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In the present paper we propose a mechanism of the structural instability with a periodic charge ordering in two-
dimensional isotropic conductors with a closed Fermi surface which completely excludes the conventional nesting
mechanism. We show that the structural instability in such conductors may arise as a topological reconstruction
under which the initially closed Fermi surface is transformed into an open one. We have found that the order
parameter of the charge ordering ground state may exceed one hundredth of the Fermi energy. Furthermore, this
charge ordering is a quantum phase transition with respect to the dimensionless coupling constant λ related to
the mechanism that drives the band reconstruction (e.g., electron-phonon coupling), with the critical value given
by λc = (1 + 2/π )−1. Preliminary estimations show that the suggested mechanism can be the origin of density
waves observed in such materials as high-Tc cuprates or graphite intercalates.

DOI: 10.1103/PhysRevB.97.235439

I. INTRODUCTION

Almost 90 years ago Peierls [1] predicted an instability of
one-dimensional metals with respect to the spontaneous arising
of a periodic modulation of the crystal, the modulation period
being larger than the lattice atomic spacing. The new ordering,
which is usually called charge density wave, opens a gap in the
electron band at the initial Fermi energy. In this case the Fermi
energy decreases together with a decrease of the total energy of
electrons that stabilizes the charge density wave, compensating
the increase of the energy contribution associated with the
source of a mechanism responsible for the periodic modulation,
like the coupling of band electrons to phonons or some other
boson field, electron-electron interaction, etc.

In two-dimensional (2D) anisotropic materials the forma-
tion of density waves (DWs) is also possible if the highly
anisotropic Fermi surface (FS) has parts of its contour which
can be well enough nested, that is, if one part of it can be
mapped onto another one by a single wave vector [2]. The
typical examples of such anisotropic materials are Bechgaard
salts [3] which have open FSs with inflection points on the
opposite contours coupled by the DW wave vector. Density
waves of this type have been intensely investigated and widely
observed in many other anisotropic materials as well [2,3].

Besides the above-mentioned cases, DWs have been also
observed in many conductors with closed FSs not satisfying
the nesting condition. Among them are underdoped high-
Tc cuprates [4] and graphite intercalates [5]. Their FSs are
rather isotropic, thus completely excluding the nesting as a
mechanism of the DW stabilization. Although such materials
have been intensely investigated, the origin of these structural
instabilities is still unclear.

In the present paper we suggest a qualitatively new mecha-
nism of the DW ordering, based on a topological reconstruction
of the FS induced by the self-consistently stabilized DW
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periodic modulation. The initial closed FS is then transformed
into an open one as it is shown in Fig. 1. We show that this
FS reconstruction decreases the electron band energy, allowing
stabilization of the DW by compensating the increase of the
energy associated with the periodic modulation.

Section II contains heuristic considerations leading to the
qualitative arguments in favor of the stabilization of the DW
ground state accompanied by the topological reconstruction
of the band spectrum. In Sec. III we determine the details
of the electron spectrum in the presence of finite uniaxial
modulation V (x). The self-consistent determination of V (x),
of the corresponding total energy of the DW ground state, and
of the conditions for its stabilization are discussed in Sec. IV.
The concluding remarks are presented in Sec. V.

II. QUALITATIVE CONSIDERATIONS

We consider, as an illustrative example, a 2D conduc-
tor which initially has a simple quadratic band dispersion
ε(kx,ky) = (k2

x + k2
y)/2m. Here m is the electron effective

mass. Let us introduce within a mean-field scheme an uniaxial
periodic charge modulation in the x direction which causes a
DW potential V (x) = � cos (Qx/h̄ + �). Q and � are the
momentum and the amplitude of the DW order parameter,
respectively. They will be determined self-consistently by the
minimization of the total energy in Sec. IV. The phase � of DW
potential will not be important in our considerations since we
calculate only the ground state. We start with the assumption,
which will be confirmed by further analysis, that the value of
the momentum Q is equal, or close, to the doubled Fermi mo-
mentum pF0 = √

2mεF0, where εF0 is the initial Fermi energy.
The potential V (x) with such modulation combines initially
closed FSs in the extended reciprocal space into an infinite
chain of FSs with lifted degeneracy at the touching points, and
with a new first Brillouin zone defined, after the change of
coordinates in the reciprocal space px = kx + Q/2,py = ky ,
by −Q/2 � px � Q/2, as it is shown in Fig. 1.
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FIG. 1. Schematic presentation of the topological transformation
of the Fermi surface caused by the charge ordering with the momen-
tum Q = 2pF . After lifting the degeneracy at the touching points,
initially closed Fermi surfaces in the extended reciprocal space shown
in (a) are transformed into an open one with the period Q [red solid
lines in (b)]. The area of the latter Src is larger than the initial Fermi
surface S0 at the same energy (see shaded areas). As the electron
number is conserved, the Fermi energy and hence the total band energy
decrease, thus stabilizing the charge ordering.

To get an initial insight into this band reconstruction, let us
provisionally choose Q = 2pF0, although the true equilibrium
value of Q will be modified, as it is shown in Appendix A. As
one readily sees in Fig. 1(a), the area within the reconstructed
Fermi contour inside one cell of the new reciprocal lattice
Src(εF0) is larger than the area S0(εF0) of the initial closed FS.
Therefore, the number of states n(εF0) = Src(εF0)/(2πh̄)2

at the same energy would be larger than the initial one,
and hence the Fermi energy should decrease to equalize the
areas in order to keep the number of electrons unchanged,
nrc(εF ) = n0(εF0), i.e.,∫

ε(px,py )=εF

dpxdpy = πp2
F0, (1)

where integration is over the area of the new FS. The decrease
of the Fermi energy after such a reconstruction is accompanied
by a decrease of the electron band energy according to the
extended theorem of small increments [6]. This decrease
can stabilize the DW by compensating the increase of the
contribution to the total energy due to the formation of the
periodic potential V (x), as already indicated before.

On the other hand, one sees that at a large enough FS
overlapping (caused by a decrease of Q) the total area remains
nearly the same, or even decreases, after lifting the degeneracy
at the crossing points. Hence the band energy is nearly the same
as the initial one. From here and the above considerations it
follows that the band energy of the reconstructed system has
a minimum in the vicinity of the touching points, i.e., for Q

close to 2pF0. Our analytical calculations presented below, as
well as the detailed insight into the density of states, confirm
the decrease of the energy caused by this topological recon-
struction of the FS. They also show that the band energy has
a minimum when the new Fermi energy is slightly below the
upper critical energy εC2, at which the new upper band ε+(p)
appears (see Fig. 2), obeying the condition εF = εF0. Note

FIG. 2. (a) Schematic presentation of topological reconstruction
of the spectrum of a 2D electron gas [following from Eq. (7)] in the
vicinity of the saddle point ε = εC1 = (Q/2)2/2m − � inside one
cell of the new Brillouin zone. Energy ε = εC2 = (Q/2)2/2m + �

is the bottom of the new energy band. (b) Equienergetic lines in the
(px,py) plane for: energy below (1) and at the saddle point εC1 (2);
energy between the saddle point and the bottom of the upper band
εC1 < ε < εC2 (3); and energy above the bottom of the upper band
ε > εC2 when the closed pocket of the upper band appears (4).

that the above-mentioned theorem [6] of the small increments
cannot be used while considering the minimum of one of the
thermodynamic potentials under variations of the parameter.

III. TOPOLOGICAL RECONSTRUCTION
OF THE ELECTRON BAND

Here we consider the DW ground state at the temperature
T = 0 using for the sake of definiteness the standard Fröhlich
electron-phonon Hamiltonian

H =
∑

k

ε(k)a†
kak +

∑
q

h̄ω(q)b†qbq

+ 1√
A

g
∑
k,q

a
†
k+qak(b†−q + bq), (2)

although our reasoning can be extended to physical cases of
band electrons coupled to some other boson field, or through
some mutual electron-electron interaction. Here A is the area
of the two-dimensional system, a

†
k, ak and b

†
q, bq are the
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creation and annihilation operators for electron states with
energy ε(k) and momentum k = (kx,ky), and phonon states
with energy h̄ω(q) and momentum q = (qx,qy), respectively.
g is the electron-phonon coupling constant, for simplicity
assumed to be independent of momenta k and q.

After assuming the presence of a finite DW modulation,
and treating it within the mean-field approximation, the above
Hamiltonian reduces to its mean-field form,

HMF =
∑

k

[ε(k)a†
kak + �ei�a

†
k+Qak + �e−i�a

†
k−Qak]

+ Ah̄ωQ

2g2
�2, (3)

where √
A�ei� = g(〈bQ〉 + 〈b†−Q〉) (4)

is the order parameter, and 〈bQ〉 = 〈b†−Q〉 is the nonvanishing
expectation value of macroscopically occupied DW phonon
mode. The values of the order parameter � and the DW
momentum Q will be determined later by the minimization
of the total energy of the system.

After the diagonalization of the electronic part of Hamilto-
nian (3) one finds the electron spectrum of the perturbed system
as follows:

ε±(p) = ε1(p) + ε2(p)

2
±

√(
ε1(p) − ε2(p)

2

)2

+ �2, (5)

where

ε1,2(p) ≡ ε(px ± Q/2,py) = (px ± Q/2)2

2m
+ p2

y

2m
(6)

is presented in terms of the momenta of the new Brillouin zone
introduced in Sec. II. The gap in the electron spectrum � in
Eq. (5) is defined in Eq. (4). With the expression (6) taken into
account, the spectrum (5) reads

ε±(p) = (Q/2)2 + p2
y + p2

x ±
√

(Qpx)2 + (2m�)2

2m
. (7)

The dispersions and constant energy surfaces (CESs) of the
new electron bands ε±(p) = ε are shown in Fig. 2. One sees that
CESs of the lower band ε−(p) = ε are present at all energies
above the bottom of the original band (slightly lowered due
to the contribution of the order of �2/2εF0). This band has a
saddle point at the wave vector px = py = 0 and the energy
εC1 = (Q/2)2/2m − �. The upper band ε+(p) = ε is bounded
from below, with the bottom at px = py = 0 and the energy
εC2 = (Q/2)2/2m + �. In the next section we show that these
peculiar topological properties of the reconstructed electron
band structure result in a decrease of the total band energy and
a possible occurrence of the DW.

IV. BAND ENERGY AND THE STABILIZATION
OF THE DW

Since the detailed analysis confirms the qualitative ar-
guments from Sec. II about the regime in which the DW
stabilization could take place, we limit further considerations
to the range of values of the momentum Q for which the the
initial Fermi energy εF0 is between the saddle point of the

lower band εC1 and the minimum of the upper band εC2. In
this range the total electron band energy per unit area for the
reconstructed system is

EB(εF ) = 2
∫

ε−(p)=εF

ε−(p)
d2p

(2πh̄)2

= 4

(2πh̄)2m

∫ Q/2

0
dpx

∫ p
(F−)
y

0
dpy

×
[(

Q

2

)2

+ p2
y + p2

x −
√

(Qpx)2 + (2m�)2

]
,

(8)

where the factor 2 comes from the spin degeneracy, and

p(F−)
y (px)=

{
2mεF −

(
Q

2

)2

−p2
x+

√
(Qpx)2+(2m�)2

}1/2

.

(9)

Using Eq. (9), and subtracting the initial band energy

E0 = 2πmε2
F0/(2πh̄)2 (10)

from Eq. (8), one finds the decrease of the total band energy
per unit area as follows:

�EB ≡ EB − E0 = 4πm

(2πh̄)2

{
εF εF0 − ε2

F0

2

− 8

3π

1

(2m)2

∫ Q/2

0

[
p(F−)

y (px)
]3

dpx

}
. (11)

The Fermi energy εF of the reconstructed system is deter-
mined from condition (1) by which the band reconstruction
does not change the number of electrons. It can be rewritten as

4
∫ Q/2

0
p(F−)

y (px ; εF ,Q)dpx = 2πmεF0. (12)

Equations (9), (11), and (12) determine the dependence
of the decrease of the electron band energy with the initial
Fermi energy εF0 on the momentum Q and the amplitude
� of the DW. The optimal values of Q and � follow from
the minimization of this energy decrease, with condition (12)
taken into account. Also, the usually weak Q dependence of
the factor in front of �2 within the last term in HMF [Eq. (3)]
is neglected as nonessential for the key qualitative conclusions
to be drawn here.

The first question to be answered is: given the value of the
DW order parameter �, what is the value of the DW wave
momentum Qm which minimizes the total band energy (11)?
The minimization performed in Appendix A. It leads to the
conclusion that this momentum is determined by the condition

εF = εF0. (13)

In other words, the optimal DW order takes place when the
Fermi energies of the reconstructed and initial bands coincide.
The corresponding value of the momentum Qm as a function of
the DW amplitude � follows from relation (12), with condition
(13) inserted.

Furthermore, inserting this condition also into expressions
(11), one can perform the minimization of the total energy of
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FIG. 3. Dependence of the normalized total energy change EDW
E0

due to the DW order on the value of normalized order parameter δ for
the value of dimensionless coupling constant λ = 0.613.

the DW with the conservation of electrons taken into account,
and with the lattice part Elatt originating from the last term in
the Hamiltonian HMF [Eq. (3)] included,

EDW

E0
= �EB + Elatt

E0

= 1 − 16

3πp4
F0

∫ Q/2

0

[
p(F−)

y (px)
]3

dpx + 1

λ

�2

ε2
F0

. (14)

Here

λ ≡ m

πh̄2

g2

2h̄ωQ

(15)

is the usual definition of the dimensionless electron-phonon
coupling constant. Note that m/(πh̄2) is the density of states
of the initial two-dimensional electron band.

The numerical minimization of Eqs. (12) and (14) leads to
the dependence of the total energy EDW/E0 on the normalized
order parameter δ ≡ �/εF0 shown in Fig. 3, indicating the
stabilization of the ordered state with a finite value of the
DW amplitude. The more direct analytical insight into the
characteristics of this ordering follow from the expansions of
expressions (12) and (14) which reproduces to a high level of
accuracy the numerical results.

The first step in the analytical analysis is the determination
of the momentum Qm of the stabilized DW order as a function
of the order parameter δ given by Eq. (12) with εF = εF0. The
expansion performed in Appendix A leads to the result

qm ≡ Qm

2pF0
≈ 1 − δ

2
+ 1

π

(
δ

2

)3/2

+ O(δ2). (16)

With the known dependence of Qm on δ, one can perform
the second step, elaborated in Appendix B, the expansion of
the total energy (14) in terms of the order parameter δ. The
leading terms are given by

EDW

E0
=

(
1

λ
− 1

λc

)
δ2 + 1

π
δ3 + O(δ7/2), (17)

where the last term indicates the lowest possible order of power
not covered by the expansion procedure in Appendix B. The
critical value of the coupling constant λ is given by

λc = 1

1 + 2
π

. (18)

FIG. 4. Dependence of the normalized order parameter δ on
the dimensionless coupling constant λ. Here λc = (1 + 2/π )−1 is
the critical point of the quantum phase transition at which the
homogeneous state δ = 0 loses its stability and the stable DW ground
state with δ �= 0 is formed.

Minimization of the total energy (17) leads to the equation
for δm, the equilibrium value of the normalized order parame-
ter,

2δ

(
1

λ
− 1

λc

+ 3

2π
δ

)
= 0. (19)

The nontrivial and stable solution is given by

δm = 2π

3

(
1

λc

− 1

λ

)
. (20)

It appears in the range of values of the coupling constantλ � λc,
while below this critical value the stable solution is that for the
nonordered state δ = 0. The latter solution loses its stability at
λ � λc, as shown in Fig. 4. Hence λc defines the critical point
of the quantum phase transition.

We conclude this analysis of the energy of the DW ordering
with four notes.

First, the expansion of the band energy change due to
its topological reconstruction, �EB ≡ EB − E0 given by
Eq. (11), shows that it has a minimum as a function of
the amplitude of the order parameter δ, and changes sign
as δ further increases, in contrast to the case of conven-
tional DW orderings in which it remains negative for all
values of δ. Furthermore the expansion of the total energy
change (17) differs from that of the standard continuous
(second order) phase transition, since the stabilizing con-
tribution is cubic, and not quartic, in the order parameter
amplitude δ.

Second, since the decrease of the band energy is quadratic
in δ, in contrast to usual nesting instabilities in which it shows
divergent tendency as δ → 0, the DW instability is possible
only provided the coupling constant λ is large enough, as the
results (17) and (18) show.

Third, the momentum of the DW modulation varies with
the order parameter δ, again in contrast to the conventional
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low dimensional DW cases in which it is fixed by the
geometric nesting constraint. This is one of the reasons for our
inclination to term the present mechanism the touching, and not
the nesting, one, in accordance with the geometry from Fig. 1.

Fourth, as it is seen from Fig. 4, the order parameter δ steeply
increases with λ − λc, which limits the validity of our mean-
field approach, and the ensuing expansions for the DW momen-
tum and energy, to a rather narrow range close to the quantum
critical point. With δ approaching the value of unity (i.e., with
the gap � in the reconstructed band dispersion from Fig. 2
becoming of the order of the Fermi energy) the whole present
approach has to be replaced by a more rigorous treatment.

V. CONCLUSIONS

We have shown that an isotropic 2D system with closed
Fermi surface (i.e., with entirely excluded nesting conditions)
may be topologically reconstructed due to the stabilization of
uniaxially modulated DW. By this reconstruction the initially
closed Fermi surface is transformed into an open one in
the extended reciprocal space as it is presented in Fig. 1.
Such a topological transformation of the Fermi surface de-
creases the electron band energy, enabling the stabilization
of the DW. More precisely, we have found that the DW
is stable if the coupling constant is larger than the critical
one, λ � λc = (1 + 2/π )−1. With this condition fulfilled,
the system undergoes the quantum phase transition under a
change of the parameter λ as it is shown in Fig. 4. The
obtained values of order parameter � can exceed 10−2εF ,
that is the critical temperature of the phase transition can be
Tc ∼ 102 K.

The above qualitative and quantitative proposals indicate
that the concept of the topologically reconstructed FSs invoked
in the present work may be the source of the density waves
frequently observed in 2D conductors such as high-Tc cuprates
and graphite intercalates. However, for the more detailed quan-
titative explanations of the phase diagram for these materials,
it is necessary to take into account specific geometries and
dispersions in their band structures.

The further question deserving future analysis is the be-
havior of the reconstructed spectrum from Fig. 1 under strong
magnetic fields. Having the coexistence of open and closed
orbits and the barriers between them, one meets the possibility
of an additional gain in the band energy due to the effect
of magnetic breakdown [7], already encountered in such [8],
or similar [9,10], band spectra. Preliminary analyzes indeed
confirm that such energy gains take place, as will be elaborated
in our forthcoming paper.
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APPENDIX A: THE OPTIMAL VALUE
OF THE DW MOMENTUM

In this Appendix we determine the value of the momentum
Q = Qm which minimizes the total band energy (11) for a
given, presumably finite, value of the order parameter �.
Among a few possible ways leading to the result that performed
below appears to be the simplest.

Let us assume that the momentum Q is fixed, and look for
the band filling, i.e., for the value of the Fermi energy εF0,
for which the total energy of the reconstructed band �EB is
minimal, i.e., for which the condition

d�EB

dεF0
= ∂�EB

∂εF0
+ ∂�EB

∂εF

∂εF

∂εF0
= 0 (A1)

is satisfied. Here we take into account that εF appearing
in Eq. (11) depends on εF0 through expression (12). After
performing the derivatives condition (A1) reduces to

d�EB

dεF0
= 4πm

(2πh̄)2
(εF − εF0) = 0, (A2)

i.e., the band energy gain (11) is maximal when the Fermi
energies of the reconstructed band and the initial band co-
incide. Condition (A2) is the local minimum of �EB if
d2�EB/dε2

F > 0, i.e., for[
∂εF

∂εF0

]
εF =εF0

> 1. (A3)

Qm is the momentum which minimizes �EB as a function
of εF0 now follows from the equality (12) with the condition
εF = εF0 inserted into its left-hand side. Before deriving the
approximative solution, it is useful to introduce dimensionless
variables, with scales absorbing the momentum Qm/2,

2mεF0

(Qm/2)2
= 1

q2
m

≡ ε̃F0,

2m�

(Qm/2)2
= δ

q2
m

≡ δ̃,
px

Qm/2
≡ x. (A4)

Equation (12) then reads∫ 1

0
dx

√̃
εF0 − 1 − x2 +

√
4x2 + δ̃2 = π

4
ε̃F0. (A5)

The numerical insight into this equation indicates that in the
physical range of values of order parameter δ̃ 
 1, the solution
for εF0 is slightly below the critical value εC2 [i.e., ε̃F0 is
slightly below 1 + δ̃ in terms of dimensionless variables (A5)].
We therefore write

ε̃F0 − (1 + δ̃) ≡ f(̃δ), (A6)

and expand the left-hand side of the equality (A5) in terms of
presumably small difference f(̃δ). The straightforward calcu-
lation leads to the result for the leading term:

f(̃δ) � − 1√
2π

δ̃3/2, (A7)

which is consistent with the above initial assumption. Inserting
original physical variables into expressions (A6) and (A7),
we finally get the expansion for the momentum qm given by
Eq. (16).
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FIG. 5. The Fermi energy of the reconstructed band ε̃F as the
function of the original Fermi energy ε̃F0 for δ = 0.1. The red point
marks the equilibrium condition ε̃F = ε̃F0, Eq. (13).

The obtained analytical results complement and quantita-
tively confirm the heuristic considerations from Sec. II. They
are also in full agreement with numerical calculations shown in
Fig. 5. The crossing of the lines ε̃F (̃εF0) and ε̃F = ε̃F0 is indeed
realized slightly below the bottom of the upper subband from
Fig. 2 positioned at the energy ε̃ ≡ 2mε/(Qm/2)2 = 1 + δ̃.
Furthermore, ε̃F (̃εF0) crosses the line ε̃F = ε̃F0 from below by
approaching it from the left, which guarantees the fulfillment
of condition (A3). Note also that the minimum of the band
energy �EB is realized in the range of reconstructed band
filling in which the Fermi level is within the lower subband,
although very close to the bottom of the upper subband. Since
the latter does not contribute to the band energy, we did not
have to include it into the present analysis.

APPENDIX B: THE EXPANSION OF THE TOTAL ENERGY

In this Appendix we minimize the total energy (14), and
expand it in terms of the order parameter δ. To this end, it
appears convenient to use again the reduced quantities from
the previous Appendix. Introducing them into its band part,
the total energy is given by

EDW

E0
= 1 − 16

3π
q4

mI + 1

λ
δ2, (B1)

with

I ≡
∫ 1

0

[
q−2

m − 1 − x2 +
√

4x2 + δ̃2
]3/2

dx. (B2)

The conservation of electrons (12) now reads

q2
m

∫ 1

0

[
q−2

m − 1 − x2 +
√

4x2 + δ̃2
]1/2

dx = π/4. (B3)

Let us in the first step consider the derivative dI/dδ̃. It is
given by

dI

dδ̃
= ∂I

∂q−2
m

dq−2
m

dδ̃
+ ∂I

∂δ̃
. (B4)

Since from Eqs. (B2) and (B3) one gets

dI

dq−2
m

= 3π

8q2
m

, (B5)

Eq. (B4) reads

dI

dδ̃
= 3π

16

d
(
q−4

m

)
dδ̃

+ 3

2
δ̃

∫ 1

0

[
q−2

m − 1 − x2 +
√

4x2 + δ̃2
]1/2

× dx√
4x2 + δ̃2

. (B6)

Integrating this expression with respect to δ̃, and taking into
account that for δ̃ = 0 [and q−2

m = 1, as it follows from
Eqs. (A4) and (A6)] expression (B2) reduces to

I (̃δ = 0) = 3π

16
, (B7)

one gets for the total energy (B1),

EDW

E0
= −8q4

m

π

∫ δ̃

0
δ̃′J [ε (̃δ′),̃δ′]dδ̃′ + 1

λ
δ2, (B8)

where

J [ε (̃δ),̃δ] ≡
∫ 1

0

[
ε − x2 +

√
4x2 + δ̃2

]1/2 dx√
4x2 + δ̃2

, (B9)

with the short-hand notation ε ≡ q−2
m − 1.

In the next step we expand the integral J [ε (̃δ),̃δ] in terms
of δ̃. Note that, although both quantities δ̃ and ε are much
smaller than unity, the direct expansion in their powers cannot
be controlled due to the diverging nature of integrals appearing
in the coefficients at the lower integration boundary x =
0. Instead, we divide the integration range 0 < x < 1 into
two subranges, 0 < x < r and r < x < 1, with 0 
 δ̃,ε 

r 


√
δ̃,

√
ε 
 1, and make adequate approximations in each

subrange. More precisely, in the former subrange the term x2

is negligible with respect to the square root
√

4x2 + δ̃2, while
in the latter subrange one can neglect in this square root the
term δ̃2 with respect to 4x2. After these approximations the
respective expansions in terms of ε − δ̃ and δ̃ lead to the result

J[ε (̃δ),̃δ] � 2 + π

4
− ε

4
+ π (ε − δ̃)

4
√

2̃δ
, (B10)

with the cancellation of the r-dependent contributions. Since
the leading term in the difference ε − δ̃ is given by the function
f(̃δ) [Eq. (A7)], one gets

J(̃δ) � 2 + π

4
− 3

8
δ̃. (B11)

Inserting this expansion into the expression (B8) one gets the
final result (17) for the leading terms in the expansion of the
total DW energy.
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