) =

2−4−d

3
i π−d/2md−2Γ

(

−d

2

)

(

ηµνηµν
(

24m2 − 2dk2
)

+ 4 d ηµνkµkν + 2d (6ξ − 1)ηµµkνkν

+ηνν
(

ηµµ
(

dk2(5− 24ξ) + 12m2
)

+ 2d(6ξ − 1)kµkµ
))

(3.71)

The seagull diagram and the non-transverse part of 2-pt function together give

T̃µµνν
(s) (k) + T̃µµνν

nt (k) = −2−d−2iπ−d/2mdΓ

(

−d

2

)

(2ηµνηµν − ηµµηνν) (3.72)

+2−d−1iπ−d/2md−2

(

ξ − 1

6

)

Γ

(

1− d

2

)

k2 (πµνπµν − πµµπνν)

Taking formulas (3.66), (3.67), (3.68) and (3.71) and substituting them in (3.12) we can

see that the Ward identity is satisfied for any dimension d.

The one-loop 1-point correlator

〈〈Tµµ(x)〉〉 = −2−dmdπ− d
2

[

Γ

(

−d

2

)

gµµ − 2Γ
(

1− d
2

)

m2

(

ξ − 1

6

)

Gµµ

+
∞
∑

n=2

(−1)nm−2nΓ
(

n− d
2

)

2n(2n+ 1)!!
�

n−2

×
(

−2�Gµµ +

(

1− a(n, ξ)

2

)

(ηµµ�− ∂µ∂µ)R

)]

+O(h2) (3.73)
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satisfies (3.9). For the effective action in the IR we obtain

W [h]
IR
= 2−dmdπ− d

2

∫

ddx
√
g

[

Γ

(

−d

2

)

− Γ
(

1− d
2

)

2m2

(

ξ − 1

6

)

R

+
Γ
(

2− d
2

)

120m4

(

RµνλρR
µνλρ +

a(0, ξ)

2
R2

)

+ . . .

]

+O(h3) (3.74)

For ξ = 1
6 (the conformal value) the third term in the expansion is proportional to

∝ md−4

∫

ddx
√
g

(

RµνλρR
µνλρ − 1

3
R2

)

(3.75)

We can use the Gauss-Bonnet theorem

RµνλρR
µνλρ − 4RµνR

µν +R2 = total derivative (3.76)

to write the divergent part of the effective action in d = 4 as a Weyl square density

W
IR
= − 1

16π2ε

∫

d4x
√
g

(

m4 +
1

30
W2

)

+O(h3) (3.77)

In the massless case (m0 is the dominating term in the UV) we have

T̃µµνν(k)
UV
=

2−1−2d π
3
2
− d

2 (k2)
d
2

(−1 + eiπd) Γ
(

d+3
2

)

(

πµνπµν +
b(d, ξ)

2
πµµπνν

)

(3.78)

where

b(d, ξ) = (d2 − 1)(4ξ − 1)2 + 2(d+ 1)(4ξ − 1) + 1 (3.79)

The effective action in the UV now becomes

W
UV
= (−1)

d
2

2−2−2d+⌊ d
2
⌋π

3
2
− d

2

(−1 + eiπd)Γ
(

d+3
2

)

∫

ddx

(

Rµνλρ
�

d
2
−2Rµνλρ +

b(d, ξ)

2
R�

d
2
−2R

)

(3.80)

After we use (3.76) and put ξ = 1
6 in 4d we will again get the Weyl square density

W
UV
=

∫

ddxW2 (3.81)

4 Correlators

This section of the paper is a systematic collection of results concerning all types of two-

point correlators, including the mixed ones, for symmetric currents of spin up to 5 and in

dimension 3 ≤ d ≤ 6. It also contains results concerning the correlators of currents of any

spin and in any dimensions, in the case of massless models, for which it is possible to write

down very compact formulas.
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Since the volume of these formulas is rather big it is presented in the supplementary ma-

terial. A part of this material is nevertheless kept here in the main text: sections 4.1 and 4.2

contain some representative calculations for spin 3, and spin 3 – spin 5 mixed amplitudes.

We start by introducing the necessary quantities. The two point amplitudes in question

for fermion and of scalar currents for spins up to 5, are schematically denoted as follows:

T̃µ1...µs1ν1...νs2
(k) ≡ 〈J̃µ1...µs1

(−k)J̃ν1...νs2 (k)〉 , (4.1)

Scalar and fermion currents are given by

J s
µ1...µs

= isϕ†
(↔
∂ µ

)s
ϕ , J f

µ1...µs
= is−1ψ̄γµ

(↔
∂ µ

)s−1
ψ (4.2)

(For fermions in case s = 0 we use J f
s=0 = ψ̄ψ.) These currents will be henceforth referred

to as simple currents. In the fermionic case the two point correlator is

T̃ f
µ1...µs1ν1...νs2

(k) = −
∫

ddp

(2π)d
Tr

(

i

/p−m
γσ

i

/p− /k −m
γτ

)

V σ
µ1...µs1

V τ
ν1...νs2

(4.3)

whereas in the scalar case it is

T̃ s
µ1...µs1ν1...νs2

(k) =

∫

ddp

(2π)d
1

(p2 −m2)((p− k)2 −m2)
Vµ1...µs1

Vν1...νs2
(4.4)

with the Feynman vertices for fermions and scalars respectively

V σ
µ1...µs

= i δσµ (2pµ − kµ)
s−1 , Vµ1...µs = i (2pµ − kµ)

s (4.5)

To label the correlators we often suppress indices and add the number of space-time

dimensions in the subscript on the left hand side. Additionally, when s1, s2 6= 0, we split

the amplitudes in the transverse and the non-transverse part, so for the correlator of e.g.

fermionic spin-s1 and spin-s2 currents in d dimensions we write:

T̃ f
s1,s2,d = T̃ f,t

s1,s2,d
+ T̃ f,nt

s1,s2,d
(4.6)

There is no preferred way to do the splitting in (4.6) because one can always add some

transverse quantity to T̃ t and subtract the same quantity from T̃ nt. However, it always

happens that the non-transverse part can be chosen to be a polynomial in k and m (i.e.

local). Here, we always make this choice so that the non-transverse part is local. After this

choice is made there is still some remaining freedom in the splitting into the transverse and

the non-transverse part in (4.6), nevertheless the quantities we define below do not depend

on this remaining freedom.

One such quantity is T̃ f,UV-IR
s1,s2,d

, the difference between the UV and the IR expansions

in the shortly explained sense. Since, as explained above, the non-transverse part is always

local the non-transverse parts of UV and IR are the same and therefore cancel so that only

transverse parts remain in the expression for T̃ f,UV-IR
s1,s2,d

T̃ f,UV-IR
s1,s2,d

= T̃ f,UV
s1,s2,d

− T̃ f,IR
(0)s1,s2,d

(4.7)
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where the UV and IR expansions are denoted by T̃ f,t,UV
s1,s2,d

and T̃ f,t,IR
s1,s2,d

respectively, and

T̃ f,IR
(0)s1,s2,d

is the part of the IR expansion of order O(mn) with n ≥ 0.

Another such quantities are the divergences of the correlators:

(

k · T̃ f
s1,s2,d

)

µ2...µs1ν1...νs2

= kµ1

(

T̃ f,nt
s1,s2,d

)

µ1...µs1ν1...νs2
(

T̃ f
s1,s2,d · k

)

µ1...µs1ν2...νs2

= kν1
(

T̃ f,nt
s1,s2,d

)

µ1...µs1ν1...νs2

(4.8)

The definitions (4.6), (4.7), (4.8) are analogous in the scalar case.

Before listing the results for the massive models, it is worth to show some general

formulas (for any spin and any dimension) that it was possible to obtain for the massless

case. (We recall that the results for the massless cases correspond to the dominant term

in the UV expansion of the massive case.) In addition some general formulas are easy

to write in terms of particular linear combination of the previous currents which become

traceless in the massless case. These “traceless” versions of the currents can be defined in

the following way:

T̃ st
µ1...µs

=

⌊ s
2
⌋

∑

l=0

ass,l (�πµµ)
l T̃ s

µ1...µs−2l
, T̃ ft

µ1...µs
=

⌊ s−1
2

⌋
∑

l=0

afs,l (�πµµ)
l T̃ f

µ1...µs−2l
(4.9)

where

ass,l =
(−1)ls! Γ

(

s+ d−3
2 − l

)

22ll!(s− 2l)! Γ
(

s+ d−3
2

) , afs,l =
(−1)l(s− 1)! Γ

(

s+ d−3
2 − l

)

22ll!(s− 2l − 1)! Γ
(

s+ d−3
2

) (4.10)

It is easy to see that amplitudes for two general spins s1 and s2 for the “traceless” currents

can be written as linear combinations of the amplitudes (4.4) and (4.5) of the “simple”

currents (4.2)

T̃ st
µ1...µs1ν1...νs2

=

⌊ s1
2
⌋

∑

l=0

⌊ s2
2
⌋

∑

k=0

ass1,la
s
s2,k

(

k2ηµµ − k2µ
)l (

k2ηνν − k2ν
)k

T̃ s
µ1...µs1−2lν1...νs2−2k

T̃ ft
µ1...µs1ν1...νs2

=

⌊ s1−1
2

⌋
∑

l=0

⌊ s2−1
2

⌋
∑

k=0

afs1,la
f
s2,k

(

k2ηµµ − k2µ
)l (

k2ηνν − k2ν
)k

T̃ f
µ1...µs1−2lν1...νs2−2k

The result for the traceless currents in the massless limit is

T̃ st,massless
µ1...µsν1...νs = (−1)s

24−2d−sπ
3
2
− d

2 s!
(

k2
)

d
2
+s−2

(−1 + eiπd) Γ
(

d+2s−1
2

)

⌊ s
2
⌋

∑

l=0

ass,lπ
l
µµπ

l
ννπ

s−2l
µν (4.11)

= (−1)s
24−2d−sπ

3
2
− d

2 s!
(

k2
)

d
2
+s−2

(−1 + eiπd) Γ
(

d+2s−1
2

) πs
µν 2F1

(

1− s

2
,−s

2
,
5− d− 2s

2
,
πµµπνν
π2
µν

)

We note that for traceless currents mixed spin terms are zero i.e. the result vanishes for

spin s1 6= s2. For simple currents this is not the case and the general expression for spin
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s1 × s2, s2 > s1 is

T̃ s,massless
µ1...µs1ν1...νs2

= (−1)
s1+s2

2

(

2⌊ s2+1
2 ⌋ − 1

)

!!
(

2⌊ s2+1
2 ⌋

)

!!24−2d− s1+s2
2 π

3
2
− d

2

(

k2
)

d+s1+s2
2

−2

(

2⌊ s22 ⌋ − 2⌊ s12 ⌋
)

!! (−1 + eiπd) Γ
(

d+s1+s2−1
2

)

×π
s2−s1

2
νν

⌊ s1
2
⌋

∑

l=0

s1!(s2 − s1)!!

2
l(l+1)

2 (s1 − 2l)!(s2 − s1 + 2l)!!
πl
µµπ

l
ννπ

s1−2l
µν (4.12)

For fermions in the massless limit it also happens that only the diagonal (s1 = s2 ≡ s and

s > 0) amplitudes survive for the traceless currents

T̃ ft,massless,even
µ1...µsν1...νs = (−1)s

23−2d−s+⌊ d
2
⌋π

3
2
− d

2 (s− 1)!(d− 3 + s)
(

k2
)

d
2
+s−2

(−1 + eiπd) Γ
(

d+2s−1
2

)

⌊ s
2
⌋

∑

l=0

ass,lπ
l
µµπ

l
ννπ

s−2l
µν

= (−1)s
23−2d−s+⌊ d

2
⌋π

3
2
− d

2 (s− 1)!(d− 3 + s)
(

k2
)

d
2
+s−2

(−1 + eiπd) Γ
(

d+2s−1
2

)

× πs
µν 2F1

(

1− s

2
,−s

2
,
5− d− 2s

2
,
πµµπνν
π2
µν

)

(4.13)

The formula above is valid for d ≥ 4 and for the even part in d = 3. For the odd part

in d = 3 we obtain for traceless currents, for the dominant term in the UV, a general

expression for spin s1 × s2, s2 > s1, s1 > 0, s2 > 0

T̃ ft,UV dominant,odd
µ1...µs1ν1...νs2 ;3D

= (−1)
s1+s2

2
imks1+s2−3

2s2+1
π

s2−s1
2

νν

⌊ s1−1
2

⌋
∑

l=0

(−1)lΓ (s1−l)

22ll!Γ (s1−2l)
πl
µµπ

l
ννπ

s1−2l−1
µν ǫσµνk

σ

= (−1)
s1+s2

2
imks1+s2−3

2s2+1
π

s2−s1
2

νν πs1−1
µν

×2F1

(

1− s1
2

, 1− s1
2
, 1− s1,

πµµπνν
π2
µν

)

ǫσµνk
σ (4.14)

In appendix B we show that this formula is a straightforward generalization of the linearized

action proposed long ago by Pope and Townsend, [8], for conformal higher spin fields. In

the case of simple currents we instead get

T̃ f,UV dominant,odd
µ1...µs1ν1...νs2 ;3D

= (−1)
s1+s2

2

(

2⌊ s2−1
2 ⌋

)

!!
(

s1 + s2 − 2⌊ s1−1
2 ⌋ − 3

)

!!mks1+s2−3

22(s1 + s2 − 2)!!
(

2⌊ s22 ⌋ − 2⌊ s12 ⌋
)

!!
(4.15)

×π
s2−s1

2
νν ǫσµνk

σ

⌊ s1−1
2

⌋
∑

l=0

(s1 − 1)!(s2 − s1)!!

2
l(l+1)

2 (s1 − 2l − 1)!(s2 − s1 + 2l)!!
πl
µµπ

l
ννπ

s1−2l−1
µν

In the case of simple currents it is possible to write the formula for the IR expansion of

the transverse part:

T̃ f,t,IR,odd
µ1...µs1ν1...νs2 ;3D

= (−1)
s1+s2

2
−1

(

2⌊ s2−1
2 ⌋

)

!!
(

s1 + s2 − 2⌊ s1−1
2 ⌋ − 3

)

!!ks1+s2−2

22π(s1 + s2 − 1)!!
(

2⌊ s22 ⌋ − 2⌊ s12 ⌋
)

!!
(4.16)

×π
s2−s1

2
νν ǫσµνk

σ

⌊ s1−1
2

⌋
∑

l=0

(s1 − 1)!(s2 − s1)!!

2
l(l+1)

2 (s1 − 2l − 1)!(s2 − s1 + 2l)!!
πl
µµπ

l
ννπ

s1−2l−1
µν
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In the rest of the section we list the results for the massive case. The results are given

for d = 3, 4, 5, 6 and spin s ≤ 5. For even d, we use d → d + ε and expand around ε. For

odd d this is not necessary. It is convenient to use the following shorthand notation

Ln =
2

ε
+ log

(

m2

4π

)

+ γ −
n
∑

k=1

1

k
(4.17)

as well as

K = log

(

− k2

m2

)

P =
2

ε
+ log

(

− k2

4π

)

+ γ (4.18)

We see that there is a relationship

P = K + L0 (4.19)

Furthermore we define

T = −2i coth−1
(

2m
k

)

π

S =
√

4m2 − k2 csc−1

(

2m

k

)

(4.20)

It turns out that T is useful in even dimensions d and S is useful in odd. The branches of

the functions T and S are chosen such that the IR and UV expansions are

T
IR
= − ik

πm
− ik3

12πm3
− ik5

80πm5
+ . . .

S
IR
= k − k3

12m2
− k5

120m4
+ . . . (4.21)

and

T
UV
= 1− 4im

πk
− 16im3

3πk3
− 64im5

5πk5
+ . . .

S
UV
=

kK

2
− m2 (1 +K)

k
+

m4 (1− 2K)

2k3
+

m6 (5− 6K)

3k5
+ . . . (4.22)

In the results for UV-IR which follow, the difference is shown for the terms containing the

powers of m and k that “overlap” in UV and IR in sense that those powers appear both

in UV and in IR expansions. The rest, i.e. the UV expansion that does not overlap with

the IR, is denoted by ellipses.

In the following two sections we list the results for fermions for spin 3 and mixed

spin 3 – spin 5 amplitudes for dimensions 3 and 4. Section 4.1 contains the full transverse

analytic expressions of the correlators. Section 4.2 contains the UV and IR expansions of

the latter, as well as the above-mentioned UV-IR expressions.

The method to obtain the results below has been explained in [1] and is largely based

on the approach of Davydychev and collaborators, [62–64], see [65].
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4.1 Fermion amplitudes for spins 3× 3 and 3× 5

Fermions, spin 3× 3, dimension 3:

T̃ f,t
3,3;3D = k6π3

µν

(

i

2π

(

1

8

m

k2
− 1

3

m3

k4
+ 2

m5

k6

)

+ T

(

1

64

1

k
− 1

16

m2

k3
− 1

4

m4

k5
+

m6

k7

))

+

+ k6πµµπµνπνν

(

i

2π

(

− 1

16

m

k2
− 3

2

m3

k4
+ 3

m5

k6

)

+

+T

(

− 1

128

1

k
+

5

32

m2

k3
− 7

8

m4

k5
+

3

2

m6

k7

))

+ (4.23)

+ k4(k · ǫ)µνπ2
µν

(

1

4π

(

−3
m2

k2
+ 4

m4

k4

)

+ iT

(

− 1

16

m

k
+

1

2

m3

k3
− m5

k5

))

+

+ k4(k · ǫ)µνπµµπνν
(

1

2π

(

1

4

m2

k2
+

m4

k4

)

+ iT

(

− 1

32

m

k
+

1

4

m3

k3
− 1

2

m5

k5

))

T̃ f,nt
3,3;3D =

(

k2νηµµηµν + kµkνηµµηνν + k2µηµνηνν
)

(

− 4i

3π
m3

)

+

+ ηµµηµνηνν

(

i

3π

(

4k2m3 − 64

5
m5

))

+ η3µν

(

− 32i

15π
m5

)

+

+ kµkν(k · ǫ)µνηµν
(

− 2

π
m2

)

+ (k · ǫ)µνηµµηνν
(

− 4

3π
m4

)

+

+ (k · ǫ)µνη2µν
(

1

3π

(

3k2m2 − 8m4
)

)

(4.24)

Fermions, spin 3× 3, dimension 4:

T̃ f,t
3,3;4D = k6π3

µν

(

i

5π2

((

− 599

4410
+

L0

21

)

+

(

247

315
− L0

3

)

m2

k2
+

8

7

m4

k4
− 32

7

m6

k6

)

+

+
iS

7π2

(

2

15

1

k
− 2

3

m2

k3
− 16

15

m4

k5
+

32

5

m6

k7

))

+

+ k6πµµπµνπνν

(

i

5π2

((

457

8820
− L0

84

)

+

(

−382

315
+

L0

3

)

m2

k2
+

92

21

m4

k4
−

−48

7

m6

k6

)

+
iS

7π2

(

− 1

30

1

k
+

13

15

m2

k3
− 16

3

m4

k5
+

48

5

m6

k7

))

(4.25)

T̃ f,nt
3,3;4D =

(

k2νηµµηµν + kµkνηµµηνν + k2µηµνηνν
)

(

iL2

2π2
m4

)

+

+ ηµµηµνηνν

(

i

π2

(

−L2

2
k2m4 +

4L3

3
m6

))

+ η3µν

(

2iL3

3π2
m6

)

(4.26)
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Fermions, spin 3× 5, dimension 3:

T̃ f,t
3,5;3D = k8π3

µνπνν

(

i

4π

(

− 3

16

m

k2
+

3

4

m3

k4
− 31

3

m5

k6
+ 20

m7

k8

)

+

+T

(

− 3

256

1

k
+

1

16

m2

k3
+

3

8

m4

k5
− 3

m6

k7
+ 5

m8

k9

))

+

+ k8πµµπµνπ
2
νν

(

i

4π

(

7

64

m

k2
+

155

48

m3

k4
− 47

4

m5

k6
+ 15

m7

k8

)

+

+T

(

7

1024

1

k
− 9

64

m2

k3
+

33

32

m4

k5
− 13

4

m6

k7
+

15

4

m8

k9

))

+

+ k6(k · ǫ)µνπ2
µνπνν

(

1

π

(

3

4

m2

k2
− 8

3

m4

k4
+ 4

m6

k6

)

+

+iT

(

1

16

m

k
− 3

4

m3

k3
+ 3

m5

k5
− 4

m7

k7

))

+

+ k6(k · ǫ)µνπµµπ2
νν

(

1

π

(

− 1

16

m2

k2
− 2

3

m4

k4
+

m6

k6

)

+

+iT

(

1

64

m

k
− 3

16

m3

k3
+

3

4

m5

k5
− m7

k7

))

(4.27)

T̃ f,nt
3,5;3D =

(

kµk
3
νηµµηνν + k2µk

2
νηµνηνν

)

(

− 8i

3π
m3

)

+
(

k4νηµµηµν + k3µkνη
2
νν

)

(

− 4i

3π
m3

)

+

+
(

kµkνηµµη
2
νν + k2µηµνη

2
νν

)

(

i

π

(

4

3
k2m3 − 32

5
m5

))

+

+ k2νηµµηµνηνν

(

i

π

(

8

3
k2m3 − 64

5
m5

))

+ kµkνη
2
µνηνν

(

−64i

5π
m5

)

+

+ k2νη
3
µν

(

− 64i

15π
m5

)

+ ηµµηµνη
2
νν

(

i

π

(

−4

3
k4m3 +

32

5
k2m5 − 64

5
m7

))

+

+ η3µνηνν

(

i

5π

(

64

3
k2m5 − 512

7
m7

))

+ k2µk
2
ν(k · ǫ)µνηνν

(

− 1

π
m2

)

+

+ kµk
3
ν(k · ǫ)µνηµν

(

− 2

π
m2

)

+ k2ν(k · ǫ)µνηµµηνν
(

− 8

3π
m4

)

+

+ k2µ(k · ǫ)µνη2νν
(

− 4

3π
m4

)

+ kµkν(k · ǫ)µνηµνηνν
(

1

3π

(

6k2m2 − 32m4
)

)

+

+ k2ν(k · ǫ)µνη2µν
(

1

3π

(

3k2m2 − 16m4
)

)

+

+ (k · ǫ)µνηµµη2νν
(

1

π

(

4

3
k2m4 − 16

5
m6

))

+

+ (k · ǫ)µνη2µνηνν
(

1

π

(

−k4m2 +
16

3
k2m4 − 64

5
m6

))

(4.28)
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Fermions, spin 3× 5, dimension 4:

T̃ f,t
3,5;4D = k8π3

µνπνν

(

i

7π2

((

1937

14175
− 2L0

45

)

+

(

−1622

1575
+

2L0

5

)

m2

k2
− 32

15

m4

k4
+

+
2432

135

m6

k6
− 256

9

m8

k8

)

+

+
iS

3π2

(

− 4

105

1

k
+

4

15

m2

k3
+

16

35

m4

k5
− 704

105

m6

k7
+

256

21

m8

k9

))

+

+ k8πµµπµνπ
2
νν

(

i

π2

((

− 1231

132300
+

L0

420

)

+

(

258

1225
− 2L0

35

)

m2

k2
− 104

105

m4

k4
+

+
128

45

m6

k6
− 64

21

m8

k8

)

+

+
iS

π2

(

1

210

1

k
− 11

105

m2

k3
+

4

5

m4

k5
− 272

105

m6

k7
+

64

21

m8

k9

))

(4.29)

T̃ f,nt
3,5;4D =

(

kµk
3
νηµµηνν + k2µk

2
νηµνηνν

)

(

iL2

π2
m4

)

+
(

k4νηµµηµν + k3µkνη
2
νν

)

(

iL2

2π2
m4

)

+

+
(

kµkνηµµη
2
νν + k2µηµνη

2
νν

)

(

i

2π2

(

−L2k
2m4 + 4L3m

6
)

)

+

+ k2νηµµηµνηνν

(

i

π2

(

−L2k
2m4 + 4L3m

6
)

)

+ kµkνη
2
µνηνν

(

4iL3

π2
m6

)

+

+ k2νη
3
µν

(

4iL3

3π2
m6

)

+ ηµµηµνη
2
νν

(

i

2π2

(

L2k
4m4 − 4L3k

2m6 + 7L4m
8
)

)

+

+ η3µνηνν

(

i

3π2

(

−4L3k
2m6 + 12L4m

8
)

)

(4.30)

4.2 Expansions in UV and IR for fermions for spins 3× 3 and 3× 5

Fermions, spin 3× 3, dimension 3:

T̃ f,t,UV
3,3;3D = k6π3

µν

(

1

64

1

k
− 1

16

m2

k3
− 1

4

m4

k5
+

32i

15π

m5

k6
+

m6

k7
− 256i

105π

m7

k8
− 512i

315π

m9

k10
−

− 8192i

3465π

m11

k12
+ . . .

)

+

+ k6πµµπµνπνν

(

− 1

128

1

k
+

5

32

m2

k3
− 4i

3π

m3

k4
− 7

8

m4

k5
+

64i

15π

m5

k6
+

3

2

m6

k7
−

− 64i

21π

m7

k8
− 512i

315π

m9

k10
− 1024i

495π

m11

k12
+ . . .

)

+

+ k4(k · ǫ)µνπ2
µν

(

− i

16

m

k
− 1

π

m2

k2
+

i

2

m3

k3
+

8

3π

m4

k4
− i

m5

k5
− 32

15π

m6

k6
−

− 128

105π

m8

k8
− 512

315π

m10

k10
− 2048

693π

m12

k12
+ . . .

)

+
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+ k4(k · ǫ)µνπµµπνν
(

− i

32

m

k
+

i

4

m3

k3
+

4

3π

m4

k4
− i

2

m5

k5
− 16

15π

m6

k6
−

− 64

105π

m8

k8
− 256

315π

m10

k10
− 1024

693π

m12

k12
+ . . .

)

(4.31)

T̃ f,t,IR
3,3;3D = k6π3

µν

(

i

3π

(

2

5

m

k2
− 1

35

1

m
− 1

840

k2

m3
− 1

9240

k4

m5
− 5

384384

k6

m7
− 1

549120

k8

m9
−

− 7

24893440

k10

m11
+ . . .

))

+

+ k6πµµπµνπνν

(

i

3π

(

−2

5

m

k2
+

1

140

1

m
− 1

73920

k4

m5
− 1

384384

k6

m7
−

− 1

2196480

k8

m9
− 1

12446720

k10

m11
+ . . .

))

+

+ k4(k · ǫ)µνπ2
µν

(

1

3π

(

−m2

k2
− 1

10
− 1

280

k2

m2
− 1

3360

k4

m4
− 1

29568

k6

m6
−

− 1

219648

k8

m8
− 1

1464320

k10

m10
− 1

9052160

k12

m12
+ . . .

))

+

+ k4(k · ǫ)µνπµµπνν
(

1

3π

(

m2

k2
− 1

20
− 1

560

k2

m2
− 1

6720

k4

m4
− 1

59136

k6

m6
−

− 1

439296

k8

m8
− 1

2928640

k10

m10
− 1

18104320

k12

m12
+ . . .

))

(4.32)

T̃ f,UV-IR
3,3;3D = k4(k · ǫ)µνπ2

µν

(

− 2

3π

m2

k2

)

+ . . . (4.33)

Fermions, spin 3× 3, dimension 4:

T̃ f,t,UV
3,3;4D = k6π3

µν

(

i

π2

((

− 599

22050
+

P

105

)

+

(

31

225
− P

15

)

m2

k2
+

1

3

m4

k4
+

+

(

−7

9
+

2K

3

)

m6

k6
−
(

19

18
+

2K

3

)

m8

k8
+

(

1

50
− 2K

5

)

m10

k10
+

+

(

56

225
− 8K

15

)

m12

k12
+ . . .

))

+

+ k6πµµπµνπνν

(

i

π2

((

457

44100
− P

420

)

+

(

−107

450
+

P

15

)

m2

k2
+

+

(

3

4
− K

2

)

m4

k4
+

(

−5

9
+

4K

3

)

m6

k6
−
(

113

72
+

5K

6

)

m8

k8
−

−
(

7

150
+

2K

5

)

m10

k10
+

(

151

900
− 7K

15

)

m12

k12
+ . . .

))

(4.34)

– 27 –



J
H
E
P
0
1
(
2
0
1
8
)
0
8
0

T̃ f,t,IR
3,3;4D = k6π3

µν

(

i

3π2

((

1

5
− L0

5

)

m2

k2
+

L0

35
− 1

420

k2

m2
− 1

6930

k4

m4
− 1

72072

k6

m6
−

− 1

600600

k8

m8
− 1

4375800

k10

m10
− 1

29099070

k12

m12
+ . . .

))

+

+ k6πµµπµνπνν

(

i

3π2

((

−1

5
+

L0

5

)

m2

k2
− L0

140
− 1

55440

k4

m4
− 1

360360

k6

m6
−

− 1

2402400

k8

m8
− 1

15315300

k10

m10
− 1

93117024

k12

m12
+ . . .

))

(4.35)

T̃ f,UV-IR
3,3;4D = k6π3

µν

(

i

15π2

((

− 599

1470
+

K

7

)

+

(

16

15
−K

)

m2

k2

))

+

+ k6πµµπµνπνν

(

i

15π2

((

457

2940
− K

28

)

+

(

−77

30
+K

)

m2

k2

))

+ . . . (4.36)

4.3 All types of correlators

The contents of this section are presented in the supplementary material.

5 Conclusion

We finally sum up our main results. In this paper we have pursued further the program

started in [1], considering in particular the quadratic part of the effective action.

First of all, we have discussed the relevant issue of the geometric interpretation of

the obtained effective actions. The basic outcome of [1] was that, upon considering on-

shell conserved higher spin currents, the corresponding effective actions inherit an off-shell

gauge invariance once a finite number of local counterterms are subtracted. In particular

our (linearized) gauge invariance involves unconstrained fully symmetric parameters and

is the same as the one considered in [4, 5, 39–41]. We are therefore naturally led to the

problem of expressing our results in the geometric language of [7, 57]. This is done in full

generality in section 2.

Another relevant issue is whether it is possible to construct a gauge invariant effective

action without the subtraction of ad hoc non-invariant counterterms. The answer to this

question of course requires the choice of a specific regularization scheme. We decided

to work in dimensional regularization, which turns out to be particularly convenient for

the lower spin cases. In fact, in section 3 we have explictly shown that for spin 1 and

spin 2 gauge fields it is generally possible to introduce additional local terms allowed by

covariance (involving the spin 0 current) such that the effective action is gauge invariant

with no non-covariant subtractions needed thanks to the tadpole and seagull diagrams

entering the Ward Identities. This is no surprise, as in these cases we already know fully

off-shell covariant versions of QED and gravity coupled to ordinary scalar and spin 1/2

matter. Nevertheless our explict computations work as a promising test for higher spin

gauge fields. Related questions are whether this whole procedure depends on the choice of
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the on-shell conserved current that is minimally coupled in the first place and whether it

can be restricted to a finite number of higher spin currents. In the cases of spin 1 and 2

we checked there is no need to introduce higher spin currents and and off-shell invariant

couplings between the matter and gauge sectors can be obtained for any choice of on-shell

conserved Noether currents. A particularly interesting choice for the currents and the

couplings for the spin 2 case in d = 4 is the one for which the dominating term in the UV

expansion is the Weyl density ((3.54), (3.81)), corresponding to the emerging conformal

symmetry in the massless case. This term is also found in the corresponding IR expansion

((3.52), (3.77)). The case of higher spin gauge fields, in particular as far as the choice of

different currents is concerned, will be treated in details in a subsequent work.

The major task of this paper was the completion of the construction of the quadratic

part of the higher spin effective action started in [1, 42]. We did it in section 4 presenting

all two point correlators of symmetric currents of any spin up to 5 and in any dimension

between 3 and 6. We also spelled out UV and IR expansions, finding compact formulae for

dominating terms in the two limits. In some cases these limits are already known [66]. In

particular, we also included the mixed ones which were not considered in our previous work.

The results of section 4 show that these terms turn out to have the usual structure found

for the diagonal ones, i.e. the sum of a nonlocal transverse part and a local longitudinal

one. We expect that their presence is crucial when one tries to test the invariance of

the effective action beyond the lowest order in the gauge fields as well as when one tries

to introduce tadpoles and seagulls in the Ward Identities. In d = 3 odd-parity kinetic

terms are present when spin 1/2 matter is integrated out. We find that for the traceless

currents considered in section 4 the UV limit coincides with a mixed-spin generalization of

the conformal higher spin action found in [7, 8]. Recently, supersymmetric generalizations

have been discussed [14–16], pointing out dualities and extension to massive higher spin

fields. It would be interesting to use the method of induced action to find back these results

and possibly extend them to other cases.

Although made up of the same invariant building blocks, the kinetic terms appearing

in this section do not coincide with the ones found in [4, 5, 39] by coupling the gauge

theory to matter and considering the analysis of the propagating degrees of freedom. The

fundamental reason is that our effective actions are obtained after a subtraction procedure

that is required to give invariant terms, but still allows for a wide class of possible choices.

A proper discussion of the propagating degrees of freedom in our case would require the re-

moval of nonlocalities by introducing compensating fields and the consideration of physical

propagators after proper gauge fixing. However, the next logical step is the computation of

three-point functions which would provide an insight in gauge invariance beyond the low-

est order and therefore prepare the ground for the construction of fully covariant effective

actions.

To end the section we would like to say a few words to explain the difference of our

treatment of the effective action, as tackled in this paper, with other approaches. A partic-

ularly interesting one is that of [24] (although the main focus of [24] is in conformal higher

spin theories). To this purpose the author utilizes a quantum mechanical approach of a

particle coupled to external symmetric fields, that makes essential use of Weyl quantization

– 29 –



J
H
E
P
0
1
(
2
0
1
8
)
0
8
0

and the relevant Moyal product. This method is equivalent to considering the effective ac-

tion of a massless scalar field coupled to external sources. It allows one to define an infinite

set of (traceless) conserved Noether currents, coupled to the external (symmetric) higher

spin fields, as well as the relevant gauge symmetries. It allows also to compute the rele-

vant quadratic effective action of the external fields and, at least in principle, the effective

action to all orders. As said above, the interest of [24] is limited to conformal higher spin

theories. Later on Bekaert et al. [25] have revisited and extended this method, but always

considering a massless scalar.

As compared to [24, 25], our method is based on Feynman diagrams together with a

considerable technical improvement in computing the latter. In particular, in the present

draft, we have extended our previous results in [1] to mixed spin terms, which also turn

out to be always made up of a nonlocal transverse part and a local non-transverse one.

The main difference with the methods of [24, 25], is that we deal with massive scalar and

fermion theories coupled to external sources. The introduction of a mass is important

because it allows us to intercept not only the conformal higher spin kinetic terms which

can be found in [66], but also the Fronsdal equations for symmetric fields which appear

in [4, 5]. It also allows to know the nonlocal part of the effective action, and to appreciate

the fact that the latter is based on the same type of Fronsdal operators, as it is explained

in section 2. Continuing with the differences with [24], the introduction of a mass term

breaks Weyl invariance. Therefore, our conserved currents cannot in general be chosen to

be traceless. In any case, consistently with the general Noether procedure, we have several

choices for the conserved currents and the corresponding lowest order gauge symmetries.

It is of course interesting to analyze the differences between different choices, which we

plan to discuss in future work. As for the gauge symmetry, once a current is chosen its

form is self-evident at the lowest order of approximation, but in order to compute the next

orders, the procedure is more complicated. In our effective field theory approach we can

also read off the needed seagull counterterms directly from the amplitudes by requiring the

vanishing of non-transverse parts. But, of course, nothing prevents from merging the two

methods. This is precisely what we would like to do in the future.

Acknowledgments

We would like to thank Nicolas Boulanger and Sergei M. Kuzenko for useful suggestions

in revising the manuscript. This research has been supported by the Croatian Science

Foundation under the project No. 8946 and by the University of Rijeka under the research

support No. 13.12.1.4.05.

A Spin 2 — expansions

Here, we list several useful expansions of geometrical quantities in terms of spin 2 field hµν .

Riemann tensor

Rµνλρ = −1

2
∂µ∂λhνρ +

1

2
∂µ∂ρhνλ +

1

2
∂ν∂λhµρ −

1

2
∂ν∂ρhµλ +O(h2) (A.1)
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Ricci tensor

Rµν = −1

2
∂µ∂νh+

1

2
∂µ∂λh

λ
ν +

1

2
∂ν∂λh

λ
µ − 1

2
�hµν +O(h2) (A.2)

Ricci scalar

R = −�h+ ∂µ∂νh
µν

+hµν∂µ∂νh− 2hµν∂ν∂λh
λ
µ − 1

4
∂νh∂

νh− ∂νh
µν∂λh

λ
µ + ∂µh∂νh

µν + hµν�hµν

−1

2
∂λh

µν∂νh
λ
µ +

3

4
∂λhµν∂

λhµν +O(h3) (A.3)

Einstein-Hilbert

√
gR = −�h+ ∂µ∂νh

µν+
1

2

(

hµν�hµν + 2hµν∂µ∂νh− h�h− 2hµλ∂µ∂λh
λ
ν

)

+O(h3) (A.4)

√
gR ↔ k2πµµh

µµ + hµµ
(

−1

4
k2
(

π2
µν − πµµπνν

)

)

hνν +O(h3) (A.5)

Riemann squared

RκλρσR
κλρσ = hµν∂µ∂ν∂λ∂ρh

λρ − 2hµν∂µ∂λ�hλν + hµν�2hµν +O(h3) (A.6)
√
gRκλρσR

κλρσ ↔ hµµ
(

k4π2
µν

)

hνν +O(h3) (A.7)

Ricci tensor squared

RµνR
µν =

1

4
hµν�2hµν −

1

2
hµν∂µ∂ν�h− 1

2
hµν∂µ∂λ�hλν

+
1

2
hµν∂µ∂ν∂λ∂ρh

λρ +
1

4
h�2h+O(h3) (A.8)

√
gRκλR

κλ ↔ hµµ
(

1

4
k4
(

π2
µν + πµµπνν

)

)

hνν +O(h3) (A.9)

Ricci scalar squared

R2 = hµν∂µ∂ν∂λ∂ρh
λρ − 2hµν∂µ∂ν�h+ h�2h+O(h3) (A.10)

√
gR2 ↔ hµµ

(

k4πµµπνν
)

hνν +O(h3) (A.11)

Weyl density

Wµνρσ = Rµνρσ − 1

d− 2
(Rµρgνσ −Rµσgνρ −Rνρgµσ +Rνσgµρ)+ (A.12)

+
R

(d− 1)(d− 2)
(gµρgνσ − gµσgνρ)

WµνρσW
µνρσ = RµνρσR

µνρσ − 4

d− 2
RµνR

µν +
2

d2 − 3d+ 2
R2 (A.13)

√
gWκλρσW

κλρσ ↔ hµµ
(

d− 3

d− 2
k4π2

µν −
d− 3

(d− 1)(d− 2)
k4πµµπνν

)

hνν +O(h3) (A.14)
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Weyl density for d = 4

W2 = RµνρσR
µνρσ − 2RµνR

µν +
1

3
R2 (A.15)

=
1

2
hµν�2hµν − hµν∂µ∂λ�hλν +

1

3
hµν∂µ∂ν�h+

1

3
hµν∂µ∂ν∂λ∂ρh

λρ − 1

6
h�2h+O(h3)

Cotton tensor for d = 3

Cµν = ǫµ
τρ∂τ

(

Rρν −
1

d− 1
gνρR

)

=
1

2
ǫµ

ρτ∂τ

(

�hνρ − ∂λ∂νh
λ
ρ

)

+O(h2) (A.16)

B Higher spin traceless actions

In this appendix we will review the parity-odd actions that are expected in 3D for conformal

higher spin in Minkowski background, showing that they coincide with the UV limits of

the amplitudes considered in sections 3.1.1, 3.3.2, 4.1–4.3.6 The action considered in [8]

can be easily generalized to the case when the quadratic terms involve fields of different

spins, namely

Is1,s2 =
1

2

∫

d3x

s1−1
∑

r=0

(

2s1
2r + 1

)

(s1)

h

α1...α2s1

(�)r ∂α1
β1 . . . ∂α2s1−2r−1

β2s1−2r−1

∂β2s1+1β2s1+2 . . . ∂β2s2−1β2s2

(s2)

h β1...β2s1−2r−1α2s1−2r...α2s1β2s1+1...β2s2
, (B.1)

where we assume s1 ≤ s2 and ∂α
β = (γµ)α

β∂µ. We define (γµ)αβ = εβγ (γµ)α
γ and

(γµ)
αβ = εαγ (γµ)γ

β , in agreement with the conventions of Wess and Bagger. Going from

the spinor notation hα1...α2s = hµ1...µs (γµ1)
α1α2 . . . (γµs)

α2s−1α2s to the standard tensor one,

we get

Is1,s2 =
1

2

∫

d3x

s1−1
∑

r=0

(

2s1
2r + 1

)

(s1)

h

µ1...µs1

(γµ1)
α1α2 . . .

(

γµs1

)α2s1−1α2s1 (�)r

∂α1
β1 . . . ∂α2s1−2r−1

β2s1−2r−1δ
β2s1−2r
α2s1−2r . . . δ

β2s1
α2s1

∂β2s1+1β2s1+2 . . . ∂β2s2−1β2s2

(γν1)β1β2
. . .
(

γνs2
)

β2s2−1β2s2

(s2)

h

ν1...νs2

=
1

2

∫

d3x

s1−1
∑

r=0

(

2s1
2r + 1

)

(s1)

h

µ1...µs1

(�)r
[

(γµ1)
α1α2 ∂α1

β1 (γν1)β1β2
∂α2

β2

]

. . .

. . .
[

(

γµs1−r−1

)α2s1−2r−3α2s1−2r−2 ∂α2s1−2r−3
β2s1−2r−3

(

γνs1−r−1

)

β2s1−2r−3β2s1−2r−2
∂α2s1−2r−2

β2s1−2r−2

]

[

(

γµs1−r

)α2s1−2r−1α2s1−2r ∂α2s1−2r−1
β2s1−2r−1

(

γνs1−r

)

β2s1−2r−1β2s1−2r
δ
β2s1−2r
α2s1−2r

]

6It is understood the UV limit should be carried out as described in [43], introducing an ad hoc flavor

index.
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[

(

γµs1−r+1

)α2s1−2r+1α2s1−2r+2
(

γνs−r+1

)

β2s−2r+1β2s−2r+2
δ
β2s1−2r+1
α2s−2r+1 δ

β2s1−2r+2
α2s1−2r+2

]

. . .

. . .
[

(

γµs1

)α2s1−1α2s1
(

γνs1
)

β2s1−1β2s1

δ
β2s1−1
α2s1−1δ

β2s1
α2s1

]

[

∂β2s1+1β2s1+2
(

γνs1+1

)

β2s1+1β2s1+2

]

. . .
[

∂β2s2−1β2s2
(

γνs2
)

β2s2−1β2s2

] (s2)

h

ν1...νs

,

where, keeping in mind that in D = 3 (γµ)αβ = (γµ)βα, we can easily recognize the traces

Tr [γµi
(γ � ∂) γνi (γ � ∂)] =

[

(γµi
)α2i−1α2i ∂α2i−1

β2i−1 (γνi)β2i−1β2i
∂α2i

β2i

]

,

−Tr
[

γµs1−r (γ � ∂) γνs1−r

]

=
[

(

γµs1−r

)α2s1−2r−1α2s1−2r ∂α2s1−2r−1
β2s1−2r−1

(

γνs1−r

)

β2s1−2r−1β2s1−2r
δ
β2s1−2r
α2s1−2r

]

,

−Tr
[

γµj
γνj
]

=
[

(

γµj

)α2j−1α2j
(

γνj
)

β2j−1β2j
δ
β2j−1
α2j−1δ

β2j
α2j

]

,

−Tr [(γ � ∂) γνk ] =
[

∂β2k−1β2k (γνk)β2k−1β2k

]

.

In order to evaluate these traces, we need the following rules

Tr [γµγν ] = 2ηµν ,

T r [γµγνγρ] = −2εµνρ ,

T r [γµγνγργσ] = 2 (ηµνηρσ − ηµρηνσ + ηµσηνρ) ,

which imply

Tr [(γ � ∂) γνk ] = 2∂νk ,

T r
[

γµs−r (γ � ∂) γνs−r

]

= 2εµs−rνs−rρ∂
ρ ,

T r [γµi
(γ � ∂) γνi (γ � ∂)] = 2 (2∂µi

∂νi − ηµiνi�) .

We can therefore rewrite the action Is1,s2 as

Is1,s2 =
1

2
(−2)s2

∫

d3x

s1−1
∑

r=0

(

2s1
2r + 1

)

(s1)

h

µ1...µs1

(�)r (ηµ1ν1�− 2∂µ1∂ν1) . . .

. . .
(

ηµs1−r−1νs1−r−1�− 2∂µs1−r−1∂νs1−r−1

)

εµs1−rνs1−rρ∂
ρ

ηµs1−r+1νs1−r+1 . . . ηµs1νs1
∂νs1+1 . . . ∂νs2

(s2)

h

ν1...νs2

= − (−2)s2−1
∫

d3x

s1−1
∑

r=0

(

2s1
2r + 1

)

(s1)

h

µ1...µs1

(�)r εµ1ν1ρ∂
ρηµ2ν2 . . . ηµr+1νr+1

(

ηµr+2νr+2�− 2∂µr+2∂νr+2

)

. . .
(

ηµs1νs1
�− 2∂µs1

∂νs1
)

∂νs1+1 . . . ∂νs2

(s2)

h

ν1...νs2

. (B.2)
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By elementary manipulations, one can write the action (B.2) as a triple summation

Is1,s2 =− (−2)s2−1
∫

d3x
(s1)

h

µ1...µs1

εµ1ν1ρ∂
ρ
s1−1
∑

r=0

s1−r−1
∑

j=0

s1−j−1
∑

k=0

(B.3)

(−2)j
(

2s1
2r + 1

)(

s1 − r − 1

j

)(

s1 − j − 1

k

)

(ηµ2ν2�− ∂µ2∂ν2) . . .

(

ηµk+1νk+1
�− ∂µk+1

∂νk+1

) (

∂µk+2
∂νk+2

)

. . .
(

∂µs1
∂νs1

)

∂νs1+1 . . . ∂νs2

(s2)

h

ν1...νs2

.

We can now switch the order of summation

Is1,s2 =− (−2)s2−1
∫

d3x
(s1)

h

µ1...µs1

εµ1ν1ρ∂
ρ
s1−1
∑

k=0

(−)s1−k−1
s1−k−1
∑

j=0

s1−j−1
∑

r=0

(B.4)

(−2)j
(

2s1
2r + 1

)(

s1 − r − 1

j

)(

s1 − j − 1

k

)

(ηµ2ν2�− ∂µ2∂ν2) . . .

(

ηµk+1νk+1
�− ∂µk+1

∂νk+1

) (

−∂µk+2
∂νk+2

)

. . .
(

−∂µs1
∂νs1

)

∂νs1+1 . . . ∂νs2

(s2)

h

ν1...νs2

,

and perform two summations using the tables or Mathematica

s1−k−1
∑

j=0

s1−j−1
∑

r=0

(−2)j
(

2s1
2r + 1

)(

s1 − r − 1

j

)(

s1 − j − 1

k

)

= 2−1+2s1

(

s1 − 1

k

)

2F1

(

1

2
− s1, 1 + k − s1, 1− 2s1; 2

)

,

thus obtaining

Is1,s2 =− (−2)s2−1 2−1+2s1

∫

d3x
(s1)

h

µ1...µs1

εµ1ν1ρ∂
ρ
s1−1
∑

k=0

(−)s1−k−1

(

s1 − 1

k

)

(B.5)

2F1

(

1

2
− s1, 1 + k − s1, 1− 2s1; 2

)

(ηµ2ν2�− ∂µ2∂ν2) . . .

(

ηµk+1νk+1
�− ∂µk+1

∂νk+1

) (

−∂µk+2
∂νk+2

)

. . .
(

−∂µs1
∂νs1

)

∂νs1+1 . . . ∂νs2

(s2)

h

ν1...νs2

,

or equivalently

Is1,s2 = − (−2)s2−1 2−1+2s1

∫

d3x
(s1)

h

µ1...µs1

εµ1ν1ρ∂
ρ
s1−1
∑

k=0

(−)k
(

s1 − 1

s1 − 1− k

)

(B.6)

2F1

(

−k,
1

2
− s1, 1− 2s1; 2

)

(−∂µ2∂ν2) . . .
(

−∂µk+1
∂νk+1

)

(

ηµk+2νk+2
�− ∂µk+2

∂νk+2

)

. . .
(

ηµs1νs1
�− ∂µs1

∂νs1
)

∂νs1+1 . . . ∂νs2

(s2)

h

ν1...νs2

.

Using the recursion relation 2F1

(

−k, 12 − s, 1−2s; 2
)

= 2−2s+k
k+1 2F1

(

−k − 2, 12 − s, 1−2s; 2
)

and the starting values 2F1

(

0, 12 − s, 1− 2s; 2
)

= 1 and 2F1

(

−1, 12 − s, 1− 2s; 2
)

= 0,
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one finds

2F1

(

−2j − 1,
1

2
− s, 1− 2s; 2

)

= 0 ,

2F1

(

−2j,
1

2
− s, 1− 2s; 2

)

=
Γ (2j + 1)Γ (1− 2s)

Γ (2j − 2s+ 1)
P
(−2s,s−2j− 1

2)
k

=
Γ (2j + 1)Γ (1− 2s)

Γ (2j − 2s+ 1)

(

j − s− 1
2

j

)

=
(−1)j

22j
Γ (2j) Γ (s− j)

Γ (s) Γ(j)
.

The summation is therefore only over even k = 2j and, using the fact that h’s are traceless

and the convenient notation of projectors πµν = ηµν − ∂µ∂ν
�

. we can write down

Is1,s2 =− (−2)s2−1 2−1+2s1

∫

d3x
(s1)

h

µ1...µs1

εµ1ν1ρ∂
ρ
�

s1−1

[

s1−1
2

]

∑

j=0

(−)j
1

22j

(

s1 − 1− j

j

)

πµ2µ3 . . . πµ2jµ2j+1πν2ν3 . . . πν2jν2j+1πµ2j+2ν2j+2 . . . πµs1νs1
∂νs1+1 . . . ∂νs2

(s2)

h

ν1...νs2

.

(B.7)

One can go to momentum representation by the substitutions
(s)

h (x) =
∫

d3k
(2π)3

e−ikx
(s)

h (k),

Is1,s2 = − (−2)s2−1 2−1+2s1(−i)s2−s1+1 (B.8)

∫

d3k
(s1)

h

µ1...µs1

εµ1ν1ρk
ρ(−k2)s1−1

[

s1−1
2

]

∑

j=0

(−)j
1

22j

(

s1 − 1− j

j

)

πµ2µ3 . . . πµ2jµ2j+1πν2ν3 . . . πν2jν2j+1πµ2j+2ν2j+2 . . . πµs1νs1
kνs1+1 . . . kνs2

(s2)

h

ν1...νs2

,

which corresponds to the amplitude (4.14) up to an overall constant. This follows from the

fact that h is traceless and s2 − s1 is even so we can substitute kνs1+1 . . . kνs2 with π’s.
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