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Renormalizable SU(5) completions of a Zee-type neutrino mass model

Krešimir Kumerički, Timon Mede, and Ivica Picek
Department of Physics, Faculty of Science, University of Zagreb,

P.O. Box 331, HR-10002 Zagreb, Croatia
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We explore the potential of a selected model of radiative neutrino masses to be implemented in a
renormalizable SU(5) unification framework. The Zee-type model under consideration uncovers the SU(5)
representations in which the new fields are embedded and which may contain also other light states leading
to the unification of gauge couplings. We perform an exhaustive search which reveals specific patterns of
new states and demonstrate that such patterns are consistent with a general choice of relevant scalar
potential. It turns out that all of the specific scenarios which lead to successful unification include the
colored scalars testable at the LHC.
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I. INTRODUCTION

Despite all the phenomenological success of the
Standard Model (SM), certain theoretical and experimental
issues like neutrino masses, dark matter, charge quantiza-
tion, hierarchy problem etc. seem to indicate the need to go
beyond its well-established framework. The ultraviolet
completions motivated by neutrino mass models may
address the open questions and pave the road beyond
the Standard Model (BSM). For example, the neutrino
masses in canonical type-I [1–5], type-II [6–11], and type-
III [12] tree-level seesaw models percolate down from a
single scale that may be linked to the unification point of
SM gauge couplings, hinted first within the SU(5) grand
unified theory (GUT) of Georgi and Glashow [13]. After
realizing that there is no single gauge coupling crossing in
this simplest GUT, it was noticed that augmenting the SM
by the second Higgs doublet and the corresponding super-
symmetric (SUSY) partners enables a successful minimal
SUSY SM (MSSM) unification [14]. A decisive role [15]
played by incomplete (or split) irreducible representations
(irreps) 5H in the MSSM unification success, motivated the
corresponding non-SUSY attempts to cure the crossing
problem [16,17] with just six copies of the SM Higgs
doublet field and nothing more. Still, the scale of such
unifications would be too low.
Further studies of unification in the context of non-

SUSY SU(5) GUTs employed incomplete SU(5) irreps
which contain new states introduced by tree-level seesaw

models. The studies in [18–20] employed adjoint SU(5)
representation 24F which contains both the fermion singlet
and the TeV-scale fermion triplet fields providing a low
scale hybrid of type-I and type-III seesaw models.
Similarly, Refs. [21–23] employed 15S SU(5) representa-
tion with the TeV-scale complex scalar triplet, employed in
the type-II seesaw mechanism.
When considering possible GUT embeddings of a

radiative neutrino mass generating mechanism, we opt
for genuine radiative Zee-type models, genuine in the
sense that no additional symmetries are required to make
them the dominant contribution to neutrino mass. At the
same time, by avoiding fermion singlets we are choosing
the SU(5) embedding and discard the SO(10) one. The first
one-loop model proposed by Zee [24] has introduced only
new scalar fields, the charged singlet and the second
complex doublet, which do not lead to competing tree-
level seesaw mechanisms. The embedding of the original
Zee model in the renormalizable non-SUSY SU(5) setup
has been studied in [25].
Our focus here will be on the variant of the Zee model

presented in [26], which in the following we call the BPR
model. It keeps the Zee’s charged scalar singlet, but a real
scalar triplet replaces Zee’s second Higgs doublet. Finally,
the BPR model introduces three copies of vectorlike lepton
doublet fields which, if embedded in split 5F, may
influence the gauge running as twelve Higgs doublets.
Let us note that besides the genuine one-loop model [26]
there exist three-loop radiative neutrino models [27,28],
where an automatic protection from the tree-level or lower
loop contributions has been achieved by introducing
appropriate larger weak multiplets. However, the appear-
ance of the ∼106 GeV Landau pole (LP) for the SUð2ÞL
gauge coupling g2 [29] eliminates these models from a
unification framework. In contrast, as demonstrated in [30],
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the BPR one-loop model with the scalar triplet as the largest
weak representation exhibits, in addition to the absence of
LP, perturbativity and stability up to the Planck scale.
Therefore, we proceed here with the study of the gauge
coupling unification in the context of the BPR loop model
[26] for which the above requirements with respect to
Yukawa and quartic couplings may remain valid when
including extra color octet or color sextet scalar fields [31].
As it will turn out, adding these fields may be crucial to
achieve the proper gauge unification.
In Sec. II we first present the set of BSM particles from

the neutrino model [26], dubbed BPR particles, and then
present the gauge-unification conditions which the newly
introduced states have to satisfy. In Sec. III, we will study
the conditions under which the gauge couplings unify, and
the particle spectra which make a proper unification
possible. Then in Sec. IV we will show that the appropriate
particle spectra are consistent with the scalar potential of
our SU(5) GUT scenarios. We conclude in Sec. V. The
details of the algorithm for search are given in Appendix A
and the details of SU(5) representations in Appendix B.

II. BPR MODEL FROM GUT PERSPECTIVE

A. BPR-model states

We adopt a simple and predictive TeV-scale radiative
model [26] in which the loop contribution is genuine, i.e.
self-protected like in the original Zee model. In its present
variant the color singlet, weak triplet, hypercharge zero
scalar field Δ ∼ ð1; 3; 0Þ,

Δ ¼ 1ffiffiffi
2

p
X
j

σjΔj ¼
 1ffiffi

2
p Δ0 Δþ

Δ− − 1ffiffi
2

p Δ0

!
; ð1Þ

is supplemented by a charged scalar singlet

hþ ∼ ð1; 1; 1Þ; ð2Þ

and by additional three generations of vectorlike lepton
doublets,

ER ≡ ðE0
R; E

−
RÞT ∼ ð1; 2;−1/2Þ;

EL ≡ ðE0
L; E

−
LÞT ∼ ð1; 2;−1/2Þ; ð3Þ

which are needed to close the neutrino mass loop diagram
displayed in Fig. 1. The corresponding vertices in the loop
diagram are provided by Yukawa and quartic couplings in

−L ⊃ y1ðLLÞcELhþ þ y2LLΔER þ λ7H†ΔHchþ þ H:c:

ð4Þ

The vacuum expectation value vSM of the SM Higgs
doublet H leads to the neutrino mass matrix

Mij ¼
X3
k¼1

½ðy1Þikðy2Þjk þ ðy2Þikðy1Þjk�
8π2

× λ7v2SMMEk
fðMEk

;mΔþ ; mhþÞ; ð5Þ

where fðm1; m2; m3Þ is a loop function specified in [26].
Assuming like in [26] the mass values ME ∼mΔþ ∼
mhþ ∼ 200–500 GeV, Eq. (5) leads to mν ∼ 0.1 eV for
the couplings y1;2 and λ7 of the order of 10−4. For
definiteness, we will in most of this work keep masses
of these new states fixed at 500 GeV. In principle, even
much larger masses would lead to a viable neutrino mass
model, with larger but still perturbative values of y1;2 and
λ7. Still, as we shall discuss later, such scenarios would not
bring much additional insight from the GUT perspective.
We display in Table I the SU(5) embedding of the SM

extended by states in the neutrino mass model at hand. We
note that additional potentially light BPR particles are
described by the same SM group representations as those
already populated by the SM states: new vectorlike
fermionic doublets ER;L belong to the same representation
as the HiggsHc, and similarly for the charged scalar singlet
hþ and the SM lepton singlet ecR, or the scalar adjoint triplet
Δ and the spin one triplet Wi

μ. Understanding the quantum
numbers of SM particles was one of the main motivations
which led to the development of GUTs. The fact that BPR
states populate already established SM representations
could be viewed as an additional motive to study them
in the GUT setup.

B. Matching BPR states with SU(5) irreps

One of the strongest arguments in favor of the original
Georgi-Glashow GUT scenario is a neat embedding of all
SM fermion representations, with apparently arbitrary
quantum numbers, into sum 5̄F ⊕ 10F of just two complete
lowest SU(5) representations. Since the gauge bosons have
to belong to the adjoint multiplet of the SU(5) group,
essentially the only remaining unknown has been the
structure of the scalar sector. In the present study, this
generalizes to the question of incorporating the well
motivated BPR set of particles into the same GUT context.

FIG. 1. The one-loop BPR [26] neutrino mass mechanism.
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Following the pattern of SM states, and general
principles of economy and elegance, BPR states at hand
may be expected to belong to the lowest possible
representations of the SU(5) group. This would put
scalar Δ in an adjoint 24, scalar hþ in 10, and vectorlike
leptons ER;L in the appropriate number of 5 ⊕ 5̄, which
is a choice displayed in the right column of Table I.
These new SU(5) irreps contain additional states dis-
played in Table I, which are not needed for the BPR
neutrino mass mechanism. Some among these additional

states will prove crucial in obtaining the desired gauge
coupling unification.
To completely specify the structure of our model

Lagrangian, we need to choose the SU(5) irreps that will
contain the Standard Model Higgs H. Here the most
economical choice would be 5, but, as we shall see, this
would not lead to a viable GUT model. Thus, we will
consider also the options where the Higgs state belongs to
45 or 70 irreps,1 and we complete SUð5Þ ⊃ SUð3Þc ×
SUð2ÞL × Uð1ÞY branching rules from Table I with

45 ¼
�
1; 2;þ 1

2

�
⊕
�
3; 1;−

1

3

�
⊕
�
3; 3;−

1

3

�
⊕
�
3̄; 1;þ 4

3

�
⊕
�
3̄; 2;−

7

6

�

⊕
�
6̄; 1;−

1

3

�
⊕
�
8; 2;þ 1

2

�
; ð6Þ

70 ¼
�
1; 2;þ 1

2

�
⊕
�
1; 4;þ 1

2

�
⊕
�
3; 1;−

1

3

�
⊕
�
3; 3;−

1

3

�
⊕
�
3̄; 3;þ 4

3

�

⊕
�
6; 2;−

7

6

�
⊕
�
8; 2;þ 1

2

�
⊕
�
15; 1;−

1

3

�
: ð7Þ

As is known, Higgs in a mixture of 5 and 45 can improve
the GUT fermion mass relations, like in the Georgi-
Jarlskog mechanism [32]. However, in the present work
we will not study the pattern of SM fermion masses.
On the other hand, a pattern of scalar masses and of

new vectorlike lepton masses is important for our
considerations, since these particles decisively affect
the running of gauge couplings. We need then to check
for any of these possibilities whether unification can be

achieved for large enough MGUT, whether the scalar
Lagrangian at the renormalizable level allows for
required masses of particles and, finally, whether such
a scenario is in compliance with phenomenological
constraints and the general theoretical requirement of
perturbativity [31,33].

C. Gauge coupling unification criteria

The unification of gauge couplings is controlled by the
renormalization group equations (RGE) which govern the
running of gauge couplings with the one-loop β coefficients
given by

TABLE I. Particle content and the SU(5) embedding options of the BPR neutrino mass model [26].

SMþ BPR ⊂ SUð5Þ
Scalar H ¼ ð1; 2;þ 1

2
Þ 5 ¼ ð1; 2;þ 1

2
Þ ⊕ ð3; 1;− 1

3
Þ; or 45, 70

Δ ¼ ð1; 3; 0Þ 24 ¼ ð1; 3; 0Þ ⊕ ð8; 1; 0Þ ⊕ ð1; 1; 0Þ
⊕ ð3; 2;− 5

6
Þ ⊕ ð3̄; 2;þ 5

6
Þ

hþ ¼ ð1; 1;þ1Þ 10 ¼ ð1; 1;þ1Þ ⊕ ð3̄; 1;− 2
3
Þ ⊕ ð3; 2;þ 1

6
Þ

Fermion 3 ×Q ¼ ð3; 2;þ 1
6
Þ 3 × 10 ¼ ð3; 2;þ 1

6
Þ ⊕ ð3̄; 1;− 2

3
Þ ⊕ ð1; 1;þ1Þ

3 × uc ¼ ð3̄; 1;− 2
3
Þ

3 × ec ¼ ð1; 1;þ1Þ
3 × L ¼ ð1; 2;− 1

2
Þ 3 × 5̄ ¼ ð1; 2;− 1

2
Þ ⊕ ð3̄; 1;þ 1

3
Þ

3 × dc ¼ ð3̄; 1;þ 1
3
Þ

3 × ER;L ¼ ð1; 2;− 1
2
Þ 3 × 5̄ ¼ ð1; 2;− 1

2
Þ ⊕ ð3̄; 1;þ 1

3
Þ; or 45, 70

Gauge Gμ ¼ ð8; 1; 0Þ 24 ¼ ð1; 3; 0Þ ⊕ ð8; 1; 0Þ ⊕ ð1; 1; 0Þ ⊕ ð3; 2;− 5
6
Þ ⊕ ð3̄; 2;þ 5

6
Þ

Wμ ¼ ð1; 3; 0Þ
Bμ ¼ ð1; 1; 0Þ

1Using even higher SU(5) irreps would expose us to the danger
of low Landau poles.
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bi ¼ −
11

3

X
G

TðGiÞDðGiÞ þ
4

3

X
F

TðFiÞDðFiÞκ

þ 1

3

X
S

TðSiÞDðSiÞη: ð8Þ

Here, the Dynkin indices TðRiÞ are defined as TðRiÞδab ≡
Tr½T̂aðRiÞT̂bðRiÞ� for generators T̂a in gauge, fermion and
scalar representations Gi, Fi and Si, respectively, and are
conventionally normalized to 1

2
for fundamental represen-

tations of SUðNÞ groups [and thus to 3
5
Ŷ2 for Uð1ÞY].

DðRiÞ≡Qj≠idimðRjÞ, κ being 1
2
(1) for Weyl (Dirac)

fermions and η being 1
2
(1) for real (complex) scalars.

The SM β coefficients (including the Higgs doublet)
are bSM ¼ ð41

10
;− 19

6
;−7Þ, and RGE have the analytical

solution

α−1i ðMGUTÞ ¼ α−1i ðmZÞ −
1

2π
Bi ln

MGUT

mZ
; ð9Þ

with coefficients

Bi ¼ bðSMÞ
i þ

X
mk<MGUT

ΔbðkÞi rk; ð10Þ

and the threshold weight factor of the BSM state k,
defined as

rk ¼
lnMGUT/mk

lnMGUT/mZ
; ð11Þ

with a value between 1 (for mk ¼ mZ) and 0 (for
mk ¼ MGUT), depending on the mass of the BSM particle

mk. The sum in (10) goes over all BSM states, withΔbðkÞi ¼
bðkÞi − bðk−1Þi being the increase in the β coefficients at the

threshold of a given BSM state, and bð0Þi ¼ bðSMÞ
i .

As first, the unification condition α1ðMGUTÞ ¼
α2ðMGUTÞ ¼ α3ðMGUTÞ≡ αGUT can be expressed in the
form of the so-called B-test [34,35]:

B23

B12

≡ B2 − B3

B1 − B2

¼ α−12 ðmZÞ − α−13 ðmZÞ
α−11 ðmZÞ − α−12 ðmZÞ

¼ 5

8

sin2 θwðmZÞ − αEMðmZÞ
α3ðmZÞ

3
8
− sin2 θwðmZÞ

¼ 0.718; ð12Þ

where we used the average numerical values for the
constants at mZ scale, as given in [36]. The comparison
to the corresponding SM value 0.528 indicates that the
couplings do not unify in the SM.

Second, the associated GUT scale

MGUT ¼ mZ exp

�
2πðα−11 ðmZÞ − α−12 ðmZÞÞ

B1 − B2

�

¼ mZ exp

�
184.87
B12

�
; ð13Þ

yields for the SM the value MGUT ¼ 1013 GeV. Therefore,
additional BSM states should improve unification and
increase its scale up to at least 5 × 1015 GeV which is in
agreement with proton lifetime bounds [37]. Such addi-
tional BSM states must therefore provide a negative net
contribution to B12 and positive to B23.

III. POSSIBLE GAUGE-UNIFICATION
REALIZATIONS

A. Effect of BPR states on gauge unification

Before embedding in the SU(5) GUT framework, we
first investigate how the new states, needed for neutrino
mass mechanism, influence the RGE running and to what
extent they alone could satisfy the unification criteria from
Sec. II C.
In Table II we list extra BPR states together with their

contribution to pertinent combinations of β-function coef-
ficients. As already stressed, the states with positive B23

and negative B12 are promising for unification. It can be
readily seen that only hþ is not of this kind.
If we consider the default configuration with all BPR

states close to the electroweak scale [i.e. weight factors
from Eq. (11) being rk ∼ 1], one immediately observes that
the B-test combination increases to B23/B12 ¼ 0.974, from
the SM value 0.528, considerably overshooting the
required value of 0.718 from Eq. (12). This is mostly
due to the strong effect of three copies of BPR vectorlike
lepton doublets. Since they actually double the RGE effect
of previously mentioned six Higgs doublets, one can
similarly achieve correct unification if they are set at the
intermediate scale with the factor rk ∼ 0.5. However, again
like in the six Higgs doublet case, the unification scale
would be too low.
Indeed, one observes that there is no way to obtain high

enough unification scale by using only BPR states. Namely,
even if negative effects of the scalar hþ state are avoided by
putting it at some very high scale, the total contribution of

TABLE II. Contributions of BPR states to RGE running, where
threshold weights rk are defined in Eq. (11). Note that two Weyl
fermion states EL and ER each come in Nvec ¼ 3 copies.

k ΔB23 ΔB12

hþ (1,1,1) 0 1
5
rk

Δ (1,3,0) 1
3
rk − 1

3
rk

EL;R ð1; 2;−1/2Þ 1
3
rk − 2

15
rk
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Δ and EL;R states to B12 is at most only −17/15 (for rk ¼ 1)
resulting in MGUT ¼ 1.1 × 1015 GeV as the maximal pos-
sible GUT scale, even if one would completely disregard
the condition of the gauge coupling crossing.
In conclusion, BPR states alone cannot lead to a

successful unification that would at the same time respect
proton decay bounds. To achieve that, some other states
below the GUT scale should be invoked. Such states are
naturally provided by embedding the BPR model in a SU
(5) unification framework, as we shall show in detail.

B. Higgs doublet in 5H
As explained in Sec. II B, we will first try the simplest

possible SU(5) embedding of the BPR mechanism, where
the SM Higgs doublet becomes a member of the 5H. The
scalar sector of this model contains 5H, 10S and 24S
multiplets [we use subscript H on those scalar irreps of
SU(5) which contain the SM Higgs field], and there are
Nvec generations of vectorlike matter in 5F ⊕ 5̄F, on top of
the Standard Model quarks and leptons in ng ¼ 3 gener-
ations of 10F and 5̄F, and gauge bosons in the adjoint 24g
representation, as displayed in Table I. Their contributions
to the RGE running are listed in Table III.
It is known that the simplest Georgi-Glashow SU(5)

GUT suffers from the doublet-triplet splitting problem,
where leptoquark S1 ¼ ð3; 1;−1/3Þ, which completes 5H
together with SM Higgs, has to be much heavier than the
Higgs so that it does not induce the fast proton decay. There
is nothing preventing the other scalar SU(5) multiplets to be

split, and we will check in Sec. IV that our splitting patterns
are consistent with the structure of the general scalar
potential. Still, whatever the actual mechanism responsible
for the multiplet splitting, there is no reason to assume that
this mechanism is somehow aligned with the neutrino mass
mechanism. Thus, we will be quite general in allowing the
splitting of masses within SU(5) multiplets.
With this freedom, and having at our disposal a variety of

states from Table III with different RGE behavior, the
unification prospects look promising. Indeed, we have
found several scenarios where coupling constants correctly
unify (cross at the single point). However, we also find that,
whatever the masses of BSM states betweenMZ andMGUT,
the highest possible unification scale in this model is
MGUT < 1015 GeV, in violation of experimental bounds
on proton decay widths. Thus, this simplest embedding of
the proposed neutrino mass model with the Higgs doublet
restricted to 5H irrep is ruled out.

C. Higgs doublet in 45H
Next we consider the scenario where the SM Higgs

doublet is embedded into 45H instead of 5H, or in some
mixture of both. The larger particle content can help in
raising the unification scale and, as a bonus, this setup can
serve to correct the wrong mass relations between charged
leptons and down-type quarks at the renormalizable level
which are usually obtained in the simplest SU(5) models.
The β coefficients of the extra states from scalar 45H can be
found in Table IV, which should be added to states in
Table III to obtain a complete embedding of the SM Higgs
and the BPR states into SU(5) multiplets.
In this more realistic model one finds many ways in

which one can achieve a correct unification, so we need to
specify some criteria that will lead to a set of models
covering all interesting scenarios; let us list those imple-
mented in our study.

(i) First, note that if all states of a given SU(5) irrep
appear at the same mass scale, their effect on RGE
cancels [contributions to either B23 or B12 from all

TABLE III. BSM contributions to RGE running in the simplest
SU(5) embedding of the BPRmechanism.H stands for SMHiggs
doublet whose contribution has already been accounted for by

bðSMÞ
i . The massless scalar leptoquarks X and Y get absorbed into

longitudinal components of massive gauge bosons, as dictated by
the Nambu-Goldstone mechanism—the β coefficients of these
scalars thus enter at the same scale as heavy vectors (i.e. rk ≈ 0).

k ΔB23 ΔB12

H ð1; 2; 1/2Þ 5H 1
6
rk − 1

15
rk

S1 ð3; 1;−1/3Þ − 1
6
rk 1

15
rk

hþ (1,1,1) 10S 0 1
5
rk

ð3̄; 1;−2/3Þ − 1
6
rk

4
15
rk

ð3; 2; 1/6Þ 1
6
rk − 7

15
rk

Δ
(1,1,0) 24S 0 0
(1,3,0) 1

3
rk − 1

3
rk

(8,1,0) − 1
2
rk 0

X, Y ð3; 2;−5/6Þ 1
12
rk

1
6
rk

X̄; Ȳ ð3̄; 2; 5/6Þ 1
12
rk

1
6
rk

EL;R ð1; 2;−1/2Þ 5̄F
1
3
rk − 2

15
rk

ð3̄; 1; 1/3Þ − 1
3
rk

2
15
rk

TABLE IV. Contributions of 45H to running. For a complete
model the multiplets from Table III are to be added. The states S1,
S3 and S̃1 are leptoquarks that, if light, would induce too fast
proton decay.

k ΔB23 ΔB12

Σa ð1; 2; 1/2Þ

45H

1
6
rk − 1

15
rk

S1 ≡ Σb ð3; 1;−1/3Þ − 1
6
rk 1

15
rk

S3 ≡ Σc ð3; 3;−1/3Þ 3
2
rk − 9

5
rk

S̃1 ≡ Σd ð3̄; 1; 4/3Þ − 1
6
rk 16

15
rk

Σe ð3̄; 2;−7/6Þ 1
6
rk 17

15
rk

Σf ð6̄; 1;−1/3Þ − 5
6
rk

2
15
rk

Σg ð8; 2; 1/2Þ − 2
3
rk − 8

15
rk
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states of a given SU(5) irrep in, e.g., Table III, taking
the same rk, add up to zero]. Thus, we will fix the
BPR states close to the electroweak scale (for
definiteness, we put them at 500 GeV), and by
doing so we do not lose much generality, from the
standpoint of RGE, because the effect on unification
of making e.g. BPR vectorlike leptons EL;R heavier
is the same as making the rest of the multiplet [in this
case ð3̄; 1; 1/3Þ states] lighter. (Some generality may
be lost if some of these other states cannot be made
lighter for other reasons.)

(ii) Next, since, as discussed before, we allow general
splitting of SU(5) multiplets, with any experimentally
allowed mass for the rest of BSM states (see Sec. IV),
we have enough freedom to achieve the exact gauge
coupling unification i.e. a fulfillment of the B-test, see
Eq. (12). Then, we require the GUT scale MGUT

larger than 2 × 1015 GeV. The lowest experimental
bound, coming from proton decay searches, is ac-
tually about 5 × 1015; however, it turns out that for
most of the scenarios presented here, a simplified
analysis (ignoring the Yukawa contributions to two-
loop RGE) shows that improving RGE to two-loop
accuracy increases MGUT beyond 5 × 1015 GeV.

(iii) We will also exclude scenarios with very heavy new
BSM particles, with masses between ∼1011 GeV
and MGUT. Otherwise, one can always take any
successful model, add some particles slightly below
MGUT that will have only small influence on run-
ning, and thus obtain many more models which will
be qualitatively the same as the ones presented in
this paper, only more complicated. This requirement
at the same time excludes from consideration
leptoquarks S1 ¼ ð3; 1;−1/3Þ, S̃1 ¼ ð3̄; 1; 4/3Þ and
S3 ¼ ð3; 3;−1/3Þ which, if lighter than ∼1011 GeV
would naturally lead to proton decay in violation of
experimental limits.

(iv) For all BSM particles we take 500 GeV as a lower
bound on their masses. Direct LHC searches some-
times put higher bounds on such states, but these
bounds are often obtained only within specific bench-
mark scenarios. For example, the recent CMS search
[38] puts the lower bound of 3 TeVon the color octet
state, like (8, 1, 0) from 24S, but only within the
benchmark model of Refs. [39,40], where couplings
to loop fermions in production and decay are taken to
be of order one (see also Ref. [41]).

(v) We include only particles from single copies of
scalar SU(5) irreps 5H, 10S, 24S and 45H (or, in the
next section 70H) and Nvec ¼ ng ¼ 3 copies of
vectorlike 5̄F, which are all already needed for
embedding the BPR neutrino mass mechanism.

Under these conditions, we performed the exhaustive
search of the parameter space, using the algorithm specified
in Appendix A, and resulting in successful scenarios listed
in Table V. As explained in Appendix A, when a given set

of new BSM states offers a continuum of possible GUT
scenarios (with different spectra), we represent this con-
tinuum by a specific choice of spectrum with the minimal
average mass of particles.2 Such a choice is motivated,
besides the need for definiteness, by the desire to focus on
models which have maximal discovery potential at LHC
and future colliders.
Note that a light ð8; 2; 1/2Þ is the only other allowed

representation in 45H with a negative B12 contribution
needed to increase MGUT and thus suppressing the proton
decay. Of course by itself it does not help the unification
due to negative B23 (acting alone it can decrease B23/B12
to 0.470), but its strong effect on unification scale is
important for all models displayed in Table V.

D. Higgs doublet in 70H
If we opt for SM Higgs belonging to 70H instead of 45H

(in addition to 5H), the search proceeds under the con-
ditions explicated in the previous subsection, and the β
coefficients of the extra states can be found in Table VI.
In this setup, we find three unification scenarios dis-

played in Table VII to which scenarios A1, A3, A4 and
A6 from Table V should be added, since they employ
only states from 45H that are also present in 70H. From
this search we have explicitly excluded representation
ð15; 1;−1/3Þ which, if light, leads to Landau poles below
MGUT. To avoid this, it should be heavier than at least
107 GeV [31] so that its effect on the RG running would be
diminished. Including also this representation leads to 16
additional scenarios beyond those in Tables V and VII,
which we have chosen not to list.
Interestingly, all viable scenarios in this setup, as dis-

played in Table VII, involve the color triplet ð3̄; 1; 1/3Þ at
the same scale (500 GeV) as BPR vectorlike leptons,
making the irrep 5̄F complete and nullifying its influence
on the RGE running. Thus, these states can all be at any

TABLE V. Seven unification scenarios with SM Higgs in 5
and/or 45 of SU(5) and BPR states fixed at ∼0.5 TeV.

irreps mk [TeV]

SM SU(5) A1 A2 A3 A4 A5 A6 A7

ð3̄; 1; 1/3Þ 5̄F 5000 2.3 × 106 450 2 × 105

ð3̄; 1;−2/3Þ 10S 2.4
ð3; 2; 1/6Þ 0.5 0.5 0.5 0.5 0.5

(8,1,0) 24S 0.5 0.5 0.5 0.5

ð1; 2; 1/2Þ 45H 0.5 260 0.5
ð6̄; 1;−1/3Þ 90 0.5 0.5
ð8; 2; 1/2Þ 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Mmax
GUT/ð1015 GeVÞ 2.8 2.5 6.2 2.8 2.8 6.2 6.5

2More precisely, maximal average threshold weight factor rk
defined in Eq. (11).
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other scale as well, without changing the gauge unification
property of the model. We note that there are no viable
scenarios with such unsplit fermion 5F and with Higgs in
45H, i.e. in the framework of Sec. III C.

IV. SCALAR POTENTIAL AND SPECTRUM

In Secs. III C and III D we singled out viable scenarios in
two variants of nonsupersymmetric SU(5) unification. Now
we are presenting for them the relevant expressions for
the scalar potentials and the resulting mass spectra,

demonstrating their consistency with the appropriate scalar
sector extensions. The scalar sector for the scenarios from
Sec. III C contains

(i) 24S: an adjoint 24-dimensional real traceless repre-
sentation χij;

(ii) 5H: a fundamental five-dimensional complex repre-
sentation Hi;

(iii) 10S: an antisymmetric ten-dimensional complex
representation ϕij;

(iv) 45H: a 45-dimensional complex two-index antisym-
metric traceless representation Σij

k ,
which get decomposed under the SM gauge group as
displayed in Table I and Eq. (6). For the scenario from
Sec. III D, Σij

k is replaced with
(iv) 70H: a 70-dimensional complex two-index symmet-

ric traceless representation Ωij
k ,

with the SM decomposition displayed in Eq. (7). The
details of individual representations can be found in
Appendix B. The following fields from this set can develop
potentially nonvanishing VEVs:

(i) the SM singlet field from χij whose GUT scale VEV
hð1; 1; 0Þχi≡ vGUT results in breaking SUð5Þ →
SUð3Þc × SUð2ÞL × Uð1ÞY ;

(ii) the neutral components of the weak doublets from
Hi and Σij

k whose SUð2ÞL ×Uð1ÞY → Uð1ÞQ break-
ing VEVs hð1; 2;þ 1

2
ÞHi≡ v5 and hð1; 2;þ 1

2
ÞΣi≡

v45 are subject to the condition v25 þ v245 ¼ v2SM;
(iii) the neutral components of ð1; 2;þ 1

2
ÞΩ and

ð1; 4;þ 1
2
ÞΩ from Ωij

k can also develop VEVs of
the order of electroweak scale;

(iv) the neutral component of the weak triplet from
χij can develop a tiny (few GeV) VEV hð1; 3; 0Þχi
severely constrained by the measured electroweak
precision ρ parameter.

A. Scalar potential with 5H ⊕ 10S ⊕ 24S ⊕ 45H
We are only interested in the part of the renormalizable

scalar potential that provides the SUð3Þc × SUð2ÞL ×
Uð1ÞY invariant contributions to the scalar spectrum
proportional to vGUT:

V ¼ V24ðχÞ þ V5ðH; χÞ þ V10ðϕ; χÞ þ V45ðΣ; χÞ þ VmixðH; χ;ΣÞ: ð14Þ

Here

V24 ¼ −
1

2
m2

χχ
i
jχ

j
i þ

ffiffiffiffiffi
10

3

r
μχχ

i
jχ

j
kχ

k
i þ

1

8
λ1χ

i
jχ

j
iχ

k
l χ

l
k þ

15

2
λ2χ

i
jχ

j
kχ

k
l χ

l
i; ð15Þ

V5 ¼ m2
HH

�
i H

i þ
ffiffiffiffiffi
30

p
μHH�

i χ
i
jH

j þ α1H�
i H

iχjkχ
k
j þ 30α2H�

i χ
i
jχ

j
kH

k; ð16Þ

V10 ¼ −m2
ϕϕ

�
ijϕ

ji þ 2
ffiffiffiffiffi
30

p
μϕϕ

�
ijχ

j
kϕ

ki þ β1ϕ
�
ijϕ

jiχkl χ
l
k þ 60β2ϕ

�
ijχ

j
kχ

k
lϕ

li þ 30β3ϕ
�
ijχ

j
kϕ

klχil; ð17Þ

TABLE VI. Contributions of 70H to RGE running. For a
complete model, the multiplets from Table III are to be added.
The states S1 and S3 are leptoquarks that, if light, would naturally
induce too fast proton decay.

k ΔB23 ΔB12

Ωa ð1; 2; 1/2Þ

70H

1
6
rk − 1

15
rk

S1 ≡ Ωb ð3; 1;−1/3Þ − 1
6
rk

1
15
rk

S3 ≡ Ωc ð3; 3;−1/3Þ 3
2
rk − 9

5
rk

Ωd ð3̄; 3; 4/3Þ 3
2
rk 6

5
rk

Ωe ð6; 2;−7/6Þ − 2
3
rk 34

15
rk

Ωf ð15; 1;−1/3Þ − 10
3
rk 1

3
rk

Ωg ð8; 2; 1/2Þ − 2
3
rk − 8

15
rk

Ωh ð1; 4; 1/2Þ 5
3
rk − 22

15
rk

TABLE VII. Three unification scenarios with SM Higgs in 5H
and 70H of SU(5), and BPR states fixed at ∼0.5 TeV. These are at
the same time all viable scenarios under assumption of unsplit
vectorlike fermion 5F.

irreps mk [TeV]

SM SU(5) B1 B2 B3

ð3̄; 1; 1/3Þ 5̄F 0.5 0.5 0.5

ð3; 2; 1/6Þ 10S 0.5

(8,1,0) 24S 0.5 0.5

ð1; 4; 1/2Þ
70H

1.8 × 106 1.3 × 104 6.3 × 106

ð8; 2; 1/2Þ 0.5 0.5 0.5

Mmax
GUT/ð1015 GeVÞ 2.6 10.6 32.0
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V45 ¼ m2
ΣΣ

ij
k Σ�k

ij þ 4
ffiffiffiffiffi
30

p
μΣΣ

ij
k Σ�l

ijχ
k
l þ 8

ffiffiffiffiffi
30

p
μ0ΣΣ

ij
k Σ�k

il χ
l
j

þ η1Σ
ij
k Σ�k

ij χ
l
mχ

m
l þ 120η2Σ

ij
k Σ�l

ijχ
k
mχ

m
l þ 240η3Σ

ij
k Σ�k

il χ
l
mχ

m
j

þ 48

5
η4Σ

ij
k Σ�l

imχ
k
jχ

m
l þ 120η5Σ

ij
k Σ�l

imχ
m
j χ

k
l þ 120η6Σ

ij
k Σ�k

lmχ
l
iχ

m
j ; ð18Þ

Vmix ¼
12

ffiffiffi
5

p

5
τΣij

k χ
k
i H

�
j þ 12

ffiffiffi
2

p
κ1Σ

ij
k χ

k
i χ

l
jH

�
l þ 12

ffiffiffi
2

p
κ2Σ

ij
k χ

k
l χ

l
iH

�
j þ H:c:; ð19Þ

and the summation over one upper and one lower repeating
index is assumed. The potential contains nine real param-
eters fmχ ; μχ ; mH; μH;mϕ; μϕ; mΣ; μΣ; μ0Σg and one com-
plex parameter fτg with positive dimension of mass. There
are an additional thirteen real and two complex dimension-
less parameters fλ1;λ2;α1;α2;β1;β2;β3;η1;η2;η3;η4;η5;η6g
and fκ1; κ2g, respectively. The signs and various symmetry
factors are introduced for convenience. Note that in the
unbroken phase the mass terms f−m2

χ ; m2
H;m

2
ϕ; m

2
Σg re-

present the squared masses of the corresponding SU(5)
representations (with the conventional prefactor 1

2
for the

real scalar fields and 1 for complex scalars).
The spectrum presented in Tables VIII and IX is

computed in the minimum of the scalar potential (the
vacuum state) obtained for

∂hVi
∂vGUT ≡ 0; ð20Þ

where

m2
χ ¼

1

2
vGUTð2μχ þ ðλ1 þ 14λ2ÞvGUTÞ; ð21Þ

and vGUT is kept as a free parameter. The six massless
complex scalar states ð3; 2;− 5

6
Þχ are absorbed into longi-

tudinal components of twelve heavy gauge bosons.
The two ð1; 2;þ 1

2
Þ representations from 5H and 45H mix

to form a SM Higgs doublet responsible for electroweak
symmetry breaking. To compute their physical masses one
needs to diagonalize the matrix

�
m2ð1; 2;þ 1

2
ÞH m2ð1; 2;þ 1

2
Þmix

ðm2ð1; 2;þ 1
2
ÞmixÞ� m2ð1; 2;þ 1

2
ÞΣ

�
: ð22Þ

A similar diagonalization proceeds for the states ð3; 1;− 1
3
Þ

from H and Σ. One of the masses needs to be around the
weak scale to correspond to the SM Higgs. It can as well be
fine-tuned to zero, since in our case we have neglected all
the vSM contributions to spectrum.
When both of the Higgs doublets develop a nonvanish-

ing VEV the Georgi-Jarlskog mechanism can be imple-
mented to account for the observed masses of light
fermions. It is also interesting to note that by excluding
the mixing terms (Vmix with coefficients τ, κ1 and κ2), as for
example in the scenario without 5H where the Higgs
doublet belongs entirely to 45H, the masses of fields from
Σ are not linearly independent, and the following relation
among them holds:

m2

�
1; 2;þ 1

2

�
Σ
−
3

4
m2

�
3; 1;−

1

3

�
Σ
−
9

8
m2

�
3; 3;−

1

3

�
Σ

−
3

4
m2

�
3̄; 1;þ 4

3

�
Σ
þ 3

4
m2

�
3̄; 2;−

7

6

�
Σ

−
3

8
m2

�
6̄; 1;−

1

3

�
Σ
þ 5

4
m2

�
8; 2;þ 1

2

�
Σ
¼ 0: ð23Þ

However, in the most general case the above expressions
for scalar masses are all linearly independent. One can
simplify the spectrum even further by imposing an addi-
tional Z2 symmetry under which in Eq. (15) μχ → 0, thus
imposing a strong correlation between the weak triplet and
the color octet masses:

m2ð1; 3; 0Þχ ¼ 20λ2v2GUT ¼ 4m2ð8; 1; 0Þχ ; ð24Þ

m2ð1; 1; 0Þχ ¼ 2m2
χ : ð25Þ

TABLE VIII. The scalar spectrum for the simplest SU(5)
embedding of BPR model with only 5H, 10S and 24S multiplets,
which corresponds to setting to zero the parameters in V45 and
Vmix. Their masses remain unchanged even after adding 45H or
70H to the particle content. Note that the parameters μH , μϕ and μχ
should be understood as multiplied by vGUT and α1, α2, β1, β2, β3,
λ1 and λ2 by v2GUT, while each of the masses is a sum
of the pertinent contributions. For example, m2ð3; 1;−1/3ÞH ¼
m2

H − 2μHvGUT þ ðα1 þ 4α2Þv2GUT.
m2

H μH α1 α2 m2
ϕ μϕ β1 β2 β3 μχ λ1 λ2

m2ð1; 2;þ 1
2
ÞH 1 3 1 9

m2ð3; 1;− 1
3
ÞH 1 −2 1 4

m2ð3; 2;þ 1
6
Þϕ 1 −1 −1 −13 6

m2ð3̄; 1;− 2
3
Þϕ 1 4 −1 −8 −4

m2ð1; 1;þ1Þϕ 1 −6 −1 −18 −9
m2ð1; 1; 0Þχ 1 1 14

m2ð1; 3; 0Þχ 5 20

m2ð8; 1; 0Þχ −5 5
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B. Scalar potential with 5H ⊕ 10S ⊕ 24S ⊕ 70H
As long as we are interested only in the vGUT-proportional spectrum, the form of the scalar potential remains unaltered

upon replacing Σij
k with Ωij

k in Eqs. (14)–(19). The corresponding scalar spectrum is shown in Tables VIII and X.
There are two major differences from the previous case with 45H. As before, disabling the mixing terms in the scalar

potential introduces the linear dependence among the masses of 70H,

m2

�
1; 2;þ 1

2

�
Ω
−
9

8
m2

�
3; 1;−

1

3

�
Ω
−
3

8
m2

�
3̄; 3;þ 4

3

�
Ω
þ 3

8
m2

�
6; 2;−

7

6

�
Ω

þ 1

4
m2

�
8; 2;þ 1

2

�
Ω
−
1

8
m2

�
1; 4;þ 1

2

�
Ω
¼ 0; ð26Þ

m2

�
3; 3;−

1

3

�
Ω
þ 1

2
m2

�
3̄; 3;þ 4

3

�
Ω
−
1

2
m2

�
6; 2;−

7

6

�
Ω
þ 1

2
m2

�
15; 1;−

1

3

�
Ω

−m2

�
8; 2;þ 1

2

�
Ω
−
1

2
m2

�
1; 4;þ 1

2

�
Ω
¼ 0; ð27Þ

but now this dependence is preserved even after the states ð1; 2;þ 1
2
ÞΩ and ð3; 1;− 1

3
ÞΩ effectively decouple through the

mixing with 5H. As can be seen from Eq. (27) the rest of the states remain linearly dependent, and since some of them are
heavy (e.g. the leptoquarks) a certain fine-tuning is needed to make a particular state light as required by unification.

TABLE IX. Additional contribution to the scalar spectrum in the vacuum after adding 45H to the 5H ⊕ 10S ⊕ 24S
model. The last two rows represent the mixing between 5H and 45H . Again, the parameters μΣ, μ0Σ and τ should be
multiplied by vGUT and η1, η2, η3, η4, η5, η6, κ1 and κ2 by v2GUT.

m2
Σ μΣ μ0Σ η1 η2 η3 η4 η5 η6 τ κ1 κ2

m2ð1; 2;þ 1
2
ÞΣ 1 7 19 1 31 67 3 26 21

m2ð3; 1;− 1
3
ÞΣ 1 2 −6 1 26 42 4 11 −4

m2ð3; 3;− 1
3
ÞΣ 1 12 4 1 36 52 6 −24

m2ð3̄; 1;þ 4
3
ÞΣ 1 −8 24 1 16 72 −24 36

m2ð3̄; 2;− 7
6
ÞΣ 1 12 −16 1 36 32 −24 16

m2ð6̄; 1;− 1
3
ÞΣ 1 −8 −16 1 16 32 16 16

m2ð8; 2;þ 1
2
ÞΣ 1 −8 4 1 16 52 −4 −24

m2ð1; 2;þ 1
2
Þmix −3 −3

ffiffiffi
3

p
−
ffiffiffi
3

p
m2ð3; 1;− 1

3
Þmix 2

ffiffiffi
3

p
−4 2

TABLE X. Additional contribution to the scalar spectrum in the vacuum after adding 70H to the 5H ⊕ 10S ⊕ 24S
model. The last two rows represent the mixing between 5H and 70H. Again, μΩ, μ0Ω and τ̃ should be understood as
multiplied by vGUT and η̃1, η̃2, η̃3, η̃4, η̃5, η̃6, κ̃1 and κ̃2 by v2GUT.

m2
Ω μΩ μ0Ω η̃1 η̃2 η̃3 η̃4 η̃5 η̃6 τ̃ κ̃1 κ̃2

m2ð1; 2;þ 1
2
ÞΩ 1 2 14 1 26 62 6 16 6

m2ð3; 1;− 1
3
ÞΩ 1 16

3
− 8

3
1 88

3
136
3

16
3

28
3

− 32
3

m2ð3; 3;− 1
3
ÞΩ 1 12 4 1 36 52 6 −24

m2ð3̄; 3;þ 4
3
ÞΩ 1 −8 24 1 16 72 −24 36

m2ð6; 2;− 7
6
ÞΩ 1 12 −16 1 36 32 −24 16

m2ð15; 1;− 1
3
ÞΩ 1 −8 −16 1 16 32 16 16

m2ð8; 2;þ 1
2
ÞΩ 1 −8 4 1 16 52 −4 −24

m2ð1; 4;þ 1
2
ÞΩ 1 12 24 1 36 72 36 36

m2ð1; 2;þ 1
2
Þmix −3

ffiffiffi
2

p
−3

ffiffiffi
6

p
−
ffiffiffi
6

p
m2ð3; 1;− 1

3
Þmix −4 8ffiffi

3
p − 4ffiffi

3
p
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The second difference comes from the fact that, when
considering the full scalar potential for 45H and 70H, they
are not of the same form any more due to different
symmetry properties of Σij

k and Ωij
k . Namely, since ϕij is

antisymmetric and Ωij
k is symmetric, all terms contracting

Ωij
k with ϕ�

ij vanish. Consequently, the Georgi-Jarlskog
mechanism cannot be used in this case and we have to rely
on either nonrenormalizable Yukawa terms or some other
mechanism to explain the pattern of SM fermion masses.

V. CONCLUSIONS

Although the SM particle set has been completed with
the discovery of the Higgs boson in 2012, it is far from
being established as a unique, isolated set [42]. Our search
for possible additional particles proceeds with an aim to
both explain the neutrino masses and to achieve the
unification of gauge couplings. With this in mind, we rely
on the BSM states employed in the selected Zee-type BPR
neutrino model [26]. This set of states allows us to
introduce incomplete SU(5) representations, that have a
potential to improve gauge coupling crossing. Still, this set
alone leads to too low unification scaleMGUT < 1015 GeV,
if the Higgs doublet is restricted to belong to 5H irrep.
In contrast, there are immense possibilities to achieve the

successful unification if the SMHiggs doublet is embedded
into 45H. Therefore we specify a plausible set of criteria
under which our search algorithm shrinks the number of
possibilities to seven successful scenarios listed in Table V.
In all of them, a light colored scalar ð8; 2; 1/2Þ provided by
45H plays a decisive role. If we choose the SM Higgs
belonging to 70H instead of 45H, our search algorithm
selects four scenarios (A1, A3, A4 and A6) from Table V,
and allows for three additional scenarios displayed in
Table VII. Notably, in these new scenarios the BPR
vectorlike leptons are assigned to complete irrep 5F, which
do not affect the RGE running. Since in these latter
scenarios only the scalar SU(5) irreps are incomplete, an
eventual verification of them would be in support of a
conjecture [43] that only scalar irreps may be split.
To conclude, in our procedure of renormalizable SU(5)

embedding, the colorless BPR particles employed in the
neutrino mass model get accompanied by the colored
partners to enable a successful unification. We decide to
keep sufficiently heavy those among the colored leptoquark
scalars which present a threat to proton stability, and the
other colored states may play a model-monitoring role both
through the LHC phenomenology [34,35] and through tests
at Super(and future Hyper)-Kamiokande [37] experiments.
We also point out that in most of the allowed parameter

space the color octet scalar ð8; 2; 1/2Þ is the most promising
BSM state for the LHC searches, and as such is studied
already in [25]. Additional colored states in the specific
gauge unification scenarios in Tables V and VII call for a

study of characteristic exotic signals at the LHC, which
may make some among these specific models falsifiable.
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APPENDIX A: ALGORITHM FOR OPTIMAL
UNIFICATION SEARCH

When studying GUT models with several new BSM
states, one needs a well-defined procedure for identifying
the viable unification scenarios. To this end, it is of some
advantage to “linearize” the B-test (12),

B23

B12

¼ 0.718≡ b; ðA1Þ

by first separating the fixed contribution of SM states from
a contribution of the variable mass BSM states,

Bij ¼ BSM
ij þ BBSM

ij : ðA2Þ

In the next step we write the gauge coupling crossing
condition in the form

BBSM
23 − bBBSM

12 ¼ bBSM
12 − BSM

23 ¼ 1.384≡ c: ðA3Þ

Finally, we separate the β-function coefficients ΔbðkÞi from
the threshold weight factors rk (11) of each of the N BSM
states and write the crossing test as

XN
k¼1

ckrk ¼ c; ðA4Þ

where ck ¼ðΔbðkÞ2 −ΔbðkÞ3 Þ−bðΔbðkÞ1 −ΔbðkÞ2 Þ. For exam-
ple, the EL;R, hþ and Δ states responsible for the neutrino
masses in the BPR model, if they are at electroweak scale
(rk ≈ 1), contribute to this sum with

P
ckrk ≈ 3, and

significantly overshoot the required value (A3). Thus,
we need to add extra states with total negative contributionP

ckrk ≈ −1.6. By choosing some particular set of states
we solve for rk.
In principle, there is an experimental uncertainty of

constant c [related to the uncertainty of b in (A1)], but we
do not need to discuss it because most of the timewewill be
able to require the exact gauge crossing, regardless of
possible small variations in the value of c.
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Along the same lines, the expression for the GUT scale
(13) can be recast in a condition on BBSM

12 ,

BBSM
12 ¼ 184.87

lnMGUT/mZ
− BSM

12 ≈ −1.43≡ s; ðA5Þ

where to get the numerical value we use the low exper-
imental bound on MGUT ¼ 5 × 1015 GeV. This can again
be written in a simple form, linear in variables rk,

XN
k¼1

skrk ¼ s; ðA6Þ

with sk ¼ ΔbðkÞ1 − ΔbðkÞ2 .
Obviously, if we have just one new variable BSM state

(N ¼ 1) at our disposal, we can just solve the crossing
condition (A4), obeying any existing experimental lower
bounds

mk ≥ mk;min → rk ≤ rk;max; ðA7Þ

and check that the GUT scale is high enough. For two
states, N ¼ 2,MGUT can also be chosen at will, and we can
either require it equal to the experimental lowest bound, or
look for the range of possible MGUT for which the solution
of (A4) and (A6) exists. Regardless of this choice, for more
than two particles, N ≥ 3, the problem becomes under-
determined and we need another criteria. To obtain definite
scenarios we choose to maximize the norm of the vector,

r ¼ ðr1; r2;…; rNÞ; ðA8Þ

which means that we choose scenarios with roughly
minimal masses of new particles, or, in other words,

we choose scenarios which have maximal discovery
potential.
Following further this principle of maximal discovery

potential, one could also try to minimize at the same time
the distance of MGUT to the existing experimental lower
bound. We have tried this, but a necessary choice of relative
weight of two optimization objectives brings a complica-
tion which we deem unnecessary at this point. Thus, we
performed, for each choice for a set of BSM states, a one-
dimensional scan with ever increasing fixed MGUT, to find
the range of MGUT for which the unification scenario
works. The problem can be organized as a standard linear
algebra matrix equation,

Ar≡
�
c1 c2 � � � cN
s1 s2 � � � sN

�
0
BBB@

r1
r2
� � �
rN

1
CCCA ¼

�
c

s

�
≡ a; ðA9Þ

and if we are temporarily not concerned with bounds
on rk, it can be solved using the Lagrange multiplier
method to obtain a solution with extremal krk, which is
r ¼ ATðAATÞ−1a. One can also choose to make a variable
change rk → xk ≡ rk;max − rk and minimize kxk instead of
maximizing krk. To take the bounds on rk properly into
account, a more sophisticated optimization algorithm is
needed and we used the sequential least squares program-
ming algorithm SLSQP [44,45].

APPENDIX B: DETAILS OF SU(5)
REPRESENTATIONS

In this Appendix we present the structure and normal-
izations of used SU(5) representations.

1. Adjoint representation

χij ¼

0
BBBBBBBBB@

− 2ffiffiffiffi
30

p σ þ 1ffiffi
2

p O1 þ 1ffiffi
6

p O2 ORḠ ORB̄ XR YR

OGR̄ − 2ffiffiffiffi
30

p σ − 1ffiffi
2

p O1 þ 1ffiffi
6

p O2 OGB̄ XG YG

OBR̄ OBḠ − 2ffiffiffiffi
30

p σ − 2ffiffi
6

p O2 XB YB

X̄R X̄G X̄B
3ffiffiffiffi
30

p σ þ 1ffiffi
2

p Δ0 Δþ

ȲR ȲG ȲB Δ−
3ffiffiffiffi
30

p σ − 1ffiffi
2

p Δ0

1
CCCCCCCCCA
; ðB1Þ

is the adjoint 24-dimensional real traceless representation

X5
i¼1

χii ¼ 0; ðB2Þ
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which decomposes under the SM group as

24 ¼ ð1; 1; 0Þ
zfflfflfflffl}|fflfflfflffl{σ

⊕ ð1; 3; 0Þ
zfflfflfflffl}|fflfflfflffl{Δ

⊕ ð8; 1; 0Þ
zfflfflfflffl}|fflfflfflffl{O

⊕
�
3; 2;−

5

6

�zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{X;Y

⊕
�
3̄; 2;þ 5

6

�zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{X̄;Ȳ

: ðB3Þ

The symbols σ,Δ,O, X, Y (and their complex conjugates X̄
and Ȳ) denote the SM singlet field, the weak triplet, the
color octet and the lower and upper components of SUð2ÞL
doublet ð3; 2;− 5

6
Þ, respectively. Note that the singlet σ, the

electrically neutral triplet component Δ0 and colorless octet
components O1 and O2 are real fields so that their mass
terms come with a prefactor 1

2
.

2. Fundamental representation

Hi and H�
i are the five-dimensional fundamental and

antifundamental complex representations with SM decom-
position

5 ¼
�
1; 2;þ 1

2

�zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{H

⊕
�
3; 1;−

1

3

�zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{S1

; ðB4Þ

whose fields have the same quantum numbers as

5̄F ¼
�

dcα
ϵabLb

�
¼

0
BBBBBB@

dcR̄
dcḠ
dcB̄
e

−ν

1
CCCCCCA
; ðB5Þ

and where the weak doublet can play the role of Standard
Model Higgs and potentially mix with its counterpart from
Σij
k or Ωij

k .

3. Two-index antisymmetric representation

ϕij and ϕ�
ij are ten-dimensional complex antisymmetric

representations

ϕij ¼ −ϕji; ðB6Þ

with the SM decomposition

10 ¼ ð1; 1;þ1Þ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{hþ

⊕
�
3̄; 1;−

2

3

�
⊕
�
3; 2;þ 1

6

�
; ðB7Þ

whose fields have the same quantum numbers as

10F ¼ 1ffiffiffi
2

p
�

ϵαβγucγ Qαb

−ðQβaÞT ϵabec

�
¼ 1ffiffiffi

2
p

0
BBBBBB@

0 ucB̄ −ucḠ uR dR
−ucB̄ 0 ucR̄ uG dG
ucḠ −ucR̄ 0 uB dB
−uR −uG −uB 0 ec

−dR −dG −dB −ec 0

1
CCCCCCA
: ðB8Þ

The normalization factor 1ffiffi
2

p is there only for convenience to avoid the double counting of fields in the mass term.

4. 45-dimensional representation

Σij
k and Σ�k

ij are 45-dimensional complex representations satisfying the antisymmetry and tracelessness conditions

Σij
k ¼ −Σji

k ; ðB9Þ

X5
i¼1

Σij
i ¼ 0; j ¼ 1;…; 5: ðB10Þ

Under the SM it is decomposed as

45 ¼
�
1; 2;þ 1

2

�zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{Σa

⊕
�
3; 1;−

1

3

�zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Σb

⊕
�
3; 3;−

1

3

�zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Σc

⊕
�
3̄; 1;þ 4

3

�zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{Σd

⊕
�
3̄; 2;−

7

6

�zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Σe

⊕
�
6̄; 1;−

1

3

�zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Σf

⊕
�
8; 2;þ 1

2

�zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{Σg

; ðB11Þ
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where its nonzero components are

Σ15
4 ¼ −Σ51

4 →
Σ−R
cffiffiffi
2

p ; Σ25
4 ¼ −Σ52

4 →
Σ−G
cffiffiffi
2

p ; Σ35
4 ¼ −Σ53

4 →
Σ−B
cffiffiffi
2

p ;

Σ14
5 ¼ −Σ41

5 →
ΣþR
cffiffiffi
2

p ; Σ24
5 ¼ −Σ42

5 →
ΣþG
c ffiffiffi
2

p ; Σ34
5 ¼ −Σ43

5 →
ΣþB
cffiffiffi
2

p ;

Σ45
1 ¼ −Σ54

1 →
ΣR̄
dffiffiffi
2

p ; Σ45
2 ¼ −Σ54

2 →
ΣḠ
dffiffiffi
2

p ; Σ45
3 ¼ −Σ54

3 →
ΣB̄
dffiffiffi
2

p ;

Σ23
4 ¼ −Σ32

4 →
Σ−R̄
effiffiffi
2

p ; Σ13
4 ¼ −Σ31

4 →
Σ−Ḡ
effiffiffi
2

p ; Σ12
4 ¼ −Σ21

4 →
Σ−B̄
effiffiffi
2

p ;

Σ23
5 ¼ −Σ32

5 →
ΣþR̄
effiffiffi
2

p ; Σ13
5 ¼ −Σ31

5 →
ΣþḠ
e ffiffiffi
2

p ; Σ12
5 ¼ −Σ21

5 →
ΣþB̄
effiffiffi
2

p ;

Σ23
1 ¼ −Σ32

1 →
ΣR̄ R̄
fffiffiffi
2

p ; Σ13
2 ¼ −Σ31

2 →
ΣḠ Ḡ
f ffiffiffi
2

p ; Σ12
3 ¼ −Σ21

3 →
ΣB̄ B̄
fffiffiffi
2

p ;

Σ34
2 ¼ −Σ43

2 →
ΣþBḠ
g ffiffiffi
2

p ; Σ14
3 ¼ −Σ41

3 →
ΣþRB̄
g ffiffiffi
2

p ; Σ24
1 ¼ −Σ42

1 →
ΣþGR̄
g ffiffiffi
2

p ;

Σ24
3 ¼ −Σ42

3 →
ΣþGB̄
g ffiffiffi
2

p ; Σ34
1 ¼ −Σ43

1 →
ΣþBR̄
g ffiffiffi
2

p ; Σ14
2 ¼ −Σ41

2 →
ΣþRḠ
g ffiffiffi
2

p ;

Σ35
2 ¼ −Σ53

2 →
Σ−BḠ
g ffiffiffi
2

p ; Σ15
3 ¼ −Σ51

3 →
Σ−RB̄
g ffiffiffi
2

p ; Σ25
1 ¼ −Σ52

1 →
Σ−GR̄
g ffiffiffi
2

p ;

Σ25
3 ¼ −Σ52

3 →
Σ−GB̄
g ffiffiffi
2

p ; Σ35
1 ¼ −Σ53

1 →
Σ−BR̄
g ffiffiffi
2

p ; Σ15
2 ¼ −Σ51

2 →
Σ−RḠ
g ffiffiffi
2

p ;

Σ12
2 ¼ −Σ21

2 →
ΣR
b

2
ffiffiffi
2

p þ ΣR
f

2
; Σ23

3 ¼ −Σ32
3 →

ΣG
b

2
ffiffiffi
2

p −
ΣG
f

2
;

Σ13
1 ¼ −Σ31

1 → −
ΣB
b

2
ffiffiffi
2

p þ ΣB
f

2
; Σ13

3 ¼ −Σ31
3 →

ΣR
b

2
ffiffiffi
2

p −
ΣR
f

2
;

Σ12
1 ¼ −Σ21

1 → −
ΣG
b

2
ffiffiffi
2

p −
ΣG
f

2
; Σ23

2 ¼ −Σ32
2 → −

ΣB
b

2
ffiffiffi
2

p −
ΣB
f

2
;

Σ14
4 ¼ −Σ41

4 → −
ΣR
b

2
ffiffiffi
2

p þ Σ0R
c

2
; Σ24

4 ¼ −Σ42
4 → −

ΣG
b

2
ffiffiffi
2

p þ Σ0G
c

2
;

Σ34
4 ¼ −Σ43

4 → −
ΣB
b

2
ffiffiffi
2

p −
Σ0B
c

2
; Σ15

5 ¼ −Σ51
5 → −

ΣR
b

2
ffiffiffi
2

p −
Σ0R
c

2
;

Σ25
5 ¼ −Σ52

5 → −
ΣG
b

2
ffiffiffi
2

p −
Σ0G
c

2
; Σ35

5 ¼ −Σ53
5 → −

ΣB
b

2
ffiffiffi
2

p þ Σ0B
c

2
;

Σ14
1 ¼ −Σ41

1 →
Σþ
a

2
ffiffiffi
6

p þ ΣþS1
g

2
þ ΣþS2

g

2
ffiffiffi
3

p ; Σ15
1 ¼ −Σ51

1 → −
Σ−
a

2
ffiffiffi
6

p þ Σ−S1
g

2
þ Σ−S2

g

2
ffiffiffi
3

p ;

Σ24
2 ¼ −Σ42

2 →
Σþ
a

2
ffiffiffi
6

p −
ΣþS1
g

2
þ ΣþS2

g

2
ffiffiffi
3

p ; Σ25
2 ¼ −Σ52

2 → −
Σ−
a

2
ffiffiffi
6

p −
Σ−S1
g

2
þ Σ−S2

g

2
ffiffiffi
3

p ;

Σ34
3 ¼ −Σ43

3 →
Σþ
a

2
ffiffiffi
6

p −
ΣþS2
g ffiffiffi
3

p ; Σ35
3 ¼ −Σ53

3 → −
Σ−
a

2
ffiffiffi
6

p −
Σ−S2
g ffiffiffi
3

p ;

Σ45
5 ¼ −Σ54

5 →
1

2

ffiffiffi
3

2

r
Σþ
a ; Σ45

4 ¼ −Σ54
4 →

1

2

ffiffiffi
3

2

r
Σ−
a ; ðB12Þ
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with the superscript used to distinguish the individual field components in Σa;…;h by indicating the sign of their SUð2ÞL and
their SUð3Þc quantum numbers [where R, G and B stand for ð1

2
; 1

2
ffiffi
3

p Þ, ð− 1
2
; 1

2
ffiffi
3

p Þ and ð0;− 1ffiffi
3

p Þ pairs] under the diagonal

generators of the corresponding subgroup. In this notation it is the field Σ−
a [a neutral component of ð1; 2;þ 1

2
ÞΣ] which

develops a nonzero VEV hΣ−
a i≡ v45.

5. 70-dimensional representation

Ωij
k and Ω�k

ij are 70-dimensional complex representations satisfying the symmetry and tracelessness conditions

Ωij
k ¼ Ωji

k ; ðB13Þ
X5
i¼1

Ωij
i ¼ 0; j ¼ 1;…; 5: ðB14Þ

Under SM it gets decomposed as

70 ¼
�
1; 2;þ 1

2

�zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{Ωa

⊕
�
3; 1;−

1

3

�zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Ωb

⊕
�
3; 3;−

1

3

�zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Ωc

⊕
�
3̄; 3;þ 4

3

�zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{Ωd

⊕
�
6; 2;−

7

6

�zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Ωe

⊕
�
15; 1;−

1

3

�
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Ωf

⊕
�
8; 2;þ 1

2

�
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Ωg

⊕
�
1; 4;þ 1

2

�
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Ωh

; ðB15Þ

where its nonzero components are

Ω11
1 →

ΩR
bffiffiffi
6

p −
ΩR2

fffiffiffi
2

p ; Ω22
1 → ΩGGR̄

f ; Ω33
1 → ΩBBR̄

f ; Ω44
1 → ΩþR̄

d ; Ω55
1 → Ω−R̄

d ;

Ω11
2 → ΩRRḠ

f ; Ω22
2 →

ΩG
bffiffiffi
6

p −
ΩG2

fffiffiffi
2

p ; Ω33
2 → ΩBBḠ

f ; Ω44
2 → ΩþḠ

d ; Ω55
2 → Ω−Ḡ

d ;

Ω11
3 → ΩRRB̄

f ; Ω22
3 → ΩGGB̄

f ; Ω33
3 →

ΩB
bffiffiffi
6

p −
ΩB2

fffiffiffi
2

p ; Ω44
3 → ΩþB̄

d ; Ω55
3 → Ω−B̄

d ;

Ω11
4 → Ω−RR

e ; Ω22
4 → Ω−GG

e ; Ω33
4 → Ω−BB

e ; Ω44
4 → −

Ωþ
affiffiffi
3

p þΩþ
hffiffiffi
3

p ; Ω55
4 → Ω−−

h ;

Ω11
5 → ΩþRR

e ; Ω22
5 → ΩþGG

e ; Ω33
5 → ΩþBB

e ; Ω44
5 → Ωþþ

h ; Ω55
5 →

Ω−
affiffiffi
3

p −
Ω−

hffiffiffi
3

p ;

Ω15
4 ¼ Ω51

4 →
Ω−R

cffiffiffi
2

p ; Ω25
4 ¼ Ω52

4 →
Ω−G

cffiffiffi
2

p ; Ω35
4 ¼ Ω53

4 →
Ω−B

cffiffiffi
2

p ;

Ω14
5 ¼ Ω41

5 →
ΩþR

cffiffiffi
2

p ; Ω24
5 ¼ Ω42

5 →
ΩþG

cffiffiffi
2

p ; Ω34
5 ¼ Ω43

5 →
ΩþB

cffiffiffi
2

p ;

Ω45
1 ¼ Ω54

1 →
Ω0R̄

dffiffiffi
2

p ; Ω45
2 ¼ Ω54

2 →
Ω0Ḡ

dffiffiffi
2

p ; Ω45
3 ¼ Ω54

3 →
Ω0B̄

dffiffiffi
2

p ;

Ω23
4 ¼ Ω32

4 →
Ω−R̄

effiffiffi
2

p ; Ω13
4 ¼ Ω31

4 →
Ω−Ḡ

effiffiffi
2

p ; Ω12
4 ¼ Ω21

4 →
Ω−B̄

effiffiffi
2

p ;

Ω23
5 ¼ Ω32

5 →
ΩþR̄

effiffiffi
2

p ; Ω13
5 ¼ Ω31

5 →
ΩþḠ

effiffiffi
2

p ; Ω12
5 ¼ Ω21

5 →
ΩþB̄

effiffiffi
2

p ;

Ω23
1 ¼ Ω32

1 →
ΩR̄ R̄

fffiffiffi
2

p ; Ω13
2 ¼ Ω31

2 →
ΩḠ Ḡ

fffiffiffi
2

p ; Ω12
3 ¼ Ω21

3 →
ΩB̄ B̄

fffiffiffi
2

p ;
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Ω34
2 ¼ Ω43

2 →
ΩþBḠ

g ffiffiffi
2

p ; Ω14
3 ¼ Ω41

3 →
ΩþRB̄

g ffiffiffi
2

p ; Ω24
1 ¼ Ω42

1 →
ΩþGR̄

g ffiffiffi
2

p ;

Ω24
3 ¼ Ω42

3 →
ΩþGB̄

g ffiffiffi
2

p ; Ω34
1 ¼ Ω43

1 →
ΩþBR̄

g ffiffiffi
2

p ; Ω14
2 ¼ Ω41

2 →
ΩþRḠ

g ffiffiffi
2

p ;

Ω35
2 ¼ Ω53

2 →
Ω−BḠ

g ffiffiffi
2

p ; Ω15
3 ¼ Ω51

3 →
Ω−RB̄

g ffiffiffi
2

p ; Ω25
1 ¼ Ω52

1 →
Ω−GR̄

g ffiffiffi
2

p ;

Ω25
3 ¼ Ω52

3 →
Ω−GB̄

g ffiffiffi
2

p ; Ω35
1 ¼ Ω53

1 →
Ω−BR̄

g ffiffiffi
2

p ; Ω15
2 ¼ Ω51

2 →
Ω−RḠ

g ffiffiffi
2

p ;

Ω12
2 ¼ Ω21

2 →
ΩR

b

2
ffiffiffi
6

p þ ΩR1

f

2
þ ΩR2

f

2
ffiffiffi
2

p ; Ω23
3 ¼ Ω32

3 →
ΩG

b

2
ffiffiffi
6

p −
ΩG1

f

2
þ ΩG2

f

2
ffiffiffi
2

p ;

Ω13
1 ¼ Ω31

1 →
ΩB

b

2
ffiffiffi
6

p þ ΩB1

f

2
þ ΩB2

f

2
ffiffiffi
2

p ; Ω13
3 ¼ Ω31

3 →
ΩR

b

2
ffiffiffi
6

p −
ΩR1

f

2
þ ΩR2

f

2
ffiffiffi
2

p ;

Ω12
1 ¼ Ω21

1 →
ΩG

b

2
ffiffiffi
6

p þ ΩG1

f

2
þ ΩG2

f

2
ffiffiffi
2

p ; Ω23
2 ¼ Ω32

2 →
ΩB

b

2
ffiffiffi
6

p −
ΩB1

f

2
þ ΩB2

f

2
ffiffiffi
2

p ;

Ω14
4 ¼ Ω41

4 → −
ΩR

bffiffiffi
6

p þΩ0R
c

2
; Ω24

4 ¼ Ω42
4 → −

ΩG
bffiffiffi
6

p þΩ0G
c

2
;

Ω34
4 ¼ Ω43

4 → −
ΩB

bffiffiffi
6

p −
Ω0B

c

2
; Ω15

5 ¼ Ω51
5 → −

ΩR
bffiffiffi
6

p −
Ω0R

c

2
;

Ω25
5 ¼ Ω52

5 → −
ΩG

bffiffiffi
6

p −
Ω0G

c

2
; Ω35

5 ¼ Ω53
5 → −

ΩB
bffiffiffi
6

p þ Ω0B
c

2
;

Ω14
1 ¼ Ω41

1 →
Ωþ

a

2
ffiffiffi
3

p þ ΩþS1
g

2
þ ΩþS2

g

2
ffiffiffi
3

p ; Ω15
1 ¼ Ω51

1 → −
Ω−

a

2
ffiffiffi
3

p þΩ−S1
g

2
þ Ω−S2

g

2
ffiffiffi
3

p ;

Ω24
2 ¼ Ω42

2 →
Ωþ

a

2
ffiffiffi
3

p −
ΩþS1

g

2
þΩþS2

g

2
ffiffiffi
3

p ; Ω25
2 ¼ Ω52

2 → −
Ω−

a

2
ffiffiffi
3

p −
Ω−S1

g

2
þΩ−S2

g

2
ffiffiffi
3

p ;

Ω34
3 ¼ Ω43

3 →
Ωþ

a

2
ffiffiffi
3

p −
ΩþS2

g ffiffiffi
3

p ; Ω35
3 ¼ Ω53

3 → −
Ω−

a

2
ffiffiffi
3

p −
Ω−S2

gffiffiffi
3

p ;

Ω45
5 ¼ Ω54

5 → −
Ωþ

a

2
ffiffiffi
3

p −
Ωþ

hffiffiffi
3

p ; Ω45
4 ¼ Ω54

4 →
Ω−

a

2
ffiffiffi
3

p þ Ω−
hffiffiffi
3

p ; ðB16Þ

and the same notation for individual field components was used as for Σij
k [with the exception of the weak quartet ð1; 4;þ 1

2
Þ

fields Ω−−
h , Ω−

h , Ω
þ
h andΩþþ

h denoted with respect to their increasing SUð2ÞL quantum number − 3
2
, − 1

2
,þ 1

2
andþ 3

2
]. In the

chosen notation the neutral components of ð1; 2;þ 1
2
ÞΩ and ð1; 4;þ 1

2
ÞΩ can develop a weak-scale VEV hΩ−

a i and hΩ−
h i,

respectively.
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