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The spatial dispersion of the single-nucleon wave functions is analyzed using the self-consistent mean-field
framework based on nuclear energy density functionals and with the harmonic-oscillator approximation for the
nuclear potential. It is shown that the dispersion depends on the radial quantum number n but displays only a
very weak dependence on the orbital angular momentum. An analytic expression is derived for the localization
parameter that explicitly takes into account the radial quantum number of occupied single-nucleon states. The
conditions for single-nucleon localization and formation of cluster structures are fulfilled in relatively light nuclei
with A � 30 and n = 1 states occupied. Heavier nuclei exhibit the quantum liquid phase of nucleonic matter
because occupied levels that originate from n > 1 spherical states are largely delocalized. Nevertheless, individual
α-like clusters can be formed from valence nucleons filling single-particle levels originating from n = 1 spherical
mean-field states.
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Nucleon localization and formation of cluster structures
characterize not only light α-conjugate nuclei [1–6], but also
heavier nuclear systems [7]. Several microscopic models, for
instance, the antisymmetrized molecular dynamics [1,2], have
very successfully been applied to a description of cluster states
in relatively light nuclei. A more general approach based on
energy density functionals (EDFs) [8–12] has to be employed
in order to study the occurrence and structure of nucleon
clusters in medium-heavy and heavy nuclei. Studies based
on the latter method have related the conditions for nucleon
localization and formation of clusters to the underlying single-
nucleon dynamics, geometric shape transitions, and surface
effects.

The EDF framework enables a systematic analysis of nu-
cleon localization as a precondition for cluster formation. The
Wigner parameter [13] can be used to describe the transition
between the nuclear quantum liquid phase and a hybrid phase
of cluster states in terms of spatial localization. Such a localiza-
tion parameter can be microscopically calculated as the ratio of
the dispersion of a single-nucleon wave function to the average
internucleon distance [9,14]. If the confining nuclear potential
is approximated by a three-dimensional harmonic oscillator
(HO), the analytic form of the localization parameter exhibits
an explicit dependence on the number of nucleons A and the
depth of the confining potential V0. When the spatial dispersion
of the single-nucleon wave function is of the same size as
the internucleon distance, localization facilitates the formation
of clusters [6]. In the present Rapid Communication we aim
to explore the dependence of the localization parameter on
the specific quantum states occupied by the valence nucleons.
A recent study [15] has shown explicitly, using as examples
12C, 28Si, and 40Ca, that single-particle wave functions are
localized in light nuclei. Clusters, of course, occur more
frequently in light nuclei, but they may also form in heavy

systems, such as, for instance, an α-like cluster in 212Po [16].
Can we understand these phenomena in a unified framework?

If the average nuclear potential is approximated by a spher-
ical harmonic oscillator, one obtains the following analytic
expression for the localization parameter [9,14,17]:

αloc � b

r0
=

√
h̄A1/6

(
2mV0r

2
0

)1/4 , (1)

where b = √
h̄/mω0 fm is the oscillator length and

r0 � 1.25 fm is the typical internucleon distance determined
by nuclear saturation density (ρ � 0.16 fm−3). The resulting
expression includes the nucleon number A, the mass of the
nucleon m, and the depth of the confining potential V0. As
shown in Ref. [14], the oscillator length can be related to
the spatial dispersion �r =

√
〈r2〉 − 〈r〉2: b � 2 �r for the

first s, p, and d HO wave functions. When the dispersion
of the single-nucleon wave function is of the same size as
the internucleon distance, αloc is on the order of 1, and this
facilitates the formation of α clusters. The dependence of
the localization parameter on A1/6 means that cluster states
are preferably formed in lighter nuclei, and the transition
from coexisting cluster and mean-field states to a Fermi-liquid
state should occur for nuclei with A ≈ 20–30, in qualitative
agreement with experiment.

In finite nuclei the spatial dispersion and, therefore the
localization parameter, will explicitly depend on the quantum
numbers of specific single-nucleon orbitals. In this Rapid
Communication we generalize expression (1) and derive an
explicit dependence of the localization parameter on single-
nucleon quantum numbers. We also compare the spatial dis-
persions of the HO wave functions with those obtained in a
fully self-consistent microscopic calculation of nuclear ground
states and perform a systematic microscopic calculation of
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FIG. 1. Radial dispersions �r of the single-neutron wave func-
tions of 288Cf, obtained in a self-consistent relativistic mean-field
(RMF) calculation based on the energy density functional DD-ME2
[18].

single-nucleon dispersions in axially symmetric nuclei over
the entire nuclear chart.

In the first step we perform a systematic microscopic
calculation, based on the EDF framework, of dispersions of
single-nucleon wave functions in a large nucleus, close to the
spherical shape. By considering a heavy spherical nucleus with
many occupied levels we can analyze the dependence of the
corresponding dispersions on the radial and orbital quantum
numbers. Figure 1 displays the spatial dispersions of neutron
single-particle states in 288Cf, obtained in a self-consistent
RMF calculation using the energy density functional DD-ME2
[18]. The depth of the self-consistent neutron potential is V0 =
78.6 MeV, and the dispersions �r are plotted as functions
of the single-particle radial quantum number n and orbital
angular momentum l. One notes a pronounced dependence on
the radial quantum number n, whereas the spatial dispersions
�r depend only very weakly on the orbital angular momentum.
A particularly interesting result is that for single-neutron
states with n = 1 the dispersion is of the size of the average
internucleon distance. We note that the small splittings between
points that correspond to the same orbital angular momenta
and radial quantum numbers arise because of deformation:
The self-consistent mean-field solution is not fully spherical
symmetric (the quadrupole deformation parameter is β2 =
0.07).

Next we derive an analytic expression for the dispersion of
the single-nucleon wave function for the case when the nuclear
potential is approximated by a spherical three-dimensional
harmonic oscillator. The HO approach provides a realistic
approximation for studies of localization and cluster effects
in nuclear systems [19]. The 〈r2〉 term is easy to evaluate and
reads

〈r2〉 = b2
(
N + 3

2

) = b2
(
2n′ + l + 3

2

)
, (2)

where N = 2(n − 1) + l is the principal quantum number and
n′ ≡ n − 1. The 〈r〉 term is considerably more complicated.
Using the HO wave functions, it can be expressed in the
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FIG. 2. Radial dispersions �r of the harmonic-oscillator wave
functions of 288Cf, evaluated numerically from Eqs. (2) and (3)
(filled symbols) and in the analytical approximation [Eqs. (5) and
(8) corresponding to the minimal and maximal values, respectively]
(open symbols).

following form:

〈r〉
b

=
n′∑

q=0

(−1)q(l + q + 1)!�
(
n′ − q − 1

2

)
q!(n′ − q)!�

(
l + q + 3

2

)
�

( − q − 1
2

) , (3)

where � is the Euler function. To compare with the microscopic
results shown in Fig. 1, the corresponding dispersions for
the single-particle wave functions of the harmonic-oscillator
potential of 288Cf are evaluated numerically using Eqs. (2)
and (3) and plotted in Fig. 2. The dispersion, of course,
increases with the number of radial nodes but shows very little
dependence on the orbital angular momentum just as in the
case of a fully microscopic calculation. It should be noted that
the microscopic dispersion (cf. Fig. 1) is typically 1.2 times
larger than the corresponding one in the HO approximation
because the actual self-consistent nuclear potential is more
diffuse. Indeed, a Woods-Saxon potential can be approximated
by a HO with a length of about 1.2b, thus explaining this ratio.

Therefore, if only n = 1 states are occupied in a nucleus,
all nucleons have similar and minimal spatial dispersion, on
the order of 1 fm. The pronounced localization will favor
formation of α-like clusters, whereas the occupation of n > 1
states breaks the coherence of spatial localization. Of course,
nuclei in which only levels originating from then = 1 spherical
states are occupied are the light ones up to about silicon
(Z = 14, 1s, 1p, and 1d levels occupied). These are indeed
nuclear systems in which cluster structures are empirically
most pronounced [20].

To derive a generalization of the expression for the lo-
calization parameter in the HO approximation Eq. (1) but
now taking explicitly into account the quantum numbers of
occupied states, we simplify the n and l dependences in Eq. (3).
For l = 0 one obtains

〈r〉
b

= 2√
π

(2n′ + 1)!!

(2n′)!!
� 2√

π

(
5n′

4
+ 1

)1/2

, (4)
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where the right-hand side is an accurate approximation with a
<1% error for n′ = 20. Thus, using Eqs. (2) and (4), the l = 0
dispersion reads

(
�r

b

)2

�
(

2 − 5

π

)
n′ +

(
3

2
− 4

π

)
� 0.4n′ + 0.23. (5)

Let us now consider the case of large angular momenta l in
Eq. (3). In this limit [21],

(l + q + 1)!

�
(
l + q + 3

2

) �
√

l + 1√
l

(
q

2
+ 5

8

)
, (6)

and the expression Eq. (3) reduces to

〈r〉
b

�
√

l + 1√
l

(
5

8
+ 3n′

4

)
. (7)

The corresponding dispersion for large l values reads
(

�r

b

)2

� n′

2
+ 1

4
. (8)

The close agreement of the expressions for l = 0 [Eq. (5)]
and in the large l limit [Eq. (8)] reflects the weak depen-
dence of the HO dispersion on orbital angular momentum.
The corresponding dispersions of occupied states of 288Cf:
Minimal values corresponding to Eq. (5) and maximal values
computed using Eq. (8) are indicated by open symbols in Fig. 2.
Both expressions, of course, yield very similar dispersions.
Equation (8) implies, as also shown in Fig. 2, that the occupa-
tion of an n = 2 state leads to a dispersion that is by a factor√

3 ∼ 1.7 larger than the one of n = 1 states. This corresponds
to the case of medium-heavy nuclei, typically above silicon, in
which there is no clear evidence of cluster states at low energies
and angular momenta.

From Eqs. (1) and (8) we finally derive the approximate
expression for the HO localization parameter,

αloc = 2�r

r0
� b

r0

√
2n − 1 =

√
h̄(2n − 1)(

2mV0r
2
0

)1/4 A1/6. (9)

In nuclei the depth of the confining potential is rather constant
as well as the average internucleon distance, hence the two
key parameters that determine localization are A and the radial
quantum number n. For relatively light nuclei with A � 30 and
n = 1 states occupied, αloc � 1, and this favors the formation
of α-like clusters. In heavier nuclei levels that originate from
n > 1, spherical states are largely delocalized, and this explains
the predominant liquid drop nature of these systems.

An interesting possibility, however, is the formation of
individual α-like clusters from valence nucleons in heavy
nuclei. We have performed a systematic fully self-consistent
relativistic Hartree-Bogoliubov (RHB) [22] calculation of
single-nucleon dispersions in axially symmetric nuclei over
the entire nuclear chart using the functional DD-ME2. Pairing
correlations have been taken into account by employing an
interaction that is separable in momentum space and is com-
pletely determined by two parameters adjusted to reproduce the
empirical bell-shaped pairing gap in symmetric nuclear matter
[23]. The Dirac-Hartree-Bogoliubov equations are solved by
expanding the nucleon spinors in a large axially symmetric HO
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FIG. 3. Microscopic axially symmetric RHB prediction of nuclei
that have small radial dispersion of the single-particle states of valence
nucleons (red circles), plotted on the background of empirically
known nuclides on the N -Z plane. The single-nucleon dispersions
have been calculated using the functional DD-ME2 and separable
pairing and assuming axial symmetry.

basis. The microscopic values of the dispersion �r have been
calculated for each single-particle state. Figure 3 indicates, on
the table of nuclides on the N -Z plane, those nuclei in the
RHB calculation for which both the neutron and the proton
valence states (having an occupation probability larger than
0.1) exhibit a significantly small dispersion on the order of 1 fm.
For deformed nuclei it can be shown that these Nilsson levels
do originate from n = 1 spherical states with the degeneracy
raised by deformation. One notices that pronounced localiza-
tion, as a precondition for the formation of cluster structures, is
present in light nuclei but also occurs among valence nucleons
in medium-heavy and heavy nuclei, in agreement with empir-
ically known α- and cluster-radioactive nuclei. For instance,
a favorable condition for clustering is predicted for 212Po, in
accordance with experimental evidence [16]. The EDF-based
approach used in this Rapid Communication provides a global
interpretation of the occurrence of cluster structures by means
of spatial dispersion of single-nucleon wave functions.

The role of deformation, which is known to favor cluster
formation [10,24,25], is illustrated in Fig. 4 where we show the
self-consistent mean-field results for 20Ne calculated using the
relativistic density functional DD-ME2 in the RMF approach.
Pairing does not play an important role for the effect that we
consider in this particular nucleus, and it has not been included
in the RMF calculation restricted to axial symmetry. Figure 4
displays the occupied single-neutron levels as functions of
the axial deformation parameter, the dispersion of the wave
function corresponding to the highest level occupied by the
two valence neutrons, and the partial intrinsic densities of the
valence neutrons for values of deformation that correspond to
the peaks and minima of dispersion. In general, the spatial
dispersion increases with deformation until a level crossing
occurs for the last occupied state. The largest and sharpest
increase in the spatial dispersion takes place at the deformation
at which a 1/2+ state (originating from the 2s1/2 spherical
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FIG. 4. The occupied single-neutron levels 	π of 20Ne in the
RMF approach as functions of the axial deformation parameter (solid
curves), the dispersion of the wave function corresponding to the
highest level occupied by the two valence neutrons (blue dotted curve),
and the partial intrinsic densities of the valence neutrons for values of
deformation that correspond to the peaks and minima of dispersion.

state) becomes occupied. It is remarkable that at this point
the dispersion increases by the factor of ∼1.7, which we
encountered above when discussing the filling of the n = 2 HO
state [cf. Eq. (8) and Fig. 2]. The valence state partial densities
exhibit more pronounced localization for small dispersion,
whereas the largest spreading is obtained at points C and D at
which the 1/2+ state becomes the last occupied neutron level.

The present Rapid Communication can also be related
to the discussion of (multi)clustering in superdeformed and

hyperdeformed states [24,26]. These specific states (ratio of
deformed HO frequencies of two and three, respectively) can
be described as irreducible representations of SU(3). The
magic numbers of super- (hyper-) deformed states are obtained
from the sum of two (three) magic numbers of the spherical
system. These relations involve small values of radial quantum
numbers, and, through Eq. (9), this can be linked to more
localized states. The present approach however, as illustrated
in Fig. 4, establishes a connection between spatial dispersion
and clustering for all deformations rather than only for specific
super- and hyperdeformed states.

To summarize, we have used the self-consistent mean-field
framework based on nuclear energy density functionals and the
spherical harmonic-oscillator approximation for the nuclear
potential to analyze the radial dispersion of single-nucleon
wave functions. It has been shown that the dispersion exhibits
a pronounced dependence on the radial quantum number but
essentially does not depend on the orbital angular momentum.
In particular, for single-neutron states with n = 1 the disper-
sion is of the size of the average internucleon distance, and
the correspondingly small value of the localization parameter
αloc indicates a transition between the nuclear quantum liquid
phase and a hybrid phase of cluster states that coexists with
mean-field states. Based on the HO approximation, we have
derived an analytic expression for the localization parameter
that, in addition to the dependence on the depth of the nuclear
potential and the nucleon number, explicitly takes into account
the radial quantum number of occupied single-nucleon states.
For A � 30 and n = 1 states occupied, αloc � 1, and the
formation of α clusters is favored. Although in heavier nuclei
levels that originate from n > 1 spherical states are largely
delocalized, these systems exhibit the quantum liquid phase
of nucleonic matter, and individual α-like clusters can be
formed from valence nucleons filling Nilsson levels that can
be traced back to the n = 1 spherical mean-field states. The
role of deformation in the evolution of spatial dispersion of
single-nucleon levels has been microscopically analyzed in
the example of 20Ne, showing the robustness of the present
analysis and conclusions. This Rapid Communication provides
a general basis for understanding the conditions for cluster
formation in light and heavy nuclei.

This Rapid Communication has been supported, in part,
by the QuantiXLie Centre of Excellence, a project cofinanced
by the Croatian Government and European Union through
the European Regional Development Fund—the Competitive-
ness and Cohesion Operational Programme (Program No.
KK.01.1.1.01).
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