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Spacetimes dressed with stealth electromagnetic fields
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Stealth field configurations by definition have a vanishing energy-momentum tensor, and thus do not
contribute to the gravitational field equations. While only trivial fields can be stealth in Maxwell’s
electrodynamics, nontrivial stealth fields appear in some nonlinear models of electromagnetism. We find
the necessary and sufficient conditions for the electromagnetic fields to be stealth and analyze which
models admit such configurations. Furthermore, we present some concrete exact solutions, featuring a class
of black holes dressed with the stealth electromagnetic hair, closely related to force-free solutions. Stealth
hair does not alter the generalized Smarr formula, but may contribute to the Komar charges.
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I. INTRODUCTION

Gravitational field equations explicate exactly how
matter and gauge fields curve spacetime. One might then
naively expect that any nonvanishing field will inevitably
leave its imprint on the spacetime it inhabits. However, as
was noticed a decade ago [1] (see also the analysis in [2]),
some exact solutions of the vacuum Einstein’s equations
are simultaneously exact solutions of the Einstein-Klein-
Gordon equations with nontrivial, nonminimally coupled,
real scalar fields. In other words, it is possible to have
seemingly nongravitating field configurations, which were
aptly dubbed stealth fields. Stealth scalar fields have been
found on top of the Bañados-Teitelboim-Zanelli black hole
[3], four-dimensional black holes [4] and some cosmo-
logical solutions [5–9]. Stability of stealth configurations
was analyzed in [10] and their classification, from the
perspective of the symmetry inheritance, was presented in
[11]. Such solutions have been also found in Brans-Dicke-
Maxwell theory [12] and, more recently, within various
vector-tensor models [13–16].
What about the minimally coupled electrodynamic

fields? As is shown below, nontrivial stealth configurations
are absent in Maxwell’s electrodynamics. There is, how-
ever, a large class of nonlinear electrodynamic models,
which extend the canonical linear one. Nonlinear electro-
dynamics (NLE) appears in the quantum corrections to the
classical theory, either in quantum electrodynamics [17] or
in low energy limits of the string theory [18,19], and can
solve the inconsistencies in the classical theory related to
the point charges [17,20] and the spacetime singularities
[21–28]. Any nonlinear electromagnetic stealth solution
would be an example of a classical configuration “resistant”
to some quantum corrections.

Limits on the parameters of the nonlinear electromagnetic
models have been placed by a series of experiments, themost
important of which are focused on the vacuum birefringence
and the photon-photon scattering [29,30]. A recent strong
constraint on the mass scale of the Born-Infeld model
(whose lower bound is now placed above 100 GeV) has
been inferred from the results of the measurement of the
ATLAS Collaboration [31]. Future experiments will include
new generations of the ultraintense lasers [32,33] and the
astrophysical tests [34].
Before we proceed, let us make several brief remarks on

notation and conventions. The metric signature is always
ð−;þ;þ;þÞ and the system of units is a natural one with
c ¼ G ¼ 4πε0 ¼ 1. We use both the abstract index notation
(see e.g. [35]) and the “indexless” notation (see e.g. [36]),
the former at places where we want to emphasize the type
of the tensor and the latter whenever the abstract indices
may be suppressed in order to avoid cumbersome expres-
sions. The Hodge dual of a p-form ωa1…ap is denoted by a
star and defined as

�ωb1…b4−p ¼
1

p!
ωa1…apϵ

a1…ap
b1…b4−p ; ð1Þ

where ϵabcd is the Levi-Civita tensor. For example, the
volume form may be compactly written as �1.
We consider a general class of four-dimensional models

of NLE, described by the Lagrangians of the form

LEM ¼ LðF ;GÞ�1; ð2Þ
where we have introduced two standard electromagnetic
invariants,

F ≡ FabFab and G≡ Fab�Fab: ð3Þ
For example, canonical Maxwell’s Lagrangian is*ismolic@phy.hr
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LðMaxÞ
EM ¼ −

1

4
F�1: ð4Þ

The energy-momentum tensor corresponding to (2) may be
written in a convenient way,

Tab ¼ −4LFT
ðMaxÞ
ab þ 1

4
Tgab; ð5Þ

with the help of the abbreviation LF ≡ ∂L=∂F , the trace

T ≡ gabTab ¼
1

π
ðL − LFF − LGGÞ; ð6Þ

and Maxwell’s energy-momentum tensor,

TðMaxÞ
ab ¼ 1

4π

�
FacFb

c −
1

4
gabF

�
: ð7Þ

Finally, the set of generalized gravitational-nonlinear
Maxwell’s (gNLM) field equations consists of

Eab ¼ 8πTab; dF ¼ 0 and d�Z ¼ 0: ð8Þ

The symmetric tensor Eab is any diff-invariant gravitational
tensor (e.g. Einstein’s tensor Gab), constructed out of the
spacetime metric, its derivatives and possibly the Levi-
Civita tensor. The auxiliary 2-form

Zab ¼ −4ðLFFab þ LG�FabÞ ð9Þ

is defined with LG ≡ ∂L=∂G.

II. HOW TO HIDE THE
ELECTROMAGNETIC FIELD

Let us start with the formal definition of the central
object of this discussion.
Definition II.1. We say that a nonzero electromagnetic

field Fab is stealth if the corresponding energy-momentum
tensor identically vanishes, Tab ¼ 0.
The easiest way to see that only trivial fields can be

stealth in Maxwell’s electrodynamics is to write the energy-
momentum tensor in the spinorial formalism [37],

TðMaxÞ
ABA0B0 ¼ −

1

2π
ϕABϕ̄A0B0 : ð10Þ

If the field is nontrivial, ϕAB ≠ 0, then there are spinors αA

and βB, such that ϕABα
AβB ≠ 0. But then the contraction of

the stealth condition

TðMaxÞ
ABA0B0 ¼ 0 ð11Þ

with ᾱA
0
β̄B

0
implies ϕAB ¼ 0, a contradiction. Therefore,

the linear electromagnetic field is stealth if and only if it is

trivial. For a general class of NLE fields we have the
following characterization of the stealth configurations.
Theorem II.2. Suppose that NLE field is nontrivial,

Fab ≠ 0. Then this field is stealth if and only if both T ¼ 0
and LF ¼ 0 are satisfied. Furthermore, a stealth NLE field
solution of (8) at each point where dLG ≠ 0 holds neces-
sarily satisfies G ¼ 0.
Stealth condition Tab ¼ 0 implies T ¼ 0 and, conse-

quently, LFT
ðMaxÞ
ab ¼ 0. However, as has been shown

above, TðMaxÞ
ab ¼ 0 holds if and only if Fab ¼ 0. Thus, it

follows that LF ¼ 0. The converse is trivial. Finally, the
second generalized Maxwell’s equation for the stealth field
becomes

dLG ∧ F ¼ 0; ð12Þ
which is equivalent to the condition ð∇aLGÞ�Fab ¼ 0.
Hence, at each point where ∇aLG ≠ 0 the field �Fab is
necessarily simple and degenerate [38], so that G ¼ 0. If we
have a more special class of NLE models with L ¼ LðF Þ,
then the stealth fields automatically satisfy the second
Maxwell’s equation, while the invariant G does not neces-
sarily vanish.
Note that in any NLE model defined by a Lagrangian

which respects the proper Maxwell’s asymptotics in the
weak field limit (L → 0 and LF → −1=4 as F → 0), the
stealth field cannot be null.

A. NLE models

A number of NLE models that have been extensively
studied in the literature do not admit stealth configurations,
simply because LF ≠ 0 for any real field Fab. Among these
we have Born-Infeld [20], Bardeen [24,39], Soleng’s loga-
rithmic [40], Hendi’s exponential [41,42] or Kruglov’s
rational [43] and arcsin Lagrangian [44].
On the other hand, the power-Maxwell model [45,46]

defined with L ¼ CF s, where C ≠ 0 and s > 1 are some
real constants, admits stealth configurations. In order to
avoid some unphysical solutions [46] we must choose
parameter s to be a rational number which written in lowest
terms has an odd denominator, s ¼ m=ð2n − 1Þ with m,
n ∈ N. As long as s > 1, the necessary and sufficient
stealth condition is that F ¼ 0. Similarly, the Hoffmann-
Infeld model [47,48] admits stealth configurations in the
limit when F → 0.
Finally, let us look at two classes of weak-field limit

Lagrangians which satisfy proper Maxwellian asymptotics.
First, if L ¼ LðF Þ is a smooth function on some neighbor-
hood of F ¼ 0, in the weak-field limit it has a form

L ¼ −
1

4
F þ αF 2 þ βF 3 ð13Þ

with some real constants α and β. Then the stealth conditions
from the Theorem II.2 imply β ¼ −α2 and F ¼ ð2αÞ−1.
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The other class of models is defined by the Euler-
Heisenberg type of Lagrangians [17,49],

L ¼ −
1

4
F þ κF 2 þ λG2; ð14Þ

again with some real constants κ and λ. Here the stealth
conditions from the Theorem II. 2 imply F ¼ ð8κÞ−1 and
G2 ¼ −ð64κλÞ−1 (since G is constant we immediately have
dLG ¼ 0). Whence, the necessary condition for such models
to admit stealth configuration is that κλ < 0. This immedi-
ately eliminates the original Euler-Heisenberg’s Lagrangian
[17] since there we have quite the opposite, κλ > 0.

B. Black hole solutions

One particularly important perspective of the stealth
configurations is to provide novel black hole hair. The
expression for the Komar electric charge QS [50–52] of
a stealth configuration, contained in a closed smooth
2-surface S, is reduced to the integral

QS ¼ 1

4π

Z
S
�Z ¼ −

1

π

Z
S
LGF: ð15Þ

So, if L ¼ LðF Þ, the electric charge identically vanishes,
while in a more general class of models (2) it may be
nonzero. We note in passing that the stealth conditions do
not impose any direct constraint on the Komar magnetic
charge.
One of the central relations in black hole thermodynamics,

the Smarr formula [53], has been recently generalized for
any stationary axially symmetric black hole. Technically,
we assume that the spacetime is stationary, axially symmet-
ric, asymptotically flat and contains a connected Killing
horizon H½ χ�, generated by the Killing vector field
χa ¼ ka þ ΩHma, where ka is the stationary and ma is the
axial Killing vector field. Then, in the presence of symmetry
inheriting NLE fields [52], the generalized Smarr
formula reads

M ¼ κA
4π

þ 2ΩHJ þΦHQH þ ΨHPH þ Δ: ð16Þ

Herewe have KomarmassM, surface gravity κ, horizon area
A, angular velocity of the horizon ΩH, Komar angular
momentum J, electrostatic potential at the horizon ΦH
(written in gauge inwhichΦ → 0 at infinity), Komar electric
charge QH, magnetostatic potential at the horizon ΨH
(written in gauge in which Ψ → 0 at infinity) and Komar
magnetic charge PH. The additional term Δ is given by the
integral

Δ ¼ 1

2

Z
Σ
T�χ ð17Þ

over a smooth spacelike hypersurface Σ which intersects
the black hole horizon. Since the trace T for the stealth

electromagnetic fields identically vanishes, we necessarily
have Δ ¼ 0, so that the Smarr formula remains unaltered.

III. DRESSING THE SPACETIMES WITH
STEALTH ELECTROMAGNETIC

FIELDS

From the discussion in the previous section we see that
the stealth fields may be found among closed 2-forms Fab
for which the invariants F and G are constant. The fact that
the null electromagnetic fields (those in which F and G are
both 0) are simultaneously solutions of a much wider class
of electromagnetic field equations has been already recog-
nized by Schrödinger [54] and recently reanalyzed [55,56]
in the context of so-called universal solutions. Examples
of the null electromagnetic fields can be relatively easily
constructed as follows. Take any null vector field la, such
that ∇½alb� ¼ 0, and a function σ, such that la∇aσ ¼ 0.
Then for Fab ¼ l½a∇b�σ we have dF ¼ 0 and F ¼ 0 ¼ G.
The non-null case demands more careful construction.

A. Stealth from force-free electrodynamics

Force-free electrodynamics, used for modeling of the
magnetically dominated plasma around compact astrophysi-
cal objects, treats the solutions of the Maxwell’s equations,
dF ¼ 0 and d�F ¼ 4πJ, under the assumption that
JaFab ¼ 0. Some important force-free solutions are null
[38,57] andmaybe “recycled” as stealthNLE fields.Namely,
we can find here examples of closed null fields Fab, which
immediately become a stealth field in any NLE model for
which F ¼ 0 (and G ¼ 0) is a sufficient stealth condition.
Note two important differences: (1) whereas the force-

free electromagnetic fields are just test fields (solutions of
the Maxwell’s equations with nonvanishing current Ja ≠ 0
on top of the fixed background spacetime), NLE counter-
parts are exact solutions [of the source-free gNLE field
equations (8)], and (2) unlike in the force-free counterpart,
any flux TabXaYb identically vanishes for the stealth
solutions, so that stealth fields cannot be used to extract
energy from the system.

B. Minkowski’s new clothes

Suppose we want to find a NLE stealth field on top of the
Minkowski spacetime. An example of a null electromag-
netic field is given by F ¼ dv ∧ dσ, where σ ¼ σðv; y; zÞ
and v ¼ tþ x is a lightlike coordinate. For this field we
immediately have dF ¼ 0 and, assuming that L ¼ LðF Þ,
d � Z ¼ 0 (this is an example of power-Maxwell NLE
stealth field). The quantity σ that appears in this solution
can be directly related to the components of the electric
and the magnetic field. For example, if the 4-velocity of
a stationary observer is ua ¼ ∂a

t , then the electric 1-form
is given by E ¼ −iuF ¼ −σ;ydy − σ;zdz and the magnetic
1-form is H ¼ iu�Z ¼ 4LF ðσ;zdy − σ;ydzÞ.
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Another, more intriguing class of null electromagnetic
fields can be found among the “electromagnetic knots”
[58,59]. These are the solutions of Maxwell’s equations on
a fixed Minkowski background, whose construction was
based on the Hopf fibration of the 3-sphere. It was recently
recognized [60,61] that the electromagnetic knots are
simultaneously solutions in some NLE models, in accor-
dance with the remarks from the beginning of this section.
What we can add here is that these fields are also exact
solutions of the gNLM field equations (8), as long as the
NLE model is such that null electromagnetic fields satisfy
the stealth conditions. An open question is how to use the
Hopf fibration to construct knotted electromagnetic fields
in a curved spacetime, an exact solution of the gravita-
tional-electromagnetic field equations.1

For a non-null ansatz we may take a closed 2-form,

F ¼ −adt ∧ dxþ bdy ∧ dz; ð18Þ

with some real constants a and b. The electromagnetic
invariants in this example are given by F ¼ 2ðb2 − a2Þ and
G ¼ 4ab, so that their value, required by the stealth
conditions in models (13) and (14), can be fixed by an
appropriate choice of the constants a and b.

C. Black holes with stealth hair

A static, spherically symmetric spacetime metric written
with ingoing Eddington-Finkelstein coordinates fv; r; θ;φg,
where dv ¼ dtþ dr� and dr� ¼ dr=fðrÞ, is given by

ds2 ¼ −fðrÞdv2 þ 2dvdrþ r2ðdθ2 þ sin2θdφ2Þ: ð19Þ

A class of null electromagnetic fields, stealth fields for the
power-Maxwell NLE, can be constructed as above,

F ¼ dv ∧ dσ; ð20Þ

with σ ¼ σðv; θ;φÞ. The field (20) is exactly one of the force-
free solutions presented in [38].
This example demonstrates how NLE fields may evade

some well-known no-go theorems. First, nontrivial null
electromagnetic fields cannot exist in a static spacetime
[63] and the extension of this theorem [64] holds in NLE
models under the assumption that LF ≠ 0, which is broken
by the stealth fields. Second, a linear electromagnetic field
inherits symmetries in general spherically symmetric
spacetime [65–67], but this does not necessarily hold in
NLE models [64]. Although the points with vanishing LF
are completely out of the scope of the analysis in [64], the
field (20) nevertheless obeys the same constraints on

breaking of the symmetry inheritance: for any Killing
vector Ka of the metric (19) the Lie derivative £KFab is
some linear combination of Fab and its Hodge dual �Fab.
Another class of stealth solutions for the model (13) is

given by the 2-form

F ¼ adv ∧ drþ b
rffiffiffiffiffiffiffiffiffi
fðrÞp dr ∧ dθ; ð21Þ

with two real constants a and b, for which F ¼ 2ðb2 − a2Þ
and G ¼ 0. Note, however, that this solution is singular on
the black hole horizon [defined by the condition fðrÞ ¼ 0],
unless b ¼ 0, in which case we need α < 0 in (13) for
consistency with F < 0. The corresponding electric and
magnetic Komar charges for both black hole solutions (20)
and (21), evaluated on any 2-surface defined by v ¼ const.
and r ¼ const:, are 0.
Finally, we can use a null force-free solution (see [38],

Secs. 4.4 and 4.5) on top of the Kerr black hole, written in
Kerr ingoing coordinates,

F ¼ dσðθ; φ̄Þ ∧ ðdv − a sin2 θdφ̄Þ; ð22Þ

which is simultaneously a stealth solution in the power-
Maxwell model. One distinguishing property of this
solution is that it has a nonvanishing magnetic charge,
which is proportional to the spin parameter a,

PS ¼ 1

4π

Z
S
F ¼ −

a
4π

Z
S
σ;θsin2θdθ ∧ dφ̄: ð23Þ

Again, S is a 2-surface defined by v ¼ const and r ¼ const.
This proves that it is possible in principle to have a black
hole hair which, despite the fact that it is stealth, still
contributes to the black hole charges. One might also
remark that the freedom of choice of the function σ
qualifies this configuration as a primary hair [68].

IV. FINAL REMARKS

Like many other exotic theoretical constructions, stealth
fields are the cornucopia of counterintuitive examples.
Using a simple criterion, given in Theorem II 2, we have
proven that NLE models which admit such configurations
are rare among those which are most often analyzed in the
literature. However, whereas the nontrivial stealth fields
are absent in linear Maxwell’s electrodynamics, even a
small deviation from it (such as the power-Maxwell type
of the Lagrangian) contains such solutions, and we have
presented several classes of exact solutions with stealth
NLE fields. The most important question left open is the
existence of non-null stealth NLE field configuration on top
of the black hole with nonvanishing electric or magnetic
charge.

1A recently found “Hopfionic” solution of theEinstein-Maxwell
field equations [62] is a spacetime with R × S3 topology which,
apart from the electromagnetic field, contains additional neutral
matter.
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