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Abstract First results on K/π , p/π and K/p fluctuations
are obtained with the ALICE detector at the CERN LHC
as a function of centrality in Pb–Pb collisions at

√
sNN =

2.76 TeV. The observable νdyn, which is defined in terms
of the moments of particle multiplicity distributions, is used
to quantify the magnitude of dynamical fluctuations of rela-
tive particle yields and also provides insight into the corre-
lation between particle pairs. This study is based on a novel
experimental technique, called the Identity Method, which
allows one to measure the moments of multiplicity distri-
butions in case of incomplete particle identification. The
results for p/π show a change of sign in νdyn from positive
to negative towards more peripheral collisions. For central
collisions, the results follow the smooth trend of the data at
lower energies and νdyn exhibits a change in sign for p/π and
K/p.

1 Introduction

The theory of strong interactions, Quantum Chromodynam-
ics (QCD), predicts that at sufficiently high energy density
nuclear matter transforms into a deconfined state of quarks
and gluons known as Quark–Gluon Plasma (QGP) [1,2]. One
of the possible signatures of a transition between the hadronic
and partonic phases is the enhancement of fluctuations of the
number of produced particles in the hadronic final state of
relativistic heavy-ion collisions [3–5]. Event-by-event fluctu-
ations and correlations may show critical behaviour near the
phase boundary, including the crossover region where there
is no thermal singularity, in a strict sense, associated with the
transition from a QGP phase to a hadron-gas phase. A corre-
lation analysis of event-by-event abundances of pions, kaons
and protons produced in Pb–Pb collisions at LHC energies
may provide a connection to fluctuations of globally con-
served quantities such as electric charge, strangeness and
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baryon number, and therefore shed light on the phase struc-
ture of strongly interacting matter [6].

In view of the predicted criticality signals at crossover for
vanishing net-baryon densities [7], event-by-event fluctua-
tions of relative particle yields are studied using the fluctua-
tion measure νdyn[A, B] [8] defined in terms of moments of
particle multiplicity distributions as

νdyn[A, B] = 〈NA(NA − 1)〉
〈NA〉2 + 〈NB(NB − 1)〉

〈NB〉2

−2
〈NANB〉

〈NA〉〈NB〉 , (1)

where NA and NB are the multiplicities of particles A and
B measured event-by-event in a given kinematic range.
The νdyn[A, B]1 fluctuation measure contrasts the relative
strength of fluctuations of species A and B to the relative
strength of correlations between these two species. It van-
ishes when the particles A and B are produced in a statisti-
cally independent way [8,9].

This study at LHC energies is of particular importance
for establishing the energy and system size dependence of
νdyn in order to understand the trend observed at lower col-
lision energies from the RHIC Beam Energy Scan (BES)
results reported by the STAR collaboration [10]. Further-
more, the advantage of this fluctuation measurement is
its robustness against non-dynamical contributions such as
those stemming from participant nucleon fluctuations and
finite particle detection efficiencies [8,11]. Measurements
of the νdyn observable for net-charge fluctuations were
already published by ALICE [12]. Moreover, for identi-
fied particles, it was measured at the Super Proton Syn-
chrotron (SPS) [13] and at the Relativistic Heavy-Ion Col-
lider (RHIC) [10] in Pb–Pb and Au–Au collisions, respec-
tively. The ALICE detector at the LHC is ideally suited to
extend these measurements to higher collision energies. In
particular, the excellent charged-particle tracking and parti-

1 In this study, νdyn[A, B] was taken to be νdyn[A+ A, B + B], where
A and B are the anti-particles of A and B, respectively.
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cle identification (PID) capabilities in the central barrel of
the detector allow for a precise and differential event-by-
event analysis at midrapidity and low transverse momentum
(pT).

The paper is organized as follows. In Sect. 2, details about
the ALICE detector setup and the dataset are given. Section 3
discusses the event and track selection criteria, particle iden-
tification procedure, and the analysis method. Estimates of
statistical and systematic uncertainties are given in Sect. 4.
Results on νdyn[π, K], νdyn[π, p] and νdyn[p, K] in Pb–Pb
collisions at

√
sNN = 2.76 TeV are presented in Sect. 5, and

finally Sect. 6 summarizes the measurements presented in
this paper.

2 Experimental setup and dataset

ALICE is a general-purpose detector system designed, in
particular, for the study of collisions of heavy ions at the
LHC. The design, components, and performance of the
ALICE detector have been reported elsewhere [14,15]. The
ALICE detector is comprised of several detector components
organized into a central barrel detection system and for-
ward/backward detectors. The main tracking and PID devices
in the central barrel of the experiment are the Inner Track-
ing System (ITS) and the Time Projection Chamber (TPC),
which are operated inside a large solenoidal magnet with
B = 0.5 T. Two forward scintillator arrays V0-A and V0-C
are located on either side of the interaction point and cover
the pseudorapidity (η) intervals 2.8 < η < 5.1 and −3.7 <

η < −1.7. The V0 detectors and the two neutron Zero Degree
Calorimeters (ZDC), placed at ±114 m from the interaction
point, were used for triggering and event selection.

The ITS-TPC tracking system covers the midrapidity
region and provides charged-particle tracking and momen-
tum reconstruction down to pT = 100 MeV/c. The ITS is
employed to reconstruct the collision vertex with high pre-
cision and to reject charged particles produced in secondary
vertices.

The analysis presented in this paper is based on about
13 million minimum-bias Pb–Pb collisions at

√
sNN =

2.76 TeV collected in the year 2010. The minimum-bias trig-
ger condition is defined by the coincidence of hits in both V0
detectors. In the offline event selection, V0 and ZDC tim-
ing information is used to reject beam-gas background and
parasitic beam-beam interactions. The definition of the col-
lision centrality is based on the charged-particle multiplicity
measured in the V0 detectors [14], which can be related to
collision geometry and the number of participating nucleons
through a Monte-Carlo (MC) simulation based on a Glauber
model [16].

3 Data analysis

3.1 Event and track selection

Charged particles reconstructed in the TPC with full
azimuthal acceptance and in the pseudorapidity range of
|η| < 0.8 were used in this analysis. The momentum range
was restricted to 0.2 < p < 1.5 GeV/c in order to mini-
mize systematic uncertainties arising from the overlap of the
dE/dx distributions. Furthermore, the following track selec-
tion criteria were applied to guarantee optimal dE/dx and
momentum resolution, which are crucial for precise particle
identification. Charged-particle tracks were accepted in this
analysis when they have at least 80 out of a maximum of
159 reconstructed space points in the TPC, and the χ2 per
space point from the track fit is less than 4. Daughter tracks
from reconstructed secondary weak-decay kink topologies
were rejected. Additional suppression of secondary particles
was achieved by restricting the distance-of-closest-approach
(DCA) of the extrapolated trajectory to the primary ver-
tex position to less than 2 cm along the beam direction. In
the transverse plane the restriction in the DCA depends on
pT in order to take into account the pT dependence of the
impact parameter resolution [17]. The remaining contami-
nation after the DCA cuts is typically less than 10% for the
momentum range covered in this work [18].

3.2 Identity method

The standard approach of finding the moments 〈NA〉, 〈NB〉,
〈NA(NA − 1)〉 and 〈NB(NB − 1)〉 is to count the number
of particles NA and NB event-by-event and calculate aver-
ages over the dataset. However, this approach suffers from
incomplete particle identification due to overlapping dE/dx
distribution functions, which could be circumvented by either
selecting suitable phase-space regions or by using additional
detector information such as time-of-flight measurements.
These procedures reduce the overall phase-space coverage
and detection efficiencies. The present study is based on the
Identity Method [19–21] which overcomes the misidentifi-
cation problem.

The Identity Method was proposed in Ref. [19] as a solu-
tion to the misidentification problem for the analysis of events
with two different particle species. In Ref. [20], the method
was developed further to calculate the second moments of the
multiplicity distributions of more than two particle species.
Subsequently, in Ref. [21], it was generalized to the first
and higher moments of the multiplicity distributions for an
arbitrary number of particle species. The first experimen-
tal results using the Identity Method were published by the
NA49 collaboration [13].

Instead of counting every detected particle event-by-event,
the Identity Method follows a probabilistic approach using
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Fig. 1 Distributions of ω and
W for pions (top), kaons
(middle) and protons (bottom)
in the momentum interval of
0.3 < p < 0.8 GeV/c for 0–5%
central Pb–Pb events
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two basic experimental per-track and per-event observables,
ω and W , respectively. They are defined as

ω j (xi ) = ρ j (xi )

ρ(xi )
∈ [0, 1],

ρ(xi ) =
∑

j

ρ j (xi ), Wj ≡
N (n)∑

i=1

ω j (xi ), (2)

where xi stands for the dE/dx of a given track i , ρ j (x) is the
dE/dx distribution of particle species j within a given phase-
space bin and N (n) is the number of tracks in the nth event.
The quantity ω j (xi ) represents the probability that particle i
is of type j . Thus, in case of perfect particle identification,
one expects Wj = N j , while this does not hold in case of
overlapping dE/dx distributions. Figure 1 shows the ω and
W distributions for pions, kaons and protons in the momen-
tum interval of 0.3 < p < 0.8 GeV/c. The W distribution
of protons shows a discrete structure because proton dE/dx
distributions have the least overlap.

The moments of the W distributions can be constructed
directly from experimental data. The Identity Method calcu-
lates the moments of the particle multiplicity distributions

by unfolding the moments of the W distributions with the
following matrix operation

〈−→N 〉 = A−1〈−→W 〉, (3)

where 〈−→W 〉 and 〈−→N 〉 are the vectors of the moments of
W quantities and unknown true multiplicity distributions,
respectively. The response matrix A is defined by the ω quan-
tities. A detailed description of the technique and a demon-
stration of its robustness can be found in Refs. [20,21].

The dE/dx measurements used as the only input for the
Identity Method are obtained from the TPC, which provides
a momentum resolution of better than 2% and a single-
particle detection efficiency of up to 80% for the kinematic
range considered in this paper [14]. The Identity Method
employs fits of inclusive dE/dx distributions for the calcu-
lation of the ω probabilities entering Eq. 3. Since the overlap
regions in the dE/dx distributions are also properly taken
into account, a very good description of the inclusive dE/dx
spectra, and therefore an excellent understanding of the TPC
detector response, is required over the full momentum range
covered in this analysis. To this end, the dE/dx distributions
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Fig. 2 Distributions of the TPC dE/dx signal of pions, kaons, elec-
trons and protons fitted with the generalized Gaussian function in a given
phase-space bin. The residuals are defined as the difference between
data points and the total fit function normalized to the statistical error
of the data points

of pre-selected samples of pions, protons and electrons, iden-
tified by the reconstruction of K0

S and Λ decays and photon
conversions, were fitted with a generalized Gaussian function
of the form:

f (x) = Ae−(|x−μ|/σ)β
(

1 + erf

(
α

|x − μ|
σ
√

2

))
(4)

where A, μ, σ , α and β stand for the abundance, mean, width,
skewness and kurtosis of the distribution, respectively. The
detector response functions obtained in this way were used
later to fit the inclusive dE/dx spectra. To cope with the
dependencies of the dE/dx on the track angle and particle
multiplicity, fits were performed over the entire pseudorapid-
ity range of |η| < 0.8 in steps of 0.1 units for each centrality
class. Moreover, the momentum intervals were chosen nar-
row enough to minimize the effect of the momentum depen-
dence on dE/dx , most particularly at low momenta where
the magnitude of dE/dx varies rapidly with the momentum.
An example of a dE/dx distribution in a given phase-space
bin and the corresponding fits are shown in Fig. 2.

4 Statistical and systematic uncertainties

The statistical uncertainties were determined by the number
of events in this analysis and the finite number of tracks in
each event. The number of events also affects the uncertainty
of the shape of the inclusive dE/dx spectra, which is deter-

mined by a fit. This uncertainty enters the calculation of ω

and W , and finally the computation of the moments of mul-
tiplicity distributions with the Identity Method. Since stan-
dard error propagation is impractical given the rather compli-
cated numerical derivation of the final result, the subsample
method was chosen to evaluate the statistical uncertainties.
To this end, the data set was subdivided into n = 25 ran-
dom subsamples i . The νdyn values were reconstructed for
each subsample and the statistical uncertainty was obtained
according to

σ〈νdyn〉 = σ√
n
, (5)

where

σ =
√∑

i (νdyn,i − 〈νdyn〉)2

n − 1
, 〈νdyn〉 = 1

n

∑

i

νdyn,i . (6)

The summary of all sources of systematic uncertainties is
shown in Table 1 and in the next paragraphs the main con-
tributors to the systematics are detailed.

The largest contribution to the total systematic uncertainty
is from the fits of the measured particle dE/dx distribu-
tions. The quality of the fits was monitored by Kolmogorov–
Smirnov (K–S) and χ2 tests. To study the influence of pos-
sible systematic shifts in the fit parameters on νdyn, the fit
parameters of each particle in the overlap regions were var-
ied by about ±0.5 %, which defines the boundaries where the
K–S test fails at 90% confidence level. The observed maxi-
mum variations range from about 7% to 15% for νdyn[π, p]
and νdyn[π, K], respectively.

Even though νdyn is known to be robust against detection-
efficiency losses, it may show an explicit dependence if the
detector response functions differ from Binomial or the effi-
ciencies exhibit large variations with detector occupancy [8].
Therefore, one also has to investigate the uncertainty result-
ing from the detection efficiency losses. For that, the νdyn

results reconstructed from a full Monte Carlo simulation of
HIJING [22,23] events employing a GEANT3 [24] imple-
mentation of the ALICE detector were compared to the anal-
ysis at the generator level, where in both generated and recon-
structed levels perfect PID information was used. The result-
ing systematic uncertainty from the finite tracking efficiency
is less than 6%.

The systematic uncertainties due to the track selection cri-
teria were estimated by a variation of the selection ranges.
The systematics from contamination of weak decays and
other secondary particles were obtained by varying the DCA
cuts. Other contributions to the total systematic uncertainty
arise from the cuts applied on the maximum distance of the
reconstructed vertex to the nominal interaction point along
the beam axis, the number of required TPC space points per
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Table 1 List of contributions to
the systematic uncertainty of the
particle ratio fluctuations

Uncertainty source νdyn[π, K] (%) νdyn[π, p] (%) νdyn[p, K] (%)

Inclusive dE/dx fits 10–15 4–7 8–12

Detection efficiency 0.5–6 0.5–4 0.5–5

DCA to vertex 1–4 1–2 1–3

Vertex z position 0.5–2 0.5–1 0.5–2

TPC χ2/d.o. f. 1–3 1–2 1–3

Min. TPC space points 0.5–3 0.5–2 0.5–3

B-field polarity 0.5–2 0.5–1 0.5–2

Total systematic uncertainty 10–17 4–9 8–14

Table 2 Numerical values of
νdyn results for different particle
pairs. The first uncertainty is
statistical and the second
systematic

Centrality (%) 〈dNch/dη 〉 νdyn[π, K] (10−3) νdyn[π, p] (10−3) νdyn[p, K] (10−3)

0–5 1601±60 1.35 ±0.08 ±0.25 0.59 ±0.08 ±0.13 0.59 ±0.08 ±0.13

5–10 1294±49 1.22 ±0.08 ±0.22 0.19 ±0.08 ±0.06 0.46 ±0.10 ±0.11

10–20 966±37 1.35 ±0.08 ±0.21 0.38 ±0.08 ±0.12 0.98 ±0.10 ±0.17

20–30 649±23 1.69 ±0.09 ±0.21 0.29 ±0.09 ±0.15 1.76 ±0.13 ±0.34

30–40 426±15 2.27 ±0.11 ±0.25 0.01 ±0.18 ±0.18 2.39 ±0.24 ±0.40

40–50 261±9 3.52 ±0.16 ±0.37 −0.49 ±0.18 ±0.22 3.64 ±0.32 ±0.57

50–60 149±6 6.43 ±0.26 ±0.96 −1.38 ±0.24 ±0.29 6.54 ±0.47 ±0.92

60–70 76±4 11.91 ±0.53 ±2.1 −4.90 ±0.58 ±0.56 10.34 ±1.0 ±1.8

70–80 35±2 29.99 ±1.2 ±4.0 −16.02 ±1.5 ±1.1 17.93 ±2.0 ±3.3

track and the χ2 per degree of freedom of the track fit. More-
over, the effect of the magnetic field polarity was investigated
by separate analyses of data taken under two polarities. Nei-
ther of these contributions to the total systematic uncertainty
exceeds 5%. The total systematic uncertainty was obtained
by adding in quadrature the individual maximum systematic
variations from these different contributions.

5 Results

5.1 Centrality dependence and comparison to models

In this section, the results are presented as a function of colli-
sion centrality and compared to calculations with the HIJING
[22,23] and AMPT [25] models. The unscaled values of νdyn

for different combinations of particles in each centrality class,
together with the final statistical and systematic uncertainties,
are given in Table 2. Due to the intrinsic multiplicity depen-
dence of νdyn, discussed in Refs [26,27], the values of νdyn

were scaled further by the charged-particle multiplicity den-
sity at midrapidity, dNch/dη. The fully corrected experimen-
tal dNch/dη values were taken from Ref. [18]. Figure 3 shows
measured values of νdyn scaled by dNch/dη as a function of
the collision centrality expressed in terms of dNch/dη. The
values for νdyn and dNch/dη for HIJING and AMPT were
calculated by using corresponding particle multiplicities at
the generator level within the same experimental acceptance.

A flat behaviour is expected in this representation if a super-
position of independent particle sources is assumed, as in the
Wounded Nucleon Model (WNM) [28].

Measured values of νdyn[π, K] and νdyn[p, K] are positive
across the entire centrality range, while νdyn[π, p] is nega-
tive for the most peripheral collisions and changes sign at
mid-central collisions. The centrality dependencies observed
in νdyn[p, K] and νdyn[π, p] are similar in shape, being
flat from central to mid-central collisions and systemati-
cally decreasing for the most peripheral ones. In contrast,
νdyn[π, K] is almost independent of centrality from most
peripheral to mid-central collisions and rises as the centrality
increases. A similar qualitative behaviour is also observed
for νdyn[π, K] within the kinematic range of |η| < 1 and
0.2 < p < 0.6 GeV/c as measured in Au–Au collisions
at

√
sNN = 200 GeV by the STAR collaboration. The dif-

ference in the absolute values is, to a large extent, due to
the increase in dNch/dη by almost a factor of two between
the two collision energies. The same argument holds true for
the most central STAR data at 62.4 GeV, although the cen-
trality dependence is rather flat in this case [27]. The overall
behaviour is defined by the interplay between correlation and
fluctuation terms encoded in the definition of the νdyn observ-
able. To disentangle these terms, one needs a dedicated study
focusing on separate charge combinations, which also makes
it possible to investigate contributions from resonance decays
and global charge conservations.
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Fig. 3 Results for νdyn[π, K], νdyn[π, p] and νdyn[p, K] scaled by the
charged-particle density dNch/dη. The ALICE data are shown by red
markers while the coloured lines indicate the HIJING [22,23] and
AMPT [25] model calculations. The data are shown as a function of
the collision centrality, expressed in terms of dNch/dη

An important characteristic of HIJING is that it treats
nucleus-nucleus collisions as an independent superposition
of nucleon-nucleon interactions. As such, it does not incorpo-
rate mechanisms for final-state interactions among the pro-
duced particles and therefore phenomena such as equilibrium
and collectivity do not occur. The AMPT calculations are
performed with three different settings including (1) string
melting, (2) hadronic rescattering, and (3) string melting and
hadronic rescattering. All three versions of the AMPT model
presented here use hard minijet partons and soft strings from
HIJING as initial conditions. Partonic evolution is described
by Zhang’s parton cascade (ZPC) [29] which is followed by a
hadronization process. In the last step, hadronic rescattering
and the decay of resonances takes place. In the default AMPT

model, after minijet partons stop interacting with other par-
tons, they are combined with their parent strings to form
excited strings, which are then converted to hadrons accord-
ing to the Lund string fragmentation model [25]. However,
in the string melting scenario, instead of employing the Lund
string fragmentation mechanism, hadronization is modeled
via a quark coalescence scheme by combining two nearest
quarks into a meson and three nearest quarks (antiquarks)
into a baryon (antibaryon). This ultimately reduces the cor-
relation between produced hadrons.

HIJING produces positive values for the three par-
ticle pair combinations and does not exhibit any non-
monotonic behaviour as a function of centrality, even though
it implements exact global conservation laws. In contrast,
hadronic rescattering produces additional resonances at the
hadronization phase thereby introducing additional correla-
tions between particles [25]. Consequently, the AMPT con-
figuration with hadronic rescattering drives the νdyn results
towards negative values as the collision centrality increases.
In particular, for νdyn[π, p], contrary to the data, it predicts
negative values. On the other hand, the AMPT version with
string melting shows a weak centrality dependence for the
three particle pair combinations. None of the models investi-
gated in this work give a reasonable quantitative description
of the measured data.

5.2 Energy dependence

Values of νdyn measured in this work for the most central
Pb–Pb collisions were compared to NA49 and STAR data in
Fig. 4. Measurements from NA49 and STAR show a smooth
evolution of νdyn with collision energy and do not reveal any
indications for critical behaviour in the range 6.3 <

√
sNN <

200 GeV. The apparent differences between NA49 and STAR
data for νdyn[p, K] and νdyn[π, K] at

√
sNN < 10 GeV were

traced back in Ref. [13] to the dependence of νdyn on the
detector acceptance. Above this energy, both experiments
report positive values for νdyn[π, K], and a weak dependence
on the collision energy, whereas νdyn[p, K] is negative and
approaches zero as the collision energy increases.

ALICE data are positive for the three particle pair com-
binations and follow the trend observed at lower energies,
involving a sign change for νdyn[π, p] and νdyn[p, K] as a
function of energy. Such a change of sign has been predicted
by transport models HSD [30] and UrQMD [31] in the RHIC
energy regime [10]. Since neither HSD nor UrQMD explic-
itly include the quark and gluon degrees of freedom, this
observation can be attributed to the particular realization of
the string and resonance dynamics used in the models [30].
Additionally, HIJING and AMPT model calculations at LHC
energies predict positive values except for νdyn[π, p] in the
AMPT configuration with hadronic rescattering and with-
out string melting. To understand the difference between the
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Fig. 4 Collision-energy dependence of νdyn. Results obtained with the
Identity Method in this work and by the NA49 collaboration [13] in Pb–
Pb collisions are shown with red circles and black squares, respectively,
while those obtained by the STAR collaboration [10] in Au–Au colli-
sions are shown with blue stars

STAR and ALICE results, the acceptance dependence of νdyn

was also investigated with the ALICE data by varying the
phase-space coverage. Opening the pseudorapidity window
from |η| < 0.8 up to |η| < 1 yields a reduction in νdyn of
10-20%. However, this reduction is insufficient to explain
the difference between the ALICE and STAR results, most
particularly the sign change with increasing energy.

6 Summary

In summary, measurements of νdyn in Pb–Pb collisions at√
sNN = 2.76 TeV for three specific particle pair combi-

nations using the Identity Method were presented. Values

of νdyn, scaled by the charged-particle density at midrapid-
ity dNch/dη, exhibit finite variations with collision central-
ity. This is in contrast to predictions by HIJING, which,
for all three pair combinations, show essentially constant
as well as positive values. The results for νdyn[π, K] and
νdyn[p, K] are positive across the entire centrality range,
while νdyn[π, p] changes sign from positive to negative
towards more peripheral collisions suggesting differences
in the production dynamics of these pairs. The centrality
dependence of νdyn[π, K] shows a similar behaviour, increas-
ing with centrality, as measured in Au–Au collisions at√
sNN = 200 GeV by the STAR collaboration, while the

data at
√
sNN = 62.4 GeV shows no centrality dependence.

Comparisons with calculations from the AMPT model, using
three distinct configurations, show that AMPT is unable to
reproduce measured data in this work. Calculations with
quark coalescence show only a very slight centrality depen-
dence and no sign changes. On the other hand, AMPT val-
ues with hadronic rescattering and no quark coalescence
decrease significantly with increasing collision centrality and
exhibit a sign change towards central collisions in the case of
νdyn[π, p]. The evolution of νdyn with collision energy shows
that the particle production dynamics changes significantly
from that observed at lower energies. Values of νdyn measured
with all three pair combinations follow a smooth continuation
of the data measured by STAR and exhibit a change in sign for
νdyn[p, K] and νdyn[π, p]. The analysis of νdyn with enlarged
acceptance shows that the magnitude of νdyn depends on the
kinematical limits but the change appears too small to explain
the difference with the STAR results. A more detailed anal-
ysis of fluctuations with charge and species specific pairs is
required to fully characterize the particle production dynam-
ics in heavy-ion collisions and understand, in particular, the
origin of the sign changes reported in this work.
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P. Sahoo49, R. Sahoo49, S. Sahoo67, P. K. Sahu67, J. Saini137, S. Sakai130, M. A. Saleh139, J. Salzwedel18, S. Sambyal101,
V. Samsonov83,96, A. Sandoval74, A. Sarkar76, D. Sarkar137, N. Sarkar137, P. Sarma44, M. H. P. Sas63, E. Scapparone53,
F. Scarlassara29, B. Schaefer95, H. S. Scheid70, C. Schiaua87, R. Schicker104, C. Schmidt106, H. R. Schmidt103,
M. O. Schmidt104, M. Schmidt103, N. V. Schmidt70,95, J. Schukraft35, Y. Schutz35,133, K. Schwarz106, K. Schweda106,
G. Scioli27, E. Scomparin58, M. Šefčík40, J. E. Seger97, Y. Sekiguchi129, D. Sekihata47, I. Selyuzhenkov83,106, K. Senosi76,
S. Senyukov133, E. Serradilla74,10, P. Sett48, A. Sevcenco68, A. Shabanov62, A. Shabetai114, R. Shahoyan35, W. Shaikh109,
A. Shangaraev112, A. Sharma99, A. Sharma101, M. Sharma101, M. Sharma101, N. Sharma99, A. I. Sheikh137, K. Shigaki47,
S. Shirinkin64, Q. Shou7, K. Shtejer9,26, Y. Sibiriak90, S. Siddhanta54, K. M. Sielewicz35, T. Siemiarczuk86, S. Silaeva90,
D. Silvermyr34, G. Simatovic92, G. Simonetti35, R. Singaraju137, R. Singh88, V. Singhal137, T. Sinha109, B. Sitar38,
M. Sitta32, T. B. Skaali21, M. Slupecki125, N. Smirnov141, R. J. M. Snellings63, T. W. Snellman125, J. Song19, M. Song142,
F. Soramel29, S. Sorensen127, F. Sozzi106, I. Sputowska118, J. Stachel104, I. Stan68, P. Stankus95, E. Stenlund34,
D. Stocco114, M. M. Storetvedt37, P. Strmen38, A. A. P. Suaide121, T. Sugitate47, C. Suire61, M. Suleymanov15, M. Suljic25,
R. Sultanov64, M. Šumbera94, S. Sumowidagdo50, K. Suzuki113, S. Swain67, A. Szabo38, I. Szarka38, U. Tabassam15,
J. Takahashi122, G. J. Tambave22, N. Tanaka130, M. Tarhini61, M. Tariq17, M. G. Tarzila87, A. Tauro35, G. Tejeda Muñoz2,
A. Telesca35, K. Terasaki129, C. Terrevoli29, B. Teyssier132, D. Thakur49, S. Thakur137, D. Thomas119, F. Thoresen91,
R. Tieulent132, A. Tikhonov62, A. R. Timmins124, A. Toia70, M. Toppi51, S. R. Torres120, S. Tripathy49, S. Trogolo26,
G. Trombetta33, L. Tropp40, V. Trubnikov3, W. H. Trzaska125, B. A. Trzeciak63, T. Tsuji129, A. Tumkin108, R. Turrisi56,
T. S. Tveter21, K. Ullaland22, E. N. Umaka124, A. Uras132, G. L. Usai24, A. Utrobicic98, M. Vala65,116, J. Van Der Maarel63,
J. W. Van Hoorne35, M. van Leeuwen63, T. Vanat94, P. Vande Vyvre35, D. Varga140, A. Vargas2, M. Vargyas125, R. Varma48,
M. Vasileiou85, A. Vasiliev90, A. Vauthier81, O. Vázquez Doce36,105, V. Vechernin136, A. M. Veen63, A. Velure22,
E. Vercellin26, S. Vergara Limón2, R. Vernet8, R. Vértesi140, L. Vickovic117, S. Vigolo63, J. Viinikainen125, Z. Vilakazi128,
O. Villalobos Baillie110, A. Villatoro Tello2, A. Vinogradov90, L. Vinogradov136, T. Virgili30, V. Vislavicius34,
A. Vodopyanov77, M. A. Völkl103, K. Voloshin64, S. A. Voloshin139, G. Volpe33, B. von Haller35, I. Vorobyev36,105,
D. Voscek116, D. Vranic35,106, J. Vrláková40, B. Wagner22, H. Wang63, M. Wang7, D. Watanabe130, Y. Watanabe129,130,
M. Weber113, S. G. Weber106, D. F. Weiser104, S. C. Wenzel35, J. P. Wessels71, U. Westerhoff71, A. M. Whitehead100,
J. Wiechula70, J. Wikne21, G. Wilk86, J. Wilkinson53,104, G. A. Willems35,71, M. C. S. Williams53, E. Willsher110,
B. Windelband104, W. E. Witt127, R. Xu7, S. Yalcin80, K. Yamakawa47, P. Yang7, S. Yano47, Z. Yin7, H. Yokoyama81,130,
I.-K. Yoo19, J. H. Yoon60, E. Yun19, V. Yurchenko3, V. Zaccolo58, A. Zaman15, C. Zampolli35, H. J. C. Zanoli121,
N. Zardoshti110, A. Zarochentsev136, P. Závada66, N. Zaviyalov108, H. Zbroszczyk138, M. Zhalov96, H. Zhang7,22,
X. Zhang7, Y. Zhang7, C. Zhang63, Z. Zhang7,131, C. Zhao21, N. Zhigareva64, D. Zhou7, Y. Zhou91, Z. Zhou22, H. Zhu22,
J. Zhu7, Y. Zhu7, A. Zichichi12,27, M. B. Zimmermann35, G. Zinovjev3, J. Zmeskal113, S. Zou7

1 A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
2 Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
3 Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
4 Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India

123



  236 Page 12 of 14 Eur. Phys. J. C           (2019) 79:236 

5 Budker Institute for Nuclear Physics, Novosibirsk, Russia
6 California Polytechnic State University, San Luis Obispo, CA, USA
7 Central China Normal University, Wuhan, China
8 Centre de Calcul de l’IN2P3, Villeurbanne, Lyon, France
9 Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba

10 Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
11 Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
12 Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi’, Rome, Italy
13 Chicago State University, Chicago, IL, USA
14 China Institute of Atomic Energy, Beijing, China
15 COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
16 Departamento de Física de Partículas and IGFAE, Universidad de Santiago de Compostela, Santiago de Compostela, ,

Spain
17 Department of Physics, Aligarh Muslim University, Aligarh, India
18 Department of Physics, Ohio State University, Columbus, OH, USA
19 Department of Physics, Pusan National University, Pusan, Republic of Korea
20 Department of Physics, Sejong University, Seoul, Republic of Korea
21 Department of Physics, University of Oslo, Oslo, Norway
22 Department of Physics and Technology, University of Bergen, Bergen, Norway
23 Dipartimento di Fisica dell’Università ’La Sapienza’ and Sezione INFN, Rome, Italy
24 Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy
25 Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy
26 Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy
27 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy
28 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy
29 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padova, Italy
30 Dipartimento di Fisica ‘E.R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy
31 Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy
32 Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and INFN Sezione di Torino,

Alessandria, Italy
33 Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
34 Division of Experimental High Energy Physics, University of Lund, Lund, Sweden
35 European Organization for Nuclear Research (CERN), Geneva, Switzerland
36 Excellence Cluster Universe, Technische Universität München, Munich, Germany
37 Faculty of Engineering, Bergen University College, Bergen, Norway
38 Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
39 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
40 Faculty of Science, P.J. Šafárik University, Košice, Slovakia
41 Faculty of Technology, Buskerud and Vestfold University College, Tonsberg, Norway
42 Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
43 Gangneung-Wonju National University, Gangneung, Republic of Korea
44 Department of Physics, Gauhati University, Guwahati, India
45 Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
46 Helsinki Institute of Physics (HIP), Helsinki, Finland
47 Hiroshima University, Hiroshima, Japan
48 Indian Institute of Technology Bombay (IIT), Mumbai, India
49 Indian Institute of Technology Indore, Indore, India
50 Indonesian Institute of Sciences, Jakarta, Indonesia
51 INFN, Laboratori Nazionali di Frascati, Frascati, Italy
52 INFN, Sezione di Bari, Bari, Italy
53 INFN, Sezione di Bologna, Bologna, Italy
54 INFN, Sezione di Cagliari, Cagliari, Italy
55 INFN, Sezione di Catania, Catania, Italy

123



Eur. Phys. J. C           (2019) 79:236 Page 13 of 14   236 

56 INFN, Sezione di Padova, Padova, Italy
57 INFN, Sezione di Roma, Rome, Italy
58 INFN, Sezione di Torino, Turin, Italy
59 INFN, Sezione di Trieste, Trieste, Italy
60 Inha University, Incheon, Republic of Korea
61 Institut de Physique Nucléaire d’Orsay (IPNO), Université Paris-Sud, CNRS-IN2P3, Orsay, France
62 Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
63 Institute for Subatomic Physics of Utrecht University, Utrecht, Netherlands
64 Institute for Theoretical and Experimental Physics, Moscow, Russia
65 Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
66 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
67 Institute of Physics, Bhubaneswar, India
68 Institute of Space Science (ISS), Bucharest, Romania
69 Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
70 Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
71 Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Münster, Germany
72 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
73 Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
74 Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
75 IRFU, CEA, Université Paris-Saclay, Saclay, France
76 iThemba LABS, National Research Foundation, Somerset West, South Africa
77 Joint Institute for Nuclear Research (JINR), Dubna, Russia
78 Konkuk University, Seoul, Republic of Korea
79 Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
80 KTO Karatay University, Konya, Turkey
81 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France
82 Lawrence Berkeley National Laboratory, Berkeley, CA, USA
83 Moscow Engineering Physics Institute, Moscow, Russia
84 Nagasaki Institute of Applied Science, Nagasaki, Japan
85 Physics Department, National and Kapodistrian University of Athens, Athens, Greece
86 National Centre for Nuclear Studies, Warsaw, Poland
87 National Institute for Physics and Nuclear Engineering, Bucharest, Romania
88 National Institute of Science Education and Research, HBNI, Jatni, India
89 National Nuclear Research Center, Baku, Azerbaijan
90 National Research Centre Kurchatov Institute, Moscow, Russia
91 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
92 Nikhef, Nationaal instituut voor subatomaire fysica, Amsterdam, Netherlands
93 Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
94 Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež u Prahy, , Czech Republic
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