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The production of the charm-strange baryon �0
c is measured for the first time at the LHC via its 

semileptonic decay into e+�−νe in pp collisions at 
√

s = 7 TeV with the ALICE detector. The transverse 
momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 
1 < pT < 8 GeV/c at mid-rapidity, |y| < 0.5. The transverse momentum dependence of the �0

c baryon 
production relative to the D0 meson production is compared to predictions of event generators with 
various tunes of the hadronisation mechanism, which are found to underestimate the measured cross-
section ratio.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Quantum Chromodynamics (QCD) as the theory of the strong 
interaction has been a cornerstone of the Standard Model for sev-
eral decades. It has been tested through measurements in e+e− , 
pp, pp and ep collisions at momentum-transfer scales where per-
turbative techniques are applicable [1]. In particular, measure-
ments of charm hadrons have provided important tests of the 
theory because perturbative techniques are applicable down to low 
transverse momentum (pT) thanks to the large mass of the charm 
quark compared to the QCD scale parameter (�QCD ∼ 200 MeV). 
The production cross sections of charm hadrons can be calculated 
using the factorisation approach as a convolution of three fac-
tors [2]: the parton distribution functions of the incoming protons, 
the hard-scattering cross section at partonic level and the fragmen-
tation functions of charm quarks into charm hadrons. There are 
several state-of-the-art calculations adopting different factorisation 
schemes. The collinear factorisation scheme is used by calcula-
tions at next-to-leading order in αs , such as the general-mass vari-
able flavour number scheme (gm-vfns) [3–5] and the fixed order 
with next-to-leading-log resummation (fonll) [6,7] approaches, 
while the kT factorisation scheme is employed at leading order 
in Refs. [8–10]. However, some of these calculations do not pro-
vide predictions for heavy-baryon production due to the lack of 
knowledge about the fragmentation function of charm quarks into 
baryonic states. Measurements of the production of charm baryons, 
such as �+

c and �0
c , are essential to develop and test models of the 

hadronisation process.
While a variety of new charm-baryon resonances, such as 

�0
c [11], �++

cc [12], have recently been found, charm-hadron cross-
section measurements at the Large Hadron Collider (LHC) are 
mainly limited to mesons [13–21], apart from a few measure-

� E-mail address: alice -publications @cern .ch.

ments of the �+
c cross section in pp and p–Pb collisions [16,

22]. In the case of �0
c , the existing measurements are currently 

limited to e+e− collisions [23–27]. New measurements of charm-
baryon production are therefore needed to provide further insights 
into the hadronisation processes in pp collisions. For example, in-
teractions at the partonic level among the produced quarks and 
gluons, such as colour reconnection, could be stronger in pp colli-
sions than in e+e− collisions, resulting in an enhanced production 
of baryons relative to mesons [28]. The measurements of charm-
baryon production in pp collisions also serve as a reference for 
heavy-ion collisions, where a modification of the baryon-to-meson 
ratio is expected if a substantial fraction of charm quarks hadro-
nises via recombination with other quarks from the deconfined 
medium created in the collision [29–33]. Measurements of charm-
strange baryons, e.g. �0

c , could also provide additional input to 
better understand the hadronisation mechanism of strange quarks 
in pp collisions because of their valence quark composition.

In this paper, we report the first measurement of the pT-dif-
ferential production cross section of �0

c multiplied by the branch-
ing ratio (BR) into the semileptonic decay mode, �0

c → e+�−νe, 
and its ratio to the measured production cross section of D0

mesons [21] as a function of pT, up to 8 GeV/c. The absolute 
branching ratio of this �0

c decay is currently unknown [34]. Using 
a data sample of pp collisions at 

√
s = 7 TeV recorded with the AL-

ICE detector in 2010, the measurement is performed by analysing
e+�− pairs formed by combining positrons and �− baryons re-
constructed with the detectors of the ALICE central barrel, covering 
the pseudorapidity interval |η| < 0.9. The missing momentum of 
the neutrino is corrected using unfolding techniques. Charge conju-
gate modes are implied everywhere, unless otherwise stated. Only 
the sub-detectors relevant for this data analysis are described be-
low. A more complete and detailed description of the ALICE detec-
tor and its performance can be found in Refs. [35,36].
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The detectors used in this analysis include the Inner Tracking 
System (ITS), the Time Projection Chamber (TPC) and the Time-
Of-Flight detector (TOF). These detectors are located in a large 
solenoid magnet producing a magnetic field of 0.5 T parallel to 
the LHC beam axis. The ITS consists of six cylindrical layers of sil-
icon detectors, placed at radial distances ranging from 3.9 cm to 
43 cm from the nominal beam axis and covering the full azimuth. 
The two innermost layers consist of Silicon Pixel Detectors (SPD), 
the two intermediate layers of Silicon Drift Detectors (SDD) and 
the two outermost layers of Silicon Strip Detectors (SSD). The total 
material budget of the ITS is on average 7.7% of a radiation length, 
for particles with η = 0 [37]. The ITS spatial resolution enables 
the measurement of the distance of closest approach (d0) of tracks 
to the primary vertex with a resolution better than 75 μm in the 
transverse plane for pT > 1 GeV/c in pp collisions [38]. The TPC 
is a cylindrical gaseous detector with a volume of about 90 m3. 
The TPC provides track reconstruction with up to 159 space points 
at radial distances from the beam axis ranging between 85 cm 
and 247 cm, within the full azimuth. The TPC cluster-position 
resolution is about 500 μm along the beam direction and in the 
transverse direction for tracks with η = 0 [39]. The TPC also pro-
vides particle identification capabilities via the measurement of the 
specific ionisation energy loss, dE/dx, with a resolution of approx-
imately 5.2% in pp collisions [36]. The TOF detector consists of 
multi-gap resistive plate chambers placed at a radial distance of 
3.7 m from the beam axis and also covers the full azimuth. The 
TOF detector, with a timing resolution of about 80 ps, measures 
the time-of-flight of particles relative to the time of the collision, 
which is determined by the arrival time of the particles at the 
TOF detector and by the T0 detector, an array of Cherenkov coun-
ters placed at +370 cm and −70 cm from the nominal interaction 
point along the beam axis [40].

The analysed data sample consists of pp collisions at 
√

s =
7 TeV recorded during the 2010 LHC data taking period with a 
minimum bias trigger that requires at least one hit in either the 
SPD or the V0 detectors. The two layers of the SPD detector cover 
|η| < 2.0. The two V0 detectors, each comprising 32 scintillator 
tiles, are installed on both sides of the interaction point and cover 
−3.7 < η < −1.7 and 2.8 < η < 5.1. The trigger condition captures 
87% of the pp inelastic cross section [41]. The collision vertex is 
reconstructed with an efficiency of 88% and only events with a 
reconstructed vertex within 10 cm from the nominal interaction 
point along the beam direction are used in this analysis. Pile-up 
events are identified by searching for a second interaction vertex, 
reconstructed with at least three SPD tracklets (that are two-point 
track segments connecting hits in the two SPD layers) pointing to 
a common vertex, which is separated from the first vertex by at 
least 8 mm. After the selections, the analysed sample corresponds 
to an integrated luminosity Lint = 5.9 ± 0.2 nb−1.

The �0
c candidates are defined from e+�− pairs by combining 

a track originating from the primary vertex (denoted by “electron 
track” in the following) and a reconstructed �− baryon. Electron 
tracks satisfying |η| < 0.8 and pT > 0.5 GeV/c are required to have 
at least 100 associated clusters in the TPC (out of which at least 80 
are used for the calculation of the dE/dx signal), a χ2 normalised 
to the number of TPC clusters smaller than 4 and at least 4 hits 
in the ITS. It is also required that the electron track has associ-
ated hits in the two innermost layers of the ITS, in order to reject 
electrons from photon conversions occurring in the detector mate-
rial outside the innermost SPD layer [13]. Electrons are identified 
using the dE/dx measurement in the TPC and the time-of-flight 
measurement of the TOF detector. In both cases, the selection is 
applied on the nTPC

σ and nTOF
σ variables defined as the difference 

between the measured dE/dx or time-of-flight values and the one 
expected for electrons, divided by the corresponding detector res-

Fig. 1. Invariant-mass distribution of �− → π−� (and charge conjugate) candidates 
integrated over pT. The arrow indicates the world average �− mass from Ref. [34]
and the dashed lines indicate the selected interval for the �− candidates.

olution. The following selection criteria are applied: |nTOF
σ | < 3 and 

−3.9 + 1.2pT − 0.094p2
T < nTPC

σ (pT) < 3. The pT-dependent lower 
limit on nTPC

σ was optimised to reject hadrons. Thus, an electron 
purity of 98% is achieved over the whole pT range.

The background from “photonic” electrons (originating from 
Dalitz decays of neutral mesons and photon conversions in the 
detector material) remaining in the electron sample are identified 
using a technique based on the invariant mass of e+e− pairs [42]. 
The electron tracks are paired with opposite-sign tracks from the 
same event passing loose selection criteria (|nTPC

σ | < 5 without TOF 
requirement) and are identified as photonic electrons if there is at 
least one pair with an invariant mass smaller than 50 MeV/c2. Set-
ting such loose electron identification criteria is meant to increase 
the efficiency of finding the partners. This improves the signal-to-
background ratio for �0

c by about 50%, while the fraction of the 
signal lost due to misidentifications is less than 2%.

The �− baryons are reconstructed from the decay chain �− →
π−�, followed by � → pπ− . Tracks used to define �− candidates 
are required to have at least 80 clusters in the TPC and a dE/dx
signal in the TPC consistent with the expected values for protons 
(pions) within 4σ . The �− and � baryons have long lifetimes (cτ
of about 4.91 cm and 7.89 cm, respectively [34]), and thus they can 
be identified using their characteristic cascade-like or V-shaped de-
cay topologies [43–45]. Pions originating directly from �− decays 
are selected by requiring d0 > 0.02 cm; protons and pions origi-
nating from � decays are required to have d0 > 0.07 cm. The d0 of 
the � trajectory to the primary vertex is required to be larger than 
0.03 cm, while its cosine of the pointing angle, which is the angle 
between the reconstructed � momentum and the line connecting 
the � and �− decay vertices, is required to be larger than 0.98. 
The distances of the �− and � decay vertices from the beam line 
are required to be larger than 0.4 and 2.7 cm, respectively. These 
selection criteria are tuned to reduce the background, while keep-
ing a high efficiency for the signal. Fig. 1 shows the �− peak in the 
π−� invariant-mass distribution integrated over pT. Only �− can-
didates with invariant masses within 8 MeV/c2 from the �− mass 
(1321.71 ± 0.07 MeV/c2 [34]) indicated by an arrow in Fig. 1 are 
kept for further analysis. In this interval, the signal-to-background 
ratio is about 8.

The e+�− pairs are formed from selected positrons and �−
candidates. Only pairs with an opening angle smaller than 90 de-
grees are used for the analysis. The background in the e+�− pair 
distribution is estimated by exploiting the fact that �0

c baryons 
decay into e+�−νe (right-sign, RS), but not into e−�−νe (wrong-
sign, WS), while most of the background sources contribute equally 
to RS and WS pairs. The yield of WS pairs is therefore used to 
estimate the background and is subtracted from the yield of RS 
pairs to obtain the �0

c raw yield. The procedure is verified with
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Fig. 2. (a) Invariant-mass distributions of right-sign and wrong-sign (and charge conjugate) pairs integrated over the whole pT interval. (b) Invariant-mass distribution of �0
c

candidates obtained by subtracting the wrong-sign pair yield from the right-sign one compared with the signal distribution from the simulation, which is normalised to the 
measured RS−WS yield. The arrow indicates the �0

c mass [34].
pythia 6.4.21 [46] simulations using the Perugia-0 tune [47] and 
the geant3 transport code [48], including a realistic description of 
the detector response and alignment during the data taking period. 
A similar procedure was adopted by the ARGUS and CLEO collabo-
rations studying e+e− collisions [24,25].

Fig. 2(a) shows the invariant-mass distributions of RS and WS 
pairs, integrated over the whole pT interval. The invariant-mass 
distribution of �0

c candidates obtained by subtracting the WS pair 
yield from the RS one is shown in Fig. 2(b) together with the signal 
distribution from the simulation, which is normalised to the mea-
sured RS−WS yield. The shapes of the two distributions are found 
to be consistent with each other. Due to the missing momentum 
of the neutrino, the invariant-mass distribution of the e+�− pair 
does not peak at the �0

c mass (2470.85+0.28
−0.40 MeV/c2 [34]) indi-

cated by an arrow in Fig. 2(b). The invariant mass of e+�− pairs 
from �0

c decays is bounded by the �0
c mass due to the miss-

ing momentum of the neutrino. Thus only e+�− pairs satisfying 
me� < 2.5 GeV/c2 are selected for further analysis.

In order to obtain the pT-differential production cross section 
of �0

c baryons, the background-subtracted (WS-subtracted) yield 
needs to be corrected for: the signal loss due to misidentifica-
tion of photonic electrons, the �b contribution in the WS pairs, 
the missing neutrino momentum, the detector acceptance and the 
track-reconstruction and the candidate-selection efficiencies. No 
correction is applied for possible differences in the acceptance of 
RS and WS pairs, which are found to be negligible for the current 
analysis based on a study with the mixed-event technique (i.e. by 
pairing electrons and �− from different events).

The first correction accounts for the signal loss caused by the 
misidentification of photonic electrons. The misidentification oc-
curs when electrons from �0

c decays accidentally have opposite-
sign partners giving rise to a very small invariant mass of the e+e−
pair. The misidentification probability is estimated to be less than 
2% by applying the tagging algorithm to e+e+ and e−e− pairs. 
The correction is applied as a function of the pT of the e+�−
pair.

The second correction accounts for the overestimation of the 
background caused by �b → e−�−νe X decays, which produce WS 
pairs. Since the branching ratio of �b into e−�−νe X and the �b

cross section in pp collisions at LHC energies have not been mea-
sured yet, two assumptions are made to estimate this contribution. 
First, the shape of the transverse momentum distribution of the �b

baryon is assumed to be the same as that of �0
b, which was mea-

sured for pT > 10 GeV/c and |y| < 2 by the CMS collaboration [49]. 
This measurement is extrapolated to pT = 0 using the Tsallis func-
tion,

Fig. 3. Correlation between the generated �0
c -baryon pT and the reconstructed 

e+�− pair pT, obtained from the simulation based on pythia 6 described in the 
text. (For interpretation of the colours in the figure(s), the reader is referred to the 
web version of this article.)

CpT

⎡
⎢⎣1 +

√
p2

T + m2 − m

nT

⎤
⎥⎦ (1)

whose parameters were also determined by the CMS collabora-
tion by fitting the measured distribution. The fit parameters are 
consistent with those determined by the LHCb collaboration for 
the measurement of �0

b down to pT = 0 at forward rapidity 
(2 < y < 4.5) [50]. The second hypothesis is made for the total 
yield of �b → e−�−νe X , which is determined by using the mea-
surements of BR(b → �b) · BR(�b → �−l−ν X) [51] and BR(b →
�0

b) · BR(�0
b → �l−ν X) [52] in e+e− collisions and by assuming 

that the fraction of beauty quarks that hadronise into �0
b and �b

baryons are the same as those in e+e− collisions. This assump-
tion is supported by B-meson measurements, which show that the 
yield of B0

s mesons relative to non-strange B mesons is consis-
tent in e+e− and pp collisions [53]. The �b distribution obtained 
with these assumptions is further processed to take into account 
the detector acceptance, efficiency and the momentum carried by 
non-reconstructed decay particles. This is done with the pythia 6 
simulation using geant3 for particle transport through the detec-
tor. The correction increases with pT and reaches 2% at the highest 
pT interval.

The transverse momentum distribution of e+�− pairs is cor-
rected for the missing momentum of the neutrino using unfolding 
techniques. The response matrix to correct for the missing neutrino 
momentum is generated based on the correlation between the pT
of the �0

c baryon and that of the reconstructed e+�− pair, which 
is obtained from the simulation described above and is shown in 
Fig. 3. The response matrix includes both the decay kinematics and 
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Table 1
Summary of systematic uncertainties on the pT-differential cross section of �0

c → e+�−νe for 5 pT intervals. 
The uncertainty on the missing neutrino momentum is denoted as pν

T in the table.

Source Relative systematic uncertainty (%) in the measured pT intervals (GeV/c)

1–2 2–3.2 3.2–4.4 4.4–6 6–8

Raw yield 5 5 5 5 5
(A × ε) 30 22 16 13 14
pν

T 29 8 6 7 10

Normalisation 3.5
the instrumental effects, such as energy loss and bremsstrahlung 
in the detector material. The response matrix needs to be deter-
mined using a realistic �0

c -baryon pT distribution. However, the 
distribution is not known a priori. Therefore, the response matrix 
is prepared in two steps. In the first step, the response matrix is 
obtained with the pT distribution generated with pythia 6. The 
resulting �0

c momentum distribution is used to produce the re-
sponse matrix for the second iteration. The unfolding is performed 
with the RooUnfold [54] implementation of the Bayesian unfolding 
technique [55], which is an iterative method based on Bayes’ the-
orem. Convergence of the Bayesian method is achieved after three 
iterations.

The pT-differential production cross section of �0
c baryons mul-

tiplied by the branching ratio into the considered semileptonic 
decay channel is calculated from the yields obtained by the un-
folding approach as follows:

BR · d2σ�0
c

dpTdy
= N�0

c

2 · �pT�y · (A × ε) · Lint · BR�−
, (2)

where N�0
c

is the yield in a given pT interval with width �pT. 
The yield is divided by the integrated luminosity Lint of the anal-
ysed sample and by the product of the branching ratios of the 
decays �− → π−� (99.887 ± 0.035% [34]) and � → pπ− (63.9 ±
0.5% [34]), which is indicated as BR�− . The factor 1/2 is needed be-
cause the cross section is computed for the average of �0

c and �0
c , 

while the raw yield includes both contributions. The factor (A × ε)

is the product of the geometrical acceptance (A) and the recon-
struction and selection efficiency (ε) for �0

c → e+�−νe decays 
determined for �0

c generated in |y| < 0.8. Finally, the yield is nor-
malised to one unit of rapidity by dividing it by �y = 1.6 under 
the assumption that the rapidity distribution of �0

c is uniform in 
the range |y| < 0.8. This assumption is verified with an accuracy 
of 1% using pythia 6. Note that the flatness of the rapidity distri-
bution in |y| < 0.8 is also relevant for the comparison to the D0

meson cross section, which was determined in |y| < 0.5 [21].
The acceptance and the efficiency are calculated from the sim-

ulations with an additional correction to take into account the fact 
that the elastic cross section of anti-protons is not accurate in
geant3 [56]. The correction is calculated using the geant4 trans-
port code [57], which has a more accurate description of the cross 
section, and found to be less than 2%. Since the acceptance and the 
efficiency depend on the �0

c -baryon pT, the �0
c should be gener-

ated with a realistic momentum distribution. This was obtained via 
a two-step procedure similar to that used for the response matrix. 
Fig. 4 shows the product of the geometrical acceptance and the re-
construction and selection efficiency (A × ε) of �0

c as a function 
of pT.

The systematic uncertainty on the �0
c cross section has differ-

ent contributions, which are the uncertainties on the raw yield 
(owing to the procedure of background estimation), on the (A × ε)

factor (due to imperfections in the simulated samples), on the 
correction of the missing neutrino momentum (related to the un-
folding procedure) and on the normalisation. Table 1 summarises 

Fig. 4. Product of acceptance and efficiency (A × ε) of �0
c baryons generated in 

|y| < 0.8 decaying into e+�−νe as a function of pT, determined from simulations
pythia 6 (see text).

the estimated systematic uncertainties, reporting their values in all 
the pT intervals. The total systematic uncertainty is determined by 
adding the individual contributions in quadrature in each pT inter-
val.

The systematic uncertainty on the raw yield includes the uncer-
tainties due to the WS subtraction procedure and to the estimation 
of the �b contribution. In the WS subtraction procedure described 
above, it was assumed that all the background sources contribute 
equally to RS and WS pairs. This is true as long as the background 
comprises uncorrelated pairs of electrons and �− . A systematic 
uncertainty of 4% on the �0

c signal yield due to possible differ-
ences between RS and WS is estimated from simulations with the
pythia 6 event generator by checking the remaining contamination 
of background pairs in the RS yield after the subtraction of the WS 
pairs. The WS subtraction could also be affected by the amount 
of hadron contamination in the electron sample and the signal-to-
background ratio of the �0

c signal. This effect is studied by repeat-
ing the analysis with different electron identification criteria. The 
results obtained with these modified criteria are found to be con-
sistent with the ones from the default selections and therefore no 
systematic uncertainty is assigned. The systematic uncertainty due 
to the �b contribution to the WS pairs is estimated by varying 
the �b momentum distribution within the quoted uncertainty of 
about 50% on the cross section of �0

b in pp collisions [49] and the 
quoted uncertainty of about 50% on the ratio of the fragmentation 
fractions of beauty quarks into �0

b and �b in e+e− collisions [51,
52]. The effect on the final results is found to be about 1% because 
the contribution from �b is small. These systematic uncertainties 
add up to a total uncertainty of 5% for the raw yield extraction.

The systematic uncertainties arising from the reconstruction 
and selection efficiencies are estimated by repeating the analysis 
with different selection criteria for electrons, �− and e+�− pairs 
and by comparing the corrected yields. Due to the statistical lim-
itations of the �0

c sample, the electron efficiencies are studied via 
variations of the track-quality criteria and of the nσ values for the 
electron identification with TPC and TOF in the �+

c → e+�νe de-
cays, which are analysed with the same procedure and have higher 
statistical significance. The RMS of the deviations of the corrected 
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Fig. 5. Inclusive �0
c -baryon pT-differential production cross section multiplied by 

the branching ratio into e+�−νe , as a function of pT for |y| < 0.5, in pp collisions 
at √s = 7 TeV. The error bars and boxes represent the statistical and systematic 
uncertainties, respectively. The contribution from �b decays is not subtracted.

yields relative to the value obtained with the standard selection 
criteria, which amounts to 4% and 3%, is then assigned as a sys-
tematic uncertainty on the reconstruction and selection efficiency. 
Similarly, a systematic uncertainty of 1% on both the �− recon-
struction and selection efficiency is estimated from the RMS devi-
ation of the inclusive �− corrected yield against variations of the 
criteria applied to select the �− decay tracks and its cascade de-
cay topology. In addition, a systematic uncertainty of 4% on the 
�− efficiency due to possible imperfections in the description of 
the detector material in the simulations [44] is considered and 
summed in quadrature with that estimated from the variation of 
the selection criteria. The uncertainties on the electron and �−
track-quality criteria are considered as correlated and combined 
linearly. The uncertainty on the e+�− pair selection efficiency is 
estimated by varying the selection criteria on the opening angle 
and the invariant mass of the pair and a systematic uncertainty 
of 3–27% is assigned depending on pT. Finally, a systematic uncer-
tainty may also arise from an imperfect description of the accep-
tance of e+�− pairs in the simulation. It is estimated to be 11% by 
comparing the azimuthal distributions of inclusive electrons and 
�− baryons in the data and in the simulation. The uncertainty on 
the e+�− pair acceptance is summed in quadrature with that on 
the electron and �− selection efficiencies, resulting in a system-
atic uncertainty on the (A × ε) correction factor ranging from 13% 
to 30% depending on pT.

The systematic uncertainty on the missing neutrino momentum 
correction with the unfolding procedure is evaluated by varying 
the prior distribution to the Bayesian unfolding and by using differ-
ent unfolding techniques, such as the χ2 minimisation method [58,
59] and the Singular Value Decomposition (SVD) method [60]. The 
RMS deviation of the results, ranging between 4% and 29% depend-
ing on pT, is assigned as a systematic uncertainty. A systematic 
uncertainty of 3% is also assigned due to the imperfect knowledge 
of the �0

c -baryon pT distributions used as input for the efficiency 
calculation and the unfolding procedure from the simulation. It is 
estimated from the difference induced in the result by adding an 
additional step in the iterative procedure described above to obtain 
the input pT distributions. These systematic uncertainties add up 
to an uncertainty ranging between 6% and 29% depending on pT.

Finally, the results have a 3.5% normalisation systematic un-
certainty arising from the uncertainty in the determination of 
the minimum-bias trigger cross section in pp collisions at 

√
s =

7 TeV [41].
The pT-differential cross section of �0

c baryons multiplied by 
the branching ratio into e+�−νe is shown in Fig. 5 for the pT
interval 1 < pT < 8 GeV/c at mid-rapidity, |y| < 0.5. The error 
bars and boxes represent the statistical and systematic uncer-
tainties, respectively. The feed down contribution from �b, e.g. 

Fig. 6. Ratio of the pT-differential cross sections of �0
c baryons (multiplied by the 

branching ratio into e+�−νe) and D0 mesons [21] as a function of pT for |y| < 0.5, 
in pp collisions at √s = 7 TeV. The error bars and boxes represent the statisti-
cal and systematic uncertainties, respectively. Predictions from theoretical models, 
(a) pythia 8 with different tunes [28,62]. (b) dipsy [63] and herwig 7 [64], are 
shown as shaded bands representing the range of the currently available theoretical 
predictions for the branching ratio of the considered �0

c decay mode.

�−
b → �0

cπ
− [61], is not subtracted due to the lack of knowledge 

of the absolute branching ratios of �b → �0
c + X .

The ratio of the pT-differential cross section of �0
c baryons to 

that of D0 mesons [21] is shown in Fig. 6. The pT intervals of 
the cross-section measurements are combined to have the same 
pT bin boundaries for �0

c and D0. The systematic uncertainty in 
a merged pT interval is defined by propagating the yield extrac-
tion uncertainties of the D0 measurement as uncorrelated among 
pT intervals and all the other uncertainties of the D0 and �0

c mea-
surements as correlated. The systematic uncertainty on the �0

c /D0

ratio is calculated treating all the uncertainties on the �0
c and D0

cross sections as uncorrelated, except for the normalisation uncer-
tainty that cancels out in the ratio. The ratio integrated in the 
transverse momentum interval 1 < pT < 8 GeV/c is found to be 
(7.0 ± 1.5(stat) ± 2.6(syst)) × 10−3.

In Fig. 6(a), the measured transverse momentum dependence 
of the �0

c/D0 ratio is compared with predictions from the pythia

8.211 event generator [46,65]. pythia 8 uses 2 → 2 processes fol-
lowed by a leading-logarithmic pT-ordered parton shower for the 
charm quark pair production and the hadronisation is treated with 
the Lund string model [66]. The figure shows the results obtained 
with different tunes of hadronisation: the Monash 2013 tune [62]
and the Mode 0 tune from [28]. The latter is based on a model for 
the hadronisation of multi-parton systems, which includes string 
formation beyond the leading-colour approximation and is imple-
mented in pythia 8 with specific tuning of the colour reconnection 
parameters. As compared to the Monash 2013 tune, this model 
provides a better description of the measured baryon-to-meson 
ratios in the light-flavour sector. Two other tunes (Mode 2 and 
Mode 3) provided in Ref. [28] give similar �0

c /D0 ratios as Mode 0. 
In Fig. 6(b), the measured ratio is also compared to other mod-
els implementing different hadronisation mechanisms: dipsy [63]
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with the rope hadronisation [67] and herwig 7.0.4 [64] with the 
cluster hadronisation [68]. To compare the data with these mod-
els, theoretical calculations of the branching ratio, which range 
between 0.83% and 4.2% [69–71], are used. This range defines the 
width of the bands shown for the model calculations represented 
in Fig. 6. Although the predictions of the Mode 0 tune of pythia 8 
are the closest to the data compared to the other models, all 
calculations underestimate the measured ratio significantly. Thus, 
this new measurement can provide an important constraint to the 
models of charm quark hadronisation in pp collisions, once a mea-
surement of the absolute branching ratio of the �0

c will become 
available.

In summary, we reported on the first LHC measurement of the 
inclusive pT-differential production cross section of the charm-
strange baryon �0

c multiplied by the branching ratio into e+�−νe
in pp collisions at 

√
s = 7 TeV. The ratio of this measurement in-

tegrated over 1 < pT < 8 GeV/c to the production cross section 
of the D0 meson integrated over the same pT interval was found 
to be (7.0 ± 1.5(stat) ± 2.6(syst)) × 10−3. Several event generators 
with various models and tunes for the hadronisation mechanism 
underestimate the measured ratio.
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