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The test of understanding of vectors (TUV) is a multiple-choice test that was recently developed to
assess student understanding of vector concepts required in introductory physics courses at the university
level. In this study, the TUV was administered to 889 first-year students at the University of Zagreb. The
Rasch model was used to evaluate the functioning of the TUV, and to determine the difficulty scale of
vector concepts evaluated by this assessment instrument. The results of the Rasch analysis showed a good
functioning of test items. However, the TUV was not well targeted to our sample of first-year engineering
and science students in introductory physics courses. About half of the students had abilities outside
the range of item difficulties, indicating that the TUV would benefit from including more difficult items
that would help to better estimate the abilities of these students. Further analysis of the data from
subpopulations in our sample showed that the TUV can be well targeted for certain student populations.
Students’ scores suggest that the most difficult vector concept tested by the TUV is the unit vector, followed
by the cross product, subtraction of vectors, dot product, and direction of a vector.
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I. INTRODUCTION

Many physics quantities are vectors, and it is essential
for students to acquire a good understanding of vector
graphical and algebraic properties. Physics education
research (PER) studies revealed a number of student
difficulties with both vectors in general and with vectors
in specific physics contexts [1–10]. Based on these pre-
vious findings and their own meticulous studies [11–16],
Barniol and Zavala developed the test of understanding of
vectors [17].
The PER community has adopted different approaches to

data analysis of multiple-choice questions [18]. Widely
used physics diagnostic tests are often evaluated in multiple
ways, e.g., using classical test theory, item response theory,
factor analysis, or Rasch analysis [19–24]. In the case of the
test of understanding of vectors (TUV), the classical test
theory was used for evaluations during the development
stage and for the analysis of the final version [17]. The
three-parameter logistic model of item response theory

(IRT) and item response curves technique were employed
to analyze the TUV when it was released [25].
The Rasch model is another useful tool for the evaluation

of tests that are intended to be used as assessment instru-
ments [18]. As the Rasch model-based analysis of the TUV
has not yet been performed, we decided to reevaluate the
TUV using that approach.
In this paper we aimed to answer the following research

questions:
(i) How does the TUV function on a sample of first-

year engineering and science students?
(ii) What difficulty scale of vector concepts is suggested

by students’ scores on the TUV?
We performed the Rasch model-based analysis of the

TUV to address these research questions.

II. METHODS

A. Participants

The study included 889 undergraduate first-year engi-
neering and science students from the University of Zagreb.
A detailed description of the sample is given in the
Supplemental Material [26].

B. Data collection

The test of understanding of vectors [17] was translated
in Croatian and validated by two university lecturers in
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physics and one university lecturer in mathematics. The test
was administered to the participants during their second
semester at the university.

C. Data analysis

We used the Rasch model to analyze the collected data.
The Rasch model is an important psychometric tool when
conducting science education research utilizing multiple-
choice tests [27]. For an introduction to Rasch analysis see,
for example, Ref. [28]. We used the Winsteps software [29]
to conduct the Rasch analysis.

III. RESULTS AND DISCUSSION

A. Analysis of test structure and functioning

The Rasch analysis of the collected data showed very
high item reliability (0.99), which indicates replicability of
item order according to difficulty if the test were admin-
istered to another similar sample of students. The person
reliability was rather low (0.60), which indicates a not very
reliable person order if a similar test was administered to
the same students. The person reliability reports the
reproducibility of the person measure order obtained
through Rasch analysis. This index can range from 0 to
1, but its minimum meaningful value is 0.5, whereas the
lowest person reliability for any decision making about
students’ abilities (e.g., discernment between high and
low performers) is 0.8. The most effective way to increase
the person reliability is to increase the number of test items
[30]. The Cronbach alpha was 0.79, which can be consid-
ered satisfactory. The obtained value corresponds to the
value of the Kuder-Richardson reliability index (0.78)
reported by Barniol and Zavala for their sample of students
[17].
Figure 1 shows the distributions of student abilities and

item difficulties on the same logit scale. One logit is the
distance along the scale that increases the probability of
observing the event specified in the measurement model by
a factor of 2.718 (the base of the natural logarithm e). The
average item difficulty is set at zero. More able students and
more difficult items have a more positive value of Rasch
measure. Figure 1 reveals that the mean student ability is
about 2 logit above the mean item difficulty, which
indicates a rather poor test targeting. The test is too easy
for our sample of first-year university students. A signifi-
cant fraction of students, 11.5% (102 students), solved all
test items correctly, and an additional 13.3% (118 students)
solved 19 test items correctly. About half of the students
had abilities outside the range of item difficulties. The test
does not contain items that would help to better estimate the
abilities of these students. Consequently, the person reli-
ability is quite low, as reported above.
If the test is meant to be well targeted, then the

distribution of item difficulties should be aligned with
the distribution of student abilities. Ideally, items should be

distributed more or less evenly along the whole range of
student abilities, since student ability is best evaluated by
items in the �1 logit interval around the ability value. For
the sample of students in this study, the TUV has enough
easy items, but it does not have enough difficult items.
There are no items centered on students who are in the

FIG. 1. The person-item map shows the distribution of student
abilities on the left-hand side and the distribution of item
difficulties on the right-hand side displayed on the same logit
scale. Each “hash” represents four students and each “dot”
represents one to three students. The TUV items are labeled as
Q1–Q20. M denotes the mean of each distribution; S denotes 1
standard deviation, and T 2 standard deviations from the mean.
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ability range of 2–5 logit. These results indicate that the
TUV would benefit from including more difficult items.
To evaluate specificities of different student populations,

we conducted the Rasch analysis of the data collected from
subpopulations in our sample and the obtained person-item
maps are shown in the Supplemental Material [26]. The
results show that the TUV had good targeting only for the
subsample of students from the Faculty of Chemical
Engineering and Technology.

B. Analysis of test items

Furthermore, we examined the fit of the items with the
Rasch model by calculating infit and outfit mean square
(MNSQ) residuals and standardized Z scores for each item
(Table I). Typically, items are considered to have acceptable
fit if both infit and outfit MNSQ are between 0.7 and 1.3,
and Z scores are between −2 and 2 [28], but items with
MNSQ in the range 0.5–1.5 will still be productive for
measurement [30]. High infit values of MNSQ and Z scores
indicate that students do not respond in the expected way to
items whose difficulties correspond to their ability. High
outfit values of MNSQ and Z scores usually indicate
outliers (e.g., a student of lower ability answers correctly
on a very difficult test item). Low infit and outfit values of
MNSQ and Z score indicate overfit to the Rasch model, i.e.,
the data are more predictable than the model expects, and
the items therefore do not provide much new information,
but they do not degrade the measurement.

Table I shows that most items fit well with the model.
The item that is problematic to a certain extent, because of a
larger misfit, is item 14. Rather high outfit values of its
MNSQ and Z score were largely caused by some students
of higher ability who unexpectedly failed on this test item.
This agrees with the results from the previous study by
Rakkapao et al. [25], where rather low discrimination
power was found for this item. Item 14 refers to calcula-
tion of the x component of a vector when the angle is
measured from the y axis. The majority (70%) of students
who failed on this item chose the distractor in which the
sine function was replaced by cosine. This might be caused
by students’ lack of attention (angle was measured from
the y axis) or their difficulties with trigonometric functions.
Overall, item 14 should be further examined and possibly
revised in a future version of the TUV. Items 17 and 12 also
show high values of Z score, but their MNSQ values are
acceptable. Since Z scores are too sensitive for large
samples [30], items 17 and 12 can be considered productive
for measurement.
The Rasch model assumes unidimensionality, i.e., the

existence of a single underlying measurement construct.
The point-measure correlations can help identify the
existence of the construct. Positive point-measure correla-
tion of an item indicates that the item is in line with the
measured construct. The size of correlations shows how
much the items contribute to the construct. Table I shows
that the point-measure correlations of all items are positive,
which suggests that all items measure the underlying
construct (understanding of vectors).

C. Difficulty scale of vector concepts

The TUV is developed to test ten vector concepts used in
the introductory physics courses [17]. Each vector concept
was tested by one to three TUV items. To compare the
difficulties of the TUV items related to each vector concept,
we calculated their average values and their uncertain-
ties (Fig. 2).
The most difficult vector concept appears to be the unit

vector. This concept was tested by only one test item
(item 2). This finding is consistent with the results from
the previous studies [17,25]. For the group of Thai students,
item 2 was the most difficult TUV item, while it was the
third most difficult item for the group of Mexican students.
The most popular distractor in item 2 in all three studies
(see Refs. [17,25] and the present study) was the choice in
which the x and y components were unit vectors. Barniol
and Zavala [14] and Rakkapao et al. [25] found that the
students who have chosen this answer believed that this
vector had a magnitude 1. So, we might conclude that many
students who failed to select the correct answer on item 2
probably knew the definition of unit vector but they did not
correctly use the notion of vector magnitude and vector
decomposition. To better examine student understanding of

TABLE I. Item difficulty measured in logits, Rasch standard
error, infit and outfit MNSQ (mean square residuals) and Z
scores, and point-measure correlation for each TUV item.

Infit Outfit

Item Measure SE MNSQ Z MNSQ Z Correlation

Q1 0.23 0.09 1.11 2.0 1.23 2.2 0.37
Q2 1.89 0.08 0.90 −3.1 0.89 −2.1 0.60
Q3 1.06 0.08 0.90 −2.8 0.86 −2.5 0.56
Q4 −1.63 0.16 0.99 0.0 0.77 −0.8 0.27
Q5 −1.18 0.14 1.01 0.1 0.96 −0.1 0.30
Q6 −1.40 0.15 1.01 0.2 0.86 −0.5 0.28
Q7 −2.05 0.20 0.92 −0.4 0.46 −1.8 0.28
Q8 0.94 0.08 1.01 0.2 1.06 1.0 0.49
Q9 −1.84 0.18 0.90 −0.7 1.00 0.1 0.29
Q10 −0.79 0.12 1.05 0.6 1.31 1.6 0.29
Q11 −0.37 0.11 0.91 −1.2 0.75 −1.9 0.44
Q12 1.93 0.08 1.02 0.5 1.27 4.6 0.54
Q13 0.53 0.09 0.94 −1.3 0.89 −1.3 0.50
Q14 0.27 0.09 1.24 4.3 1.42 3.8 0.31
Q15 1.32 0.08 0.91 −2.5 0.87 −2.4 0.57
Q16 −0.06 0.10 0.91 −1.5 0.80 −1.8 0.46
Q17 1.56 0.08 1.19 5.2 1.27 4.8 0.44
Q18 −0.01 0.10 0.93 −1.2 0.86 −1.2 0.46
Q19 1.13 0.08 1.03 0.8 1.03 0.5 0.50
Q20 −1.54 0.16 1.01 0.1 1.00 0.1 0.27

SHORT PAPERS PHYS. REV. PHYS. EDUC. RES. 14, 023101 (2018)

023101-3



the unit vector, it would be useful to have more test items on
this vector concept.
The next two concepts according to difficulty are cross

product and subtraction of vectors. Two items on cross
product were above the average difficulty, and one item was
close to the average. Item 12 (geometric interpretation of
the cross product as a perpendicular vector satisfying right-
hand rule) and item 15 (calculation of the cross product of
vectors written in unit-vector notation) were among the
most difficult items, whereas item 18 (identifying the
correct formula for cross product magnitude) was consid-
erably easier. Both items 12 and 15 refer to the direction of
the vector product, and the most frequent incorrect answers
on both items were vectors with the opposite direction to
the correct vector, which possibly indicates the misappli-
cation of the right-hand rule. This finding is in agreement
with the previous studies on student difficulties with cross
product direction [13,16,31].
Subtraction of vectors is significantly more difficult than

the addition of vectors, and that was corroborated by the
previous reports [17,25]. For our sample of students,
subtraction of vectors in one dimension (item 19) was
more difficult than subtraction in two dimensions (item 13).
Similar result was reported for the group of Thai students
[25], while Mexican students had more difficulties with
subtraction of vectors in two dimensions [17]. Heckler and
Scaife [32] found that many student difficulties with simple
vector addition and subtraction lie with the arrow repre-
sentation itself, so they suggested the introduction of other
representation (e.g., unit vectors ijk notation) together with
the arrow notation.
The last two vector concepts that were more difficult

than the average are dot product and vector direction.
Student understanding of the vector direction was tested by
item 5 (choosing a vector with the same direction as the
given vector from among several options) that was easier
than the average, and item 17 (calculation of direction of a

vector written in unit-vector notation) that was the third
most difficult item in the test (Fig. 1). Furthermore, the dot
product was easier than the cross product for students in
this study, similar to the results in the previous study by
Rakkapao et al. [25]. Barniol and Zavala found the
opposite; for their sample of students, the cross product
appeared easier than the dot product [17]. This might be
caused by the fact that they were tested after the course on
electricity and magnetism in which the cross product of
vectors is often used. Anyway, the dot product is among the
more demanding vector concepts in all three studies. For
the sample of students in our study, item 6 (identifying
correct formula for a dot product) was significantly easier
than items 3 (geometric interpretation of a dot product as a
projection) and 8 (calculation of a dot product of vectors
written in unit-vector notation). This suggests that knowing
the formula is not enough for problem solving [33,34].
The remaining vector concepts (scalar multiplication of a

vector, vector addition, graphic representation of a vector,
vector components, magnitude of a vector) were below
average difficulty, and did not pose a problem for most of
the students.

IV. CONCLUSION

The Rasch analysis of the test of understanding of
vectors showed rather good functioning of test items.
Only item 14 deserves further inspection and possibly
revision. However, the TUV was not well targeted to our
sample of first-year engineering and science students in
introductory physics courses. The mean of the distribution
of item difficulties was about two logit below the mean of
the distribution of student abilities indicating that the test
was too easy for our sample. The lack of more difficult test
items resulted in low person reliability. Nevertheless, the
analysis of the data from subpopulations in our sample
showed that the TUV can be well targeted for certain

FIG. 2. Average difficulties of the vector concepts, evaluated by the TUV, measured in logits.
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student populations [26]. Furthermore, its functioning
might depend on educational systems and teaching of
vector concepts. For example, our sample of first-year
engineering and science students in Croatia had better
results on the TUV than Mexican and Thai students from
the previous studies [17,25]. The possible reason for the
observed difference might be that Croatian students learned
about some of the vector concepts tested in this study
already in high school.
One could argue that the understanding of vector

concepts is the essential prerequisite for attending intro-
ductory physics courses and that high student scores on the
TUV are thus expected. In that case the TUV could be
applied as a pass or fail assessment instrument. High scores
on the TUV would indicate that most students acquired
good understanding of vectors, and that they do not have
difficulties with vector quantities and operations with
vectors. Unfortunately, from our teaching practice, we
could not confirm that is the case. Students in our introduc-
tory courses beyond mechanics still struggle with some
vector concepts, such as cross and dot products. Thus, taking
into account the results of the Rasch analysis and our insight
in student difficulties with vector quantities in physics,
we suggest adding more difficult items in the TUV.

Besides adding more items on the vector concepts already
included in the TUV, but with only one item (e.g., unit
vector), it might be beneficial to include some other vector
problems often used in introductory physics courses
(e.g., vector decomposition in nonorthogonal directions,
adding or subtracting vectors that do not have the same
initial point, finding the difference of equally long vectors
with opposite directions, or, when given a resulting vector of
a cross product and one factor, finding the possible directions
of the unknown factor). These are the examples of the less-
standard vector problems encountered in introductory phys-
ics, which may present difficulty for students. It is our
experience that students indeed do have difficulties applying
their knowledge of vectors to such situations, and that is
something that should be detectable by TUV and similar
diagnostic instruments.
According to the results of the Rasch analysis, it seems

that the most difficult vector concepts tested by the TUV is
the unit vector, followed by the cross product, subtraction
of vectors, dot product, and the direction of a vector. The
order of vector concepts by difficulty might help instructors
in introductory physics courses to put more emphasis on
these concepts in their teaching in order to help students to
overcome the observed difficulties.
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