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Hole pocket–driven superconductivity and its universal
features in the electron-doped cuprates
Yangmu Li1*†, W. Tabis1,2, Y. Tang1, G. Yu1, J. Jaroszynski3, N. Barišić1,4,5†, M. Greven1†

After three decades of intensive research attention, the emergence of superconductivity in cuprates remains
an unsolved puzzle. One major challenge has been to arrive at a satisfactory understanding of the unusual
metallic “normal state” from which the superconducting state emerges upon cooling. A second challenge has
been to achieve a unified understanding of hole- and electron-doped compounds. Here, we report detailed
magnetoresistance measurements for the archetypal electron-doped cuprate Nd2−xCexCuO4+d that, in combina-
tion with previous data, provide crucial links between the normal and superconducting states and between the
electron- and hole-doped parts of the phase diagram. The characteristics of the normal state (magnetoresistance,
quantum oscillations, and Hall coefficient) and those of the superconducting state (superfluid density and upper
critical field) consistently indicate two-band (electron and hole) features and point to hole pocket–driven super-
conductivity in these nominally electron-doped materials. We show that the approximate Uemura scaling be-
tween the superconducting transition temperature and the superfluid density found for hole-doped cuprates
also holds for the small hole component of the superfluid density in electron-doped cuprates.
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INTRODUCTION
Superconductivity in the lamellar cuprates is achieved upon doping the
quintessential CuO2 sheets of parent spin-1/2 antiferromagnetic (AF)
insulators such as La2CuO4 and Nd2CuO4 with either holes (1) or elec-
trons (2). There has been a resurgence of interest in the electron-doped
half of the phase diagram (3–9), where AF correlations are known to be
more prominent (10–12). Hole carriers tend to occupy oxygen 2p orbi-
tals, where they frustrate and quickly destroy long-range AF order,
whereas electrons primarily enter copper 3d orbitals, where they grad-
ually dilute the AF state (10). In a recent development, normal-state
transportmeasurements revealed Fermi liquid (FL) properties in a wide
temperature and doping range: (i) the sheet resistance follows an FL
temperature-doping dependence in the pseudogap regime of the
hole-doped cuprates (13, 14) and in the AF phase of the electron-doped
cuprates (9); (ii) the cotangent of the Hall angle is best understood in
terms of a single FL scattering rate that is nearly independent of doping,
compound, and charge-carrier type (9, 14); (iii) the magnetoresistance
(MR) obeys Kohler scaling in the pseudogap regime of the hole-doped
materials, with an FL scattering rate (15); and (iv) the optical scattering
rate exhibits temperature-frequency scaling expected for an FL system
(16). These observations suggest that the transport properties of the
cuprates may be understood by FL theory respecting the exact shape
of the Fermi surface (FS).

Photoemission (8, 17–19) and quantum oscillation (6, 7, 20) ex-
periments performed on the electron-doped cuprates indicate several
distinct FS topologies, as summarized for Nd2−xCexCuO4+d (NCCO)
in Fig. 1: (1) at low doping, deep in the long-range–orderedAF (LR-AF)
phase, only small electron pockets [around (p, 0) and equivalent] exist;
(2) for bulk superconducting (SC) samples, at intermediate doping,
both small electron and hole pockets [around (p/2, p/2) and equivalent]
are observed. Although the AF correlations are short-ranged (12) and
dynamic (21, 22) in this part of the phase diagram,manifestations of the
two-band FS are found in most physical properties. The states (1) and
(2) appear to be separated by a “mixed-phase” region, where short-
range static AF order and a depressed SC volume fraction are observed,
likely as a result of an underlying first-order phase transition in the
presence of structural inhomogeneity (e.g., the Nd/Ce substitutional
inhomogeneity in the case of NCCO) observed by nuclear magnetic
resonance and neutron scattering (23–26). Additional features of FS
evolutionwere revealed for a number of electron-doped cuprates, such
as NCCO and Pr2−xCexCuO4+d (PCCO) (6, 27–29). For example, the
Hall coefficient shows a sign change from negative to positive at
intermediate doping (6, 30), and the Seebeck coefficient has a positive
contribution for SC samples (29). (3) Last, at high doping, a state with
a large hole FS is expected (17, 31), as indeed observed in recent pho-
toemission work (18, 19). The demarcations between these phases de-
pend on the specific compound and choice of annealing conditions.
For example, in La2−xCexCuO4+d (LCCO) films, the boundary be-
tween the AF and SC phases has been reported to be as low as x =
0.07, yet the nature of the phase transition appears to be the same as
in NCCO and PCCO (32).

Shortly after the discovery of superconductivity in the electron-
doped cuprates, Hirsch and Marsiglio proposed theoretically that hole
carriers may be essential for superconductivity in these oxides (33).
Dagan and Greene (28) subsequently studied the planar electrical re-
sistivity (presumably dominated by electrons) and Hall angle (sensitive
to both electrons and holes) for PCCO as a function of Ce concentra-
tion. They proposed hole superconductivity in the electron-doped cup-
rates based on the observation that, whereas the resistivity at
temperatures much higher than the SC transition temperature Tc is in-
sensitive to the emergence of superconductivity, the Hall angle can be
used to identify the Ce concentration with the highest Tc. Yet no direct,
quantitative connection was established among the appearance of hole
carriers, the normal-state properties, and the SC-state characteristics.

Here, we combine new magnetotransport data for NCCO with
published results to show that the normal-state properties and the
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emergence of superconductivity are connected to the FS shape and to
provide clear evidence for hole pocket–driven superconductivity in
electron-doped cuprates. Our focus is on the states (1) and (2) and
the intermediate mixed-phase region (Fig. 1). The MR magnitude
[similar to the Hall angle in (28)] is a measure of the overall (hole
and electron) FS curvature; it is small for a single, approximately cir-
cular FS, but substantial for a two-band (electron-hole) FS (see the
Supplementary Materials). We observe a considerable increase in the
MR magnitude at the Ce concentration where the small hole pockets
and bulk superconductivity are first seen. The normal-state MR there-
fore reveals the underlying two-band FS topology and the emergent SC
ground state.We thenperformaquantitative analysis of the electron and
hole contributions to the resistive upper critical field and the superfluid
density of the bulk SC state. An important early discovery was that the
hole-doped compounds below optimal doping exhibit approximately
linear scaling between the superfluid density and Tc (34). After
separating the two contributions to the superfluid density, we demon-
strate that this approximately linear scaling extends to the hole superfluid
density of electron-doped cuprates.
RESULTS
Representative transverse ab-plane MR data (current, I//a; magnetic
field, H//c) are shown in Fig. 2. The longitudinal MR (I//a and H//a)
is one order of magnitude smaller than the transverse MR (fig. S1)
Li et al., Sci. Adv. 2019;5 : eaap7349 1 February 2019
and thus not further considered here. The large difference inmagnitude
implies that the transverse ab-plane MR, discussed here in detail, is
dominated by orbital contributions.We perform a quantitative analysis
of the doping and temperature dependence of the MR using two dis-
tinct methods. TheMR exhibits quadratic field dependence up toHdev

~ 30 T andHdev ~ 15 T for non-SC and SC samples, respectively. The
exact field at which the MR deviates from quadratic field dependence
depends on the temperature and doping level. We fit the data toMR ≡
Dr/r(H=0) = b2H

2, whereDr≡ r(H)− r(H = 0). r(H = 0) is the zero-
field resistivity at T > Tc and the extrapolated zero-field resistivity at
T≤ Tc (“method 1”). The coefficient b2 is a measure of the MRmag-
nitude. The deviation from quadratic field dependence at high fields
(H >Hdev) is largest near optimal doping and indicative of a saturation
effect due to the presence of small Fermi pockets. According to the
classic theory of MR, deviation from quadratic field dependence
appears when wct becomes larger than unity (wc is the cyclotron fre-
quency and t is the relaxation time). ThemeasuredHdev≈ 30T for non-
SC samples at low doping is consistent with the estimateHdev≈ 35 ±
2.5 T (at T = 50 K) based on the reported scattering rate (9) (see the
Supplementary Materials). The observation of quantum oscillations
requires wc t≫ 1. At H ≈ 40 T, quantum oscillations have only been
observed in bulk SC samples (Hdev ~ 15 T) (6, 20).We use the percent-
age difference,DMR ≡ ðrH2 � DrÞ=rH2, between the extrapolated qua-
dratic behavior, rH2 ¼ b2H2rðH ¼ 0Þ, and the measured high-field
MR, Dr, to characterize the magnitude of the deviation. Because
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Fig. 1. Phase diagram and FS topologies. (A) Magnetic and electronic phase diagram for NCCO with standard reduction condition. The vertical green dashed line shows
the boundary between the (1) LR-AF phase (x < 0.12) and the mixed-phase region with static short-range AF order and traces of superconductivity (0.12 ≤ x < 0.145). The
empty green circle signifies the Ce concentration at which (2) bulk superconductivity emerges and the magnetic response is purely dynamic (0.145 ≤ x < 0.175) (22). A sign
change in Hall coefficient is observed at x = 0.145 (6). The gray dot shows the estimated Ce concentration of the Lifshitz transition to a (3) state with a large hole FS (x ≥ 0.175)
(6, 17, 18, 20, 31). Solid and dashed lines on horizontal axis indicate distinct FS topologies described in (B). (B) FS topologies corresponding to the three doping ranges in (A).
Solid (x < 0.12) and dashed (0.145 ≤ x < 0.175) diagonal black lines indicate the LR-AF zone boundary and dynamic AF fluctuations, respectively. Blue and red curves indicate
electron and hole FS, respectively. n and p are electron and hole carrier densities, respectively. Contour plot of (C) b2 and (D) DMR. A considerable increase in both b2 and DMR

is observed above x ≈ 0.145. Color scheme of the contour plots is chosen to emphasize these considerable increases. Black bars (top) indicate the Ce concentrations of the
measured NCCO samples.
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the doping and temperature dependencies ofDMR are approximately
independent of the field magnitude, we choose H = 34.5 T, the high-
est field used in our experiment, to calculate DMR. An alternative ap-
proach (“method 2”) is to fit the MR over the entire field range to a
power-law behavior, MR = bnH

n (Fig. 2C). In this case, the coefficient
bn is a measure ofMRmagnitude, whereas 2 − n characterizes the mag-
nitude of the deviation from the quadratic behavior. Bothmethods lead
to the same conclusion that the normal-stateMR and the SC emergence
are related to the FS topology. We use method 1 in the main text and
compare the two methods in the Supplementary Materials.

Contour plots of the coefficient b2 and the high-field deviation
DMR are shown in Fig. 1 (C and D). Both quantities are nearly zero
in the LR-AF phase (x < 0.12) and substantial for bulk SC materials
(0.145 ≤ x < 0.175), with a distinct increase at about x = 0.145. In the
mixed-phase region (0.12≤ x < 0.145), b2 is nonzero and related to the
SC volume fraction VSC (estimated from magnetization measurements
of polycrystalline samples obtained from the crystals used in MR mea-
surements), as demonstrated in Fig. 3 (A andB). The contour plots of b2
andDMR can be directly compared to the evolution of FS topology (Fig.
1). Assuming a spatially uniform system, the doping dependence of b2
can be calculated on the basis of the mean-field band structure and
Boltzmann theory (see the Supplementary Materials). This calculation
indicates that the hole pockets appear because of a decrease of the co-
herent AF backscattering amplitude with increasing doping [AF order
gives rise to a gap at (p/2, p/2)]. Once the small hole pockets are present,
a step-like increase is observed in b2. The large values of b2 and DMR

reflect a two-band FS in the normal state. In the archetypal cuprate
NCCO, mesoscopic phase separation exists in the mixed-phase region,
and the marked increase of VSC near x = 0.145 tracks the doping
dependence of b2 (Fig. 3B). As seen from Fig. 3A, the normalized
magnetic and SC volume fractions approximately add up to unity,
which implies that the superconductivity in the mixed-phase region
emerges from normal-state regions without static magnetic order.

The electronic ground state of the electron-doped cuprates depends
not only on the Ce concentration but also on the postgrowth oxygen
reduction conditions (2, 3, 35–37). In particular, superconductivity
has not been observed in as-grown samples. The phase diagram in
Fig. 1 pertains to NCCO subjected to standard oxygen reduction
conditions (see Materials and Methods). Our measurements of NCCO
with fixed Ce concentration (x = 0.170) show nearly zero MR (single-
band FS) for an as-grownAF sample, and a largeMR (two-band FS) for
Li et al., Sci. Adv. 2019;5 : eaap7349 1 February 2019
a reduced bulk SC sample (Fig. 3C). A previous study of the oxygen
reduction effect on NCCOwith x = 0.15 also found a strong correlation
between the MR and the emergence of superconductivity (30). These
observations suggest a robust connection between the two-band FS
and bulk superconductivity, irrespective of the Ce content and oxygen
reduction condition. Treating the doping level and reduction condition
as implicit parameters (Fig. 3D) reveals a quantitative relation between
theMRmagnitude, normalized by the SC volume fraction, and Tc for a
number of thin-film and bulk crystalline NCCO and PCCO samples.

The observation of a distinct signature of the two-band FS in theMR
mandates that other properties should be analyzed accordingly. In par-
ticular, the upper critical field (Hc2) and the superfluid density (rs), two
characteristics of the SC ground state, may also exhibit two-band
features (38, 39). We estimate Hc2 from our resistivity measurements
upon fully suppressing superconductivity at low temperatures, with
the magnetic field parallel to the crystalline c axis (Fig. 2B). As demon-
strated in Fig. 4A,we observe a universal temperature dependence of the
upper critical field for NCCO that is inconsistent with the behavior of a
single-band Bardeen-Cooper-Schrieffer (BCS) superconductor. This
universality implies that disorder effects (Nd/Ce and Cu/Ni substitu-
tion, differing oxygen reduction conditions) are not the main cause of
the temperature dependence of Hc2. Instead, we find that the data are
rather well described by a two-band FS model, analogous to MgB2 and
the iron-based superconductors (40, 41). On the basis of measurements
of the Nernst effect, it was argued that the resistiveHc2 is lower than the
“real” (Nernst) upper critical field (42). We show in the Supplementary
Materials that Hc2 estimated from the Nernst effect also cannot be de-
scribed by a single-band BCS model, but that it can be consistently de-
scribed by the two-band FS model.

Previous research on the electron-doped cuprates suggested that both
electrons and holes contribute to the superfluid density rs º n/m*,
where n is the normal-state carrier density andm* is the effectivemass
(39). The electron-doped cuprates feature a nonmonotonic SC gap
functionwith nodes at the hole pockets, but not at the electron pockets
(43). The superfluid density for electrons therefore exhibits exponential
temperature dependence rs;eðTÞ ¼ rs;eð0Þð1� e�D=TþD=TeÞ, where
rs,e(0) and D are the zero-temperature electron superfluid density
and the SC gap at electron pockets, respectively. For simplicity, the latter
is assumed to be uniform, as it only changes moderately across electron
pockets. Te is the temperature at which rs,e becomes zero and does not
necessarily equalTc. Because of the existence of the gap node at the hole
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pockets, in the dirty limit, the superfluid density for holes exhibits a qua-
dratic temperature dependence, rs;hðTÞ ¼ rs;hð0Þð1� T2=T2

hÞ, where
rs,h(0) is the zero-temperature hole superfluid density and Th is the
temperature at which the hole superfluid density vanishes. The total
superfluid density, rs(T) = rs,e(T) + rs,h(T), was found to give a good
description of previous data (39).

Representative superfluid density data, estimated from transverse-
field muon spin rotation/relaxation measurements (mSR) for NCCO
(x = 0.17), are shown in Fig. 4B. As in (39), we find that rs(T) can only
be described by a quadratic temperature dependence near Tc and by a
composite temperature dependence at low temperatures. From the fits,
we obtain rs,h(0)/rs(0) = 0.25 ± 0.03, and a more conservative estimate
yields rs,h(0)/rs(0) = 0.25 ± 0.06 (seeMaterials andMethods or the Sup-
plementaryMaterials). This value is in reasonably good agreement with
quantum oscillationmeasurements (for x = 0.15) that give normal-state
electron and hole carrier densities of about 0.18 and 0.03, respectively
(20). Upon considering the different effective masses of electrons and
holes (m�

hole ≈ 0:9me;m�
electron ≈ 2me; where me is the electron free mass)

(9, 14, 20), this implies that rs,h(0)/rs(0)≈ 0.27. Similarly, for PCCO, it
was reported (39) that rs,h(0)/rs(0)≈ 0.2. Because data are only avail-
able for samples within a close doping range, and hence do not allow
for a detailed study of the doping dependence of rs,h(0)/rs(0), we as-
sumed the same ratio for each compound (e.g., 0.27 for NCCO and
0.2 for PCCO). In early work, Uemura and colleagues observed a
phenomenological universal linear scaling between rs(0) and Tc

for underdoped holed-doped cuprates (29). An approximate linear
scaling between these two observables was also found for the electron-
doped cuprates (see Fig. 4C), but the distinct scaling ratios observed for
hole- and electron-doped cuprates have remained unexplained (44).
Upon separating electron and hole contributions, we show in Fig. 4C
evidence for a universal scaling between rs,h(0) andTc for both electron-
and hole-doped cuprates.
 on F
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DISCUSSION
The present MR data together with previous Hall-angle results (28)
demonstrate that the emergence of superconductivity can be readily
identified via normal-state charge transport measurements at tempera-
tures much higher than Tc. This connection extends to other normal-
state properties that are sensitive to the balance between hole and
electron carrier density, e.g., Hall coefficient (6, 30), Seebeck coefficient
(29), optical conductivity (31), and quantum oscillations (6, 20). The
evolution of FS topology and the concomitant emergence of hole car-
riers, as captured by these normal-state charge transportmeasurements,
are responsible for the appearance of a bulk SC phase. We note that
connections between distinct electronic and structural characteristics
and the emergence of superconductivity have already been reported
in previous work (23–26). MR is a particularly sensitive probe of the
emergence of superconductivity, as seen from our results for the
mixed-phase region, in which transport properties are the result of a
superposition of contributions from AF and SC (nonmagnetic)
phases. In this region, we find that the MR of NCCO closely tracks
the nonmagnetic volume fraction (comparable toVSC at low tempera-
ture), whereas there has been no report of quantum oscillations, pre-
sumably because the typical nonmagnetic cluster size is smaller than
the characteristic length scale (on the order of the cyclotron radius)
associated with the quantum oscillations (7).

As shown in Fig. 4A, we observe a simple scaling of the reduced
resistive upper critical field with T/Tc that is well described by a
Li et al., Sci. Adv. 2019;5 : eaap7349 1 February 2019
two-band (electron and hole) model. Given that the reduced resistive
upper critical field for NCCO is largely independent of disorder type
and amount, it is unlikely that the observed temperature dependence
is dominated by disorder effects, but rather signifies a universal
underlying characteristic of the doped CuO2 planes of the electron-
doped cuprates. Raman scattering experiments (45, 46) also reveal that
the coherent normal-state hole quasiparticles contribute to the super-
fluid density.Moreover, the superfluid response obtained frompenetra-
tion depthmeasurements points to dual electron and hole contributions
(39, 47). Upon separating the electron and hole contributions to the
superfluid density (Fig. 4B), we find that the data in Fig. 4C are con-
sistent with a universal scaling between rs,h(0) and Tc for both electron-
and hole-doped cuprates. This result points to a single underlying
hole-relatedmechanism of superconductivity in the cuprates regardless
of nominal carrier type. For the electron-doped cuprates, once a consid-
erable portion of hole pairs have condensed into the SC state, electrons
pairs begin to contribute as well (Fig. 4B).

The carrier density of the CuO2 planes, and hence the FS of the
electron-doped cuprates, can be modified by twomethods: (i) chemical
substitution (nominally tetravalent Ce for trivalent La, Nd, Pr, or Sm)
and (ii) a postgrowth oxygen reduction process; both methods alter the
disorder potential experienced by the CuO2 planes (2, 3, 8, 35–37). Our
x = 0.17 NCCO MR data (Fig. 3C) along with the previous x = 0.15
NCCOresult (30) show that a correlation betweenTc and the normal-state
MR exists in both cases. Recently, superconductivity was achieved in
Ce-free thin-film samples via a special reduction procedure (3). Both
the FS revealed by quantum oscillation measurements (the existence
of small hole pockets) and theMR (b2 ~ 1.6 × 10

−4) for Ce-free thin-film
samples of Pr2CuO4±d are the same as for Ce-doped bulk SC samples
subjected to standard oxygen reduction (7). These FS characteristics im-
ply that these SCCe-free thin-film samples are not undoped, but instead
correspond to region (2) of the phase diagram (Fig. 1). Moreover, as
shown in Fig. 4C, the estimated hole superfluid density obeys the uni-
versal scaling established here, indicative of the same SC ground state
irrespective of reduction conditions.

The infinite-layer cuprates Sr1−xLnxCuO2 (Ln = La, Nd, Pr, and Sm)
constitute a second family of electron-dopedmaterials that differs struc-
turally from the T′ family Ln2−xCexCuO4 (Ln = La, Nd, Pr, Sm, Eu, and
Gd). The exact symmetry of the SC wave function is under debate (see
the Supplementary Materials), and the possible emergence of super-
conductivity from electron Fermi pockets was reported (48, 49). In light
of the fact that a hole contribution was deduced from the normal-state
Hall constant of SC samples (50), we also considered the superfluid den-
sity of the infinite-layer cuprates. One way to understand the superfluid
density of Sr0.9La0.1CuO2 is to decompose it into s-wave and d-wave
contributions (48). Assuming that the s-wave contribution is due to
electrons and the d-wave contribution is due to holes, we show in
Fig. 4C that the universal scaling seems to be obeyed as well.
MATERIALS AND METHODS
Sample preparation
The NCCO samples were synthesized using the traveling-solvent
floating-zone technique in 4-atmAr/O2 and oriented by Laue diffraction
within an angle of ±2°. Sampleswere reduced for 12 hours at 970°C inAr
flow and then treated for 20 hours at 500°C in oxygen flow. The onset SC
transition temperature was determined from magnetization measure-
ments using a Quantum Design Inc. Magnetic Property Measurement
System and from resistivity measurements. The Ce concentration was
5 of 7
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measured with inductively coupled plasma atomic emission spectrosco-
py and/or energy-dispersive x-ray spectroscopy. Approximately 1 mm
of the surface of each crystal was removed to improve Ce homogeneity.

MR measurements and analysis
Single crystals ofNCCOwith x= 0.110(10), 0.133(3), 0.145(4), 0.156(4),
and 0.170(2) were measured using the four-contact method or in the
Hall bar configuration. Measurements were performed with a Physical
Property Measurement System (PPMS, up to 9 T; Quantum Design
Inc.) at the University of Minnesota, and with a resistive magnet at
the National High Magnetic Field Laboratory (dc field up to 34.5 T).
The MR was determined in two principal geometries (I//a and H//a;
I//a and H//c). For a few samples [x = 0.133(3), 0.145(4), 0.156(4)],
the angular dependence was obtained. For simplicity, m0 and kB are
set to 1 throughout this work. For additional details, see the Supplemen-
tary Materials.
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SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
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Sample preparation
Table S1. NCCO sample information.
Supplementary Results and Discussion
Fig. S1. Longitudinal (I//a and H//a) ab-plane MR.
Fig. S2. Comparison between two methods to analyze the MR.
Fig. S3. FS and calculation of the MR.
Fig. S4. Nernst upper critical field.
Fig. S5. Representative MR and Hc2 data.
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