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Summary

Optimal design theory, also known as shape optimization is quite indispensable in many
fields like aeronautics, architecture, medicine, computer science. Applications vary from
classical, as construction of an aircraft wing, to more recent as in inverse problems of
electrical impedance tomography (non-invasive method of medical scanning), picture seg-
mentation or in 3D printing. From the engineering point of view the main aspect of
design process is improving a current design. In such optimal design problems the shape
sensitivity analysis plays a central role in finding a solution and creation of numerical
methods.

In this thesis we consider optimal design problems for stationary diffusion equation,
seeking for an arrangement of two isotropic materials, with prescribed amounts, which
maximizes a given functional. The optimality of a distribution is measured by an objective
function, which is usually an integral functional depending on the distribution of materials
and the state function, obtained as a solution of the associated boundary value problem for
the corresponding partial differential equation. Commonly, optimal design problems do
not have solutions (if they exist, such solutions are usually called classical). Therefore, one
can consider a proper relaxation of the original problem by the homogenization method
which consists of using generalized composite materials.

By enlarging the admissible set of the relaxed problem we can consider an artificial
optimal design problem which can be rewritten as a saddle point problem. We further
show that it is equivalent to a simpler relaxation problem given only in terms of the
local proportion of the original materials for which necessary and sufficient conditions of
optimality are obtained. Since every classical solution of the considered artificial optimal
design problem is also a (classical) solution of the original problem it can be used to
construct a family of classical solutions.

The aim of the first chapter of the thesis is to present some classes of optimal design
problems on an annulus with classical solutions. The first class is a single state equation
problem with a constant right-hand side and homogeneous Dirichlet boundary condition.
By analysing the optimality conditions, we are able to show that there exists a unique
(classical) solution. We prove that, depending on the amounts of given materials, only
two optimal configurations in both two- and three-dimensional case are possible. The
second class of problems deals with a two-state optimal design problem.

In the second chapter shape derivative results for the considered problem are presented.
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Summary

Assuming that the interface between phases is regular, for the optimal design problem
the first and the second order shape derivative are calculated using different techniques
e.g. the chain rule approach and the averaged adjoint approach. The presented results
are later used in construction of numerical methods.

Shape derivatives can be written in a form of domain integral or as an integral over
the interface. The domain expression or distributed shape derivative seems more appro-
priate for numerical implementation since boundary representations include jumps of a
discontinuous functions over the interface.

The third chapter is devoted to numerical methods for the optimal design problem
presented in the first section. Descent methods based on distributed first and second
order shape derivatives are implemented and tested. We observe a stable convergence of
both descent methods with a novel Newton-like method converging in half as many steps.

Keywords: optimal design, homogenization, optimality conditions, shape derivative,
shape optimization, Newton method, gradient method
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Sažetak

Teorija optimalnog dizajna, poznata i kao teorija optimizacije oblika je izuzetno važna
zbog svog teorijskog i praktičnog aspekta. Postoje mnoge njene primjene u različitim
interdisciplinarnim područjima poput mehanike, arhitekture, medicine i računarstva. Pri-
mjene su široke od klasičnih problema poput konstrukcije krila aviona pa sve do aktualnih
kao što su inverzni problem električne impedancijske tomografije (neinvazivne metode me-
dicinskog snimanja), problem segmentacije slike ili 3D printanje.

U ovom radu promatra se problem optimalnog dizajna u kojem je cilj odrediti ras-
pored jednog ili više materijala u danom univerzalnom skupu. Optimalnost rasporeda
(distribucije) materijala mjeri se funkcionalom energije koji ovisi o rješenju jednog ili više
rubnih problema. U pripadnoj parcijalnoj diferencijalnoj jednadžbi koeficijenti ovise o
rasporedu materijala. Zadaća optimalnog dizajna najčešće nema rješenje (tzv. klasična
rješenja). Upravo zato je potrebno gledati pogodnu relaksaciju originalnog problema.

U prvom poglavlju disertacije proučava se relaksirana zadaća koju uz proširenje dopus-
tivog dizajna dopušta primjenu teorije sedlaste točke. Nova, proširena zadaća optimalnog
dizajna može se zapisati koristeći samo lokalni omjer količina originalnih materijala. Pro-
blem se dodatno može zapisati kao konveksni problem minimizacije što daje mogućnost
proučavanja nužnih i dovoljnih uvjeta optimalnosti. S obzirom da je svako klasično rješenje
novog problema ujedno i rješenje originalnog problema dobivamo mogućnost konstrukcije
klasičnih rješenja.

Cilj ove disertacije je proučiti probleme na prstenu u kojima se javljaju klasična rješe-
nja. Konkretno, za stacionarnu jednadžbu difuzije s konstantnom desnom stranom poka-
zana je egzistencija i jedinstvenost rješenja. Ovisno o danoj količini materijala za prostor
dimenzije 2 i 3 postoje samo dvije moguće strukture za optimalni dizajn. Promatra se i
zadaća optimalnog dizajna, s dva rubna problema, u kojoj postoji klasično rješenje.

Drugo poglavlje disertacije posvećeno je analizi derivacije oblika. Uz dodatnu regu-
larnost granice između materijala analizira se osjetljivost oblika zadaće transmisije. Kon-
kretno, koriste se dvije tehnike derivacije oblika: lančano pravilo i usrednjena adjungirana
metoda. Obje tehnike su uspješno iskorištene čime je dobivena derivacija oblika prvog i
drugog reda.

Prema strukturnom teoremu, derivacije oblika dopuštaju zapis preko volumnih inte-
grala ili preko integrala po rubu. Pokazuje se da je volumna forma prikladnija numeričkom
rješavanju kod zadaća transmisije. Naime, pripadnu graničnu formu derivacije oblika je
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Sažetak

numerički teže tretirati u kontekstu derivacije oblika zbog prekida podintegralne funkcije
na rubu.

Treće poglavlje disertacije posvećeno je numeričkim metodoma za probleme optimal-
nog dizajna iz prvog poglavlja. Metode silaska koje koriste prvu i drugu derivaciju oblika
su implementirane te testirane na zadaćama optimalnog dizajna za koje imamo klasična
rješenja. Opažena je stabilna konvergencija prema optimalnom rješenju za obje metode
s time da aproksimativna Newtnonova metoda ima dvostruku veću brzinu konvergencije.
Obje metode konvergiraju neovisno o početnoj aproksimaciji.

Ključne riječi: optimalni dizajn, homogenizacija, uvjeti optimalnosti, derivacija oblika,
optimizacija oblika, Newtonova metoda, gradijentna metoda
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Introduction

Shape optimization
Optimizing the shape of an object to make it the most efficient with a respect to a one or
several different criteria is rather an old task. There are a lot of applications in many in-
terdisciplinary areas like mechanics, physics, medicine, architecture and computer science.
Classical applications come from industries like aeronautics where design of an airfoil can
improve the performance and running costs of an aircraft, medicine where non-invasive
methods of scanning (electrical impedance tomography) determine an inverse problems,
or computer science where image segmentation is used to track moving interfaces.

Usually, shape optimization problems seek for an extremum of a given functional over
a set of admissible domains:

(1) min
ω∈O

J(ω).

The elements of O are called admissible shapes which are usually a class of subsets of Rd

and J is called a shape functional. We are particularly interested in optimization problems
where admissible domains satisfy non linear constraint A(ω, u(ω)) = 0. The map ω 7→
A(ω, ·) is defined by a a boundary value problem which consists of a partial differential
equation or a system of partial differential equations whose operators depends on ω and
u(ω) represents a state solution of this boundary value problem. Shape optimization can
be therefore regarded as a part of optimal control theory, were domains act as controls.

The question of existence of an optimal shape ω0 ∈ O such that

J(ω0) ≤ J(ω), ω ∈ O,

is non trivial to answer and for many problems which comes from applications it remains
an open problem. Indeed, if we wish the family of admissible domains to be compact,
then we should choose a topology as coarse as possible. On the other hand if we want
the functional that we minimize to be continuous we should impose a fine topology. The
other difficulty arises because of the absence of a vector space structure on the family of
admissible domains which a priori prevents us from using the classical theory to obtain
necessary conditions of optimality. In fact this offers us the possibility to study and apply
several different frameworks: from the homogenization theory to the theory of shape
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Introduction

analysis.
In this thesis we consider an optimal design problem for stationary diffusion equation.

Let Ω be an open bounded subset of Rd. It consists of two isotropic phases: a better
conductor with conductivity β and worse with conductivity α, with the prescribed volume
of the phase α. Denoting by χ the characteristic function of the worse conductor, the
overall conductivity is written by A = χαI+(1 − χ)β I and state functions u1, ..., um ∈
H1

0(Ω) are uniquely determined by a boundary value problem:

(2)

{
− div(A∇ui) = fi

ui ∈ H1
0(Ω)

i = 1, 2, ...m.

where the right-hand sides f1, ..., fm ∈ H−1(Ω). The aim is to find an optimal configuration
of phases α and β such that a conic sum of energies obtained for each state problem is
maximized.

There are conceptually, two different directions on how we can solve this optimal
design problem. The first direction considers enlarging the space of admissible designs to
domains which fail to be ”regular”, i.e. to the point where we are dealing with mixtures of
phases (v. [5],[40],[41]). The second direction restricts admissible designs, e.g. the region
occupied by the phase α may admit Lipschitz boundary or be connected. Other possible
constraints could be a given length of the perimeter, number of connected components,
or higher regularity of the interface (v. [10],[30],[21]).
Relaxation by homogenization
A relaxation by the homogenization theory consists in introducing generalized materials,
which are the mixtures of the original materials on the micro-scale. Perhaps standard way
to relax characteristic functions is by the closure in L∞ weak ∗ topology. On one hand
for the conductivity L∞ weak ∗ topology ensures compactness of conductivities, but on
the other it disables the continuity of the energy functional. For that reason H-topology
is introduced giving rise to a proper relaxed problem.

Historically, these questions were introduced in [47] through the concept of G-topology
for stationary diffusion equation. The notion of H-topology was also originally introduced
for the stationary diffusion equation in [40]. It differs from the concept of G-topology, as it
treats the convergence of coefficients appearing in the equation, instead of the convergence
of corresponding solution operators. However, for symmetric coefficients these two notions
are equivalent.

Through the homogenization method one can show that the relaxed problem always
admits a ”generalized solution”. Unfortunately, ”generalized solutions” of optimal design
problems are rarely classical solutions, i.e. the solution of original, non-relaxed problems.
In the literature there are very few examples of optimal design problems with classical
solutions, and all of them are given on a ball ([41],Remark 40): in the case of energy
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Introduction

maximization with one state equation on a ball and a constant right-hand side the better
conductor should be placed inside a smaller (concentric) ball, whose radius can easily be
calculated from the constraint on given amounts of materials. For multiple state optimal
design problems on a ball see [55]. This problem has interesting applications, e.g. in
elasticity it models the maximization of the torsional rigidity of a cylindrical rod with
uniform cross section made of two given materials. Another application is the problem
of arrangement of two viscous fluids in the Poiseuille flow through the pipe with uniform
cross-section that maximizes the flow rate. It is well known that classical solutions on a
simply connected domain can appear only in the case of a ball (see [41],[14]). Therefore,
in this thesis we shall address the analogous problem on an annulus. Although both
domains are rather simple (spherically symmetric), it is important to stress that problem
on a ball is much easier to solve as optimality conditions are given in terms of the known
flux, while for the annulus one obtains a whole family of possible fluxes (dependent on an
integration constant).
Shape derivative
In order to solve the above optimal design problem one considers an additional constraint
on the admissible designs: the region occupied by the phase α denoted with Ωα is a
Lipschitz domain. Then the solution (2) satisfies transmission conditions, i.e. continuity
of state functions and fluxes on the interface. We are interested in the behaviour of a
shape functional with respect to small perturbations of the domain. A classical way to
introduce this perturbations of domains is by constructing a family of homeomorphisms.
There are several different notion on how this can be done, most notably by the method of
perturbation of identity and by the speed method (v. [30],[54],[44],[46]). Perturbation of
identity takes a small θ in a normed space such as Wk,∞(Rd;Rd) or Ck

b (Rd;Rd) and creates
a homeomorphism from Rd onto Rd by the map Id +θ. Particularly, one is interested in
Eularian semi-derivative:

(3) J ′(Ωα; θ) := lim
t↘0

J((Id +tθ)Ωα)− J(Ωα)

t

also called shape derivative of the functional J at Ωα in the direction θ whenever the
map θ 7→ J ′(Ωα; θ) is linear and continuous. This concept was originally developed by
Hadamard in his study of elastic plates in his pioneering paper in 1908 [28]. For more
about history and further development of the theory one can find in [30] and [46].

Calculations of (3) is tedious and error prone task, especially for the transmission
problem, where we are also dealing with the lack of regularity of state functions due to
discontinuity of coefficients along the interface. This was recognized in [43],[7] mean-
ing that formal Cea’s method [15] which introduces the Lagrange functional to formally
calculated shape derivative becomes rather complex.

For that reason two fundamentally different techniques of calculating the shape deriva-
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tive were chosen:

1. a standard approach via the so called chain rule (v. [39],[38],[44]),

2. an averaged adjoint method (v. [50],[35]).

”Chain rule” is rather classical approach in the literature which uses the inverse function
theorem to show differentiability of the state function composed by the map Id +θ, thus
giving directional derivative also known as material derivative. This material derivative
can then be directly used to calculate the shape derivative or to define a local derivative.
While technically more tedious it offers more substantial information with stronger notion
of differentiability, e.g. Fréchet derivative. The averaged adjoint method is straightfor-
ward approach similar to formal Cea’s method where to the shape functional is added
a weak formulation (linear penalization) of the state equation. The usual adjoint state
function is then replaced with a limit of an ”averaged’ family of adjoint functions and
rigorously justified.

By the Hadamard structure theorem the shape derivative depends only on the normal
component of the variation θ on the interface Γ. The first, chain rule approach, gives
shape derivative exactly in this boundary form. The second approach by an averaged
adjoint method gives the same shape derivative in the distributional (volume) form. This
difference will be useful later for calculations of the second order shape derivative in both
representational forms.

The study of the second order shape derivative was initiated in the paper [45] by J.
Simon. The idea behind this notion is rather simple, because we would like to have a
second order Taylor expansion of the shape functional

J((Id +tθ)Ωα) = J(Ωα) + tJ ′(Ωα; θ) +
t2

2
J ′′(Ωα; θ, θ) + o(t2).

Here the very definition of the second order shape derivative is crucial because

J ′′(Ωα; θ, ψ) 6= (J ′(Ωα; θ))′(Ωα;ψ)

meaning that second order derivative cannot be obtained simply as a variation of the first
order shape derivative. It is also important to note that the Hadamard structure theorem
highly depends on the choice of family of homeomorphism (see [54]).
The objective of this thesis
The main results of this thesis are:

1. Construction of classical solutions for optimal design problems on annulus with
qualitative analysis of some examples.

2. Application and comparison of several techniques for calculations of the first and
the second order shape derivative.
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3. Numerical implementation of several gradient methods and Newton-like methods
using distributional (volume) shape derivative. To the best of our knowledge this is
the first such kind of implementation of Newton method to a shape functional with
PDE constraints.

The structure of this thesis
Now we turn to a brief overview of the thesis.
Chapter 1: Classical optimal designs for energy maximization
The first chapter starts with introductory overview of the homogenization theory and
H-topology introduced by Murat and Tartar. Important results as characterization of
K(θ), a set of all effective conductivities obtained by mixing original phases with local
fraction θ, or the fact that H-topology is metrizable are given. A proper relaxation of
the original optimal design problem is given with an admissible set A of relaxed designs.
The set A is artificially enlarged to a convex set B which offers a reinterpretation of
a new optimal design problem as a minimax problem and consequently can be viewed
as a simpler relaxation problem only in terms of local fraction. From there necessary
and sufficient conditions of optimality are obtained, which is utilized to create a classical
solution of the original optimal design problem.

As the first example a single state problem with a constant right-hand side f is stud-
ied. We are able to show that in the case of annulus, the solution of the relaxed problem
is unique, classical and radial. Depending on the amounts of given materials, we find two
possible optimal configurations. If the volume of the first phase is less than some critical
value, then the better conductor should be placed in an outer annulus. Otherwise, the
optimal configuration consists of an annulus made of the better conductor, surrounded by
two annuli of the worse conductor. The choice for right hand sides when creating classical
solutions is delicate. Although, it is easy to prove the existence of unique solution by a
simple criteria, the analysis of possible optimal designs could become tedious. Therefore,
an example of multiple state problem is presented for which determining possible config-
uration of the optimal solution is straightforward. Once the configuration is known radii
between phases are computed by solving a system of nonlinear equations (numerically).
Chapter 2: Calculations of shape derivative
In the second chapter we focus on calculation of the first and the second order shape
derivative.

Section 2.1 deals with a definition of Lipschitz domains and their characterization. It
is rather well known that the image of Lipschitz domain under a bi-Lipschitz map from Rd

onto Rd is not necessarily a Lipschitz domain. A simple sufficient condition which ensures
that perturbation of identity of the form Id +θ for θ ∈ W1,∞(Rd;Rd), maps a Lipschitz
domain onto a Lipschitz domain is demonstrated. We show that state equation of the
original optimal design problem with assumption that the region occupied by phase α,

5



Introduction

denoted with Ωα, is a Lipschitz domain is equivalent to a transmission system. This play a
key role in understanding the shape differentiability of the state function and consequently
of the energy functional.

In Section 2.2 material derivative of a transmission model is calculated through the
use of the implicit function theorem. Particularly, the map θ 7→ u(θ) ◦ (Id +θ) is well
defined and Fréchet differentiable in a zero-neighbourhood of W1,∞(Rd;Rd) to H1

0(Ω). In
case of higher regularity of the interface Γ between phases and of the right hand-side in
the state equation one can demonstrate Fréchet differentiability in a zero-neighbourhood
of Wk,∞(Rd;Rd) to H1

0(Ω) ∩ Hk(Ωα ∩ Ωβ). As a consequence a local derivative is well
defined and it satisfies a generalized transmission problem with jump conditions on the
interface. Several techniques were used to calculate a shape derivative of the energy
functional: a direct chain rule approach for material derivative, an indirect approach
via local derivative, and an averaged adjoint method which due to linearity simplifies to
the standard adjoint method. We present the shape derivative both in boundary and
distributed (volume) representation.

In Section 2.3 the second order shape derivative is derived by two different techniques
already mentioned for the first order shape derivative. It seems that an averaged adjoint
method is well suited to calculate distributional form of the second order shape derivative
and in this case with non-linear averaged adjoint equation. The calculations although
more complex are then analogously done as in the previous section.
Chapter 3: Numerical approximation
The final third chapter deals with numerical implementations of the first and the second
order shape derivative.

In Section 3.1 an algorithm overview of gradient methods and a novel Newton-like
method is done with focus on different possible implementations. Classical tools in
shape modelling as level set function, distance function and advection equations are ex-
plained and used in numerical implementations. The most important part is description
of Newton-like method for several reasons. Firstly, it is based on the distributional form
of the shape derivative, meaning that an ascent vector is created on the whole domain
Ω (although, its support can be properly reduced). Secondly, it is faster (it achieves
convergence in less then half iterations of the gradient method).

Section 3.2 is dedicated to numerical testing and results. For gradient method we
have observed stable convergence. To demonstrate that the gradient method based on
shape derivative converges to the optimal solution we make an extensive test and find that
discrepancy between radius of numerical and exact radii of the interface between phases
is due to numerical error.

6



Chapter 1

Classical optimal designs for energy max-
imization

1.1 Existence of solutions and relaxation
1.1.1 Problem formulation
Let Ω ⊆ Rd be an open and bounded set, and let a measurable function χ denote a
characteristic function of the first isotropic phase, with lower conductivity α (the other
one is denoted by β). We shall denote the amount (measure) of the first phase α with
qα (0 < qα < |Ω|). The conductivity of the domain Ω can be expressed as A(χ) :=

αχI+β(1− χ)I, with restriction ∫
Ω

χ(x) dx = qα.

For given right-hand sides f1, . . . , fm ∈ H−1(Ω), the conductivity A uniquely determines
state functions u1, . . . , um as the solutions of boundary value problems

(1.1) − div(A∇ui) = fi , ui ∈ H1
0(Ω) , i = 1, . . . ,m .

Equation (1.1) implies the following variational formulation, or weak form for i = 1, ...,m:∫
Ω

A∇ui · ∇ϕ dx = 〈f, ϕ〉H−1,H1
0
, ϕ ∈ H1

0(Ω).

where 〈 , 〉H−1,H1
0
is the duality product between H−1(Ω) and H1

0(Ω). For easier notation,
we shall write it as

∫
Ω
f(x)ϕ(x) dx which coincides with dual product when f is more

regular. Observe that the mapping χ 7→ ui(χ) is nonlinear. Next, we define a functional:

(1.2) J(χ) :=
m∑
i=1

µi

∫
Ω

fi(x)ui(x) dx.

7



Chapter 1. Classical optimal designs for energy maximization

for some given weights µ1, . . . , µm > 0. Observe that the functional is a conic sum of
the energy functionals for each respective state function ui. We seek a solution χ of the
optimal design problem

(O)


max

m∑
i=1

µi

∫
Ω

fiui dx

s.t. χ ∈ L∞(Ω; {0, 1}) ,
∫

Ω

χ dx = qα ,

u = (u1, . . . , um) solves (1.1) with A = χαI + (1− χ)βI ,

If such characteristic function χ exists we call it the classical solution. Generally there are
no existence results of such solutions so first we need to relax the optimal design problem
(O).

1.1.2 Relaxation through homogenization theory
Let us recall a standard formulation of relaxation which can be found in [41]. Optimization
problem is usually written as a minimization problem:

(1.3)

{
F (x)→ min

x ∈ X.

If X is a compact topological space and F a real valued, lower semicontinuous function
then one can show that (1.3) admits at least one solution. If the space X fails to be
compact or F fails to be a lower semicontinuous function, a proper relaxations for problem
(1.3) is introduced

(1.4)

{
FR(x)→ min

x ∈ XR.

where XR is a compact topological space and FR a lower semicontinuous function with
following properties:

• X is dense in XR, FR
∣∣
X

= F ,

• for any sequence (xn)n∈N ⊂ X that converges to x

FR(x) ≤ lim inf
n

F (xn),

• for any x ∈ XR there exists a sequence (xn)n∈N ⊂ X that converges to x and satisfies

FR(x) = lim inf
n

F (xn).

8



Chapter 1. Classical optimal designs for energy maximization

One can then show that relaxed problem (1.4) has at least one solution. Furthermore,

min
x∈XR

FR(x) = inf
x∈X

F (x),

meaning that any accumulation point (in XR) of a minimizing sequence of the problem
(1.3) is a solution of the problem (1.4).

Before we continue with relaxation of the problem (O) let us recall several key results
of the homogenization theory. We start by defining a set of admissible conductivities

(1.5)


M(α, β; Ω) ={A ∈ L∞(Ω; Md(R)) such that for anyξ ∈ Rd and a.e. x ∈ Ω

A(x)ξ · ξ ≥ α|ξ|2, A−1(x)ξ · ξ ≥ 1

β
|ξ|2 }

where A−1(x) denotes the inverse matrix of A(x).

Remark 1.1.1. A coercive matrix with coercive inverse is also bounded. By introducing
η = A−1(x)ξ we obtain

(1.6) A(x)η · η ≥ 1

β
|A(x)η|2.

Applying the Cauchy-Schwarz inequality we get

|A(x)η| ≤ β|η|, ∀η ∈ Rd.

Therefore, necessary condition for A to belong toM(α, β; Ω) is that

(1.7) α|ξ|2 ≤A(x)ξ · ξ ≤ β|ξ|2, ∀ξ ∈ Rd, a.e. x ∈ Ω.

In the symmetric case whenA(x) = A(x)τ almost everywhere in Ω, conductivityA satisfies
(1.7) if and only if A belongs toM(α, β; Ω).

If we take conductivity matrix A ∈ M(α, β; Ω), the solutions of boundary value
problems (1.1) are well defined. By the following Proposition one can see that the set
M(α, β; Ω) is compact when equipped with weak ∗ L∞ topology.

Proposition 1.1.2. For a bounded set K ⊂ Rd, let (un)n∈N ⊂ L∞(Ω;K) be a sequence
that converges in weak ∗ topology to the function u. Then

u(x) ∈ convK a.e. x ∈ Ω,

and conversely, any function u satisfying previous property can be obtained as a weak ∗
limit of sequence in L∞(Ω;K).

9



Chapter 1. Classical optimal designs for energy maximization

Unfortunately, weak ∗ L∞ topology is not enough for our purposes since mapping

A 7→ u = (u1, ..., um) :M(α, β; Ω)→ H1
0(Ω;Rd)

fails to be continuous. Indeed, if we take a sequence (An)n∈N ∈M(α, β; Ω) such that An

converges toA+ in weak ∗ topology, the corresponding solutions of (1.1) un = (un1 , ..., u
n
m)

with conductivity An converges (up to a subsequence) weakly in H1
0(Ω) to some u0 =

(u0
1, ..., u

0
m) which in general may fail to be the solution to the (1.1) with conductivityA+.

For that reason notion of H-convergence is introduced.

Definition 1.1.3. We say that the sequence An ∈ M(α, β; Ω) H-converges to the A∗ ∈
M(α, β; Ω) if for any f ∈ H−1(Ω) the solution un ∈ H1

0(Ω) of

− div(An∇un) = f in Ω,

satisfies {
un ⇀ u0 weakly in H1

0(Ω)

An∇un ⇀A∗∇u0 weakly in L2(Ω;Rd)

Since An∇un ⇀ A∗∇u0 and − div(An∇un) = f we conclude that u0 ∈ H1
0(Ω) is a

unique solution of the
− div(A∗∇u0) = f in Ω.

The above definition makes sense because of the following sequential compactness theo-
rem:

Theorem 1.1.4. For any sequence An ∈ M(α, β; Ω) there exists a subsequence, still
denoted by An and A∗ ∈M(α, β; Ω) such that An H-converge to A∗.

A useful result is that the topology induced by the H-convergence is metrizable. Fol-
lowing Proposition can be found in [5]:

Proposition 1.1.5. Let (fn)n∈N be a dense countable family in H−1(Ω). Let A and B be
two matrices inM(α, β; Ω). Define un and vn the respective unique solutions in H1

0(Ω) of

− div(A∇un) = fn in Ω

and
− div(B∇vn) = fn in Ω.

We define a distance function inM(α, β; Ω) by

d(A,B) =
+∞∑
n=1

2−n
‖un − vn‖L2(Ω) + ‖A∇un −B∇vn‖H−1(Ω)d

‖fn‖H−1(Ω)

.

10



Chapter 1. Classical optimal designs for energy maximization

Then,M(α, β; Ω) is a metric space with this distance d, and the H-convergence is equiv-
alent to the sequential convergence with respect to d.

The map defined by (1.1):

A 7→ u = (u1, ..., um) :M(α, β; Ω)→ H1
0(Ω;Rd)

is continuous with respect to H-topology onM(α, β; Ω) and weak topology on H1
0(Ω;Rd).

By Proposition 1.1.5 it is enough to check the sequential continuity. Let us take a se-
quence (An)n∈N ⊂ M(α, β; Ω) that H-converges to A∗. Definition 1.1.3 then implies
that a sequence un converges weakly in H1

0(Ω;Rd) to u0 which is a solution of (1.1) with
conductivity A∗.

The next fundamental step is to characterize the H-closure (closure with respect to
H-topology) of some given set. Particularly, we are interested in characterization of H-
closure of the set of conductivities of the form

A = χαI+(1− χ)β I

Proposition 1.1.6. Assume thatAn = χnαI+(1−χn)β I H
⇀A∗ and that χn

∗L∞
⇀ ϑ where

ϑ(x) denotes the local volume fraction at the point x. Then

A∗(x) ∈ K(ϑ(x)), a.e. x ∈ Ω

where for θ ∈ [0, 1], the set K(θ) is defined in the following way. A symmetric matrix
belongs to K(θ) if and only if its eigenvalues (λ1, ..., λd) satisfy

(1.8)



λ−(θ) ≤ λi ≤ λ+(θ), i = 1, 2, ..., d,
d∑
i=1

1

λi − α
≤ 1

λ−(θ)− α +
d− 1

λ+(θ)− α,
d∑
i=1

1

β − λi
≤ 1

β − λ−(θ)
+

d− 1

β − λ+(θ)
,

where λ−(θ) =
(

θ
α

+ 1−θ
β

)−1

and λ+(θ) = θα + (1− θ)β.
Conversely, if a measurable function A∗ satisfies A∗(x) ∈ K(ϑ(x)), a.e. x ∈ Ω for a

function ϑ ∈ L∞(Ω; [0, 1]), there exists a sequence of characteristic functions (χn)n∈N ⊂
L∞(Ω; {0, 1}) such that χn

∗L∞
⇀ ϑ and An = χnαI+(1− χn)β I H

⇀A∗

Now we introduced everything to write a proper relaxation of the problem (O). In-
stead of χ ∈ L∞(Ω; {0, 1}) we are using ϑ ∈ L∞(Ω; [0, 1]) equipped with weak ∗ L∞

topology. Proposition 1.1.2 states that L∞(Ω; {0, 1}) is dense inside L∞(Ω; [0, 1]). For
given ϑ ∈ L∞(Ω; [0, 1]) by Proposition 1.1.6 conductivity is determined by a set of effec-

11



Chapter 1. Classical optimal designs for energy maximization

Figure 1.1: The set of effective conductivities K(θ) in 2D

tive conductivities, so we can introduce a set of generalized designs:

A =

{
(ϑ,A) ∈ L∞(Ω; [0, 1]× Symd(R)) :

∫
Ω

ϑ dx = qα, A(x) ∈ K(ϑ(x)), a.e. x
}
.

Observe that L∞(Ω; [0, 1]) is a weak ∗L∞ compact and convex set. By Proposition 1.1.6 we
can also conclude that A is compact in a product of weak ∗ L∞ topology and H-topology.
We shall also use natural extension of the functional J :

(1.9) JA(ϑ,A) =
m∑
i=1

µi

∫
Ω

fiui dx

where u = (u1, ..., um) satisfies (1.1) with conductivity A. Observe that the functional
JA can be understood as an extension of energy functional (1.2) since for any χ ∈
L∞(Ω; {0, 1})

JA(χ, χαI+(1− χ)β I) = J(χ).

The relaxed problem then reads

(A)

 max JA(ϑ,A) =
m∑
i=1

µi

∫
Ω

fiui dx

s.t. (ϑ,A) ∈ A, u = (u1, . . . , um) solves (1.1) with A .

Furthermore, one can check that the functional JA is continuous on a set of relaxed designs
A in a product of weak ∗ L∞ topology and H-topology. Therefore, there exists at least

12



Chapter 1. Classical optimal designs for energy maximization

one solution of the problem (A). One can also show that K(ϑ) is convex for a fixed ϑ (see
Figure 1.1) but this is not the case for the set of relaxed designs A as we can see in the
following example.

Example 1.1.7. Assume that Ω0 ⊂⊂ Ω is an open set chosen such that

vol(Ω0) < min{qα, vol(Ω)− qα}.

Then one can easily construct two pairs (ϑ1,A1), (ϑ2,A2) ∈ A such that for any x ∈ Ω0

ϑ1(x) = 1 and ϑ2(x) = 0. From definition of the set K(ϑ) one can conclude that for
a.e. x ∈ Ω0 we have A1(x) = αI and A2(x) = β I . From this we can see that the pair
(ϑ,A) = (1

2
(ϑ1 + ϑ2), 1

2
(A1 +A2)) satisfies condition

∫
Ω
ϑ dx = qα. On the other side one

can show that the matrix A = 1
2
(A1 +A2) does not satisfy

A(x) ∈ K(ϑ(x)) a.e. x ∈ Ω.

Indeed, since α < β the following holds

2d >
α

β
+ 1 + 2(d− 1).

Multiplying by 1
β−α we obtain

2d

β − α >
α + β

β(β − α)
+

2(d− 1)

β − α

which is equivalent to

d

β − α+β
2

>
1

β − λ−(0.5)
+

d− 1

β − λ+(0.5)
.

This implies that α+β
2
I 6∈ K(0.5) due to the last inequality in (1.8). Since for a.e. x ∈ Ω0

A(x) = 1
2
(αI+β I) = α+β

2
I, we obtain the claim.

Remark 1.1.8. As it was done in [55] one can easily characterize isotropic mixtures in
the set K(θ). For given θ ∈ [0, 1], matrix γ I belongs to K(θ) if and only if

α +
dα(β − α)(1− θ)

dα + θ(β − α)
≤ γ ≤ β − dβ(β − α)θ

(d− 1)β + α + θ(β − α)
.

The upper and lower bounds are strictly convex functions with respect to θ on [0, 1], in
any dimension d. Therefore, a set

{(θ, γ) ∈ [0, 1]× [α, β] : γ I ∈ K(θ)}

13
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Figure 1.2: The set of all possible conductivities γ of isotropic mixtures in K(θ)

is not convex (see a Figure 1.2), which is explicitly proved in Example 1.1.7.

In order to amend this lack of convexity, we introduce a larger artificial design set

B ={(ϑ,A) ∈ L∞(Ω; [0, 1]× Symd(R)) :
∫

Ω
ϑ dx = qα,

λ−(ϑ(x))|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ λ+(ϑ(x)|ξ|2 ∀ξ ∈ Rd a.e. x ∈ Ω}.

Lemma 1.1.9. The set B is convex and closed when equipped with a product of weak ∗
L∞ topology and H-topology.

Proof. One can show that the set B is closed using Proposition 1.1.2 and ordering property
which holds for H-topology:

Lemma 1.1.10. Let (An)n∈N and (Bn)n∈N be two sequences of symmetric matrices in
M(α, β; Ω) that H-converge to the A∗ and B∗. If for all n

∀ξ ∈ Rd 〈An ξ, ξ〉 ≤ 〈Bn ξ, ξ〉

then
∀ξ ∈ Rd 〈A∗ ξ, ξ〉 ≤ 〈B∗ ξ, ξ〉 .

Proof. See Proposition 14 in [51] or Lemma 1.3.13 in [5].

To finish the proof of Lemma 1.1.9, convexity of the set B can be directly checked. Let
k ∈ [0, 1], (ϑ1,A1), (ϑ2,A2) ∈ B. Define a pair (ϑ,A) = (kν1 +(1−k)ϑ2, kA1 +(1−k)A2).

14
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It is easy to check that it belongs to L∞(Ω; [0, 1] × Symd(R)). Furthermore, due to the
linearity of the constraint∫

Ω

ϑ dx = k

∫
Ω

ϑ1 dx+ (1− k)

∫
Ω

ϑ dx = qα.

For a.e. x ∈ Ω and ξ ∈ Rd we have:

kλ−(ϑ1(x))|ξ|2 ≤ 〈kA1(x)ξ, ξ〉 ≤ kλ+(ϑ1(x))|ξ|2

(1− k)λ−(ϑ2(x))|ξ|2 ≤ 〈(1− k)A2(x)ξ, ξ〉 ≤ (1− k)λ+(ϑ2(x))|ξ|2

By adding previous inequalities we get

(kλ−(ϑ1(x))+(1− k)λ−(ϑ2(x)))|ξ|2 ≤ 〈(kA1(x) + (1− k)A2(x))ξ, ξ〉
≤ (kλ+(ϑ1(x) + (1− k)λ+(ϑ2(x))|ξ|2

(1.10)

Since x 7→ 1
x
is a convex function on 〈0,∞〉 we can conclude for the left inequality

k

(
ϑ1(x)

α
+

1− ϑ1(x)

β

)−1

+(1− k)

(
ϑ2(x)

α
+

1− ϑ2(x)

β

)−1

≥(
kν1(x) + (1− k)ϑ2(x)

α
+

1− kν1(x)− (1− k)ϑ2(x)

β

)−1

thus (kλ−(ϑ1(x)) + (1 − k)λ−(ϑ2(x))) ≥ λ−(ϑ(x)). For the right inequality in (1.10) we
can check that

kλ+(ϑ1(x)) + (1− k)λ+(ϑ2(x)) = λ+(ϑ(x)),

so we have obtained

λ−(ϑ(x))|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ λ+(ϑ(x))|ξ|2

thus showing that (ϑ,A) ∈ B.

One can also show in a similar manner that the set

C = {(ϑ,B) ∈ L∞(Ω; [0, 1]× Symd(R)) : (ϑ,B−1) ∈ B}

is convex. From Lemma 1.1.9 B is a compact set with respect to the introduced product
topology, so the functional JB(ϑ,B) =

∑m
i=1 µi

∫
Ω
fiui dx where (u1, ..., um) is the solution

15
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of (1.1) has a maximum point on B, i.e. the optimal design problem

(B)

 max JB(ϑ,A) =
m∑
i=1

µi

∫
Ω

fiui dx

s.t. (ϑ,A) ∈ B, u = (u1, . . . , um) solves (1.1) with A .

admits at least one solution. Furthermore, JB |A = JA and since A ⊂ B we can conclude

max
(ϑ,A)∈A

JA(ϑ,A) ≤ max
(ϑ,B)∈B

JB(ϑ,B).

1.2 Interpretation as a Convex Optimization Problem
1.2.1 Theory of saddle points and minimax theory
We start this section with a short overview of classical results on saddle point theory. For
details and proofs of some results see Chapter 6 in [25]. Let X, Y be Hausdorff topological
vector spaces. We take a real valued function L defined on a set A × B ⊂ X × Y . Let
us start with a definition of a saddle point:

Definition 1.2.1. We say that a pair (ũ, p̃) ∈ A×B is a saddle point of L on A×B if

L(ũ, p) ≤ L(ũ, p̃) ≤ L(u, p̃), u ∈ A, p ∈ B.

Some important properties of a saddle point:

Proposition 1.2.2. Let L be a real valued function defined on A×B.

1. L has a saddle point if and only if

max
p∈B

inf
u∈A

L(u, p) = min
u∈A

sup
p∈B

L(u, p)

and this number is then equal to L(ũ, p̃), for any saddle point (ũ, p̃).

2. The set of all saddle points of L is of the form A0×B0 where A0 ⊂ A and B0 ⊂ B.

We assume henceforth that

A ⊂ X is convex, closed and non-empty,(1.11)

B ⊂ Y is convex, closed and non-empty,(1.12)

and the function L : A×B → R satisfies

for any u ∈ A, p 7→ L(u, p) is concave and upper semicontinuous,(1.13)

for any p ∈ B, u 7→ L(u, p) is convex and lower semicontinuous.(1.14)
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Proposition 1.2.3. Under hypotheses (1.11)-(1.14) the set A0 ×B0 of the saddle points
is convex.

• If p 7→ L(u, p) is strictly concave for all u ∈ A then B0 contains at most one point.

• If u 7→ L(u, p) is strictly convex for all p ∈ B then A0 contains at most one point.

Proof of the following theorem is from [25].

Theorem 1.2.4. Let X, Y be Hausdorff topological vector spaces such that one of them is
also a reflexive Banach space. We assume that the conditions (1.11)-(1.14) are satisfied
and additionally that A and B are compact sets. Then the function L possesses at least
one saddle point (ũ, p̃) on A×B and

L(ũ, p̃) = min
u∈A

max
p∈B

L(u, p) = max
p∈B

min
u∈A

L(u, p).

Proof. We consider the case where X is reflexive Banach space and for every p ∈ B the
map u 7→ L(u, p) is strictly convex. Then by the virtue of Proposition 1.2.3 the minimum
of the function u 7→ L(u, p) is achieved for any p ∈ B and is unique. We denote by f(p)

this minimum and the minimizer by e(p) ∈ A:

f(p) = min
u∈A

L(u, p) = L(e(p), p).

The function p 7→ f(p) is concave and upper semicontinuous as an infimum of such
functions. It is therefore bounded above and attains its upper bound at a point p̃:

f(p̃) = max
p∈B

f(p) = max
p∈B

min
u∈A

L(u, p)

and
f(p̃) ≤ L(u, p̃), u ∈ A.

Since for any u ∈ A the map p 7→ L(u, p) is concave we have for any u ∈ A, p ∈ B and
λ ∈ 〈0, 1〉

L(u, (1− λ)p̃+ λp) ≥ (1− λ)L(u, p̃) + λL(u, p).

In particular, by taking u = eλ = e((1− λ)p̃+ λp), we obtain that

f(p̃) ≥ f((1− λ)p̃+ λp)) = L(eλ, (1− λ)p̃+ λp)

≥ (1− λ)L(eλ, p̃) + λL(eλ, p)

≥ (1− λ)f(p̃) + λL(eλ, p),

17



Chapter 1. Classical optimal designs for energy maximization

meaning that

(1.15) f(p̃) ≥ L(eλ, p).

Due to A being a compact set, for a sequence (λn) such that λn → 0 there exists a
subsequence, again denoted by (λn) such that eλn converges to some limit ũ. One can see
that the following inequality holds:

(1− λn)L(eλn , p̃) + λnL(eλn , p) ≤ L(eλn , (1− λn)p̃+ λnp) ≤ L(u, (1− λn)p̃+ λnp),

for any u ∈ A and therefore

lim inf
n

[(1− λn)L(eλn , p̃) + λnL(eλn , p)] ≤ lim sup
n

L(u, (1− λn)p̃+ λnp).

Since L(eλn , p) ≥ f(p), we see that lim infn λnL(eλ, p) = 0 · L(ũ, p) = 0 due to L being
lower semicontinuous in u and we can conclude

L(ũ, p̃) ≤ lim inf
n

L(eλn , p̃) ≤ lim inf
n

(1− λn)L(eλn , p̃) ≤ lim sup
n

L(u, (1− λn)p̃+ λp)

showing that for any u ∈ A we have L(ũ, p̃) ≤ L(u, p̃), which implies e(p̃) = ũ. We can
now pass to the limit in (1.15) obtaining

f(p̃) ≥ lim inf
n

L(eλn , p) ≥ L(ũ, p), ∀p ∈ B.

We have shown that for any u ∈ A and p ∈ B:

(1.16) L(ũ, p) ≤ L(ũ, p̃) ≤ L(u, p̃).

If the map u 7→ L(u, p) is not strictly convex, we introduce perturbed Lagrangians Lε:

Lε(u, p) = L(u, p) + ε‖u‖X

for the norm ‖·‖X which is strictly convex. See Remark 1.2.5 for detail about the existence
of such norm for a reflexive Banach space. Indeed, for Lε we obtain the existence of a
saddle point (ũε, p̃ε) ∈ A×B such that for any u ∈ A, p ∈ B:

L(ũε, p) + ε‖ũε‖ ≤ L(ũε, p̃ε) + ε‖ũε‖X ≤ L(u, p̃ε) + ε‖u‖X .

Due to compactness of A and B, one can find a sequence εn converging to zero such that
ũεn → ũ and p̃εn → p̃. By passing to a limit and using (1.13), (1.14) we can see that (ũ, p̃)

satisfies (1.16), therefore is a saddle point for L. If X is not a reflexive Banach space, just
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change L with −L.

Remark 1.2.5. We say that a normed space is uniformly convex if given ε > 0 there
exists δ(ε) > 0 such that

‖x+ y‖
2

≤ 1− δ(ε) whenever ‖x− y‖ ≥ ε, and ‖x‖ = ‖y‖ = 1.

It is locally uniformly convex if given ε > 0 and an element x such that ‖x‖ = 1, there
exists δ(ε, x) > 0 such that

‖x+ y‖
2

≤ 1− δ(ε, x) whenever ‖x− y‖ ≥ ε, and ‖y‖ = 1.

A normed linear space is strictly convex if ‖x + y‖ = ‖x‖ + ‖y‖ implies x = ty, t > 0,
whenever x 6= 0 and y 6= 0.

It is clear from the definitions that uniform convexity implies local uniform convexity,
and local uniform convexity implies strict convexity. It is well known that every uniformly
convex Banach space is reflexive, e.g. see Theorem 1.21 in [2]. The converse is not true,
meaning there exist reflexive Banach spaces which are not uniformly convex. On the other
hand every reflexive Banach space admits an equivalent locally uniform convex norm. For
details and the proof see [53]. Therefore, every reflexive Banach space has equivalent
strictly convex norm.

Remark 1.2.6. The compactness of A and/or B in Theorem 1.2.4 can be replaced by
coercivity of the function if the underlying space is also a reflexive Banach space:

(1.17)

 ∃p0 ∈ B such that
lim

u∈A: ‖u‖X→∞
L(u, p0) = +∞

and/or

(1.18)

 ∃u0 ∈ A such that
lim

p∈B: ‖p‖Y→∞
L(u0, p) = −∞.

1.2.2 Necessary and Sufficient Conditions of Optimality
Denote with

S = {σ = (σ1, ...,σm) ∈ L2(Ω;Rd)m : − div(σi) = fi, i = 1, 2, ...,m}.

Lemma 1.2.7. Let A ∈M(α, β; Ω) and v = (v1, ..., vm) ∈ H1
0(Ω)m. Then
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1. The minimization problem

(1.19) min
v∈H1

0(Ω)m

m∑
i=1

µi

∫
Ω

A∇vi · ∇vi − 2fivi dx

admits a unique solution v∗ ∈ H1
0(Ω)m with minimum lmin.

2. The maximization problem

(1.20) max
σ∈S
−

m∑
i=1

µi

∫
Ω

A−1 σi · σi dx

dual to the (1.19) admits a unique solution σ∗ with maximum lmax.

3. Values lmin and lmax are equal and optimal solutions v∗ and σ∗ satisfy:

(1.21) A∇v∗i = σ∗i , i = 1, ...,m.

Proof. Let σ ∈ S and v ∈ H1
0(Ω)m. Then

(1.22)
∫

Ω

σi · ∇ϕ dx =

∫
Ω

fiϕ dx, ϕ ∈ H1
0(Ω).

One can easily check that the following inequalities hold almost everywhere in Ω:

(∇vi −A−1 σi) · (A∇vi − σi) ≥
1

β
|A∇vi − σi|2 ≥ 0.

where the first inequality comes from (1.6) by replacing η with ∇vi−A−1 σi. Integrating
over Ω and dividing by β we obtain the inequality:∫

Ω

A∇vi · ∇vi − 2σi · ∇vi +A−1 σi · σi dx ≥ 0

By (1.22) we conclude that for any v ∈ H1
0(Ω) and σ ∈ S the following inequality holds

m∑
i=1

µi

∫
Ω

A∇vi · ∇vi − 2fivi dx ≥ −
m∑
i=1

µi

∫
Ω

A−1 σi · σi dx,

with equality if and only ifA∇vi = σi for i = 1, ...,m almost everywhere on Ω. Therefore
we can conclude

(1.23) max
σ∈S

(
−

m∑
i=1

µi

∫
Ω

A−1 σi · σi dx
)

= min
v∈H1

0(Ω)m

m∑
i=1

µi

∫
Ω

A∇vi · ∇vi − 2fivi dx.

since both problems (1.19) and (1.20) admit unique solutions with optimal values satis-
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fying

−
m∑
i=1

µi

∫
Ω

A−1 σ∗i · σ∗i dx =
m∑
i=1

µi

∫
Ω

A∇v∗i · ∇v∗i − 2fiv
∗
i dx.

As before, the last equality holds if and only if A∇v∗i = σ∗i for i = 1, ...,m.

Next theorem offers additional informations regarding optimal design problem (B).
The first step will be to rewrite problem (B) as max-min problem and from there we will
show that it is equivalent to a simpler problem which takes into account only the weak ∗
closure of the original set of characteristics functions L∞(Ω; {0, 1}) denoted with

T =

{
ϑ ∈ L∞(Ω; [0, 1]) :

∫
Ω

ϑ dx = qα

}
.

Theorem 1.2.8. Let (ϑ∗,A∗) be an optimal design for the problem (B) and u∗ the corre-
sponding state function. Then ϑ∗ solves a simpler optimal design problem

(I)


max JI(ϑ) =

m∑
i=1

µi

∫
Ω

fiui dx

s.t. ϑ ∈ T , u = (u1, . . . , um) solves
− div(λ−(ϑ)∇ui) = fi, ui ∈ H1

0(Ω), i = 1, ...,m.

while A∗ satisfies

(1.24) A∗∇u∗i = λ−(ϑ∗)∇u∗i = σ∗i , i = 1, ...,m,

where σ∗ = (σ1, ...,σm) ∈ L2(Ω;Rd)m is uniquely determined. Consequently, the corre-
sponding state function u∗ is the same for both maximization problems.

Conversely, if ϑ̃ is a solution of the optimal design problem (I), and ũ is the corre-
sponding state function, then for any Ã such that (ϑ̃,Ã) ∈ B and

Ã∇ũi = λ−(ϑ̃)∇ũi, i = 1, ...,m

almost everywhere on Ω, the pair (ϑ̃,Ã) is an optimal design for the problem (B).

Proof. Proof consists of several parts:

1. Rewriting (B) as max-min problem.
Let (ϑ,A) ∈ B and u be a corresponding state function defined by (1.1). We
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reformulate functional JB in the following manner:

JB(ϑ,A) =
m∑
i=1

µi

∫
Ω

fiui dx

= −
(
−

m∑
i=1

µi

∫
Ω

fiui dx

)

= −
(

m∑
i=1

µi

∫
Ω

A∇ui · ∇ui − 2fiui dx

)

= − min
v∈H1

0(Ω)m

m∑
i=1

µi

∫
Ω

A∇vi · ∇vi − 2fivi dx(1.25)

We use a dual formulation for the minimization problem above and by Lemma 1.2.7
we have:

(1.26) JB(ϑ,A) = min
σ∈S

m∑
i=1

µi

∫
Ω

A−1 σi · σi dx,

thus showing that the optimal design problem (B) can be understood as min-max
problem:

max
(ϑ,A)∈B

JB(ϑ,A) = max
(ϑ,A)∈B

min
σ∈S

m∑
i=1

µi

∫
Ω

A−1 σi · σi dx

= max
(ϑ,B)∈C

min
σ∈S

m∑
i=1

µi

∫
Ω

Bσi · σi dx.(1.27)

2. Application of the max-min theory.
We start by denoting a Lagrange functional

L : (ϑ,B,σ) 7→
m∑
i=1

µi

∫
Ω

Bσi · σi dx.

For any pair (ϑ,B) ∈ C the map σ 7→ L(ϑ,B,σ) is strictly convex (quadratic)
function. It is also continuous in L2(Ω;Rd)m and one can observe that for any pair
(ϑ,B) ∈ C the map is also coercive, meaning that

lim
‖σ‖L2→+∞

L(ϑ,B,σ) = +∞.

Observe that S is closed, convex, non-empty set.

For any σ ∈ S map (ϑ,B) 7→ L(ϑ,B,σ) is linear (concave) function and continuous
with respect to the weak ∗ L∞ topology. The set C can be checked to be compact
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and convex set. By applying Theorem 1.2.4 and Remark 1.2.6 we can see that the
set of saddle points is not-empty. Then by the virtue of Proposition 1.2.3 the set of
all saddle points is of the form C0×S0 and due to strict convexity of σ 7→ L(ϑ,B,σ)

set S0 is singleton {σ∗}. From the definition of the saddle point we have

(1.28)


max

(ϑ,A)∈B
JB(ϑ,A) = max

(ϑ,A)∈B

m∑
i=1

µi

∫
Ω

A−1 σ∗i · σ∗i dx

= max
(ϑ,B)∈C

m∑
i=1

µi

∫
Ω

Bσ∗i · σ∗i dx.

3. Equivalence of problems (B) and (I).
For optimal pair (ϑ∗,A∗) ∈ B, the flux σ∗ is optimal for the minimization problem
in (1.26) if and only if

σ∗i = A∗∇u∗i , i = 1, ...,m.

From (1.26) one can notice that if (ϑ∗,A∗) ∈ B is an optimal pair then pair
(ϑ∗, λ−(ϑ∗)I) ∈ B is also optimal since

JB(ϑ∗,A∗) ≤
m∑
i=1

µi

∫
Ω

1

λ−(ϑ∗)
σ∗i · σ∗i dx = JB(ϑ∗, λ−(ϑ∗)I)

and since σ∗ is unique we know that

(1.29) λ−(ϑ∗)∇u∗i = σ∗i = A∗∇u∗i , i = 1, ...,m.

For the proof of the first statement of the Theorem, let (ϑ∗,A∗) be a maximizer of
JB over B. Then (ϑ∗, λ−(ϑ∗)I) is also a maximizer. Since JI can be understood as
a restriction of the JB to points of the form (ϑ∗, λ−(ϑ∗)I) ∈ B we conclude that ϑ∗

is a maximizer of JI over T . Moreover, by (1.29) we have that u∗ solves boundary
value problem both in (1.1) for conductivity A∗ and in (I).

For the proof of the converse statement, let ϑ̃ ∈ T be a maximizer of a problem
(I). We can show that (ϑ̃, λ−(ϑ̃)I) ∈ B is a maximizer of JB over B and since the
following holds

JB(ϑ̃, λ−(ϑ̃)I) =
m∑
i=1

µi

∫
Ω

1

λ−(ϑ̃)
σ̃i · σ̃i dx =

m∑
i=1

µi

∫
Ω

Ã
−1
σ̃i · σ̃i dx = JB(ϑ̃,Ã)

due to Ã∇ũi = σ̃i = λ−(ϑ̃)∇ũi, i = 1, ...,m we have shown that (ϑ̃,Ã) is an optimal
design.
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Remark 1.2.9. In previous theorem we have used the fact that C is compact with respect
to weak ∗ L∞ topology, but one can also utilize H-topology. We say that a sequence
(ϑn,Bn) ∈ C converges to (ϑ0,B0) if ϑn ⇀ ϑ0 in weak ∗ L∞ and B−1

n ⇀ B−1
0 in H-

topology. Then C is again compact with the respect to the new topology and for any σ the
map (ϑ,B) 7→ L(ϑ,B,σ) is continuous with respect to the new topology.

We can also rewrite optimal problem (I) as a max-min problem since

max
T

JI = max
ϑ∈T

min
σ∈S

m∑
i=1

µi

∫
Ω

1

λ−(ϑ)
|σi|2 dx

= min
σ∈S

max
ϑ∈T

m∑
i=1

µi

∫
Ω

1

λ−(ϑ)
|σi|2 dx

By inserting the expression for λ−(ϑ), we obtain

(1.30) max
T

JI = max
ϑ∈T

m∑
i=1

µi

∫
Ω

β − α
αβ

ϑ|σ∗i |2 dx.

To simplify the expression, let us introduce Ψ :=
∑m

i=1 µi|σ∗i |2 ∈ L1(Ω). We now appeal
to a general theorem (see [33] Chapter 1, Theorem 5):

Theorem 1.2.10. Let X, Y be a linear spaces, let f0, ..., fn be convex functions on X,
let F : X → Y be an affine mapping, and let A be a convex set. Consider the following
problem:

(1.31)

{
inf
x∈M

f0(x)

M = {x : F (x) = 0, f1(x) ≤ 0, ..., fn(x) ≤ 0, x ∈ A}

If x∗ is a solution of the problem (1.31), then there exist Lagrange multipliers λ0 ≥
0, ..., λn ≥ 0, y∗ ∈ Y ′ and map

L(x, λ0, ..., λn, y
∗) :=

n∑
i=0

λifi(x) + 〈y∗, F (x)〉Y ′,Y

such that

L(x∗, λ0, ..., λn, y
∗) = min

x∈A
L(x, λ0, ..., λn, y

∗),

λifi(x
∗) = 0, i = 1, ..., n.

If moreover, the image of the set A under the mapping x 7→ F (x) contains a neighbourhood
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of the origin of Y , and if there exists a vector x ∈ A such that

F (x) = 0, fi(x) < 0, i = 1, ..., n,

then λ0 6= 0 and one can set λ0 = 1. In the last case, the relations written above are
sufficient for the point x∗ to be a solution of the problem (1.31).

Therefore, for convex programming problem (1.30) the classical Lagrange multiplier
rule reads: ϑ∗ ∈ T is optimal if and only if there exists a Lagrange multiplier c ∈ R such
that

G : ϑ 7→
∫

Ω

β − α
αβ

ϑΨ dx− cβ − α
αβ

∫
Ω

ϑ dx

achieves maximum over L∞(Ω; [0, 1]) at ϑ∗. Then we can see that G is a linear function:

G(ϑ) =

∫
Ω

ϑ
β − α
αβ

(Ψ− c) dx

and since G(ϑ∗) ≥ G(ϑ) for any ϑ ∈ L∞(Ω; [0, 1]) we conclude the following necessary and
sufficient conditions of optimality:

(1.32)
∫

Ω

(ϑ− ϑ∗)β − α
αβ

(Ψ− c) dx ≤ 0

for any ϑ ∈ L∞(Ω; [0, 1]). By considering ϑ = ϑ∗, except on a small measurable set in Ω,
we come to a pointwise constraint

(1.33) (ϑ− ϑ∗)(Ψ− c) ≤ 0, a.e. on Ω.

We have shown the following lemma:

Lemma 1.2.11. The necessary and sufficient condition of optimality for solution ϑ∗ ∈ T
of optimal design problem (I) simplifies to the existence of a Lagrange multiplier c ≥ 0

such that

(1.34)



ϑ∗ = 0 =⇒
m∑
i=1

µi|σ∗i |2 ≤ c,

ϑ∗ ∈ 〈0, 1〉 =⇒
m∑
i=1

µi|σ∗i |2 = c,

ϑ∗ = 1 =⇒
m∑
i=1

µi|σ∗i |2 ≥ c,

25



Chapter 1. Classical optimal designs for energy maximization

or equivalently

(1.35)


m∑
i=1

µi|σ∗i |2 < c =⇒ ϑ∗ = 0,

m∑
i=1

µi|σ∗i |2 > c =⇒ ϑ∗ = 1.

1.3 Problem with uniform heat source on annulus
1.3.1 Existence of classical solution
So far we have shown that

max
A

JA ≤ max
B

JB = max
T

JI .

The idea is to use problem (I) to present some examples in which a relaxed optimal design
is classical. Observe, if we have found a classical solution of optimal design problem (I)
denoted with χ ∈ L∞(Ω{0, 1}) then we have also found optimal solutions of all three
optimal design problems: χ for original problem (O) and (χ, αχI+β(1 − χ)I) for both
relaxed problem (A) and enlarged convex problem (B). Generally, classical solutions are
rare and the following strict inequality holds

max
A

JA < max
B

JB,

while problem (O) fails to yield any solution. But if we introduce spherically symmetry
to the problem:

Assumption 1.3.1. Ω ⊂ Rd is spherically symmetric. The right-hand sides in (1.1) are
radial functions,

then our maximization problems become equivalent (for details see Theorem 3.2 in [55]):

max
A

JA = max
B

JB = max
T

JI .

Furthermore, one can also prove that the fluxes σ = (σ1, ...,σm) ∈ S are all radial
functions. Indeed, if (ϑ∗,B∗,σ∗) is a given saddle point of L defined in the Theorem
1.2.8, due to Assumption 1.3.1 one can demonstrate that

(ϑ∗ ◦ R−1,∇R(B∗ ◦R−1)∇R−1,∇Rσ∗ ◦ R−1)

is again a saddle point of the L for any rotation R. Since flux is unique, we have that

∇Rσ∗ ◦ R−1 = σ∗ for any rotation R,
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thus demonstrating that σ∗ must be a radial function.
Henceforth, we will treat only spherically symmetric case which is essentially a one-

dimensional problem. In literature, there is a well known optimal design problem with
classical solution ([41], Remark 40), in case of maximization of energy with one state
equation on a ball and a constant right-hand side: the better conductor should be placed
inside a smaller (concentric) ball, whose radius can easily be calculated from the constraint
on given amounts of materials. For multiple state optimal design problems this was done
in [55] where examples of classical solutions were shown to exists on the ball for different
right-hand sides.

In this Section we first consider a single state optimal design problem on an annulus
Ω = B(0, r2) \B(0, r1) with a constant right-hand side. Single state equation states:

(1.36)

{
− div(λ−(ϑ)∇u) = 1 in Ω

u = 0 on ∂Ω,

and problem (I) in this case reads:

(1.37)

{
max JI(ϑ) =

∫
Ω
u dx

s.t. ϑ ∈ L∞(Ω; [0, 1]),
∫

Ω
ϑ dx = qα, u satisfies (1.36).

Observe that the radial flux σ = σ(r)~er = λ−(ϑ)∇u from the (1.36) if rewritten in polar
coordinates then satisfies first order ODE:

(1.38) − 1

rd−1
(rd−1σ)′ = 1 in 〈r1, r2〉

and solutions are given by
σ = −r

d
+

γ

rd−1
,

where γ is unknown integration constant. Since for any γ the corresponding σ is not
equal to a constant on any interval, we conclude by necessary and sufficient conditions of
optimality from Lemma 1.2.11 that optimal design ϑ∗ for problem (1.37) is unique, radial
and classical (i.e. it attains only values 0 and 1, almost everywhere). Consequently, a
solution of the original relaxation problem (A) is unique and classical.

Due to the uniqueness of the optimal design, the corresponding state function u∗ is
also a unique radial function. It is calculated from the equation σ(r) = λ−(ϑ(r))u′(r), by
the formula:

(1.39) u∗(r) =

∫ r

r1

1

λ−(ϑ∗(ρ))

(
γ

ρd−1
− ρ

d

)
dρ .

Here, the boundary condition u∗(r1) = 0 is satisfied, and the other boundary condition
u∗(r2) = 0 gives a constraint on γ. For the beginning, we conclude that constant γ should
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0
r
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−c

c
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r+

Figure 1.3: Typical graph of flux σ.

be positive.
This means that σ is a strictly decreasing function whose range is entire set of real

numbers (Figure 1.3). For a constant c0 ≥ 0 appearing in Lemma 1.2.11 we introduce
r+, r− > 0 as the unique solutions of the equations σ(r+) = c and σ(r−) = −c, respectively,
where c denotes

√
c0.

Depending whether r± belongs to the interval 〈r1, r2〉, by the necessary and sufficient
condition of optimality the optimal ϑ∗ has one of the following three configurations:

1) ϑ∗(r) =

{
1, r ∈ [r1, r+〉
0, r ∈ [r+, r2〉 ,

2) ϑ∗(r) =


1, r ∈ [r1, r+〉
0, r ∈ [r+, r−〉
1, r ∈ [r−, r2] ,

3) ϑ∗(r) =

{
0, r ∈ [r1, r−〉
1, r ∈ [r−, r2〉 .

We shall speak about three possible optimal configurations: α − β in the first case,
α− β −α in the second case, and β −α in the third case. Our aim is to determine which
configuration (out of three) is optimal, and to calculate the solution.

To summarise, for the optimal design ϑ∗ the following system (with unknowns γ, c, r+r−)
holds:

Sd

r2∫
r1

ρd−1ϑ∗(ρ) dρ = qα(1.40a)

γ

∫ r2

r1

(
1

λ−(ϑ∗(ρ))ρd−1

)
dρ =

∫ r2

r1

ρ

λ−(ϑ∗(ρ))
dρ(1.40b)

σ(r+) = c, σ(r−) = −c, c > 0 ,(1.40c)
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where (1.40a) is the constraint on the amount of the first phase (Sd is the surface measure
of the unit sphere in Rd), (1.40b) comes from condition u∗(r2) = 0 and (1.40c) is given
by the necessary and sufficient condition of optimality from the Lemma 1.2.11.

1.3.2 Analysis of solution configuration β − α
Lemma 1.3.2. If d equals 2 or 3 then for any admissible amount qα of the first phase,
the solution ϑ∗ does not belong to the third case β − α.

Proof. Let us assume the opposite, namely that there exist some γ, c, r+ and r− satisfying
nonlinear system (1.40a)–(1.40c), such that r+ < r1 < r− < r2. Since σ is a strictly
decreasing function one can conclude that σ(r1) < c and σ(r2) < −c which implies

(1.41) σ(r1) + σ(r2) < 0.

From (1.40b) one can express γ in terms of r− with respect to space dimension d:

(1.42)

γ = Γ2(r−) :=
1

4

r22
α
− r21

β
−
[

1
α
− 1

β

]
r2
−

ln(r2)
α
− ln(r1)

β
−
[

1
α
− 1

β

]
ln(r−)

, for d = 2 , and

γ = Γ3(r−) :=
1

6

r22
α
− r21

β
−
[

1
α
− 1

β

]
r2
−

1
βr1
− 1

αr2
+
[

1
α
− 1

β

]
1
r−

, for d = 3 .

Let us first consider the three-dimensional case. One can easily show that

(1.43) Γ3(r−) > Γ3(r1) = Γ3(r2) =
1

6
r1r2(r1 + r2) , r− ∈ 〈r1, r2〉 .

From (1.41) one obtains

Γ3(r−)

(
1

r2
1

+
1

r2
2

)
<
r1 + r2

3
,

and by multiplying this inequality with r1r2/2 one gets the following inequality

(1.44) Γ3(r−) ≤ Γ3(r−)

( r1
r2

+ r2
r1

2

)
<

1

6
(r1 + r2)r1r2 ,

which is in contradiction with (1.43).
For the two-dimensional case the proof goes in the similar manner. A simple analysis

leads to

(1.45) Γ2(r−) > Γ2(r1) = Γ2(r2) =
1

4

r2
2 − r2

1

ln(r2)− ln(r1)
, r− ∈ 〈r1, r2〉 .

On the other side, from (1.41) one obtains Γ2(r−) < r1r2/2, which gives a contradiction
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due to the inequality
µ2 − 1 ≥ 2µ ln(µ) , µ ≥ 1 ,

where equality holds only for µ = 1. Indeed, by substituting µ = r2/r1 > 1 one gets

r1r2

2
<

1

4

r2
2 − r2

1

ln(r2)− ln(r1)
.

Remark 1.3.3. Unfortunately, the higher dimensional case d > 3 cannot be treated in
the same manner unless additional assumptions on the radii are given.

Lemma 1.3.2 proves that only two optimal configurations α − β − α and α − β can
appear. As we shall see in the next section, each of these two configurations is indeed
optimal for particular qα.

1.3.3 Analysis of configurations α− β and α− β − α
In the following results, we consider only two- and three-dimensional case. The amount
qα of the first phase will be replaced by the overall proportion of the first phase η :=
qα

vol(Ω)
∈ 〈0, 1〉. The following result can be easily proved.

Lemma 1.3.4. There exist positive constants 0 < η1 ≤ η2 < 1 such that for η ∈ 〈0, η1〉
the optimal design is of the form α− β, while for η ∈ 〈η2, 1〉 the configuration α− β − α
is optimal.

In the next theorem, we claim that η1 and η2 from the previous Lemma can be taken
to be equal. The proof is based on a more precise analysis of the optimality conditions

Theorem 1.3.5. If Ω is an annulus, m = 1 and f ≡ 1, then the optimal design problem
(I) has the unique solution ϑ∗, which is a radial function. Depending on given parameters
α, β, and radii of annulus Ω, there exists a critical value ηcrit ∈ 〈0, 1〉 such that

(a) if η > ηcrit then ϑ∗(r) =


1, r ∈ [r1, r+〉
0, r ∈ [r+, r−〉
1, r ∈ [r−, r2]

,

(b) if η ≤ ηcrit then ϑ∗(r) =

{
1, r ∈ [r1, r+〉
0, r ∈ [r+, r2〉 .

The critical value ηcrit can be calculated only numerically. For example, if α = 1, β =

2, r1 = 1, r2 = 2 in the two-dimensional case the critical value ηcrit approximately equals
0.032 207 2, while in three-dimensional case it is approximately 0.035 456 1. In general, for
η ≤ ηcrit optimal radius r+ is simply calculated from (1.40a): it equals

√
(1− η)r2

1 + ηr2
2
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(a) alpha-beta η < ηcrit (b) alpha-beta-alpha η > ηcrit

Figure 1.4: Two possible configurations

in the two-dimensional case, and 3
√

(1− η)r3
1 + ηr3

2 in the three-dimensional case. In the
case η > ηcrit the values for radii r+ and r− which determine the optimal design can
be obtained only numerically, by solving the system (1.40a)–(1.40c). The approximate
solution for α = 1, β = 2, r1 = 1, r2 = 2, and various values of volume fraction η is
presented in Tables 1.1 and 1.2, in the two-dimensional and the three-dimensional case,
respectively.

Table 1.1: Approximate values for radii r+ and r− for the single state problem with f ≡ 1
(Subsection 2.2), d = 2, α = 1, β = 2, r1 = 1 and r2 = 2. The critical value ηcrit from
Theorem 1.3.5 approximately equals 0.032 207 2.

η γ r+ r− J

0.01 1.070 03 1.014 89 / 0.410 799
0.02 1.059 14 1.029 56 / 0.424 053
0.03 1.049 26 1.044 03 / 0.435 758
0.04 1.047 99 1.050 23 1.995 74 0.446 422
0.05 1.048 98 1.054 11 1.990 27 0.456 850
0.10 1.053 69 1.073 64 1.962 83 0.505 929
0.20 1.061 78 1.113 18 1.907 66 0.589 525
0.30 1.068 23 1.153 49 1.852 17 0.655 297
0.40 1.073 19 1.194 75 1.796 51 0.705 212
0.50 1.076 83 1.237 14 1.740 84 0.741 310
0.60 1.079 33 1.280 82 1.685 38 0.765 712
0.70 1.080 87 1.325 93 1.630 36 0.780 622
0.80 1.081 68 1.372 61 1.576 09 0.788 324
0.90 1.081 98 1.420 97 1.522 88 0.791 173
0.99 1.082 02 1.465 98 1.476 18 0.791 581

Proof of Lemma 1.3.4 . We present the proof for the two-dimensional case. The three-
dimensional case can be proved in the same manner.

Contrary to the first claim, let us assume that there exists a sequence (ηn) converging
to zero, such that the optimal design has the form α−β−α. Therefore, for each n, system
(1.40a)-(1.40c) has unique solution γn, cn, rn+, rn−. Using (1.40b) one obtains expression for
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Table 1.2: Approximate values for radii r+ and r− for the single state problem with f ≡ 1
(Subsection 2.2), d = 3, α = 1, β = 2, r1 = 1 and r2 = 2. The critical value ηcrit from
Theorem 1.3.5 approximately equals 0.035 456 1.

η γ r+ r− J

0.01 0.972 026 1.022 81 / 1.244 41
0.02 0.949 289 1.044 64 / 1.289 47
0.03 0.930 589 1.065 60 / 1.325 05
0.04 0.922 590 1.077 92 1.997 70 1.353 89
0.05 0.924 381 1.080 61 1.992 63 1.381 39
0.10 0.933 061 1.094 25 1.966 98 1.512 56
0.20 0.948 982 1.122 44 1.914 22 1.743 75
0.30 0.962 877 1.152 13 1.859 47 1.934 37
0.40 0.974 615 1.183 70 1.802 73 2.086 02
0.50 0.984 081 1.217 64 1.744 10 2.200 92
0.60 0.991 209 1.254 48 1.683 84 2.282 16
0.70 0.996 032 1.294 85 1.622 47 2.333 90
0.80 0.998 758 1.339 35 1.560 84 2.361 60
0.90 0.999 839 1.388 44 1.500 23 2.372 12
0.99 1.000 000 1.436 66 1.447 88 2.373 65

γn:

γn =
1

4

((rn+)2 − r2
1)/α + ((rn−)2 − (rn+)2)/β + (r2

2 − (rn−)2)/α

ln(rn+/r1)/α + ln(rn−/r
n
+)/β + ln(r2/rn−)/α

.

Since limn q
n
α = 0, we have rn+ → r1 and rn− → r2, which implies

γn → 1

4

r2
2 − r2

1

ln r2 − ln r1

.

From (1.40c) by eliminating c one gets

γn =
rn+r

n
−

2
→ r+r−

2
,

and by the same reasoning one concludes γn → r1r2/2. By the proof of Lemma 1.3.2 this
is possible only if r1 = r2, which is a contradiction.

For the proof of the second claim, we again argue by contradiction. Suppose that there
exists a sequence (ηn) which converges to 1 such that corresponding optimal design has
the form α− β. This means that, for given n and qα = ηn vol(Ω), system (1.40a)-(1.40c)
has a unique solution γn, cn, rn+, rn− such that r1 < rn+ < r2 < rn−. The Lagrange multiplier
cn is given by (1.40c): cn = σn(rn+) = γn

rn+
− rn+

d
, and to ensure the condition rn− > r2 it is

necessary and sufficient to assume σn(rn+) + σn(r2) > 0. This is equivalent to

(1.46) γn >
rn+r2

2
.
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From (1.40b) it follows

γn =
1

4

((rn+)2 − r2
1)/α + (r2

2 − (rn+)2)/β

ln(rn+/r1)/α + ln(r2/rn+)/β
,

and since ηn → 1 we have rn+ → r2, which implies that γn converges to
1

4

r2
2 − r2

ln r2 − ln r1

.

According to (1.46), we obtain the inequality
1

4

r2
2 − r2

ln r2 − ln r1

≥ r2
2

2
, which leads us to a

contradiction since the inequality holds if and only if r1 = r2.

Lemma 1.3.6. For fixed η, system (1.40a)–(1.40c) admits a solution for only one of the
configurations α− β and α− β − α.

Proof. d = 2

Assume that the opposite holds. Then for some η there exists solution to system
(1.40a)-(1.40c) with configuration α− β and α− β − α:

α− β γ, c, r+,

α− β − α γ̂, ĉ, r̂+, r̂−.

Observe that, if η is the same for both configurations, then

r̂+ < r+ and r̂− < r2.(1.47)

From (1.40c) for γ̂ and (1.46) for γ we conclude:

(1.48) γ̂ =
r̂+r̂−

2
<
r+r2

2
< γ .

In particular, (1.40b) for both configuration gives

1

4

(r̂2
+ − r2

1)/α + (r̂2
− − r̂2

+)/β + (r̂2
2 − r̂2

−)/α

ln(r̂+/r1)/α + ln(r̂−/r̂+)/β + ln(r2/r̂−)/α
= γ̂ < γ =

1

4

(r2
+ − r2

1)/α + (r2
2 − r2

+)/β

ln(r+/r1)/α + ln(r2/r+)/β
.

Observe that the numerators above are equal, since

(r̂2
+ − r2

1) + (r̂2
2 − r̂2

−) = (r2
+ − r2

1),(1.49)

r̂2
− − r̂2

+ = r2
2 − r2

+.(1.50)

With this simplification, after a short calculation, we obtain the following inequality from
(1.48):

ln(r̂+/r̂−) > ln(r+/r2),
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or better r̂+/r̂− > r+/r2. This is clearly a contradiction because from (1.50) we get:

(1− r2
+/r

2
−) =

r̂2
−

r2
2

(1− r̂2
+/r̂

2
−) < (1− r̂2

+/r̂
2
−),

meaning r̂+/r̂− < r+/r2.

Proof of Theorem 1.3.5. The proof is again presented only in the two-dimensional case.
The same approach can be applied for the three-dimensional case.

Let us suppose that configuration α − β is optimal. This means that, as in the
previous proof, for given η, system (1.40a)–(1.40c) has an unique solution γ, c, r+, r− such
that r1 < r+ < r2 < r−.

The first condition (1.40a) is simply rewritten as

(1.51) r2
+ − r2

1 = η(r2
2 − r2

1) ,

while the second one gives γ in terms of r+:

γ =
1

4

(r2
+ − r2

1)/α + (r2
2 − r2

+)/β

ln(r+/r1)/α + ln(r2/r+)/β
,

and the third one is equivalent to γ >
r+r2

2
.

Therefore, a configuration α − β satisfies the optimality conditions if and only if
inequality

(1.52)
1

4

(r2
+ − r2

1)/α + (r2
2 − r2

+)/β

ln(r+/r1)/α + ln(r2/r+)/β
>
r+r2

2

has solution r+ ∈ 〈r1, r2〉. By simple manipulations, inequality (1.52) reads

f(r+) := c1r
2
+ + c2 − 2r+r2(c2 ln r+ + c3) > 0 ,

where

c1 =

(
1

α
− 1

β

)
c2 =

r2
2

β
− r2

1

α

c3 =
1

β
ln(r2)− 1

α
ln(r1) .

It is easy to check that f(r1) > 0 and f(r2) < 0, so function f has zero in [r1, r2].
Moreover, f is decreasing on [r1, r2], which follows easily since f ′′ < 0 and f ′(r1) < 0.
Therefore, there exists r0 ∈ 〈r1, r2〉 such that (1.52) is equivalent to r+ ∈ 〈r1, r0〉. Due
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to (1.51) this means that configuration α − β is optimal if and only if 0 ≤ η < ηcrit (by
Lemma 1.3.4 we know that ηcrit ∈ 〈0, 1〉). Otherwise, configuration α − β − α is optimal
due to Lemma 1.3.6.

1.4 Multiple State Optimal Design Problem
Let us now consider the optimal design problem with two state equations for dimension
d = 2: {

− div(λ−(ϑ)∇u1) = 1 =: f1 in Ω

u1 = 0 on ∂Ω ,
(1.53)

{
− div(λ−(ϑ)∇u2) = b

r(b−r)2 =: f2 in Ω

u2 = 0 on ∂Ω,
(1.54)

where b > r2. Functional JI is then given as

JI(ϑ) = µ1

∫
Ω

f1u1 dx+ µ2

∫
Ω

f2u2 dx(1.55)

with µ1, µ2 > 0.
We shall follow the approach presented in the last Section, so the first step is to

determine the set S = {σ ∈ L2(Ω;R2)
2

: − divσi = fi, i = 1, 2}. The calculation is easily
done in polar coordinates (we seek for the unique radial function σ∗ ∈ S which appears
in the optimality condition).

By solving the corresponding ordinary differential equations, one can easily obtain all
radial solutions σ1 and σ2 such that σ = (σ1(r)er, σ2er) belongs to S:

σ1(r) = −r
2

+
γ1

r
, σ2(r) = − 1

b− r +
γ2

r
,

so the problem is to determine the unique constants γ∗1 and γ∗2 which lead to σ∗.
The corresponding states u∗1 and u∗2 (radial functions, as well) are determined by

λ−(ϑ)u∗i
′ = σ∗i , i = 1, 2. Therefore, the boundary conditions imply

γ1

∫ r2

r1

(
1

λ−(ϑ(ρ))ρ

)
dρ =

∫ r2

r1

ρ

2λ−(ϑ(ρ))
dρ(1.56)

γ2

∫ r2

r1

(
1

λ−(ϑ(ρ))ρ

)
dρ =

∫ r2

r1

1

(b− ρ)λ−(ϑ(ρ))
dρ(1.57)

As a consequence, by estimating λ−(ϑ) from the below by α and from the above by β
we can obtain rather precise estimates on γ1 and γ2.
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If we define Ψ : 〈0, b〉 → R as

Ψ := µ1σ1
2 + µ2σ2

2 ,

the optimality condition states (Ψ∗ is determined by γ∗1 and γ∗2): there exists c > 0 such
that

Ψ∗ > c ⇒ θ∗ = 1 ,

Ψ∗ < c ⇒ θ∗ = 0 .

However, for any admissible γ1 and γ2 if r → 0 or r → b then Ψ(r) → +∞. Moreover,
one can show that Ψ has the unique stationary point in 〈0, b〉. Therefore, for any c the
equation Ψ(r) = c has at most two solutions on 〈0, b〉:

(1.58) Ψ(r∗) = Ψ(r∗) = c , r∗ ≤ r∗ .

Moreover, we can conclude (not knowing the exact γ∗1 and γ∗2) that the solution ϑ∗ is
unique and radial, since Ψ∗ is a radial function. The constraint on the amount of given
materials is expressed by

(1.59) 2π

r2∫
r1

ρϑ∗(ρ) dρ = qα .

Finally, depending on whether r1 and r2 belong to interval 〈0, r∗], [r∗, r
∗] or [r∗, b〉 the

optimal solution has one of the three following configurations

1) ϑ∗(r) =


1, r ∈ [r1, r∗〉
0, r ∈ [r∗, r

∗〉
1, r ∈ [r∗, r2]

2) ϑ∗(r) =

{
1, r ∈ [r1, r∗〉
0, r ∈ [r∗, r2]

3) ϑ∗(r) =

{
0, r ∈ [r1, r

∗〉
1, r ∈ [r∗, r2] .

The system (1.56)–(1.59) should be considered for each of the three possible configu-
rations, and exactly one will provide us with the solution. Due to its high nonlinearity,
this system with five unknowns r∗, r∗, c, γ1 and γ2 is solved numerically. Each of the three
possible configurations of the optimal design can be achieved for appropriate choice of
parameters η, α, β, r1, r2, µ1, µ2 and b. For example, if α = 1, β = 2, r1 = 1, r2 =

2, µ1 = µ2 = 0.5, b = 2.5 the optimal configuration is β − α if volume fraction η is less
than 0.040 101 6, and α − β − α, otherwise. In Table 1.3 we present approximate values
for r∗, r∗, c, γ1 and γ2 for different values of the parameter η.
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Table 1.3: Approximate values for radii r∗ and r∗ for the multiple state problem, α =
1, β = 2, r1 = 1, r2 = 2, µ1 = µ2 = 0.5, b = 2.5.

η γ1 γ2 r∗ r∗ J

0.01 1.086 94 1.597 81 / 1.992 49 1.011 15
0.02 1.091 76 1.610 21 / 1.984 94 1.046 98
0.03 1.096 48 1.622 19 / 1.977 37 1.080 62
0.04 1.101 11 1.633 75 / 1.969 77 1.112 20
0.05 1.099 02 1.632 76 1.005 82 1.965 11 1.142 30
0.06 1.096 98 1.631 66 1.011 68 1.960 49 1.171 49
0.10 1.089 78 1.627 44 1.035 05 1.941 99 1.279 66
0.20 1.077 41 1.618 18 1.092 74 1.895 80 1.497 75
0.30 1.070 80 1.610 57 1.149 36 1.849 60 1.655 72
0.40 1.068 04 1.604 37 1.204 94 1.803 30 1.767 66
0.50 1.067 85 1.599 33 1.259 50 1.756 80 1.844 25
0.60 1.069 37 1.595 24 1.313 07 1.710 01 1.893 89
0.70 1.071 96 1.591 91 1.365 67 1.662 84 1.923 42
0.80 1.075 17 1.589 19 1.417 33 1.615 19 1.938 63
0.90 1.078 62 1.586 92 1.468 08 1.566 92 1.944 61
0.99 1.081 69 1.585 15 1.512 97 1.522 85 1.945 98
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Chapter 2

Calculations of shape derivative

2.1 Introduction
In this chapter we shall consider the same optimal design problem for the stationary
diffusion equation in the case of two isotropic phases, aiming to maximize the energy
functional. To simplify the notation, we shall focus only on single-state problems. Let us
recall the original optimal design problem:

We seek for a distributions of materials such that the internal energy is maximized:

(2.1)


max J(χ) =

∫
Ω

fu dx

s.t. χ ∈ L∞(Ω, {0, 1}),
∫

Ω

χ dx = qα,

u solves (2.2) with a = αχ+ β(1− χ),

where (2.2) is the following boundary value problem:

(2.2)

{
−div(a∇u) = f in Ω

u = 0 on ∂Ω.

Henceforth we shall assume that the right-hand side f belongs to L2(Ω).

If such a characteristic function χ exists we call it a classical solution. In the previ-
ous chapter, the relaxation of the problem (2.1) through homogenization was used, by
introducing relaxed designs.

A shape is a bounded set with well defined boundary (usually Lipschitz). If we were
given a measurable set Ωα representing the shape of the phase α then the map

Ωα 7→ J(Ωα)

is well defined. In shape optimization the goal is to find an optimal shape Ω∗α which
maximizes the shape functional under the volume constraint. Such optimal shapes exist
for the symmetrical cases, e.g. see Theorem 1.3.5 when the right-hand side is f = 1 and
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domain is annulus. This offers an important family of test examples which can be used for
various numerical approaches based on shape sensitivity method [30], originally developed
by Hadamard.

In this chapter we shall study the first and the second order shape derivatives for opti-
mal design problem (2.1). This will be done extensively, using several different approaches
to calculate the shape derivative. The results shall be used for the construction of descent
methods of gradient type and ”quasi-Newton” type in the following chapter.

2.1.1 Definition of Lipschitz domain and properties
We first start with the definition of a Lipschitz domain and some useful properties.

Definition 2.1.1. Let ω be a bounded open set in Rd with boundary ∂ω. We say that ω
is a Lipschitz domain, whenever there exist δ, L > 0, so that for any z ∈ ∂ω one can find:

1. a local coordinate system, denoting with (x′, xd) = (x1, x2, ..., xd−1, xd) coordinates
of a point x,

2. a rotation operator R : Rd−1×R→ Rd that maps the local coordinates to the global
ones,

3. a Lipschitz continuous map ϕ : Rd−1 → R (with the Lipschitz constant less then L),

such that for the open cylinder K(0; δ, L) := {(x′, xd) : |x′| < δ, |xd| < Lδ} and the set
Vz := z +R(K(0; δ, L)) the following holds:

• ω ∩ Vz = z +R({(x′, xd) ∈ K(0; δ, L) : ϕ(xd) > xd}),

• ∂ω ∩ Vz = z +R({(x′, xd) ∈ K(0; δ, L) : ϕ(xd) = xd}).

We say that ω is a domain of class Ck if each mapping ϕ is Ck.

Definition 2.1.1 implies that the boundary ∂ω can be locally represented (using proper
rigid transformations) by the graph of a Lipschitz function. Sometimes boundedness
assumption on a set ω is omitted in Definition 2.1.1 giving us definition of an open set
with Lipschitz boundary. In the more regular case we are talking about sets with Ck

boundary.

Remark 2.1.2. In the literature a Lipschitz domain introduced in Definition 2.1.1 is also
refereed to as a strongly Lipschitz domain. Weakly Lipschitz domain is such that for any
z ∈ ∂ω there exists an open neighbourhood U of z and an open zero-neighbourhood V of
Rd such that map F : V → U is bijective bi-Lipschitz function satisfying:

• F (V ∩ (Rd−1 × R+)) = U ∩ ω,

• F (V ∩ (Rd−1 × {0})) = U ∩ ∂ω.
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This definition is more general, i.e. there exists domains that are weakly Lipschitz but not
strongly Lipschitz. See Figure 2.4 for classical ”two-block” domain which is a standard
example of weakly Lipschitz domain that is not a strongly Lipschitz domain. Generally,
definition of Lipschitz domain may vary in the literature and one should be cautious which
notion is used. For example in [2] strongly local Lipschitz property is defined for ∂ω which
for the case of bounded ω gives equivalent definition (although, constants δ, L may have
different values). A set (not necessarily bounded) that satisfies weakly Lipschitz condition
in the literature is also known as a Lipschitz manifold (see e.g. Section 2.4 of [30]).

One can easily shown that every Lipschitz domain satisfies uniform cone property. We
denote a cone as (see Figure 2.1):

CL,δ = {x = (x′, xd) ∈ Rd−1 × R : xd > L|x′|, |x| < δ}.

Figure 2.1: Cone CL,δ

Definition 2.1.3. We say that an open bounded set ω satisfies the uniform cone property
if there exists constants δ, L > 0 such that for each z ∈ ∂ω, there exists a rotation operator
R with the following property:

x ∈ ω ∩B(z, δ) =⇒ x+R(CL,δ) ⊂ ω.

Actually, the uniform cone property offers alternative, useful characterization of Lip-
schitz domain:

Lemma 2.1.4. A bounded open set is a Lipschitz domain if and only if it satisfies the
uniform cone property.

Proof. see Theorem 1.2.2.2. in [27] or Theorem 2.4.7 in [30].

If we were given domain ω with Ck boundary and k-diffeomorphism Φ ∈ Ck(Rd,Rd)

one can check using classical theory that Φ(ω) remains domain with Ck boundary. When
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dealing with Lipschitz domain one should be cautious, because if we assume that we have
bi-Lipschitz homeomorphism Φ : Rd → Rd, image Φ(ω) may fail to be Lipschitz domain.
In fact bi-Lipschitz functions may fail to map even bounded C∞ planar domains into
Lipschitz domain as can we see in the following example from [32]:

Example 2.1.5. Consider the bi-Lipschitz homeomorphism:

Φ(x1, x2) = (x1, ϕ(x1) + x2)

where ϕ ∈W1,∞(R;R) is given with (Figure 2.2):

ϕ(t) =


3|t| − 1

22k−1 , t ∈
[

1
22k+1 ,

1
22k

]
, k ∈ N

−3|t|+ 1
22k
, t ∈

[
1

22k+2 ,
1

22k+1

]
, k ∈ N0

3|t| − 2, t ∈
[

1
2
, 2

3

]
0, t ∈ R \

[
0, 2

3

]
.

Now consider the bounded Lipschitz domain ω ⊂ R2 :

Figure 2.2: Lipschitz function ϕ

ω = {(x1, x2) : 0 < x1 < 1, 0 < x2 < x1}

Then Φ(ω) fails to be a Lipschitz domain, since the uniform cone property is not satisfied
at (0, 0). See Figure 2.3. One can also create an example in which polyhedral three-
dimensional domain represented in Figure 2.4 can be obtained as the image of a Lipschitz
domain by a bi-Lipschitz mapping. For details we refer the reader to [36].

The following theorem gives sufficient conditions for a class of Lipschitz homeomor-
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Figure 2.3: Left: Lipschitz domain ω. Right: Domain Φ(ω) which fails to be Lipschitz
under bi-Lipschitz mapping Φ.

Figure 2.4: Polyhedral 3D so-called two-brick domain that is not represented by the
graph of a Lipschitz function in a boundary of the marked point.

phisms, known as perturbation of identity:

Φθ := Id +θ, θ ∈W1,∞(Rd,Rd),

to map Lipschitz domain onto a Lipschitz domain. The following result can be found in
[11]:

Theorem 2.1.6. Let ω be a bounded Lipschitz domain. There exists c(ω), 0 < c(ω) <

1, such that Φθ(ω) is a bounded Lipschitz domain for all θ ∈ W1,∞(Rd,Rd), satisfying
‖φ‖W1,∞ ≤ c(ω).
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Proof of Theorem 2.1.6. First we prove a technical Lemma:

Lemma 2.1.7. Assume that δ, L > 0 are given. Then there exists l > 0 and L0, δ0 > 0

such that for any θ ∈W1,∞(Rd,Rd) so that ‖θ‖W1,∞ ≤ l and θ(0) = 0 the following holds:

CL0,δ0 ⊂ Φθ(CL,δ).

Proof. Fix l ∈ 〈0, 1〉. Let θ ∈W1,∞(Rd,Rd) be such that ‖θ‖W1,∞ ≤ l and θ(0) = 0. Since
θ(0) = 0 we can conclude for any x that

|θ(x)| = |θ(x)− θ(0)| ≤ l|x|.

On the other side |θ(x)| ≤ l since ‖θ‖L∞ < l. Therefore for any x ∈ Rd

|θ(x)| ≤ min{l|x|, l}.

(a) Construction of CL0,δ0 . (b) Construction of α2.

Figure 2.5

Observe that every point x above the red line in Figure 2.5b will then satisfy Φθ(x)d =

xd + θ(x)d > 0. This gives us angle α2 = arcsin(l). If we define α1 = arctan(L) then we
can choose δ0 ∈ 〈0, δ − l〉 and L0 ∈ 〈tan(α1 + α2),∞〉 such that the cone CL0,δ0 remains
inside the red border in Figure 2.5a. One can easily check that everything inside the
red border in Figure 2.5a has image under Id +θ inside the cone Cδ,L, thus proving the
lemma.

Now we continue with the proof of theorem. For a fixed constant c > 0 we take
an arbitrary θ ∈ W1,∞(Rd,Rd) such that ‖θ‖W1,∞ ≤ c. Let ζ be in Φθ(∂ω) and ξ ∈
Φθ(ω) ∩K(ζ, δ0) for some δ0 > 0. Then there exists x ∈ ω and z ∈ ∂ω such that

ξ = x+ θ(x), ζ = z + θ(z).
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The goal is to prove that there exists L0 > 0 such that

ξ +R(CL0,δ0) ⊂ Φθ(ω)

for some fixed rotation operator R = Rζ .
Let us take δ, L > 0 as in definition of a for Lipschitz domain ω. The next step is to

define a map ψ for a fixed x ∈ ω:

ψ(y) = θ(y + x)− θ(x)

which clearly satisfies ψ(x) = 0 and ‖ψ‖W1,∞ ≤ 2‖θ‖W1,∞ ≤ 2c (observe that the norm of
ψ is independent of x). Obviously, c needs to be small enough so that there exists δ2, L2

from Lemma 2.1.7, applied for the Lipschitz mapping ψ.
For z ∈ ∂ω by Lemma 2.1.7 and Definition 2.1.3 there exists R such that for x ∈

ω ∩B(z, δ):
x+R(CL,δ) ⊂ ω.

By using Lemma 2.1.7 we know that

R(CL2,δ2) ⊂ Φψ(R(CL,δ)).

Therefore, for an arbitrary that for η ∈ R(CL2,δ2) there exists y ∈ R(CL,δ) such that

η = y + ψ(y) = y + θ(y + x)− θ(x).

By adding ξ = x+ θ(x) we get

ξ + η = x+ y + θ(x+ y)

which is in Φθ(ω) since x + y ∈ ω. To conclude the proof, one only needs to show that
|x− z| < δ (obviously, x ∈ ω). We have

δ0 > |ξ − ζ| = |x− z + θ(x)− θ(z)| ≥ |x− z|(1− c)

meaning |x− z| < δ0
1−c . By setting

δ0 = min{δ2, δ(1− c)}, L0 = L2,

we have proved that for any ζ ∈ ∂ω there exists R such that for ξ ∈ Φθ(ω) ∩K(ζ, δ0) we
have

ξ +R(CL0,δ0) ⊂ Φθ(ω).
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Since δ0 and L0 are independent of the choice ζ we have proved the statement of Theorem
2.1.6.

Remark 2.1.8. If Φθ is a C1-diffeomorphism from Rd onto Rd and ω a Lipschitz domain
then the image Φθ(ω) is again a Lipschitz domain. Proof of that fact can become rather
tedious, but intuitively one can show that the boundary ∂Φθ(ω) = Φθ(∂ω) will remain
locally a Lipschitz graph since a composition of Lipschitz and C1 maps is again a Lipschitz
map.

Another approach as presented in [32], characterize Lipschitz domain as those domains
of locally finite perimeter for which there exist continuous vector fields that are transverse
to the boundary and satisfies ∂ω = ∂ω. For details see Theorem 4.1. in [32] which offers
the proof that C1-diffeomorphism maps a Lipschitz domain onto a Lipschitz domain.

2.1.2 Shape differentiation
General shape optimization problem is usually written as problem of minimization:

(2.3) min
ω∈O

J(ω),

whereO is a class of Lipschitz domains which are subsets of some fixed, bounded ”universe”
set D ⊂ Rd and J : O → R is so called ”shape functional”. Unfortunately, O in general
does not admit any ”natural” topology.

Ideally, we would like to use Fréchet differentiability in classical sense. For that we need
a structure of normed vector space, therefore we shall restrict ourselves to a special family
of maps. Remember, we want to determine how does the shape functional behaves with
respect to ”small” changes of the domain ω ∈ O. A rather convenient way to represent
small movements (perturbations) of domains is by a family of homeomorphisms on Rd.

There are two standard ways for construction of such families of homeomorphisms:

• The perturbation of identity method constructs homemorphisms explicitly:

Φθ(x) = x+ θ(x), (Φ = Id +θ).

where θ belongs to Wk,∞(Rd;Rd), k ∈ N and ‖θ‖Wk,∞ is chosen small enough so
that the mapping Φθ is bijective.
Sometimes, for simplicity, one can introduce real parameter t and denote homeo-
morphism with

Φtθ = Id +tθ

for fixed θ.

• The velocity method constructs a family of homeomorphism (T (t, ·))t implicitly
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using initial value problems for every x ∈ Rd:

∂tT (t, x) = θ(T (t, x)),

T (0, x) = x.

where θ belongs to Wk,∞(Rd,Rd), k ∈ N.

For details about first approach, which goes back to Hadamard, one can look in stan-
dard references of Murat and Simon [44] or [30]. For the second approach we refer to the
well developed theory of velocity method in [21]. Henceforth, we will use homeomorphisms
constructed by perturbations of identity.

One can easily see that the map J : θ 7→ J(Φθ(ω)) is well defined in a zero-
neighborhood of space Wk,∞(Rd;Rd). Therefore, we can talk about Fréchet differential
in zero, i.e. existence of a continuous, linear functional J ′(0) ∈ (Wk,∞(Rd;Rd))′ such that

J(Φθ(ω))− J(ω) = J (θ)− J (0) = J ′(0)[θ] + o(‖θ‖Wk,∞).

Often, Fréchet differential of the functional J is calculated through the means of direc-
tional derivative meaning that the calculations are done with respect to a real parameter
for some fixed direction θ ∈Wk,∞(Rd;Rd). If such directional derivative exists it is usually
called shape derivative:

Definition 2.1.9 (Shape derivative). Let J = J(ω) be a shape functional and k ∈ N. J
is said to be shape differentiable at ω ∈ O in direction θ ∈Wk,∞(Rd;Rd) if

J ′(ω; θ) := lim
t↘0

J(Φtθ(ω))− J(ω)

t

exists and the mapping θ 7→ J ′(ω, θ) is linear and continuous.
J ′(ω, θ) is called the shape derivative of the functional J at ω in direction θ.

In most cases we shall also prove Fréchet differentiability of the shape functional in
zero:

Definition 2.1.10. Let J = J(ω) be a shape functional and k ∈ N. J is said to be shape
differentiable at ω ∈ O if the map

J : θ 7→ J(Φθ(ω))

is Fréchet differentiable at zero from Wk,∞(Rd;Rd) to R . We denote J ′(ω; θ) = J ′(0)[θ].

Remark 2.1.11. The Definition 2.1.9 implies that the map J is Gateaux differentiable
and its Gateaux derivative is linear or continuous, which is, in general not sufficient for
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Fréchet differentiability. On the other hand Fréchet differentiability of J implies Gateaux
differentiability:

J ′(0)[θ] = J ′(ω; θ), ∀θ ∈Wk,∞(Rd;Rd),

thus the notation in Definition 2.1.10 is justified. In literature, directional derivative in
sense of the Definiton 2.1.9 is also called Eulerian semi-derivative.

Let us start with so called ”free PDE” shape functional

G(ω) =

∫
ω

f(x) dx

where f ∈ W1,1(Rd). This type of functional is among the easiest one to consider. The
following results can easily be checked (see [44],[30]):

Proposition 2.1.12. Let ω ⊂ Rd be a measurable bounded open set and f ∈ W1,1
loc(Rd).

The functional G(ω) =
∫
ω
f(x) dx is shape differentiable and

G′(ω; θ) =

∫
ω

div(fθ) dx, ∀θ ∈W1,∞(Rd;Rd).

If ω has a Lipschitz boundary, the shape derivative can be rewritten as:

G′(ω; θ) =

∫
∂ω

fθ · n dS, ∀θ ∈W1,∞(Rd;Rd)

where n is outer normal of the set ω.

As a special case, we have found the shape derivative of the volume:

Example 2.1.13 (Shape derivative of the volume). Let us consider the shape functional
vol(ω) =

∫
ω

dx. This functional is shape differentiable at any bounded, measurable set ω:
for any θ ∈ W1,∞(Rd;Rd) we have the volume (distributed) representation of the shape
derivative

vol′(ω; θ) =

∫
ω

div(θ) dx.

Note that the shape derivative can be expressed in the boundary representation if ω is a
Lipschitz domain:

vol′(ω; θ) =

∫
∂ω

θ · n dS.

We also state some technical results which will be used throughout this chapter:

Lemma 2.1.14. Let ω ⊂ Rd be an open set and f ∈ Wm,p(ω), for p ∈ [1,∞〉 where
m ∈ N0 and k ∈ N . The following holds:

1. The mapping p : θ 7→ |det(I +∇θ)| ∈Wk−1,∞(Rd;R) is continuously Fréchet differ-
entiable at a zero-neighbourhood of Wk,∞(Rd;Rd). Its directional derivative at zero
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is given by:
p′(0)[θ] = div(θ), θ ∈Wk,∞(Rd;Rd).

2. The mapping M : θ 7→ ∇Φ−1
θ = (I +∇θ)−1 ∈ Wk−1,∞(Rd;Md(R)) is continuously

Fréchet differentiable at a zero-neighbourhood of Wk,∞(Rd;Rd), with the directional
derivative at zero is given by:

M ′(0)[θ] = −θ, θ ∈Wk,∞(Rd;Rd).

3. The mapping r : θ 7→ f ◦ (Id +θ) ∈Wm−1,p(ω) is continuously Fréchet differentiable
at a zero-neighbourhood of Wk,∞(Rd;Rd) ∩ Cc(ω;Rd) for k ≥ max{1,m − 1} and
m ≥ 1. Its directional derivative at zero is given with:

r′(0)[θ] = ∇f · θ, θ ∈Wk,∞(Rd;Rd).

Moreover, the previous statement holds for p =∞ if we take f ∈ Cm(ω).

Proof. The first two result are direct consequences of the general results which holds for
space of matrices Md(R). For a regular matrix A ∈Md(R) one can show:

det(A+ hB)− det(A) = det(A)tr(A−1B) + o(‖B‖).

Since
θ 7→ ∇θ : Wk,∞(Rd;Rd)→Wk−1,∞(Rd;Md(R))

is linear and bounded, by composition we can see that θ 7→ det(I+∇θ) = | det(I+∇θ)| is
also continuously differentiable at the zero-neighbourhood with directional derivative

p′(ψ)[θ] = det(I+∇ψ)tr((I+∇ψ)−1∇θ)

giving us p′(0)[θ] = div(θ). In the same way a map

m : A 7→ (I−A)−1 : Md(R)→Md(R)

is differentiable in the unit circle. Indeed, one can show that

m(A+B)−m(A) = m′(A)[B] + o(‖B‖)

where

m′(A)[B] =
+∞∑
k=1

k−1∑
l=0

AlBAk−1−l.

Again by composition we can obtain result that M is continuously Fréchet differentiable
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in the neighbourhood of zero. Furthermore, directional derivative is given with

M ′(ψ)[θ] =
∞∑
k=1

k−1∑
l=0

(−1)k∇ψl∇θ∇ψk−1−l,

therefore, M ′(0)[θ] = −∇θ. Proof of third result is rather technical and we omit it. One
can adapt the proof of Lemma 5.2.6 for ω instead of Rd in [30] or Proposition 2.7 in [44].

Using the previous Lemma we can easily prove:

Corollary 2.1.15. Let ω ⊂ Rd be an open set and f ∈ H1(ω), θ ∈ Wk,∞(Rd;Rd) ∩
Cc(ω;Rd) for k ∈ N. Then the following holds:

1. The map θ 7→ p(θ)f ◦ Φθ ∈ L2(ω) is well defined in a zero-neighbourhood of
Wk,∞(Rd;Rd) ∩ Cc(ω;Rd) and Fréchet differentiable at zero and

(2.4) p(θ)f ◦ Φθ − f = div(θ)f +∇f · θ + o(‖θ‖Wk,∞).

2. The map P : θ 7→ p(θ)∇Φ−τθ ∇Φ−1
θ ∈Wk−1,∞(R) is well defined in a zero-neighbourhood

of Wk,∞(Rd;Rd) ∩ Cc(ω;Rd) and Fréchet differentiable at zero and

(2.5) P (θ)− P (0) = div(ψ)I −∇ψ −∇ψt + o(‖θ‖Wk,∞).

2.1.3 Transmission model
In optimal design problem (2.1) we denote with Ωα,Ωβ ⊂ Ω, sets occupied by two phases α
and β, respectively. We assume that Ωα and Ωβ are open sets with well defined continuous
boundary, which is essential for the shape optimization. For that reason we will assume
that the interface

Γ = ∂Ωα ∩ ∂Ωβ

is at least Lipschitz regular, meaning that Ωα is a Lipschitz domain. Notice that Ωα is a
Lipschitz domain if and only if Ωβ is a Lipschitz domains. Furthermore, we shall assume
that Γ is compactly enclosed inside Ω. This is more for the mathematical convenience
of avoiding detailed assumptions for possible regions where the interface can touch outer
boundary ∂Ω and to ensure that both Ωα and Ωβ are Lipschitz domains (see Figure 2.6).

Therefore, the following holds

Ω = Ωα ∪ Ωβ ∪ Γ, Γ ∩ ∂Ω = ∅.

The previous assumptions on the interface are summarized:
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Figure 2.6: Locally around point T (0, 0) is given Ωβ between two curves: x 7→ x2 and
x 7→ 0 meaning that Ωβ fails to be a Lipschitz domain at point T .

Assumption 2.1.16. Ω ⊂ Rd is fixed, open set with smooth boundary. The phases
are represented by a pair of open sets (Ωα,Ωβ) where Ωα is a Lipschitz domain and the
interface Γ := ∂Ωα ∩ ∂Ωβ belongs to Ω.

We say that u ∈ H1
0(Ω) is a weak solution of (2.2) if it is a solution to variational

problem:

(2.6)


find u ∈ H1

0(Ω) such that

(∀ϕ ∈ H1
0(Ω)) α

∫
Ωα

∇u · ∇ϕ dx+ β

∫
Ωβ

∇u · ∇ϕ dx =

∫
Ω

fϕ dx

Due to Lax-Milgram weak solution of (2.6) exists and is unique.
If Assumption 2.1.16 is valid then the state solution of (2.2) satisfies something that is

a solution of a transmission problem. Let us denote by uα = u|Ωα , uβ = u|Ωβ restrictions of
the solution u to the Ωα, Ωβ respectively. For the moment let us assume that everything
is regular enough for the following calculus:∫

Ω

fϕ dx =

∫
Ωα

α∇uα∇ϕ dx+

∫
Ωβ

β∇uβ∇ϕ

∫
Ω

fϕ dx =

∫
Ωα

div(α∇uαϕ)− div(α∇uα)ϕ dx+

∫
Ωβ

div(β∇uβϕ)− div(β∇uβ)ϕ dx

∫
Ω

fϕ dx =

∫
∂Ωα

α∇uα · nαϕ dS +

∫
∂Ωβ

β∇uβ · nβϕ dS +

∫
Ω

− div(a∇u)ϕ dx

where nα,nβ are outer normals for Ωα,Ωβ, respectively. We can conclude by taking ϕ
with support suppϕ ⊂⊂ Ωα ∪ Ωβ that

− div(a∇u) = f in Ωα ∪ Ωβ.
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From there due to ϕ ∈ H1
0(Ω) we conclude:∫
Γ

(α∇uα · nα + β∇uβ · nβ)ϕ dS = 0.

Whenever u is continuous restriction of a function on a Lipschitz interface Γ is well
defined and equalities u|Γ = uα|Γ = uβ |Γ hold. Therefore, we have obtained the following
transmission conditions:

(2.7)

{
uα = uβ on Γ,

α ∂uα
∂nα

+ β
∂uβ
∂nβ

= 0 on Γ.

This conditions are sometimes called perfect transmission conditions: continuity of the
state function and the flux on the interface is a standard hypothesis in the theory of
materials and fluid dynamics.

To summarize, we have shown that the restrictions uα and uβ of the weak solution u
of (2.6) solve the following transmission system:

(2.8)



−α∆uα = f, in Ωα

uα = 0, on ∂Ω ∩ ∂Ωα

−β∆uβ = f, in Ωβ

uβ = 0, on ∂Ω ∩ ∂Ωβ

uα = uβ on Γ

α∇uα · nα = β∇uβ · nα on Γ

Remark 2.1.17. Conversely, (2.8) implies (2.2). It is important to note that if uα and
uβ are solutions to (2.8) then the following holds:∫

Ωα

α∇uα∇ϕ dx+

∫
Ωβ

β∇uβ∇ϕ dx =

∫
Ω

fϕ dx,

where we have used that fluxes are continuous. In order to show that a function u :=

uαχΩα +uβχωβ is a solution to (2.6) we only have to prove it belongs to H1
0(Ω). Using the

trace theory we know that there exists extension w ∈ H1
0(Ω) such that w|Γ = uα|Γ = uβ |Γ.

From w we can define two functions:

w1 =

{
w − uα, in Ωα

0, in Ωβ

,

w2 =

{
0, in Ωα

w − uβ, in Ωβ

.
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Since w − uα ∈ H1
0(Ωα) we have that w1 is an extension by zero of w − uα belonging to

H1
0(Ω). Analogously, w2 ∈ H1

0(Ω). Therefore, u = w − w1 − w2 ∈ H1
0(Ω) thus proving the

converse.

Remark 2.1.18. The previous formal calculations can be rigorously written using the
standard trace theory. Let TH1(ω) : H1(ω) → H1/2(∂ω) be the trace operator for open
and bounded ω with Lipschitz boundary. Then the previous continuity condition on state
function reads as:

TH1(Ωα)uα = TH1(Ωβ)uβ in H1/2(Γ).

To define the trace of the flux we need the graph space

L2
div(ω) =

{
w ∈ L2(ω;Rd) : divw ∈ L2(ω)

}
endowed with the following norm:

‖u‖L2
div(ω) = ‖u‖L2(ω) + ‖ div u‖L2(ω).

(for details see [52],[13]). Let w be a smooth vector field, and ϕ a smooth scalar function
on Ω. Using partial integration and divergence theorem the following holds:∫

ω

(w · ∇ϕ+ ϕ divw) dx =

∫
ω

div(ϕw) dx =

∫
∂ω

ϕw · n dS =

∫
∂ω

n · TH1wTH1ϕ dS

This motivates us to define a normal trace operator Tdiv for a vector valued w ∈ H1(ω;Rd)

by its action on a test function ϕ ∈ H1/2(∂ω):

〈Tdivw,ϕ〉 :=

∫
∂ω

n · TH1wTH1ϕ dS ≤ c‖ϕ‖H1/2(∂ω)

Using the fact that H1(ω;Rd) is dense in L2
div(ω) (since test functions are dense in L2

div(ω))
we can define a bounded linear operator Tdiv : L2

div(ω)→ H−1/2(∂ω).
Since a∇u ∈ L2(Ω) and − div(a∇u) = f ∈ L2(Ω) we conclude that a∇u ∈ L2

div(Ω).
Particularly, the second continuity condition in (2.7) could then be understood as:

Tdiv,Ωα(α∇uα) = −Tdiv,Ωβ(β∇uβ) in H−1/2(Γ).

Notice that minus in the previous equality comes from the fact that normals nα and nβ
have opposite orientation.

We can now state our optimal design problem with additional assumptions on the
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interface:

(2.9)


find partition (Ωα,Ωβ) such that J(Ωα,Ωβ) =

∫
Ω

fu dx is maximized

where u is weak solution of (2.6), vol(Ωα) = qα,

and partition (Ωα,Ωβ) satisfies Assumption 2.1.16

Observe that (2.9) admits solution due to Theorem 1.3.5 when f = 1 and domain Ω being
an annulus.

Figure 2.7: Changes to the interface Γ

Usually, in shape optimization, a shape functional is expressed in the following form:

J(ω) =

∫
ω

F (x, u(x),∇u(x)) dx

where u is a solution to some boundary value problem defined on the domain ω. Optimal
design problem (2.9) is different in that regard because we are not interested in movement
of the outer boundary ∂Ω but only of the interface Γ (see Figure 2.7). For that reason
when denoting shape functional for problem (2.9) we will a use shorter notation for the
shape functional

J(Ωα) := J(Ωα,Ωβ) =

∫
Ω

fu(Ωα) dx,

where u(Ωα) is a solution of (2.6) for given partition (Ωα,Ωβ). Observe that Ωβ could also
be used since there is no reason to prefer one phase over the other.

A perturbed state u(θ) := u(Φθ(Ωα)) for θ ∈W1,∞(Rd;Rd) is defined as a solution (in
the weak sense) of a transmission problem (2.8) where Ωα and Ωβ are replaced by Φθ(Ωα)
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and Φθ(Ωβ), respectively:

(2.10)



−α∆uα(θ) = f in Φθ(Ωα),

uα(θ) = 0 on ∂Ω ∩ ∂Φθ(Ωα),

−β∆uβ(θ) = f in Φθ(Ωβ),

uβ(θ) = 0 on ∂Ω ∩ ∂Φθ(Ωβ),

uα(θ) = uβ(θ) on Φθ(Γ),

α∇uα(θ) · nα(θ) = β∇uβ(θ) · nα(θ) on Φθ(Γ),

where nα(θ),nβ(θ) are outer normals of Φθ(Ωα) and Φθ(Ωβ). uα(θ), uβ(θ) are restrictions
of u(θ) on Φθ(Ωα) and Φθ(Ωβ). Observe that transmission conditions defined in (2.10)
make sense only if Γ is regular enough. But Φθ(Ωα) and Φθ(Ωβ) are not necessarily
Lipschitz domain (see Example 2.1.5). Even if Φθ is bi-Lipschitz homeomorphism, this
may not be satisfied. Generally, this lack of regularity can be solved in two standard
ways:

• by choosing perturbation θ to be in W2,∞(Rd;Rd) thus C1 function, ensuring that
Φθ is a C1-diffeomorphism and therefore preserving the class of bounded Lipschitz
domains (see Remark 2.1.8),

• by admitting an upper bound for the norm ‖θ‖W1,∞ < c(Ωα), as introduced in
Theorem 2.1.6.

The second way, although technically more complex, may be more appropriate espe-
cially for the theoretical framework since we are interested in the shape derivatives. The
choice that θ belongs to W1,∞(Rd,Rd) is somewhat standard in literature: in variety of
examples shape functionals are shape differentiable with θ ∈W1,∞(Rd,Rd). If a boundary
representation of the shape derivatives is required, one only needs to assume higher reg-
ularity of domain (see Example 2.1.13). Numerically, the uniform boundedness of vector
function θ is also a standard hypothesis.

Taking into the account that Φθ(Ωα) is a Lipschitz domain, the perturbed state u(θ)

satisfies the following following variational problem:

(2.11)


find u(θ) ∈ H1

0(Ω) such that

α

∫
Φθ(Ωα)

∇u(θ) · ∇ϕ dx+ β

∫
Φθ(Ωβ)

∇u(θ) · ∇ϕ dx =

∫
Φθ(Ω)

fϕ dx, ϕ ∈ H1
0(Ω)).

Note that (2.11) is equivalent to (2.10) by the same arguments used before and in the
Remark 2.1.17. Moreover, the following holds

u(θ)|Φθ(Ωi) ◦ Φθ ∈ H1(Ωi) for i = α, β.
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Notice that perturbed state u(θ) := u(Φθ(Ωα)) is defined for any small enough θ ∈
W1,∞(Rd;Rd). This means that we allow that the outer boundary ∂Ω changes, meaning
that the pair (Φθ(Ωα),Φθ(Ωβ)) will technically fail to satisfy Assumption 2.1.16 since
Φθ(Ω) is not necessarily Ω. Therefore, notion of the energy functional is expanded for
u(θ) in (2.11) by the following formula:

J(Φθ(Ωα)) = J(Φθ(Ωα),Φθ(Ωβ)) =

∫
Φ(Ω)

fu(θ) dx.

From the perspective of shape analysis there is no reason to restrict ourselves to spaces
like Wk,∞

0 (Ω;Rd) for several reasons. Firstly, we obtain more general results in a simpler
notation. Secondly, since u(θ) belongs to H1

0(Ω) for small enough θ ∈ Wk,∞
0 (Ω;Rd) one

may be inclined to a conjecture that a map θ 7→ u(θ) is Fréchet differentiable at the zero
from Wk,∞

0 (Ω;Rd) to H1
0(Ω). As we will see by the end of the following section this is not

true. On the other hand, one can demonstrate that a map

θ 7→ u(θ) ◦ Φθ ∈ H1
0(Ω)

is well defined in a zero-neighbourhood of Wk,∞(Ω;Rd) and Fréchet differentiable at the
zero.

2.2 First order shape derivative for transmission prob-
lem

2.2.1 Material derivative
Let ω be an open subset of Rd. For a small θ ∈Wk,∞(Rd;Rd), k ∈ N, a set Φθ(ω) is open.
Assume that y is a map such that for any θ in a zero-neighbourhood of Wk,∞(Rd;Rd) y(θ)

belongs to Wm,p(Φθ(ω)), where m ∈ N and p ∈ [1,∞〉 . Let the map

θ 7→ y(θ) ◦ Φθ ∈Wm,p(ω)

be Fréchet differentiable at the zero of Wk,∞(Rd;Rd). Its directional derivative at zero in
direction θ is usually denoted with ẏ(θ) and we shall call it material derivative of the map
y.

In order to calculate the material derivative of the map θ 7→ u(θ) defined by (2.11)
we need the implicit function theorem on Banach spaces. Let us recapitulate this result.
The proof can be found in [24].

Theorem 2.2.1 (Implicit Function Theorem). Suppose that X,Z and W are Banach
spaces, k ≥ 1, A ⊂ X × Z is an open set, (x0, z0) is a point in A, and f : A → W is
a Ck-map such f(x0, y0) = 0. Assume that Dzf(x0, z0) := D(f(x0, ·))(z0) : Z → W is a
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bounded invertible linear operator. Then there is an open neighbourhood U0 of x0 in X

and a unique continuous function u : U0 → Z such that u(x0) = z0, and f(x, u(x)) = 0

for all x ∈ U0. Moreover u is Ck function and

Du(x) = −Dzf(x, u(x))−1Dxf(x, u(x)), for all x ∈ U.

Let us also recall a characterization of dual space H−1(Ω) :

Theorem 2.2.2. Assume that f ∈ H−1(Ω). Then there exists unique functions f0 ∈
L2(Ω), f1 ∈ L2(Ω;Rd) such that for any ϕ ∈ H1

0(Ω)

〈f, ϕ〉H−1(Ω),H1
0(Ω) =

∫
Ω

f1 · ∇ϕ dx+

∫
Ω

f0ϕ dx.

and ‖f‖2
H−1 = ‖f0‖2

L2(Ω)
+ ‖f1‖2

L2(Ω)d
.

Proof. The proof can be found in [2].

The following theorem says that map θ 7→ u(θ) ◦ Φθ is Fréchet differentiable at zero.

Theorem 2.2.3 (Material derivative u̇(θ)). Let f ∈ H1(Ω). The mapping

θ 7→ u(θ) ◦ Φθ ∈ H1
0(Ω)

is well defined in a zero-neighbourhood of W1,∞(Rd;Rd), where u(θ) is a solution of (2.11).
It is Fréchet differentiable at zero and directional derivative at zero in direction θ, denoted
with u̇(θ) ∈ H1

0(Ω), satisfies:

(2.12)


(∀ϕ ∈ H1

0(Ω))

∫
Ω

a∇u̇(θ) · ∇ϕ dx =

∫
Ω

a(∇θ +∇θT − div(θ)I)∇u · ∇ϕdx

+

∫
Ω

div(fθ)ϕ dx.

Proof.
1. Defining a function for implicit function theorem.
We start by transforming (2.11) to the domains Ωα and Ωβ. First for the left hand-side
phase α

α

∫
Φθ(Ωα)

∇u(θ) · ∇ϕ dx = α

∫
Ωα

∇u(θ) ◦ Φθ · ∇ϕ ◦ Φθ p(θ) dx

= α

∫
Ωα

∇Φ−Tθ ∇(u(θ) ◦ Φθ) · ∇Φ−Tθ ∇(ϕ ◦ Φθ) p(θ) dx
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= α

∫
Ωα

P (θ)∇(u(θ) ◦ Φθ) · ∇(ϕ ◦ Φθ) dx

where
p(θ) = | det(∇Φθ)|, P (θ) = p(θ)∇Φ−1

θ ∇Φ−Tθ .

The same holds for the phase β:

β

∫
Φθ(Ωβ)

∇u(θ) · ∇ϕ dx = β

∫
Ωβ

P (θ)∇(u(θ) ◦ Φθ) ◦ ∇(ϕ ◦ Φθ) dx.

Similarly, by a change of variables in the integral on the right hand-side we have:∫
Φθ(Ω)

fϕ dx =

∫
Ω

f ◦ Φθ ϕ ◦ Φθ p(θ) dx,

giving us ∫
Ω

aP (θ)∇(u(θ) ◦ Φθ) ◦ ∇(ϕ ◦ Φθ) dx =

∫
Ω

f ◦ Φθ ϕ ◦ Φθ p(θ) dx

Taking ϕ ◦Φ−1
θ instead of ϕ we get (2.11) written as a variational problem on the original

domain Ω:

(2.13)
∫
Ω

aP (θ)∇(u(θ) ◦ Φθ) · ∇ϕ dx =

∫
Ω

p(θ)f ◦ Φθ ϕ dx ∀ϕ ∈ H1
0(Ω).

Choose δ < c(Ωα) for c(Ωα) introduced in Theorem 2.1.6 such that p(θ) and P (θ) are
Fréchet differentiable in K(0; δ) ⊂W1,∞(Rd;Rd). Now we can define a map F : K(0; δ)×
H1

0(Ω)→ H−1(Ω):

〈F (θ, z), ϕ〉H−1(Ω),H1
0(Ω) =

∫
Ω

aP (θ)∇z · ∇ϕ dx−
∫
Ω

p(θ)f ◦ Φθ ϕ dx.

From (2.9) it follows F (θ, u(θ) ◦ Φθ) = 0.

2. Application of the implicit function theorem:
From Lemma 2.1.14 we can conclude that the maps:

θ 7→ aP (θ)∇z ∈ L2(Ω;Rd),

for any z ∈ H1
0(Ω) and

θ 7→ −p(θ)f ◦ Φθ ∈ L2(Ω)

are well defined and Fréchet differentiable in a zero-neighbourhood of W1,∞(Rd;Rd).
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Moreover, By Theorem 2.2.2 we conclude that θ 7→ F (θ, z) is Fréchet differentiable on a
zero-neighbourhood of W1,∞(Ω;Rd) to H−1(Ω) and

(2.14)


〈DθF (0, u)[θ], ϕ〉H−1(Ω),H1

0(Ω) =

∫
Ω

a(−∇θ −∇θT + div θI)∇u · ∇ϕ dx

−
∫
Ω

ϕf div(θ) + ϕ∇f · θ dx.

For fixed θ in a zero-neighbourhood of W1,∞(Ω;Rd) the map z 7→ F (θ, z) is continuous
and affine from H1

0(Ω) to H−1(Ω), thus continuously differentiable at every point of H1
0(Ω)

and
〈DzF (0, u)[h], ϕ〉H−1(Ω),H1

0(Ω) =

∫
Ω

a∇h · ∇ϕ dx.

Using the Poincaré inequality and the Lax-Milgram lemma we can conclude that the
differential

DzF (0, u) : H1
0(Ω)→ H−1(Ω)

is an isomorphism. By 2.2.1 this implies that there exists an open zero-neighbourhood of
W1,∞(Ω;Rd) such that the function

θ 7→ u(θ) ◦ Φθ

is Fréchet differentiable.
3. Proof of (2.12): Using Theorem 2.2.1 we obtain that

u̇(θ) = −DzF (0, u)−1DθF (0, u)[θ]

or equivalently,
DzF (0, u)[u̇(θ)] = −DθF (0, u)[θ] in H−1(Ω).

Applying the last functional to a test function ϕ ∈ H1
0(Ω) we obtain on the left-hand side:

〈DzF (0, u)[u̇(θ)], ϕ〉H−1(Ω),H1
0(Ω) =

∫
Ω

a∇u̇(θ) · ∇ϕ dx,

and from (2.14) the right hand side thus proving the statement.

Remark 2.2.4. Previous approach based on the Implicit Function Theorem is rather
standard in literature. See proof of Lemma 4.8 in [19] or Theorem 5.7.4 in [30] where
material derivative is calculated in a similar manner but with different functional spaces
and underlying problems. See also [17] for a two-phase eigenvalue problem.

Remark 2.2.5. The assumption that f belongs to H1(Ω) cannot be dropped. This is due
to the fact that the map θ 7→ f ◦Φθ : W1,∞(Rd;Rd)→ H−1(Ω) fails to be differentiable even
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when f ∈ L2(Ω). Indeed, let Ω = [−1, 1] and Φt = Id +tθ where θ ∈ C1
c (Ω) ⊂ W1,∞(Ω)

such that θ(0) = 1. If we define f ∈ L2(Ω) in the following manner

f(x) =

{
1, x ≥ 0

0, x < 0,

then one can check that for any ϕ ∈ H1
0(Ω) and t > 0 small enough following holds:

1

t

1∫
−1

(f ◦ Φt − f)ϕ dx =
1

t

0∫
−t

ϕ(x) dx.

Let us define a sequence of functions (ϕn)n∈N ⊂ H1
0(Ω):

ϕn(x) =


1
n

+ nx
2
, x ∈

[
−−2

n2 ,− 1
n2

]
−nx

2
, x ∈

[
− 1
n2 , 0

]
0, elsewhere.

The sequence is bounded in H1
0(Ω) since

‖ϕ‖H1
0(Ω) =

1∫
−1

|ϕ′n(x)|2, dx = 2

1/n2∫
0

n2

4
dx =

1

2

On the other hand for t = 1/n we can see

1

t

0∫
−t

ϕn(x) dx = n

0∫
−1/n

−nx
2

dx =
1

2
.

thus
1

t
‖f ◦ Φt − f‖H−1(Ω) = sup

ϕ∈H1
0(Ω):‖ϕ‖

H1
0
≤1

∣∣∣1
t

1∫
−1

(f ◦ Φt − f)ϕ dx
∣∣∣ ≥ 1

2
,

proving the statement. The previous counter-example can be found in the remark after
Proposition 2.39 in [46].

2.2.2 Basic concepts in differential geometry
In the following sections we will need to use some results in differential geometry. Here we
shall offer a short overview of well-known results which can be found in [30]. Henceforth,
we shall assume Φ to be a C1-diffeomorphism from Rn into itself and ω to be a bounded
set with C1 boundary denoted with ∂ω.

Remark 2.2.6. By Definition 2.1.1 there exists δ, L > 0 such that for every z ∈ ∂ω one
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can found a local orthonormal system of coordinates x = (x′, xd), a rotation operator R,
δz ∈ 〈0, δ〉 and a C1 map ϕ : B(0; δz) ⊂ Rd−1 → 〈−Lδz, Lδz〉 such that

z +R({(x′, ϕ(x′)) : |x′| < δz}) ⊂ ∂ω.

Moreover, with
ψz(x) = ψz(x

′, xd) = z +R(x′, ϕ(x′)− xd)

we can define a C1-diffeomorphism from an open neighbourhood

Oz = {(x′, xd) : |x′| < δz, |xd| < Lδz}

onto a ψz(Oz). Observe that
{ψz(Oz) : z ∈ ∂ω}

is an open covering of ∂ω, which due to its compactness can be represented by a finite
number of C1-diffeomorphisms ψi, i = 1, 2, ..., k . Now we can define a non-negative
partition of unity ξi ∈ C∞0 (ψi(Oi)) such that

∑k
i=1 ξi = 1 on a neighbourhood of ∂ω. Then

any function G ∈ C(∂ω;Rq), q ≥ 1 can be extended to the whole space Rd by the formula:

(2.15) G̃(x) =
k∑
i=1

ξi(x)G ◦ ψi ◦ πi ◦ ψ−1
i (x),

where πi is the orthogonal projection πi(x′, xd) = (x′, 0). This, in particular, allows us to
define a continuous extension of the outer unit normal vector n of ∂ω to the whole Rd.

Every vector field G ∈ C(Rd;Rd) can be divided into two parts: tangential G∂ω and
normal (G ·n)n such that G = G∂ω+(G ·n)n. We say that a function is of class C1 on ∂ω
if its extension defined by (2.15) is of class C1. We denote by C1(∂ω) the corresponding
space. Let g ∈ C1(∂ω). We define its tangential gradient by

∇∂ωg := ∇g̃ − (∇g̃ · n)n on ∂ω,

where g̃ is an extension of g. We denote by W1,1(∂ω) the closure of C1(∂ω) with respect
to the norm

‖g‖W1,1(∂ω) := ‖g‖L1(∂ω) + ‖∇∂ωg‖L1(∂ω).

The tangential divergence of a vector field G ∈ C1(Rd;Rd) is given by

div∂ω(G) := divG− n · ∇Gn on Rd.

Now we can define tangential divergence on ∂ω. Let G ∈ C1(Γ;Rd). We define its tan-
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gential divergence by

div∂ω(G) = div G̃−∇G̃n · n on ∂ω

where G̃ ∈ C1(Rd;Rd) is an extension of G. Again, we can extend this definition to the
space W1,1(∂ω;Rd).

There is another, perhaps more canonical way to define an extension of the outer unit
normal n. For this we need a distance function:

Definition 2.2.7. Let ω be a domain with C1 boundary. We define the signed distance
function for the set ω by

d(x) = dω(x) :=


dist(x, ∂ω) x ∈ Rd \ ω

0 x ∈ ∂ω
−dist(x, ∂ω) x ∈ ω.

If we assume that ω is an open set with at least C2 boundary then∇dω gives C1 unitary
extension of the outer normal around Γ which can be easily extended to the whole Rd

(see Remark 2.2.6). Furthermore, if Φ is to be a C1-diffeomorphism from Rn into itself
then we can easily see that the preimage of {0} under dω ◦ Φ−1 defines a boundary of a
set Φ(ω). This means that gradient of the dω ◦Φ−1 on the boundary ∂Φ(ω) is a multiple
of the normal vector of a set Φ(ω). The outer unit normal vector of a set Φ(ω) is then
given by

(2.16)
∇(dω ◦ Φ−1)

|∇(dω ◦ Φ−1)| =
∇Φ−T n ◦ Φ−1

|∇Φ−T n ◦ Φ−1| .

Proposition 2.2.8. Let ω be of class C2. Let N ∈ C1(Rd;Rd) be an extension of the unit
normal vector n to the boundary ∂ω. Then with

N(θ) =
∇Φ−Tθ N ◦ Φ−1

θ

|∇Φ−Tθ N ◦ Φ−1
θ |

is defined an extension of the normal to the boundary of the set Φθ(ω) and θ 7→ N(θ) ∈
W1,∞(Rd;Rd) is well defined in a zero neighbourhood of W2,∞(Rd;Rd) and it is Fréchet
differentiable at zero. Its derivative N ′(θ) := N ′(0; θ) is given with

N ′(θ) = −∇∂ω(θ · n)− (θ · n)
∂N(0)

∂n
, in L∞(∂ω;Rd).

Proof. See Proposition 5.4.14 in [30] or Theorem 4.1 in [44].

Henceforth, we shall always assume that our extension n ∈ C1(Rd;Rd) of the outer
unit normal to the ∂ω is obtained as the gradient of oriented distance function, i.e.
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by extending ∇dω ∈ C1(∂ω;Rd) to the whole Rd. Then n · n = 1 on Γ, therefore
∇nT n = 0. Since ∇n = ∇2dω we can conclude that ∇n is symmetrical, showing that
0 = ∇nT n = ∇nn on Γ. Proposition 2.2.8 then states that for the map

θ 7→ n(θ) =
∇Φ−Tθ n ◦ Φ−1

θ

|∇Φ−Tθ n ◦ Φ−1
θ |

we have

(2.17) n′(θ) = −∇∂ω(θ · n).

In our calculations of the shape derivatives of the second order a mean curvature of a
boundary will naturally appear:

Definition 2.2.9. For an open set ω with the C2 boundary we define the mean curvature
of ∂ω by

H = div∂ω n on ∂ω.

Actually, for the mean curvature H a stronger result holds:

Proposition 2.2.10. Let ω be of class C2. Then, for any C1 extension N of outer unit
normal n, we have

divN = H on ∂ω in L∞(∂ω;Rd).

Proof. Due to N · n being 1 on ∂ω we have ∇NT n = 0 on ∂ω. By definition

H = div∂ω n = divN −∇Nn · n = divN − n · ∇NT n = divN

thus obtaining the desired equality.

We end this part with the notion of tangential jacobian. We introduce the tangential
Jacobian of Φ on ∂ω, denoted by Jac∂ω(Φ), as

Jac∂ω(Φ) = |∇Φ−τn|| det(∇Φ)|.

Theorem 2.2.11 (Change of variables on surface). Let f : Φ(∂ω) → R. Then f ∈
L1(Φ(∂ω)) if and only if f ◦ Φ ∈ L1(∂ω) and∫

Φ(∂ω)

f dS =

∫
∂ω

f ◦ Φ Jac∂ω(Φ) dS

Proof. See Proposition 5.4.3 in [30].
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2.2.3 Regularity of transmission problem and applications
Consider Sobolev space Hk(Ωα ∪ Ωβ) with norm

‖u‖2
Hk(Ωα∪Ωβ)

:= ‖u|Ωα‖2
Hk(Ωα)

+ ‖u|Ωβ‖2
Hk(Ωβ)

.

While H1(Ωα ∪ Ωβ) ⊂ L2(Ω) it is not necessarily a subset of H1(Ω), more precisely a
function in H1(Ωα ∪ Ωβ) ⊂ L2(Ω) belongs to H1(Ω) if and only if it satisfies transmission
conditions (2.7). The following theorem states that the restrictions of the solution of
(2.6) to Ωα and Ωβ have better regularity when the interface and the right hand-side are
smooth enough.

Theorem 2.2.12 (Regularity of transmission problem). Let the Assumption 2.1.16 be
satisfied, k ∈ N0 and w ∈ H1

0(Ω) be a solution of the variational equality:

(2.18) (∀ϕ ∈ H1
0(Ω))

∫
Ω

a∇w · ∇ϕ dxe =

∫
Ω

fϕ dx

If the interface is of class Ck+2 and f ∈ Hk(Ωα ∪ Ωβ) then w ∈ Hk+2(Ωα ∪ Ωβ) with the
estimate:

‖w‖Hk+2(Ωα∪Ωβ) ≤ C
(
‖f‖Hk(Ωα∪Ωβ) + ‖w‖H1(Ω)

)
.

Proof. See Section 5.3 in [18]

Theorem 2.2.13 (Higher regularity of material derivative u̇(θ)). Let k ∈ N, k ≥ 2.
Assume that the interface between phases is of class Ck and satisfies Assumption 2.1.16.
Let f ∈ Hmax{k−2,1}(Ω). Then material derivative u̇(θ) in direction θ ∈ Wk+1,∞(Rd;Rd)

defined by (2.12) belongs to the space Hk(Ωα ∪ Ωβ) ∩ H1
0(Ω).

Proof. Let u(θ) be the solution of (2.11). For small θ ∈ Wk+1,∞(Rd;Rd), we conclude
that the interface between phases Φθ(Ωα) and Φθ(Ωβ) is of class Ck. Then, using Theorem
2.2.12 we obtain

u(θ) ∈ Hk(Φθ(Ωα) ∪ Φθ(Ωβ)) ∩ H1
0(Ω).

Again as in Theorem 2.2.3 by using change of variables in (2.11) we obtain the following
variational equality:

(2.19)
∫
Ω

aP (θ)∇(u(θ) ◦ Φθ) · ∇(ϕ ◦ Φθ) dx =

∫
Ω

ϕ ◦ Φθ f ◦ Φθ p(θ) dx, ϕ ∈ H1
0(Ω).

Observe that u(θ) ◦ Φθ ∈ Hk(Ωα ∪ Ωβ). Therefore, we can apply the partial integration
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rule on the above integral over Ωα and obtain

α

∫
Ωα

P (θ)∇(uα(θ) ◦ Φθ) · ∇(ϕ ◦ Φθ) dx = α

∫
Γ

P (θ)∇(uα(θ) ◦ Φθ) · nα ϕ ◦ Φθ dS

− α
∫

Ωα

div (P (θ)∇(uα(θ) ◦ Φθ))ϕ ◦ Φθ dx.

Then∫
Γ

P (θ)∇(uα(θ) ◦ Φθ) · nα ϕ ◦ Φθ dS =

∫
Γ

∇Φ−Tθ ∇(uα(θ) ◦ Φθ) · ∇Φ−Tθ nα ϕ ◦ Φθ p(θ) dS

=

∫
Γ

∇uα(θ) ◦ Φθ ·
∇Φ−Tθ nα

|∇Φ−Tθ nα|
ϕ ◦ Φθ JacΓ(Φθ) dS.

From (2.16) one can conclude that nα(θ)◦Φθ =
∇Φ−Tθ nα

|∇Φ−Tθ nα|
and by applying Theorem 2.2.11

we have:∫
Γ

∇uα(θ) ◦ Φθ · nα(θ) ◦ Φθ ϕ ◦ ΦθJacΓ(Φθ) dS =

∫
Φθ(Γ)

∇uα(θ) · nα(θ)ϕ dS.

Therefore, we have showed that

α

∫
Γ

P (θ)∇(uα(θ) ◦ Φθ) · nα ϕ ◦ Φθ dS = α

∫
Φθ(Γ)

∇uα(θ) · nα(θ)ϕ dS.

Analogously, for the domain Ωβ we obtain:

β

∫
Γ

P (θ)∇(uβ(θ) ◦ Φθ) · nβ ϕ ◦ Φθ dS = β

∫
Φθ(Γ)

∇uβ(θ) · nβ(θ)ϕ dS,

Due to the transmission condition from (2.10):

α

∫
Φθ(Γ)

∇uα(θ) · nα(θ)ϕ dS + β

∫
Φθ(Γ)

∇uβ(θ) · nβ(θ)ϕ dS = 0,

the boundary integrals in the above calculations disappear and the following holds if we
replace ϕ ◦ Φθ by ϕ

(2.20) −
∫
Ω

a div (P (θ)∇(u(θ) ◦ Φθ))ϕ dx =

∫
Ω

f ◦ Φθ p(θ)ϕ dx, ϕ ∈ H1
0(Ω).

Now for a zero-neighbourhood U ⊂Wk+1,∞(Rd;Rd) such that θ 7→ P (θ), p(θ) are contin-
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uously differentiable, we define a map F0 : U × Hk(Ωα ∪ Ωβ) ∩ H1
0(Ω)→ Hk−2(Ωα ∪ Ωβ)

(2.21) F0(θ, z) = −a div (P (θ)∇z)− f ◦ Φθp(θ)

and proceed as in the proof of Theorem 2.2.3. To show that the differential DzF (0, u) :

H Hk(Ωα ∪ Ωβ) ∩ H1
0(Ω) → Hk−2(Ωα ∪ Ωβ) is an isomorphism use regularity result from

Theorem 2.2.12). Notice that in case of more regular interface, (2.20) is equivalent to
(2.13) and therefore F0 is a restriction of F from Theorem 2.2.3 to the Banach space set
Wk+1,∞(Rd;Rd)× Hk(Ωα ∪ Ωβ) ∩ H1

0(Ω).

Remark 2.2.14. The choice for the mapping F0 used above is not unique. We can use
the partial integration rule prior to the change of variables in (2.11):

−α
∫

Φθ(Ωα)

ϕ div(∇u(θ)) dx− β
∫

Φθ(Ωβ)

ϕ div(∇u(θ)) dx =

∫
Φθ(Ω)

fϕ dx.

By using the change of variables we obtain

−α
∫

Ωα

p(θ)ϕ◦Φθ div(∇u(θ))◦Φθ dx−β
∫
Ωβ

p(θ)ϕ◦Φθ div(∇u(θ))◦Φθ dx =

∫
Ω

p(θ)ϕ◦Φθf◦Φθ.

Putting ϕ instead of p(θ)ϕ ◦ Φθ ∈ H1
0(Ω) in the previous equality we have simplified ex-

pression:

−α
∫

Ωα

ϕ div(∇u(θ)) ◦ Φθ dx− β
∫
Ωβ

ϕ div(∇u(θ)) ◦ Φθ dx =

∫
Ω

ϕf ◦ Φθ.

Assuming that the interface and the right hand-side f is regular enough using Theorem
2.2.12 we can conclude that u(θ) ∈ Hk(Ωα ∪ Ωβ) i.e.

−a∆u(θ) ◦ Φθ − f ◦ Φθ = 0 in Hk−2(Ωα ∪ Ωβ).

The hardest part is to rewrite the previous equality in terms of θ and u(θ) ◦ Φθ in order
to use the implicit function theorem. With some work one can show that

∆u(θ) ◦ Φθ = ∇Φ−Tθ : ∇(∇Φ−Tθ ∇(u(θ) ◦ Φθ))

where : Md(R)×Md(R)→ R stands for the dot product of matrices. Then one may define
F : Wk+1,∞(Ω;Rd)× Hk(Ωα ∪ Ωβ) ∩ H1

0(Ω)→ Hk−2(Ωα ∪ Ωβ)

F(θ, z) = −a∇Φ−Tθ : ∇(∇Φ−Tθ ∇z)− f ◦ Φθ.
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A similar approach may be found in [44].

Remark 2.2.15. The calculation of variational equality (2.12) from the implicit function
theorem can be tedious (especially for the functions defined in the previous theorem and
remark). On the other hand we can directly obtain it by subtracting (2.13) and (2.6) and
dividing the result by t 6= 0:∫

Ω

a∇ϕ ·
[
Pθ(t)∇(u(tθ) ◦ Φtθ)−∇u

t

]
dx =

∫
Ω

ϕ

[
pθ(t)f ◦ Φtθ − f

t

]
dx,

where we use the notation Pθ(t) = P (tθ), pθ(t) = p(tθ). Since the following holds:

Pθ(t)∇(u(tθ)◦Φtθ)−∇u = t
(
(−∇θ −∇θT + div(θ))∇u+ u′(θ)

)
+o(t) in Hk−1(Ωα∪Ωβ),

and
pθ(t)f ◦ Φtθ − f = t(f div θ + θ · ∇f) + o(t) in L2(Ω)

we obtain (2.12) by taking the limit as t goes to zero.

Let
J(Ωα) =

∫
Ω

f u(Ωα) dx

be the energy functional where u is the unique solution of the boundary value problem
(2.6). Using the information on the material derivative u̇(θ) we can easily calculate the
shape derivative J ′(Ωα; θ), such that following holds:

J(Φθ(Ωα)) = J(Ωα) + J ′(Ωα; θ) + o(‖θ‖W1,∞).

Observe that
u(θ) ◦ Φθ = u+ u̇(θ) + o(‖θ‖W1,∞), in H1(Ω),

and
f ◦ Φθp(θ) = f +∇f · θ + f div(θ) + o(‖θ‖W1,∞), in L2(Ω).

Furthermore, by using the Leibnitz product rule we can conclude that

J(Φθ(Ωα)) =

∫
Φθ(Ω)

fu(θ) dx =

∫
Ω

f ◦ Φθu(θ) ◦ Φθ p(θ) dx

=

∫
Ω

fu+ fu̇(θ) + (∇f · θ + f div(θ))u dx+ o(‖θ‖W1,∞)

= J(Ω) +

∫
Ω

fu̇(θ) + (∇f · θ + f div(θ))u dx+ o(‖θ‖W1,∞)
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Since u̇(θ) ∈ H1
0(Ω), by (2.11) and (2.12):∫

Ω

fu̇(θ) dx =

∫
Ω

a∇u · ∇u̇(θ) dx

=

∫
Ω

a(∇θ +∇θτ − div(θ)I)∇u · ∇u+ div(fθ)u dx.

Therefore,

J ′(Ωα; θ) =

∫
Ω

a(∇θ +∇θτ − div(θ)I)∇u · ∇u+ 2 div(fθ)u dx.

With this we have proved the first part of the following theorem:

Theorem 2.2.16 (First derivative of the energy functional). Let the pair (Ωα,Ωβ) satisfies
Assumption 2.1.16, θ ∈W1,∞(Rd;Rd) and the right hand side f ∈ H1(Ω). Then,

1. The shape functional

θ 7→
∫

Φθ(Ω)

fu(θ) dx

is well defined in a zero-neighbourhood in W1,∞(Rd;Rd) and Fréchet differentiable
at zero. Directional derivative at zero in the direction θ is given with

(2.22) J ′(Ωα; θ) =

∫
Ω

a(∇θ +∇θτ − div(θ)I)∇u · ∇u+ 2 div(fθ)u dx,

where u is a solution of (2.6).

2. Whenever the interface Γ is of C2 the shape derivative of the energy functional in
the boundary form for any θ ∈W1,∞(Rd;Rd) such that suppθ ⊂⊂ Ω is given with:

(2.23) J ′(Ωα; θ) =

∫
Γ

θ ·nα
[
2
{
α

∣∣∣∣ ∂uα∂nα

∣∣∣∣2−β ∣∣∣∣ ∂uβ∂nα

∣∣∣∣2 }−{α|∇uα|2 − β|∇uβ|2} ] dS.

Proof. Let us prove the second part. By Theorem 2.2.12 uα ∈ H2(Ωα) and uβ ∈ H2(Ωβ)

We divide shape derivative (2.22) into two terms J ′(Ωα, θ) = Iα + Iβ where

Iα =

∫
Ωα

2α(∇θ∇uα) · ∇uα dx+

∫
Ωα

2uα div θf + 2uα∇f · θ − α div θ|∇uα|2 dx
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and

Iβ =

∫
Ωβ

2β(∇θ∇uβ) · ∇uβ dx+

∫
Ωβ

2uβ div θf + 2uβ∇f · θ − β div θ|∇uβ|2 dx.

Integrating by parts we obtain:∫
Ωα

2uα div θf + 2uα∇f · θ − α div θ|∇uα|2 dx =

∫
Ωα

div
[
θ
(
2fuα − α|∇uα|2

)]
dx

+

∫
Ωα

−2fθ · ∇uα + αθ · ∇|∇uα|2 dx

=

∫
Γ

θ · nα
(
2fuα − α|∇uα|2

)
dS

+

∫
Ωα

−2fθ · ∇uα + αθ · ∇|∇uα|2 dx.

Using the fact that

2∇uα · ∇(θ · ∇uα) = 2(∇θ∇uα) · ∇uα + θ · ∇|∇uα|2

we can conclude that

Iα =

∫
Ωα

2α∇uα · ∇(θ · ∇uα)− 2f(θ · ∇uα) dx+

∫
Γ

θ · nα
(
2fuα − α|∇uα|2

)
dS.

Analogously, we get

Iβ =

∫
Ωα

2β∇uβ · ∇(θ · ∇uβ)− 2f(θ · ∇uβ) dx+

∫
Γ

θ · nβ
(
2fuβ − β|∇uβ|2

)
dS.

Observe that∫
Ωα

2α∇u · ∇(θ · ∇uα) dx =

∫
Ωα

2 div[α∇uα(θ · ∇uα)] dx−
∫

Ωα

2 div(α∇uα)(θ · ∇uα) dx

=

∫
Γ

2α∇uα · nα(θ · ∇uα) dS +

∫
Ωα

2f(θ · ∇uα) dx.

The same can be done for domain Ωβ, therefore,

J ′(Ωα, θ) = Iα + Iβ = 2

∫
Γ

α∇uα · nα(θ · ∇uα) + β∇uβ · nβ(θ · ∇uβ) dS
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+

∫
Γ

θ · nα
(
2fuα − 2fuβ − α|∇uα|2 + β|∇uβ|2

)
dS

fu ∈ H1
0(Ω), thus fuα|Γ = fuβ |Γ meaning that this terms disappears. Using continuation

of the fluxes on Γ and continuation of the tangential derivative:

α∇uα · nα = β∇uβ · nα, in H1/2(Γ)

∇Γuα = ∇Γuβ, in H1/2(Γ)

we can conclude that

∇uα−∇uβ = ∇Γuα+(∇uα ·nα)nα−∇Γuβ−(∇uβ ·nα)nα = (∇uα ·nα)nα−(∇uβ ·nα)nα

and multiplying with θ = θΓ + θ · nαnα we get

θ · (∇uα −∇uβ) = (θ · nα)((∇uα −∇uβ) · nα).

The following identity holds:

(θ · ∇uα)α∇uα · nα + (θ · ∇uβ)β∇uβ · nβ = θ · (∇uα − ·∇uβ)α∇uα · nα
= (θ · nα)

[
α(∇uα · nα)2 − α∇uα · nα∇uβ · nα

]
= (θ · nα)

[
α(∇uα · nα)2 − β(∇uβ · nα)2

]
thus proving the theorem.

2.2.4 Direct calculations of a shape derivative without a mate-
rial derivative

We shall provide an alternative way of calculating shape derivative (2.22). We recommend
consulting [50] for details, where the same method was applied even for the non-linear
PDE problems. In essence, the following Lagrange methods starts by construction of
a Lagrange functional. This Lagrange functional is a priori unknown but it generally
consists of shape functional coupled with a linear penalization of the state equation (we
have both state and adjoint functions). The need for such approach arises naturally in
shape optimization where a computation of Fréchet derivatives often become technical
and complex. In general, one important benefit of such approach is avoidance of material
derivative in calculations. We can observe that the material derivative does not appear
in the final expression of (2.22), so there is a possibility to calculate it without employing
the material derivative. However, one should be cautious when using this approach and
rigorous in justification of all calculations since it is well known that usage of wrong
functional could lead to erroneous result.
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For a given set Ωα occupied by the first phase we denote the Lagrange functional by
the following formula:

(L) L(Ωα, u, v) =

∫
Ω

fu−

α ∫
Ωα

∇u · ∇v + β

∫
Ωβ

∇u · ∇v −
∫
Ω

fv

 ,

where the first term is the energy functional and the second term comes from (2.6).
Henceforth we shall assume that θ ∈ W1,∞(Rd,Rd) is fixed. For simpler notation we

will be using

Φt = Id +tθ,

p(t) = p(tθ) = det(∇Φt),

P (t) = P (tθ) = p(t)∇Φ−1
t ∇Φ−Tt .

L(Φt(Ωα), u, v) =

∫
Φt(Ω)

fu−

α ∫
Φt(Ωα)

∇u · ∇v + β

∫
Φt(Ωβ)

∇u · ∇v −
∫

Φt(Ω)

fv


=

∫
Ω

p(t)f ◦ Φt u ◦ Φt dx− α
∫

Ωα

P (t)(∇u ◦ Φt) · (∇v ◦ Φt) dx

− β
∫
Ωβ

P (t)(∇u ◦ Φt) · (∇v ◦ Φt) dx+

∫
Ω

p(t)f ◦ Φt v ◦ Φt dx

=

∫
Ω

p(t)f ◦ Φt u ◦ Φt dx−
∫
Ω

aP (t)(∇u ◦ Φt) · ∇v dx

+

∫
Ω

p(t)f ◦ Φt v ◦ Φt dx.

From the above it can be seen that homeomorphism Φt actually introduces non-linearity
in Lagrange functional L if written from the perspective of fixed Ωα. With this in mind
we introduce a new functional G : [0, τ ]× H1

0(Ω)× H1
0(Ω)→ R:

G(t, u, v) = L(Φt(Ωα), u ◦ Φ−1
t , v ◦ Φ−1

t )

which simplifies to

G(t, u, v) =

∫
Ω

p(t)f ◦ Φtu dx−
∫
Ω

aP (t)∇u · ∇v dx+

∫
Ω

p(t)f ◦ Φtv dx.

Observe that G is linear in both u and v. Let u(t) ∈ H1
0(Ω) represents a solution of the

70



Chapter 2. Calculations of shape derivative

boundary value problem:

(2.24)

{
− div(a ◦ Φt∇u(t)) = f, in Ωt

u(t) = 0 on ∂Ωt

Notice that u(t) = u(tθ), where u(tθ) is the perturbed state introduced in (2.11). Let us
define ut := u(t) ◦ Φt. One can easily verify that

J(Φt(Ωα)) = G(t, ut, v), v ∈ H1
0 (Ω).

Let u0 = u(0) represents the solutions of (2.24) for t = 0. The following result may be
proved in much the same way as it was done in [35]. We should note that the following
method is used to show existence and to calculate the shape derivative J ′(Ωα; θ) in the
sense of the Definition 2.1.9. For Fréchet differentiability see Theorem 2.2.16.

Theorem 2.2.17. Let a pair (Ωα,Ωβ) satisfies Assumption 2.1.16 and θ ∈W1,∞(Rd;Rd).
For f ∈ H1(Ω) the shape derivative (in the sense of the Definition 2.1.9) of the energy
functional J(Ωα) =

∫
Ω
fu dx exists and

J ′(Ωα; θ) =

∫
Ω

a(∇θ +∇θT − div(θ)I)∇u · ∇u+ 2 div(fθ)u dx.

Proof. Let us define a family (vt) ⊂ H1
0(Ω) for t ∈ 〈0, δ〉

(2.25)


find vt ∈ H1

0(Ω) such that∫
Ω

aP (t)∇vt∇ϕ dx =

∫
Ω

p(t)f ◦ Φtϕ dx,

where δ > 0 is such that (2.25) has a unique solution vt, i.e. the left hand side in the
equation is coercive. One can conclude

J(Φt(Ωα))− J(Ωα) = G(t, ut, vt)−G(0, u0, vt)

= G(t, ut, vt)−G(t, u0, vt) +G(t, u0, vt)−G(0, u0, vt)

= G(t, u0, vt)−G(0, u0, vt)

where (2.25) is used:

G(t, ut, vt)−G(t, u0, vt) =

∫
Ω

p(t)f ◦ Φt(u
t − u0) dx−

∫
Ω

P (t)a∇(ut − u0) · ∇vt dx = 0.

The following technical result is needed for the final conclusion:
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Lemma 2.2.18. The function vt defined with (2.25) converges to u0 in H1
0(Ω) as t de-

creases to zero. Moreover, there exists c > 0 such that ‖vt − u‖H1 ≤ ct, as t→ 0+.

Proof. We shall prove lemma in several steps:

1. (vt) is bounded in H1
0(Ω).

Since mapping t 7→ P (t) is continuous there exists δ > 0 such that for any t ∈ 〈0, δ〉
we have ‖P (t)− I‖L∞ < α/2. By using the Poincaré inequality

α

2
‖∇vt‖2

L2 ≤
∫
Ω

P (t)a∇vt · ∇vt dx =

∫
Ω

p(t)f ◦ Φt v
tdx ≤ ‖p(t)f ◦ Φt‖L2‖vt‖L2 ,

we can conclude that for all t ∈ 〈0, δ〉 a family is bounded: ‖vt‖H1
0
≤ C.

2. vt converges weakly to u0, in H1(Ω).

Due to vt being bounded for t ∈ 〈0, δ〉 for any sequence tn tending to zero one can
find a subsequence, again denoted with (tn) such that vtn⇀u ∈ H1

0(Ω). From (2.25)
for any ϕ ∈ H1

0(Ω): ∫
Ω

P (t)a∇vtn · ∇ϕ dx →
∫
Ω

a∇u · ∇ϕdx

and due to continuity of the map t 7→ p(t)f ◦ Φt we have∫
Ω

p(t)f ◦ Φtϕ dx→
∫
Ω

fϕ dx,

thus showing that u satisfies variational equality:∫
Ω

a∇u · ∇ϕdx =

∫
Ω

fϕ dx, ∀ϕ ∈ H1
0(Ω),

and therefore u = u0. Due to the uniqueness of the accumulation point, we have
vt⇀u0 as t→ 0+.

3. vt converges strongly to u0 in H1(Ω).

One can show∫
Ω

P (t)a∇(vt − u0) · ∇w dx =

∫
Ω

p(t)f ◦ Φtw dx−
∫
Ω

aP (t)∇u0 · ∇w dx

+

∫
Ω

a∇u0 · ∇w dx−
∫
Ω

fw dx
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=

∫
Ω

w (p(t)f ◦ Φt − f) dx−
∫
Ω

a (I − P (t))∇u0 · ∇w dx

Taking w = vt − u0 and using Lemma 2.1.14 and Corollary 2.1.15 we obtain

α

2
‖∇vt −∇u‖2

L2 ≤ C1t‖vt − u‖L2 + αC2t‖∇u‖L2‖∇vt −∇u‖L2

≤ Ct

since ‖vt‖ is bounded in H1(Ω).

Thanks to Proposition 2.2.18 and Corollary 2.1.15 we can easily verify the following
steps:

lim
t→0+

J(Φt(Ωα))− J(Ωα)

t
= lim

t→0+

1

t

[
G(t, u, vt)−G(0, u, vt)

]
= lim

t→0+

∫
Ω

j(t)f ◦ Φt − f
t

u dx+

∫
Ω

j(t)f ◦ Φt − f
t

vt dx

−
∫
Ω

a
J(t)− I

t
∇u∇vt dx


=

∫
Ω

[div(θ)f +∇fθ] 2u dx−
∫
Ω

a(div(θ)I −∇θ −∇θτ )∇u∇u dx

which finishes the proof.

Remark 2.2.19. In the previous theorem the adjoint state is equal to the original state.
This simplifies the calculation significantly, since there is no additional analysis of the
adjoint state. We will use this approach to the full extent in a calculation of the second
order shape derivative in the following chapter. In essence, we shall define a family of
adjoint states (vt) with the following property:

(2.26) G(t, ut, vt)−G(t, u0, vt) = 0.

The previous equation could be satisfied in several different ways. First we will require
that the the map s 7→ G(t, sut+(1−s)u0, v) is absolutely continuous for every v ∈ H1

0(Ω),
therefore

G(t, ut, v)−G(t, u0, v) =

1∫
0

DuG(t, sut + (1− s)u0, v) ds.
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Then we can replace (2.26) with the following:

(2.27)
t∫

0

DuG(t, (1− s)u0 + sut, vt) ds = 0.

For more complex problems existence and uniqueness of vt such that (2.27) holds may be
false. In our case (2.27) will end up with the coercive linear elliptic operator, therefore by
Lax-Milgram lemma we shall always find a unique solution for any small enough t. See
the beginning of the Section 4.3.4 in [50] for the other possible types of adjoint equations.
Since vt is averaged in some sense we shall refer to it as averaged adjoint method for
calculating shape derivative.

For the state and the adjoint solutions we should not necessarily consider the strong
topology. Observe that in order to find the limit in the last part of the proof of Theorem
2.2.17, the fact that vt weakly converges to u0 was enough to pass to the limit. Therefore,
the application of the method could still be developed, e.g. see extension of the Correa-
Seeger results in Chapter 4 of [50].

2.2.5 Local derivative of the transmission problem
Key approach for calculation of the shape derivative of the energy functional was to make
change of variables to the fixed domain. More precisely, we have analysed the map

θ 7→ u(θ) ◦ Φθ ∈ H1
0(Ω)

defined in a zero-neighbourhood W1,∞(Rd;Rd), where u(θ) is the state function for the
perturbed problem (2.11) under homeomorphism Φθ. Its directional derivative also known
as material derivative has offered an easy way to calculate the shape derivative of the
energy functional (see Theorem 2.2.16). But what about shape differentiability of the
map θ 7→ u(θ)? For that we need to define a notion of local derivative.

Consider the following type of mapping:

ω 7→ y(ω) ∈ H1(ω).

For example, Ωα 7→ uα(Ωα) is one such map. As before, we restrict ourselves only on the
map θ 7→ y(Φθ(ω)), taking ω fixed. An obvious problem when dealing with such map
is the fact that the codomain lacks the structure of the vector space. In the literature
this can be remedied in several different ways but the most natural one is to consider its
restriction to any compact subset K of the open set ω.

If we take K ⊂⊂ ω then for θ ∈Wk,∞(Rd;Rd), k ∈ N such that ‖θ‖k is small enough
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the following holds
K ⊂⊂ (Id +θ)ω.

Now we can define a local derivative of the function θ 7→ y(θ) := y(Φθ(ω)):

Definition 2.2.20 (local derivative). Mapping θ 7→ y(θ) is said to be locally differentiable
in zero if for every K ⊂⊂ ω the function θ 7→ y(θ)

∣∣
K
∈ Hm(K),m ∈ N (which is well

defined on a W k,∞(ω;Rd) neighbourhood of zero) is Fréchet differentiable at zero. The
coresponding derivative (at zero) in direction theta is called local derivative and denoted
by y′(θ) ∈ Hm

loc(ω).

The following proposition gives an existence result for the local derivative u′(θ):

Proposition 2.2.21. Let θ 7→ y(θ) ◦Φθ be well defined in a Wk,∞(Rd;Rd) neighbourhood
of zero with values in Hm(ω),m ∈ N and Fréchet differentiable at zero. Then θ 7→ y(θ)

is well defined in a Wk,∞(Rd;Rd) neighbourhood of zero with values in Hm(ω) and locally
differentiable at 0. The following identity holds for all θ ∈Wk,∞(Rd,Rd):

y′(θ) = ẏ(θ)−∇y(0) · θ.

Proof. The proof can be found in [44], v. Theorem 2.13.

Remark 2.2.22. The equality

y′(θ) = ẏ(θ)−∇y(0) · θ

is sometimes taken to be a definition of the local derivative. Furthermore, it is a key aspect
of proving a better regularity of the local derivative, e.g. if ẏ(θ) ∈ H1(ω) this implies that
y′(θ) ∈ L2(ω).

If y belongs to a Sobolev space which is embedded in the space of continuously differ-
entiable functions it should be noted that the following holds

y′(θ)(x) = lim
t→0

y(tθ)(x)− y(0)(x)

t
x ∈ ω,

thus explaining the choice for notation.

Due to Lemma 2.2.3 and Proposition 2.2.21 we can conclude that the local derivative
u′(θ) for the transmission problem exists and

u′(θ) = u̇(θ)−∇u · θ ∈ L2(Ω).

As before, let uα = u|Ωα and uβ = u|Ωβ be the restrictions of a u on Ωα and Ωβ. The next
theorem gives some light on the structure of u′(θ). A similar conclusion can be found in
[3],[4].
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Theorem 2.2.23 (Local derivative u′(θ)). Let a pair (Ωα,Ωβ) satisfies Assumption 2.1.16
and the interface Γ be of class C3. Let f ∈ H1(Ω) and θ ∈ W2,∞(Rd;Rd) such that
supp θ ⊂⊂ Ω. Then local derivative u′(θ) ∈ H1(Ωα ∪ Ωβ) is a solution of the following
transmission problem with discontinuous jumps on the interface:

(2.28)


∆u′(θ) = 0 in Ωα ∪ Ωβ,

u′α(θ)− u′β(θ) = α−β
β

(∇uα · nα)(θ · nα) on Γ,

α∇u′α(θ) · nα − β∇u′β(θ) · nα = (α− β) divΓ((θ · nα)∇Γu) on Γ,

u′(θ) = 0 on ∂Ω.

Proof. Using regularity Theorem 2.2.12 we can conclude that u ∈ H3(Ωα ∪Ωβ). Proposi-
tion 2.2.21 combined with Theorem 2.2.3 shows that u′(θ) exists, is unique and

u′(θ) = u̇(θ)−∇u · θ ∈ H1(Ωα ∪ Ωβ).

For any ϕ ∈ H1
0(Ω) and f ∈ H1(Ω) the following holds:

0 =

∫
∂Ω

ϕfθ · n dS =

∫
Ω

div(ϕfθ) dx =

∫
Ω

ϕ div(fθ) dx+

∫
Ω

fθ · ∇ϕ dx.

This means that (2.12) can be written as:∫
Ω

a∇u̇(θ) · ∇ϕ dx =

∫
Ω

a(∇θ +∇θT − div(θ)I)∇u · ∇ϕdx−
∫
Ω

fθ · ∇ϕ dx.

Assume that ϕ ∈ H2(Ω) for the moment. Then θ · ∇ϕ ∈ H1
0(Ω) is a test function for (2.6)

and we have ∫
Ω

a∆u(θ · ∇ϕ) dx = −
∫
Ω

f(θ · ∇ϕ) dx.

Therefore∫
Ω

a∇u̇(θ) · ∇ϕ dx =

∫
Ω

a(∇θ +∇θT − div(θ)I)∇u · ∇ϕdx+

∫
Ω

div(au)θ · ∇ϕ dx,

=

∫
Ω

a(∇θ∇u · ∇ϕ+∇θT∇u · ∇ϕ− (∇u · ∇ϕ) div θ + (θ · ∇ϕ)∆u) dx

= Iα + Iβ

Then using the following identity

div((θ · ∇ϕ)∇u)− div((∇u · ∇ϕ)θ) = ∇θ∇u · ∇ϕ− (∇2u)θ · ∇ϕ
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+ (θ · ∇ϕ)∆u− (∇u · ∇ϕ) div θ

we get

Iα = α

∫
Ωα

div((θ · ∇ϕ)∇u)− div((∇u · ∇ϕ)θ) + (∇2u)θ · ∇ϕ+∇θT∇u · ∇ϕ dx

= α

∫
Ωα

div((θ · ∇ϕ)∇u)− div((∇u · ∇ϕ)θ) +∇(θ · ∇u) · ∇ϕ dx.

With this we have obtained a variational equality for u′(θ) since u′(θ) = u̇(θ)− θ · ∇u:∫
Ω

a∇u′(θ) · ∇ϕ dx =

∫
Ω

a(div((θ · ∇ϕ)∇u)− div((∇u · ∇ϕ)θ)) dx.

Using the divergence theorem on parts Ωα and Ωβ separately:∫
Ω

a∇u′(θ) · ∇ϕ dx =

∫
Γ

(θ · ∇ϕ)(α∇uα · nα)− α(∇uα · ∇ϕ)(θ · nα) dS

−
∫
Γ

(θ · ∇ϕ)(β∇uβ · nα)− β(∇uβ · ∇ϕ)(θ · nα)dS

Due to α∇uα · nα = β∇uβ · nα on Γ and since ∇v = ∇Γv + (∇v · nα)nα we can rewrite
the last part as ∫

Ω

a∇u′(θ) · ∇ϕ dx = −(α− β)

∫
Γ

(∇Γu · ∇Γϕ)(θ · nα) dS

= (α− β)

∫
Γ

divΓ((θ · nα)∇Γu)ϕ dS

where we use the fact that the uα = uβ in H5/2(Γ) thus ∇Γuα = ∇Γuβ in H3/2(Γ) and
∇Γϕ belongs to H1/2(Γ) for ϕ ∈ H2(Ω). Since divΓ((θ · nα)∇Γu) belongs to H1/2(Γ) and
H2(Ω) is dense in H1(Ω) we conclude for any ϕ ∈ H1

0(Ω) the following variational equality:∫
Ω

a∇u′(θ) · ∇ϕ dx = (α− β)

∫
Γ

divΓ((θ · nα)∇Γu)ϕ dS

By applying partial integration, we can then calculate jump of the fluxes on the interface
Γ in (2.28).
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Since u̇α(θ) = u̇β(θ) on Γ we conclude that

u′α(θ)− u′β(θ) = −∇uα · θ +∇uβ · θ
= −(∇uα · nα)(θ · nα) + (∇uβ · nα)(θ · nα)

=
α− β
β

(∇uα · nα)(θ · nα)

again by using that ∇Γuα = ∇Γuβ and the transmission condition. Note that u′(θ) =

−∇u · n on ∂Ω and since supp θ ⊂⊂ Ω we have u′(θ) = 0 on ∂Ω. This concludes the
proof.

Remark 2.2.24. One can see that (2.28) is a system of two elliptic partial differential
equations coupled with jump conditions on the interface Γ. We continue by showing that
(2.28) uniquely defines the local derivative. Let us denote more general Poisson’s equations
with interfacial jumps:

(2.29)



− div(a∇v) = f, in Ωα ∪ Ωβ

vα − vβ = a, on Γ

(a∇v)α · nα − (a∇v)β · nα = b, on Γ

v = 0, on ∂Ω

where f ∈ L2(Ω), a ∈ L∞(Ω) ∩ C(Ωα ∪ Ωβ) strictly positive coefficient with discontinuity
on the interface Γ which is at least Lipschitz. For simplicity we assume that there exists
ã, b̃ ∈ H1

0(Ω) such that ã|Γ = a and b̃|Γ.
For the moment assume that a = 0. Then weak formulation for (2.29) states that for

any ϕ ∈ H1
0(Ω): ∫

Ω

a∇v0 · ∇ϕ dx =

∫
Ω

fϕ dx+

∫
Γ

bϕ dS

=

∫
Ω

fϕ dx+

∫
Ωα

div(b̃ϕnα) dx
(2.30)

By the Lax-Milgram lemma there exists unique v0 ∈ H1
0(Ω).

Now, for general a, we need the following set

H(a) := {v ∈ L2(Ω) : v − ãχΩα ∈ H1
0(Ω)}.

We say that v ∈ H(a) is a weak solution of (2.29) if u = v + ãχΩα for any ϕ ∈ H1
0(Ω)
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satisfies

(2.31)
∫
Ω

a∇u · ∇ϕ dx =

∫
Ω

fϕ dx+

∫
Ωα

div(b̃ϕnα) dx+

∫
Ωα

a∇ã · ∇ϕ dx.

Again by the Lax-Milgram lemma there exists unique solution u ∈ H1
0(Ω) and therefore

unique v ∈ H(a).

This means that the local derivative u′(θ) ∈ H1(Ωα ∪ Ωβ) is well defined by (2.28).

We end this section by a demonstration on how one may use the local derivative in
order to calculate the shape derivative of the energy functional. For this we recall a
standard result:

Proposition 2.2.25. Let ω be an open set. Let θ 7→ y(θ) be well defined in a zero-
neighbourhood of Wk,∞(Rd;Rd), k ∈ N such that y(θ) ∈ L1(Φθ(ω)) and the mapping

θ 7→ y(θ) ◦ Φθ ∈ L1(ω)

Fréchet differentiable at zero. Assume that y(0) ∈W1,1(ω).

Then for any θ ∈Wk,∞(Rd;Rd) we have y′(θ) ∈ L1(ω) and

y′(θ) + div(θy(0)) ∈ L1(ω).

Furthermore, the map

θ 7→
∫

Φθ(ω)

y(θ) dx

is well defined in a zero-neighbourhood of Wk,∞(Rd;Rd) and Fréchet differentiable at zero.
Its directional derivative at zero in the direction θ is:

(2.32)
∫
ω

y′(θ) + div(θy(0)) dx.

Proof. See Theorem 2.21. in [44] or Corollary 5.2.5 in [30].

We start by dividing the energy functional into two parts:

J(Φθ(Ωα)) =

∫
Φθ(Ωα)

fuα(θ) dx+

∫
Φθ(Ωβ)

fuβ(θ) dx = A(θ) +B(θ)

where uα(θ) and uβ(θ) are defined as in (2.10) on the respective domains Φθ(Ωα) and
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Φθ(Ωβ). From Proposition 2.2.25 we have

A′(0)[θ] =

∫
Ωα

fu′α(θ) dx+

∫
Ωα

div(fuαθ) dx

=

∫
Ωα

fu′α(θ) dx+

∫
Γ

fuαθ · nα dS

Since −α∆uα = f in Ωα we obtain

A′(0)[θ] = −
∫

Ωα

α∆uαu
′
α(θ) dx+

∫
Γ

fuαθ · nα dS

=

∫
Ωα

α∇uα · ∇u′α(θ) dx−
∫
Γ

α∇uα · nαu′α(θ) dS +

∫
Γ

fuαθ · nα dS

=

∫
Γ

αuα∇u′α(θ) · nα dS −
∫
Γ

α∇uα · nαu′α(θ) dS +

∫
Γ

fuαθ · nα dS,

where integration by parts is performed twice and the fact that ∆u′α(θ) = 0 in Ωα is used.
In the same way we conclude that

B′(0)[θ] =

∫
Γ

βuβ∇u′β(θ) · nβ dS −
∫
Γ

β∇uβ · nβu′β(θ) dS +

∫
Γ

fuβθ · nβ dS.

u = uα = uβ and α∇uα · nα = β∇uβ · nα on Γ so we obtain

J ′(Ωα; θ) = A′(0)[θ] +B′(0)[θ] =

∫
Γ

u(α∇u′α(θ) · nα − β∇u′β(θ) · nα) dS

−
∫
Γ

α∇uα · nα(u′α(θ)− u′β(θ)) dS

From (2.28) we can conclude that

J ′(Ωα; θ) =

∫
Γ

u(α− β) divΓ(∇Γu(θ · nα)) dS

−
∫
Γ

α∇uα · nα
(α− β

β
∇uα · nα(θ · nα)

)
dS

= −
∫
Γ

(θ · nα)(α− β)∇Γu · ∇Γu dS −
∫
Γ

(θ · nα)
α2 − αβ

β
|∇uα · nα|2 dS

=

∫
Γ

(θ · nα)

[
α

∣∣∣∣ ∂uα∂nα

∣∣∣∣2 − β ∣∣∣∣ ∂uβ∂nα

∣∣∣∣2 + (β − α)|∇Γu|2|
]

dS,
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which coincides with (2.23) since |∇u|2 = |∇Γu|2 +
∣∣∣ ∂uα∂nα

∣∣∣2 .
The previous method of calculating the shape derivative by using the local derivative is

well known in the literature. The level set method usually uses shape derivatives written
in boundary forms, so technical results as Proposition 2.2.25 were developed to simplify
the calculation. This approach shall be later used to calculate the second order shape
derivative in boundary form. Note that as before the shape derivative in the boundary
representation always requires more regular interface Γ.
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2.3 Second order derivative for transmission problem
2.3.1 Introduction
The second order derivatives of shape functional are much more complex to calculate then
the first order shape derivatives. Before we start with calculations it is important to note
that the aim is to find a bilinear map

(θ, ψ) 7→ J ′′(ω, θ, ψ)

such that the following Taylor expansion holds: for small enough θ in Wk,∞(Rd;Rd)

J(Φθ(ω)) = J(ω) + J ′(ω; θ) +
1

2
J ′′(ω; θ, θ) + o(‖θ‖2

k).

Although it is not obvious at the first glance, this cannot be done by taking a variation
of the first order shape derivative since generally:

J ′′(ω; θ, ψ) 6= (J ′(ω; θ))′(ω;ψ) = lim
t→0

1

t
(J ′(Φψ(ω); θ)− J ′(ω; θ)) .

Indeed, as was remarked in [45] while the second variation with respect to a parameter
is usually the variation of the first variation for the shape functional this is not true.
Remember, the shape functional is defined on a family of regular open sets which does
not have a structure of a vector space. In fact, if we take two successive variations by θ
and ψ the result is not a variation by the sum θ + ψ since

(Id +ψ) ◦ (Id +θ) = Id +(θ + ψ · (Id +θ))(ω) 6= Id +(θ + ψ).

Recall the notation for the map J from Definition 2.1.10:

J (θ) = J((Id +θ)ω).

Definition 2.3.1 (Second order shape differentiability). Let k ∈ N. A shape functional
J is said to be twice shape differentiable at ω if the map

ϑ 7→ J ′(ϑ; ·) ∈ (Wk,∞(Rd;Rd))′

is well defined in a zero-neighbourhood of Wk,∞(Rd;Rd) and Fréchet differentiable at zero.
Directional derivative at zero in the first variation θ and the second variation ψ is denoted
with J ′′(0; θ, ψ), meaning

J ′′(0; θ, ψ) = lim
t→0

1

t
(J ′(tψ; θ)− J ′(0; θ)) .
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We shall also use the notation J ′′(ω; θ, ψ) := J ′′(0; θ, ψ).

Notice that ϑ 7→ J ′(ϑ; ·) : Wk,∞(Rd;Rd) → (Wk,∞(Rd;Rd))′ is a mapping between
Banach spaces, and J ′′(0; ·, ψ) is its directional derivative at zero in direction ψ Using
classical results (e.g. see Proposition 3.2.28 in [22]) we can conclude that the mapping

(θ, ψ) 7→ J ′′(0; θ, ψ)

is symmetrical. One can even calculate expression J ′′(ω; θ, ψ) using the first order shape
derivative and the variation of the first order shape derivative:

(2.33) J ′′(ω; θ, ψ) = (J ′(ω; θ))′(ω;ψ)− J ′(ω;∇θψ).

This result can be found in [45] (this work was one of the first regarding second order
derivative). See also [54] for an overview and relations to the speed method.

To demonstrate (2.33) let us suppose that J is twice differentiable. For a small t we
have

J ′(tψ, θ) = lim
s→0

1

s
(J (tψ + sθ)− J (tψ))

= lim
s→0

1

s
(J((Id +sθ + tψ)ω)− J((Id +tψ)ω))

= lim
s→0

1

s

(
J((Id +sθ(Id +tψ)−1) ◦ (Id +tψ)ω)− J((Id +tψ)ω)

)
= J ′((Id +tψ)ω ; θ ◦ (Id +tψ)−1)

Again by definition, and using that the mapping J ′(tψ, ·) is linear and continuous

J ′′(ω; θ, ψ) = J ′′(0; θ, ψ) = lim
t→0

1

t
(J ′(tψ, θ)− J ′(0, θ))

= lim
t→0

1

t

(
J ′((Id +tψ)ω ; θ ◦ (Id +tψ)−1)− J ′(ω; θ)

)
= lim

t→0

1

t
(J ′((Id +tψ)ω; θ)− J ′(ω; θ))

+ lim
t→0

1

t

(
J ′((Id +tψ)ω; θ ◦ (Id +tψ)−1 − θ)

)
= (J ′(ω; θ))′(ω;ψ)− J ′(ω;∇θψ).

Remark 2.3.2. It should be noted that the previous calculus could be also done for the
local derivative u′(θ) in order to define the second variation of a state u. One can then
define

u′′(θ, ψ) = u′(θ)′(ψ)− u′(∇θψ)

and use it later for calculations of the second order derivative for various functionals
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depending on u (see [3],[4]). Property

u(θ) = u(0) + u′(θ) +
1

2
u′′(θ, θ) + o(‖θ‖2

k)

still holds (see [45]). For our purposes this approach can be circumvented.

Remark 2.3.3. With the previous expression we have also found a way to calculate the
second order shape derivative directly. Observe that by definition

J ′′(ω; θ, ψ) = lim
t→0

1

t

(
J ′((Id +tψ)ω ; θ ◦ (Id +tψ)−1)− J ′(ω; θ)

)
and if J ′(ω; θ) is known one only needs to provide appropriate Lagrange functional to
directly calculate the second order shape derivative. Some authors even use this identity
to define the symmetrical second order shape derivative and it offers a more direct way to
calculate it (for details v. [49]).

Before we start with calculations let us give an analogous result to the Proposition
2.2.25 for calculating the shape derivative of functionals represented as boundary integrals:

Theorem 2.3.4. Let ω be an open and bounded set of class C1. Let θ 7→ g(θ) ∈
W1,1(Φθ(ω)) be well defined in a zero-neighbourhood of W2,∞(Rd;Rd) such that θ 7→
g(θ) ◦ Φθ is Fréchet differentiable at zero. Then the map

θ 7→ G(θ) =

∫
Φθ(∂ω)

g(θ) dS

is Fréchet differentiable at zero and for any θ ∈W2,∞(Rd;Rd):

G ′(0)[θ] =

∫
∂ω

ġ(θ) + g(0) divΓ θ dS

Moreover, if ∂ω is of class C2 and g(0) ∈W2,1(Ω), then

G ′(0)[θ] =

∫
∂ω

g′(θ) + (θ · n)

{
∂g(0)

∂n
+ Hg(0)

}

Proof. The proof can be found in [30].

2.3.2 Calculation by virtue of local derivative
Now we have everything in order to calculate second order shape derivative of energy
functional:
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Theorem 2.3.5. Let θ and ψ belongs to W2,∞(Rd;Rd), the interface Γ of class C3 and
the right-hand side f in H1(Ω). Then the mapping

θ 7→ J(Φθ(Ωα)) :=

∫
Φθ(Ω)

fu(θ) dx, θ ∈W2,∞(Rd;Rd)

is twice shape-differentiable at zero. Its directional derivative at zero in the direction
θ ∈W2,∞(Rd;Rd) such that supp θ ⊂⊂ Ω is given with:

J ′′(Ωα; θ, ψ) =

α

∫
Γ

(θ · nα)(ψ · nα)

{
H

[
2

∣∣∣∣ ∂uα∂nα

∣∣∣∣2 − |∇uα|2
]

+
∂

∂nα

[
2

∣∣∣∣ ∂uα∂nα

∣∣∣∣2 − |∇uα|2
]}

dS

− β
∫
Γ

(θ · nα)(ψ · nα)

{
H

[
2

∣∣∣∣ ∂uβ∂nα

∣∣∣∣2 − |∇uβ|2
]

+
∂

∂nα

[
2

∣∣∣∣ ∂uβ∂nα

∣∣∣∣2 − |∇uβ|2
]}

dS

− 2(β + α)α

β − α

∫
Ωα

∇u′α(θ) · ∇u′α(ψ) dx+
2(β + α)β

β − α

∫
Ωβ

∇u′β(θ) · ∇u′β(ψ) dx

+
2αβ

β − α

∫
Γ

u′β(θ)
∂u′α(ψ)

∂nα
+ u′α(ψ)

∂u′β(θ)

∂nα
+ u′α(θ)

∂u′β(ψ)

∂nα
+ u′β(ψ)

∂u′α(θ)

∂nα
dS

+ α

∫
Γ

Z(θ, ψ)

[
2

∣∣∣∣ ∂uα∂nα

∣∣∣∣2 − |∇uα|2
]

dS − β
∫
Γ

Z(θ, ψ)

[
2

∣∣∣∣ ∂uβ∂nα

∣∣∣∣2 − |∇uβ|2
]

dS

where
Z(θ, ψ) = ∇nTα θΓ · ψΓ −∇Γ(θ · nα) · ψΓ −∇Γ(ψ · nα) · θΓ

and u is defined by (2.6) and u′(θ) by (2.28).

Proof. The equation (2.33) and Theorem 2.3.4 will play key role in calculation of shape
derivative. By Theorem 2.2.16 the shape derivative of energy functional is given with
(2.23):

J ′(Ωα; θ) =

∫
Γ

θ · nα
[

2

{
α

∣∣∣∣ ∂uα∂nα

∣∣∣∣2 − β ∣∣∣∣ ∂uβ∂nα

∣∣∣∣2
}
−
{
α|∇uα|2 − β|∇uβ|2

}]
dS.

We will divide functional in two parts:

J ′(Ωα; θ) = J ′α(Ω; θ) + J ′β(Ω; θ)

where

J ′α(Ωα; θ) = α

∫
Γ

(θ · nα)

[
2

∣∣∣∣ ∂uα∂nα

∣∣∣∣2 − |∇uα|2
]

dS
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and

J ′β(Ωα; θ) = −β
∫
Γ

(θ · nα)

[
2

∣∣∣∣ ∂uβ∂nα

∣∣∣∣2 − |∇uβ|2
]

dS.

By using Theorem 2.3.4 we can conclude that the shape derivative of Ω 7→ J ′α(Ωα; θ) is
given with

(J ′α(Ωα; θ))′(Ωα;ψ) = α

∫
Γ

θ · n′α(ψ)

[
2

∣∣∣∣ ∂uα∂nα

∣∣∣∣2 − |∇uα|2
]

dS

+ α

∫
Γ

θ · nα
{

4
∂uα
∂nα

(
∂u′α(ψ)

∂nα
+∇uα · n′α(ψ)

)
− 2∇uα · ∇u′α(ψ)

}
dS

+ α

∫
Γ

ψ · nα
{

(θ · nα)H

[
2

∣∣∣∣ ∂uα∂nα

∣∣∣∣2 − |∇uα|2
]}

dS

+ α

∫
Γ

ψ · nα
{

∂

∂nα

[
(θ · nα)

(
2

∣∣∣∣ ∂uα∂nα

∣∣∣∣2 − |∇uα|2
)]}

dS

Since
∇uα · ∇u′α(ψ) = ∇Γuα · ∇Γu

′
α(ψ) +

∂uα
∂nα

∂u′α(ψ)

∂nα

we can rewrite the second line in the following manner:

α

∫
Γ

θ · nα
{

2
∂uα
∂nα

∂u′α(ψ)

∂nα
+ 4

∂uα
∂nα
∇uα · n′α(ψ)− 2∇Γuα · ∇Γu

′
α(ψ)

}
dS

making

(J ′α(Ωα; θ))′(Ωα;ψ) = α

∫
Γ

θ · n′α(ψ)

[
2

∣∣∣∣ ∂uα∂nα

∣∣∣∣2 − |∇uα|2
]

dS

+ α

∫
Γ

θ · nα
{

2
∂uα
∂nα

∂u′α(ψ)

∂nα
+ 4

∂uα
∂nα
∇uα · n′α(ψ)− 2∇Γuα · ∇Γu

′
α(ψ)

}
dS

+ α

∫
Γ

ψ · nα
{

H(θ · nα)

[
2

∣∣∣∣ ∂uα∂nα

∣∣∣∣2 − |∇uα|2
]}

dS

+ α

∫
Γ

ψ · nα
{

∂

∂nα

[
(θ · nα)

(
2

∣∣∣∣ ∂uα∂nα

∣∣∣∣2 − |∇uα|2
)]}

dS.

Using identity (2.33):

J ′′α(Ω; θ) = (J ′α(Ω; θ))′(Ω;ψ)− J ′α(Ω;∇θψ),
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we obtain

J ′′α(Ωα; θ) = (J ′α(Ωα; θ))′(Ωα;ψ)− J ′α(Ωα;∇θψ),

= α

∫
Γ

θ · n′α(ψ)

[
2

∣∣∣∣ ∂uα∂nα

∣∣∣∣2 − |∇uα|2
]

dS

+ α

∫
Γ

θ · nα
{

2
∂uα
∂nα

∂u′α(ψ)

∂nα
+ 4

∂uα
∂nα
∇uα · n′α(ψ)− 2∇Γuα · ∇Γu

′
α(ψ)

}
dS

+ α

∫
Γ

ψ · nα
{

H(θ · nα)

[
2

∣∣∣∣ ∂uα∂nα

∣∣∣∣2 − |∇uα|2
]}

dS

+ α

∫
Γ

ψ · nα
{

∂

∂nα

[
(θ · nα)

(
2

∣∣∣∣ ∂uα∂nα

∣∣∣∣2 − |∇uα|2
)]}

dS

− α
∫
Γ

∇θψ · nα
[

2

∣∣∣∣ ∂uα∂nα

∣∣∣∣2 − |∇uα|2
]

dS.

Using that n′α(ψ) = −∇Γ(ψ · nα) the previous expression can be written as:

J ′′α(Ωα; θ, ψ) = Iα,1 + Iα,2 + Iα,3

where

Iα,1 = α

∫
Γ

(θ · nα)(ψ · nα)

{
H

[
2

∣∣∣∣ ∂uα∂nα

∣∣∣∣2 − |∇uα|2
]

+
∂

∂nα

[
2

∣∣∣∣ ∂uα∂nα

∣∣∣∣2 − |∇uα|2
]}

dS,

Iα,2 = α

∫
Γ

(θ · nα)

{
2
∂uα
∂nα

∂u′α(ψ)

∂nα
− 4

∂uα
∂nα
∇uα · ∇Γ(ψ · nα)− 2∇Γuα · ∇Γu

′
α(ψ)

}
dS,

Iα,3 = α

∫
Γ

Z(θ, ψ)

[
2

∣∣∣∣ ∂uα∂nα

∣∣∣∣2 − |∇uα|2
]

dS,

and
Z(θ, ψ) = −∇Γ(ψ · nα) · θΓ +∇(θ · nα) · nα(ψ · nα)−∇θT nα · ψ.

The function Z(θ, ψ) is actually symmetrical. If we write

∇(θ · nα) · ψ = ∇Γ(θ · nα) · ψΓ +∇(θ · nα) · nα(ψ · nα),

we obtain using ∇(θ · nα) · ψ = ∇θT nα · ψ +∇nTα θ · ψ that

∇θT nα · ψ +∇nTα θ · ψ = ∇Γ(θ · nα) · ψΓ +∇(θ · nα) · nα(ψ · nα).
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Using the fact that |nα|2 = 1 and consequently that ∇nTαnα = 0 we can see that

∇nTα θ · ψ = ∇nTα θΓ · ψ.

Since ∇nTα is symmetric, the following holds

∇nTα θΓ · ψ = θΓ · ∇nTαψ = θΓ · ∇nTαψΓ = ∇nTα θΓ · ψΓ.

Combining all, we obtain

∇θT nα · ψ +∇nTα θΓ · ψΓ = ∇Γ(θ · nα) · ψΓ +∇(θ · nα) · nα(ψ · nα).

This implies that term Z(θ, ψ) can be written as:

Z(θ, ψ) = ∇nTα θΓ · ψΓ −∇Γ(θ · nα) · ψΓ −∇Γ(ψ · nα) · θΓ,

thus showing that Iα,1 and Iα,3 are symmetrical as functions of θ and ψ. The term Iα,2 is
unfortunately more complex and we will only prove that in combination with J ′′β (Ω; θ, ψ)

it becomes symmetrical. Iα,2 is given with:

Iα,2 = α

∫
Γ

(θ · nα)

{
2
∂uα
∂nα

∂u′α(ψ)

∂nα
− 4

∂uα
∂nα
∇uα · ∇Γ(ψ · nα)− 2∇Γuα · ∇Γu

′
α(ψ)

}
dS.

Using (2.28) we can recognize that

(θ · nα)
∂uα
∂nα

=
β

α− β (u′α(θ)− u′β(θ))

meaning that the first term in Iα,2 can be written as:

2α

∫
Γ

(θ · nα)
∂uα(θ)

∂nα

∂u′α(ψ)

∂nα
dS =

2αβ

α− β

∫
Γ

(u′α(θ)− u′β(θ))
∂u′α(ψ)

∂nα
dS

=
2αβ

α− β


∫

Ωα

div(u′α(θ)∇u′α(ψ)) dx−
∫
Γ

u′β(θ)
∂u′α(ψ)

∂nα
dS


=

2αβ

α− β


∫

Ωα

∇u′α(θ) · ∇u′α(ψ) dx−
∫
Γ

u′β(θ)
∂u′α(ψ)

∂nα
dS


where we use partial integration and the equality ∆u′α(θ)) = 0 in Ωα. Again, due to
(2.28):

(α− β) divΓ(∇Γuα(θ · nα)) = (α− β) divΓ(∇Γu(θ · nα)) = α
∂u′α(θ)

∂nα
− β

∂u′β(θ)

∂nα
.
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Similarly, by partial integration the third term of Iα,2 becomes

−2α

∫
Γ

(θ · nα)∇Γuα · ∇Γu
′
α(ψ) dS = 2α

∫
Γ

u′α(ψ) divΓ(∇Γuα(θ · nα)) dS

=
2α

α− β

∫
Γ

u′α(ψ)

(
α
∂u′α(θ)

∂nα
− β

∂u′β(θ)

∂nα

)
dS

=
2α

α− β

α
∫

Ωα

div(u′α(ψ)∇u′α(θ)) dx− β
∫
Γ

u′α(ψ)
∂u′β(θ)

∂nα
dS


=

2α

α− β

α
∫

Ωα

∇u′α(ψ) · ∇u′α(θ) dx− β
∫
Γ

u′α(ψ)
∂u′β(θ)

∂nα
dS

 .

Combining all, we get the following expression for Iα,2:

Iα,2 = −2(β + α)α

β − α

∫
Ωα

∇u′α(θ) · ∇u′α(ψ) dx− 4

∫
Γ

α
∂uα
∂nα
∇Γu · ∇Γ(ψ · nα) dS

+
2αβ

β − α

∫
Γ

u′β(θ)
∂u′α(ψ)

∂nα
+ u′α(ψ)

∂u′β(θ)

∂nα
dS.

One can analogously calculate J ′′β and obtain similar result:

J ′′β (Ωα; θ, ψ) = Iβ,1 + Iβ,2 + Iβ,3,

where:

Iβ,1 = −β
∫
Γ

(θ · nα)(ψ · nα)

{
H

[
2

∣∣∣∣ ∂uβ∂nα

∣∣∣∣2 − |∇uβ|2
]

+
∂

∂nα

[
2

∣∣∣∣ ∂uβ∂nα

∣∣∣∣2 − |∇uβ|2
]}

dS,

Iβ,2 =
2(β + α)β

β − α

∫
Ωβ

∇u′β(θ) · ∇u′β(ψ) dx+ 4

∫
Γ

β
∂uα
∂nα
∇Γu · ∇Γ(ψ · nα) dS

+
2αβ

β − α

∫
Γ

u′α(θ)
∂u′β(ψ)

∂nα
+ u′β(ψ)

∂u′α(θ)

∂nα
dS,

Iβ,3 = −β
∫
Γ

Z(θ, ψ)

[
2

∣∣∣∣ ∂uβ∂nα

∣∣∣∣2 − |∇uβ|2
]

dS.

Since flux is continuous across the interface α ∂uα
∂nα

= β
∂uβ
∂nα

we can see that:

−4

∫
Γ

α
∂uα
∂nα
∇Γu · ∇Γ(ψ · nα) dS + 4

∫
Γ

β
∂uα
∂nα
∇Γu · ∇Γ(ψ · nα) dS = 0.
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Finally, the second order shape derivative is given with:

J ′′(Ω; θ, ψ) = J ′′α(Ω; θ, ψ) + J ′′β (Ω; θ, ψ)

= α

∫
Γ

(θ · nα)(ψ · nα)

{
H

[
2

∣∣∣∣ ∂uα∂nα

∣∣∣∣2 − |∇uα|2
]

+
∂

∂nα

[
2

∣∣∣∣ ∂uα∂nα

∣∣∣∣2 − |∇uα|2
]}

dS

− β
∫
Γ

(θ · nα)(ψ · nα)

{
H

[
2

∣∣∣∣ ∂uβ∂nα

∣∣∣∣2 − |∇uβ|2
]

+
∂

∂nα

[
2

∣∣∣∣ ∂uβ∂nα

∣∣∣∣2 − |∇uβ|2
]}

dS

− 2(β + α)α

β − α

∫
Ωα

∇u′α(θ) · ∇u′α(ψ) dx+
2(β + α)β

β − α

∫
Ωβ

∇u′β(θ) · ∇u′β(ψ) dx

+
2αβ

β − α

∫
Γ

u′β(θ)
∂u′α(ψ)

∂nα
+ u′α(ψ)

∂u′β(θ)

∂nα
+ u′α(θ)

∂u′β(ψ)

∂nα
+ u′β(ψ)

∂u′α(θ)

∂nα
dS

+ α

∫
Γ

Z(θ, ψ)

[
2

∣∣∣∣ ∂uα∂nα

∣∣∣∣2 − |∇uα|2
]

dS − β
∫
Γ

Z(θ, ψ)

[
2

∣∣∣∣ ∂uβ∂nα

∣∣∣∣2 − |∇uβ|2
]

dS.

2.3.3 Direct calculation
In the previous section two different ways of calculating the first order shape derivative
were demonstrated. We continue in this fashion to obtain similar result for the second
order shape derivative. In (2.33) we have also found the following useful identity:

(2.34) J ′′(Ω; θ, ψ) = lim
t→0+

1

t

[
J ′((Id +tψ)Ω; θ ◦ (Id +tψ)−1)− J ′(Ω;ψ)

]
.

The advantage of using (2.34) lies in the fact that one may offer a direct proof by the
method presented in the proof of Theorem 2.2.17. Throughout the proof we shall use the
following notation for a given θ ∈W2,∞(Rd;Rd) :

Φtθ = Id +tθ,

pθ(t) = det |∇Φtθ|,
Pθ(t) = pθ(t)∇Φ−1

tθ ∇Φ−Ttθ .

Theorem 2.3.6. The second order shape derivative of the energy functional in the trans-
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mission problem is given with:

J ′′(Ω; θ, ψ) =

∫
Ω

a
[
− div θ divψ I+∇θ : ∇ψT I−∇θ∇ψT −∇ψ∇θT

]
∇u · ∇u dx

+

∫
Ω

a
[
−∇θ∇ψ −∇ψ∇θ −∇θT∇ψT −∇ψT∇θT

]
∇u · ∇u dx

+

∫
Ω

a
[
div θ(∇ψ +∇ψT ) + divψ(∇θ +∇θT )

]
∇u · ∇u dx

+ 2

∫
Ω

[f div θ divψ + θ · ∇f divψ + ψ · ∇f div θ +Hfψ · θ]u dx

− 2

∫
Ω

∇θ : ∇ψT fu dx+
1

2

∫
Ω

a∇v(θ) · ∇v(ψ) dx

(2.35)

where u is a solution of (2.6) and v(θ) ∈ H1
0(Ω) satisfies the following equality for any

ϕ ∈ H1
0(Ω):

(2.36)
∫
Ω

a∇v(θ)·∇ϕ dx = 2

∫
Ω

div(fθ)ϕ dx+2

∫
Ω

a
[
− div(θ)I+∇θ +∇θT

]
∇u·∇ϕ dx.

Proof. We have divided the proof in several steps:

1. Notation and creation of functional G2:
Similarly, like in the proof of Theorem 2.2.17 we begin by defining Lagrange func-
tional

L2(Ωα, θ;u, v) = J ′(Ωα; θ)−
∫
Ω

a∇u · ∇v dx+

∫
Ω

fv dx

= α

∫
Ωα

[
− div(θ)I+∇θ +∇θT

]
∇u · ∇u dx

+ β

∫
Ωβ

[
− div(θ)I+∇θ +∇θT

]
∇u · ∇u dx

+ 2

∫
Ω

div(fθ)u dx− α
∫

Ωα

∇u · ∇v dx− β
∫
Ωβ

∇u · ∇v dx+

∫
Ω

fv dx.

Observe that we need to take into account both the set Ωα and the direction θ. We
now proceed by writing L2(Φtψ(Ωα), θ ◦ Φ−1

tψ ;u, v) into four separate terms:

L2(Φtψ(Ωα), θ ◦ Φ−1
tψ ;u, v) = Iα + Iβ + I0 + IS
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where

Iα = α

∫
Φtψ(Ωα)

[
− div(θ ◦ Φ−1

tψ )I+∇(θ ◦ Φ−1
tψ ) +∇(θ ◦ Φ−1

tψ )T
]
∇u · ∇u dx,

Iβ = β

∫
Φtψ(Ωβ)

[
− div(θ ◦ Φ−1

tψ )I+∇(θ ◦ Φ−1
tψ ) +∇(θ ◦ Φ−1

tψ )T
]
∇u · ∇u dx,

I0 = 2

∫
Φtψ(Ω)

div(fθ ◦ Φ−1
tψ )u dx,

and
IS = −α

∫
Φtψ(Ωα)

∇u · ∇v dx− β
∫

Φtψ(Ωβ)

∇u · ∇v dx+

∫
Φtψ(Ω)

fv dx.

By change of variables to original Ωα, we obtain that

Iα = α

∫
Ωα

[
− div(θ ◦ Φ−1

tψ ) ◦ Φtψ I
]
∇u ◦ Φtψ · ∇u ◦ Φtψ pψ(t) dx

+ α

∫
Ωα

[
∇(θ ◦ Φ−1

tψ ) ◦ Φtψ +∇(θ ◦ Φ−1
tψ )T ◦ Φtψ

]
∇u ◦ Φtψ · ∇u ◦ Φtψ pψ(t) dx.

Using simple calculus one can easily check that following holds

∇(θ ◦ Φ−1
tψ ) ◦ Φtψ = (∇θ ◦ Φ−1

tψ∇Φ−1
tψ ) ◦ Φtψ = ∇θ∇(Φ−1

tψ ◦ Φtψ).

Since div(·) = tr(∇·) we can conclude

div(θ ◦ Φ−1
tψ ) ◦ Φtψ = tr(∇θ∇Φ−1

tψ ◦ Φtψ) = ∇θ : ∇Φ−Ttψ ◦ Φtψ

meaning

Iα = α

∫
Ωα

−(∇θ : ∇Φ−Ttψ ◦ Φtψ)Pψ(t)∇(u ◦ Φtψ) · ∇(u ◦ Φtψ) dx

+ α

∫
Ωα

∇Φ−1
tψ (∇θ∇Φ−1

tψ ◦ Φtψ)∇Φ−Ttψ ∇(u ◦ Φtψ) · ∇(u ◦ Φtψ)pψ(t) dx

+ α

∫
Ωα

∇Φ−1
tψ (∇Φ−Ttψ ◦ Φtψ∇θT )∇Φ−Ttψ ∇(u ◦ Φtψ) · ∇(u ◦ Φtψ)pψ(t) dx.
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An application of similar arguments to the cases of Iβ, I0 and IS gives

Iβ = β

∫
Ωβ

−(∇θ : ∇Φ−Ttψ ◦ Φtψ)Pψ(t)∇(u ◦ Φtψ) · ∇(u ◦ Φtψ) dx

+ β

∫
Ωβ

∇Φ−1
tψ (∇θ∇Φ−1

tψ ◦ Φtψ)∇Φ−Ttψ pψ(t)∇(u ◦ Φtψ) · ∇(u ◦ Φtψ) dx

+ β

∫
Ωβ

∇Φ−1
tψ (∇Φ−Ttψ ◦ Φtψ∇θT )∇Φ−Ttψ pψ(t)∇(u ◦ Φtψ) · ∇(u ◦ Φtψ) dx,

I0 = 2

∫
Ω

[
f ◦ Φtψ∇θ : ∇Φ−Ttψ ◦ Φtψ + θ · ∇f ◦ Φtψ

]
u ◦ Φtψpψ(t) dx,

and

IS = −α
∫

Ωα

Pψ(t)∇(u ◦ Φtψ) · ∇(v ◦ Φtψ) dx− β
∫
Ωβ

Pψ(t)∇(u ◦ Φtψ) · ∇(v ◦ Φtψ) dx

+

∫
Ω

f ◦ Φtψ v ◦ Φtψpψ(t) dx.

Combining all this we can define functional G2 (for small t):

G2(t;u, v) = L2(Φtψ(Ωα), θ ◦ Φ−1
tψ ;u ◦ Φ−1

tψ , v ◦ Φ−1
tψ )

=

∫
Ω

a∇Φ−1
tψ

[
∇θ∇Φ−1

tψ ◦ Φtψ +∇Φ−Ttψ ◦ Φtψ∇θT
]
∇Φ−Ttψ ∇u · ∇u pψ(t) dx

−
∫
Ω

a∇θ : ∇Φ−Ttψ ◦ ΦtψPψ(t)∇u · ∇u dx

+ 2

∫
Ω

[
f ◦ Φtψ∇θ : ∇Φ−Ttψ ◦ Φtψ + θ · ∇f ◦ Φtψ

]
u pψ(t) dx

−
∫

Ωα

aPψ(t)∇u · ∇v dx+

∫
Ω

f ◦ Φtψ v pψ(t) dx.

2. Connecting J ′ and G:
By choosing ut to be a solution of the boundary value problem:

(2.37)


find ut ∈ H1

0(Ω) such that ∀ϕ ∈ H1
0∫

Ω

aPψ(t)∇ut · ∇ϕ dx =

∫
Ω

pψ(t)f ◦ Φtψ ϕ dx,
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we can write

J ′(Φtψ(Ω); θ ◦ Φ−1
tψ )− J ′(Ω; θ) = G2(t;ut, vt)−G2(0;u0, vt)

= G2(t;ut, vt)−G2(t;u0, vt) +G2(t;u0, vt)−G2(0;u0, vt)

where vt is chosen such that the following holds

(2.38) G2(t;ut, vt)−G2(t;u0, vt) = 0

making

J ′(Φt(Ω); θ ◦ Φ−1
t )− J ′(Ω; θ) = G2(t;u0, vt)−G2(0;u0, vt).

3. Averaged adjoint method (justification of (2.35)):
Observe that the mapping (t, u, v) 7→ G2(t;u, v) : 〈−δ, δ〉 × H1

0(Ω) × H1
0(Ω) → R is

well defined for δ > 0 small enough. For the beginning we only require that (2.37)
defines uniquely ut, which is obtained if aP (t) is coercive for t ∈ 〈−δ, δ〉. One can
show that for fixed t and v ∈ H1

0(Ω)

u 7→ G2(t;u, v) : H1
0(Ω)→ R

is Fréchet differentiable and its directional derivative at u in direction w is given
with

DuG(t;u, v)[w] = −
∫
Ω

aPψ(t)∇v · ∇w dx

+ 2

∫
Ω

[
f ◦ Φtψ∇θ : ∇Φ−Ttψ ◦ Φtψ + θ · ∇f ◦ Φtψ

]
w pψ(t) dx

− 2

∫
Ω

a∇θ : ∇Φ−Ttψ ◦ ΦtψPψ(t)∇u · ∇w dx

+ 2

∫
Ω

a∇Φ−1
tψ

[
∇θ∇Φ−1

tψ ◦ Φtψ +∇Φ−Ttψ ◦ Φtψ∇θT
]
∇Φ−Ttψ ∇u · ∇w pψ(t) dx.

Then (2.35) can be written as

0 = G2(t;ut, vt)−G2(t;u0, vt) =

1∫
0

DuG(t;u∗(s), v)[ut − u0] ds
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where u∗(s) = u0 + s(ut − u0). Let us define a linear operator Bt : H1
0(Ω)→ R

Bt(ϕ) = 2

∫
Ω

[
f ◦ Φtψ∇θ : ∇Φ−Ttψ ◦ Φtψ + θ · ∇f ◦ Φtψ

]
ϕpψ(t) dx

− 2

1∫
0

∫
Ω

a∇θ : ∇Φ−Ttψ ◦ ΦtψPψ(t)∇u∗(s) · ∇ϕ dxds

+ 2

1∫
0

∫
Ω

a∇Φ−1
tψ (∇θ∇Φ−1

tψ ◦ Φtψ)∇Φ−Ttψ ∇u∗(s) · ∇ϕpψ(t) dxds

+ 2

1∫
0

∫
Ω

a∇Φ−1
tψ (∇Φ−Ttψ ◦ Φtψ∇θT )∇Φ−Ttψ ∇u∗(s) · ∇ϕpψ(t) dxds

Since family (ut) is bounded for small t (arguments are similar to those presented in
the proof Theorem 2.2.17), and for fixed θ, ψ ∈W2,∞(Rd,Rd) we can easily conclude
that operator Bt is continuous. Observe that a solution vt ∈ H1

0(Ω) of

(2.39)


find vt ∈ H1

0(Ω) such that ∀ϕ ∈ H1
0(Ω)∫

Ω

aPψ(t)∇vt · ∇ϕ dx = Bt(ϕ),

satisfies (2.35) if we replace ϕ by ut − u0.

4. vt converges weakly in H1
0(Ω)

Since Bt is continuous by the Lax-Milgram lemma we can conclude that the family
(vt)t is bounded for t ∈ 〈−δ, δ〉 . This implies that for a sequence (tn) such that
tn → 0 as n→ +∞ the following holds (up to a subsequence):

vtn → v weakly in H1 .

For ϕ ∈ H1
0(Ω):

lim
n→+∞

∫
Ω

aP (tn)∇vtn · ∇ϕ dx = lim
n→+∞

∫
Ω

aP (tn)∇ϕ · ∇vtn dx

=

∫
Ω

a∇ϕ · ∇v dx

because P (tn) → I strongly in L∞(Ω), thus aP (tn)∇ϕ → a∇ϕ in L2(Ω), meaning
that we have product of strong and weak sequences. One can also put Bt(ϕ) to the
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limit obtaining

lim
n→∞

Bt(ϕ) = 2

∫
Ω

div(fθ)ϕ dx+ 2

∫
Ω

a
[
− div(θ)I+∇θ +∇θT

]
∇u0 · ∇ϕ dx.

Therefore, v satisfies variational equality∫
Ω

a∇v · ∇ϕ dx = 2

∫
Ω

div(fθ)ϕ dx+ 2

∫
Ω

a
[
− div(θ)I+∇θ +∇θT

]
∇u0 · ∇ϕ dx,

for any ϕ ∈ H1
0(Ω). One can conclude that the weak limit v is uniquely determined

and coincides with v0, the solution of (2.37) for t = 0. Moreover, since it is the only
accumulation point of the sequence (vtn), it is the limit of the whole sequence. The
same holds for every sequence (tn) converging to zero.

5. Calculation of the shape derivative:
Now we have everything to finish the proof.

G2(t;u0, vt)−G2(0;u0, vt)

t
= −

∫
Ω

a
∇θ : ∇Φ−Ttψ ◦ ΦtψPψ(t)− div θ I

t
∇u0 · ∇u0 dx

+

∫
Ω

a
∇Φ−1

tψ∇θ∇Φ−1
tψ ◦ Φtψ∇Φ−Ttψ pψ(t)−∇θ

t
∇u0 · ∇u0 dx

+

∫
Ω

a
∇Φ−1

tψ∇Φ−Ttψ ◦ Φtψ∇θT∇Φ−Ttψ pψ(t)−∇θT
t

∇u0 · ∇u0 dx

+ 2

∫
Ω

a
f ◦ Φtψ∇θ : ∇Φ−Ttψ ◦ Φtψpψ(t)− f div(θ)

t
u0 dx

+ 2

∫
Ω

a
θ · ∇f ◦ Φtψpψ(t)− θ · ∇f

t
u0 dx

−
∫
Ω

a
Pψ(t)− I

t
∇u0 · ∇vt dx+

∫
Ω

f ◦ Φtψpψ(t)− f
t

vt dx.

With some work the following results can be verified:

∇θ : ∇Φ−Ttψ ◦ ΦtψPψ(t)− div θ I = t(−∇θ : ∇ψT I+ div θ divψ I− div θ∇ψ
− div θ∇ψT ) + o(t),

(2.40)

∇Φ−1
tψ∇θ∇Φ−1

tψ ◦ Φtψ∇Φ−Ttψ pψ(t)−∇θ = t(−∇ψ∇θ −∇θ∇ψ −∇θ∇ψT

+ div(ψ)∇θ) + o(t),
(2.41)
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∇Φ−1
tψ∇Φ−Ttψ ◦ Φtψ∇θT∇Φ−Ttψ pψ(t)−∇θT = t(−∇ψ∇θT −∇ψT∇θT

−∇θT∇ψT + divψ∇θT ) + o(t),

(2.42)

f ◦ Φtψ∇θ : ∇Φ−Ttψ ◦ Φtψpψ(t)− f div(θ) = t(∇f · ψ div(θ)− f∇θ : ∇ψT

+ div θ divψ) + o(t),
(2.43)

θ · ∇f ◦ Φtψpψ(t)− θ · ∇f = t(Hfψ · θ +∇f · θ divψ) + o(t),(2.44)

with respect to L∞ norm. Since the following holds

J ′′(Ω; θ, ψ) = lim
t→0

1

t

{
J ′(Φt(Ω); θ ◦ Φ−1

t )− J ′(Ω; θ)
}

= lim
t→0

1

t

{
G2(t;u0, vt)−G2(0;u0, vt)

}
one can obtain

J ′′(Ω; θ, ψ) =

∫
Ω

a
[
− div θ divψ I+∇θ : ∇ψT I−∇θ∇ψT −∇ψ∇θT

]
∇u0 · ∇u0 dx

+

∫
Ω

a
[
−∇θ∇ψ −∇ψ∇θ −∇θT∇ψT −∇ψT∇θT

]
∇u0 · ∇u0 dx

+

∫
Ω

a
[
div θ(∇ψ +∇ψT ) + divψ(∇θ +∇θT )

]
∇u0 · ∇u0 dx

+ 2

∫
Ω

[f div θ divψ + θ · ∇f divψ + ψ · ∇f div θ +Hfψ · θ]u0 dx

− 2

∫
Ω

∇θ : ∇ψT fu0 dx

+

∫
Ω

a[− div(ψ)I+∇ψ +∇ψT ]∇u0 · ∇v0 dx+

∫
Ω

div(fψ)v0 dx

By taking v0(θ) ∈ H1
0(Ω) which satisfies the following equality for any ϕ ∈ H1

0(Ω):∫
Ω

a∇v0(θ) ·∇ϕ dx = 2

∫
Ω

div(fθ)ϕ dx+2

∫
Ω

a
[
− div(θ)I+∇θ +∇θT

]
∇u0 ·∇ϕ dx.

we can rewrite the previous result

J ′′(Ω; θ, ψ) =

∫
Ω

a
[
− div θ divψ I+∇θ : ∇ψT I−∇θ∇ψT −∇ψ∇θT

]
∇u0 · ∇u0 dx
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+

∫
Ω

a
[
−∇θ∇ψ −∇ψ∇θ −∇θT∇ψT −∇ψT∇θT

]
∇u0 · ∇u0 dx

+

∫
Ω

a
[
div θ(∇ψ +∇ψT ) + divψ(∇θ +∇θT )

]
∇u0 · ∇u0 dx

+ 2

∫
Ω

[f div θ divψ + θ · ∇f divψ + ψ · ∇f div θ +Hfψ · θ]u0 dx

− 2

∫
Ω

∇θ : ∇ψT fu0 dx+
1

2

∫
Ω

a∇v0(θ) · ∇v0(ψ) dx.

Remark 2.3.7. Expression (2.35) can be obtained in the manner of the proof of Theorem
2.2.16. From

J ′(Φtψ(Ωα), θ ◦ Φ−1
tψ ) =

∫
Φtψ(Ω)

a ◦ Φ−1
tψ

(
− div(θ ◦ Φ−1

tψ )I
)
∇u(tψ) · ∇u(tψ) dx

+

∫
Φtψ(Ω)

a ◦ Φ−1
tψ

(
∇(θ ◦ Φ−1

tψ )
)
∇u(tψ) · ∇u(tψ) dx

+

∫
Φtψ(Ω)

a ◦ Φ−1
tψ

(
∇(θ ◦ Φ−1

tψ )T
)
∇u(tψ) · ∇u(tψ) dx

+ 2

∫
Φtψ(Ω)

div(fθ ◦ Φ−1
tψ )u(tψ) dx

by changing of variables to Ω, writing ∇u(tψ)◦Φtψ = ∇Φ−Ttψ ∇(u(tψ)◦Φtψ), using identities

∇(θ ◦ Φ−1
tψ ) ◦ Φtψ = ∇θ∇Φ−1

tψ ◦ Φtψ

and
div(θ ◦ Φ−1

tψ ) ◦ Φtψ = tr(∇θ∇Φ−1
tψ ◦ Φtψ) = ∇θ : ∇Φ−Ttψ ◦ Φtψ

we obtain

J ′(Φtψ(Ωα), θ ◦ Φ−1
tψ ) =

∫
Ω

a∇θ : ∇Φ−Ttψ ◦ ΦtψPψ(t)∇(u(tψ) ◦ Φtψ) · ∇(u(tψ) ◦ Φtψ) dx

+

∫
Ω

a∇Φ−1
tψ∇θ∇Φ−1

tψ ◦ Φtψ∇Φ−Ttψ pψ(t)∇(u(tψ) ◦ Φtψ) · ∇(u(tψ) ◦ Φtψ) dx

+

∫
Ω

a∇Φ−1
tψ∇Φ−Ttψ ◦ Φtψ∇θT∇Φ−Ttψ pψ(t)∇(u(tψ) ◦ Φtψ) · ∇(u(tψ) ◦ Φtψ) dx
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+ 2

∫
Ω

f ◦ Φtψ∇θ : ∇Φ−Ttψ ◦ Φtψpψ(t)u(tψ) ◦ Φtψ dx

+ 2

∫
Ω

θ · ∇f ◦ Φtψpψ(t)u(tψ) ◦ Φtψ dx.

The material derivative u̇(ψ) satisfies

u(tψ) ◦ Φtψ = u+ tu̇(ψ) + o(t)

Observing (2.40)-(2.44) and using Leibniz rule (which holds for multiplication of Fréchet
differentiable function) we can write

J ′(Φtψ(Ωα); θ ◦ Φ−1
tψ ) = J ′(Ωα; θ) + tJ ′′(Ωα; θ, ψ) + o(t)

thus easily identifying expression J ′′(Ωα; θ, ψ):

J ′′(Ωα; θ, ψ) =

∫
Ω

a
[
− div θ divψ I+∇θ : ∇ψT I−∇θ∇ψT −∇ψ∇θT

]
∇u · ∇u dx

+

∫
Ω

a
[
−∇θ∇ψ −∇ψ∇θ −∇θT∇ψT −∇ψT∇θT

]
∇u · ∇u dx

+

∫
Ω

a
[
div θ(∇ψ +∇ψT ) + divψ(∇θ +∇θT )

]
∇u · ∇u dx

+ 2

∫
Ω

[f div θ divψ + θ · ∇f divψ + ψ · ∇f div θ +Hfψ · θ]u dx

− 2

∫
Ω

∇θ : ∇ψT fu dx+ 2

∫
Ω

a∇u̇(θ) · ∇u̇(ψ) dx.

This allows us to easily obtain expression for a volume representation of the second shape
derivative (observe that the most calculations remain the same as in the proof of Theorem
2.3.6)

Example 2.3.8 (Second order shape derivative of the volume). Let us consider the shape
functional vol(ω) =

∫
ω

dx. The volume (distributed) representation of the shape derivative
is given by

vol′(ω; θ) =

∫
ω

div(θ) dx.

By applying (2.34) we find that

vol′′(ω; θ, ψ) = lim
t→0

1

t

[
vol′(Φtψ(ω); θ ◦ Φ−1

tψ )− vol′(ω; θ)
]
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= lim
t→0

1

t

[ ∫
Φtψ(ω)

div(θ ◦ Φ−1
tψ ) dx−

∫
ω

div(θ) dx

]
.

Since ∫
Φtψ(ω)

div(θ ◦ Φ−1
tψ ) dx =

∫
ω

∇θ : ∇Φ−1
tψ ◦ Φtψpψ(t) dx

=

∫
ω

div(θ) dx+ t

∫
ω

−∇θ : ∇ψT + div(θ) div(ψ) dx+ o(t)

we conclude that

vol′′(ω; θ, ψ) =

∫
ω

−∇θ : ∇ψT + div(θ) div(ψ) dx.(2.45)

Therefore we have shown that θ 7→ vol(ω; θ) is twice shape differentiable at zero from
W1,∞(Rd;Rd) to R. No additional restriction on the regularity of the open set ω is needed
in this calculation.

Note that the second order shape derivative can be expressed in the boundary represen-
tations if ω is domain with C2 boundary and θ, ψ ∈W2,∞(Rd;Rd):

vol′′(ω; θ, ψ) =

∫
∂ω

H(θ · n)(ψ · n) dS.

Remark 2.3.9. For numerical purposes it is convenient to write the second order shape
derivative of the energy functional as two sums

J ′′(Ωα; θ, ψ) = J ′′design(Ωα; θ, ψ) + J ′′u (Ωα; θ, ψ)

where
J ′′u (Ωα; θ, ψ) := 2

∫
Ω

a∇u̇(θ) · ∇u̇(ψ) dx.

This play a key role in numerical implementations since J ′′u (Ωα; θ, ψ) after a discretization
in FEM leads to a full matrix (see [54]). Generally, this means that creation of a full
Hessian for the Newton method may not be feasible (especially for higher dimensions) due
to limiting computing power.
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Numerical approximation

3.1 Shape derivative based algorithms
3.1.1 Introduction
Let us recall, in optimization problem (2.9) the aim is to maximize the energy functional
J(Ωα) =

∫
Ω
fu dx for Ωα ∈ D such that vol(Ωα) = qα, where

D := {Ωα ⊂ Ω is a Lipschitz domain s.t. Ωα ⊂⊂ Ω or Ω \ Ωα ⊂⊂ Ω}.

This means that the problem (2.9) is a problem of constrained maximization:

(3.1) max
Ωα∈D : vol(Ωα)=qα

J(Ωα).

A constrained optimization problems with only equality constraints are often solved by a
method of Lagrange multipliers. By introducing Lagrangian functional

(3.2) L(λ,Ωα) := J(Ωα)− λvol(Ωα),

where λ ∈ R, we can introduce an unconstrained maximization problem:

(3.3) max
Ωα∈D

L(λ,Ωα).

Ideally, we would like that for any volume constraint qα there exists λ(qα) ∈ R such that
(3.1) is equivalent to (3.3). Although, the actual proof that (3.1) is equivalent to (3.3)
for some λ ∈ R is still lacking, in numerics such replacement of problems is one possible
heuristics for solving constrained problems. Henceforth, for simplicity we shall assume
that we were given fixed λ = λ(qα) ∈ R corresponding to the volume constraint qα and
focus on a finding a numerical solution to (3.3). An alternative is to introduce an update
strategy for a multiplier λ e.g. the one given by the augmented Lagrangian method (see
[37],[12]).

The next step is to define an ascent vector for the shape functional through the frame-
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Figure 3.1: Left: The original (Lipschitz) boundary. Right: The boundary after an update
is not Lipschitz and the shape changes topology.

work of the shape derivative. For any θ ∈Wk,∞
0 (Ω,Rd), k ∈ N the following holds

L((Id +θ)Ωα) = L(Ωα) + L′(Ωα; θ) + o(‖θ‖k)

so we define an ascent vector for L in the following manner:

Definition 3.1.1. We say that θ ∈ Wk,∞
0 (Ω,Rd) is an ascent vector for the shape func-

tional L if there exists δ > 0 such that for any t ∈ 〈0, δ〉

L((Id +tθ)Ωα) > L(Ωα).

Observe that θ ∈ Wk,∞
0 (Rd,Rd) implies that the outer boundary ∂Ω remains fixed

during perturbations Id +tθ. This is standard for transmission models since we are only
interested in changes to the interface Γ. After finding the ascent vector one then needs to
define a step size t0 and apply Φt0θ = Id +t0θ to generate the next approximation of the
interface Γ. In summary, every considered algorithm will follow the same procedure:

Algorithm 3.1.2.

1. Input: approximation of interface Γ: Tk

2. Construction of ascent vector θ

3. Determining step size t0

4. Output: new approximation of interface Γ: Tk+1

3.1.2 Representation of shapes
The first step in numerical implementations is to determine a representation of shapes,
particularly their boundaries. An explicit (Lagrange) approach represents boundary by
the union of convex polygons (lines in 2D, triangles in 3D) arranged so that the intersection
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Figure 3.2: Left: Lagrange method in 2D. Right: Level set function φ in 2D.

of any two polygons is either a shared vertex or an edge or the empty set. This explicit way
of approximating boundary simplifies any movement, e.g. by a perturbation of identity
Φtθ = Id +tθ we only have to update a position of each vertex. Unfortunately, this
approach requires special care when dealing with changes in topologies which may occur
because we do not require for the map Φtθ to be a bijection (observe Figures 3.1).

Another implicit approach is by a level set function which can be used to represent a
shape. A level set function φ : Ω→ R is usually constructed by the following property:

(3.4)


Ωβ = φ−1(〈0,∞〉),

Γ = φ−1({0})
Ωα = φ−1(〈−∞, 0〉

meaning that the boundary Γ is implicitly given as the preimage of {0} under φ. The
method can handle topological changes of shapes in a more elegant way, e.g. by replacing
φ by φ ± ε for a small constant ε. Both representations of shapes shall be used in our
numerical implementations.

3.1.3 Calculations of ascent vector for first order shape deriva-
tive

The second step in the algorithm is a construction of an ascent vector. There are many
ways how this can be accomplished, but we will focus on one particular approach which
is technically easier to implement. We say that a distribution T : C∞c (D;C) is continuous
if the following condition is satisfied:

∀K ⊂⊂ D, ∃n ∈ N, ∃Ck > 0 : |T (ϕ)| ≤ ‖ϕ‖Wn,∞(K).
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The order of distribution T is the smallest integer k ∈ N for which the following holds:

∀K ⊂⊂ D, ∃Ck > 0 : |T (ϕ)| ≤ ‖ϕ‖Wk,∞(K)

If this integer does not exist, the order of the distribution is defined as infinity.
Let us recall the Hadamard structure theorem for the first order shape derivative:

Theorem 3.1.3. Assume that ∂ω ⊂⊂ D is of class Ck and shape functional J such that
θ 7→ J((Id +θ)ω) is well defined in a neighbourhood of Wk+1,∞(Rd;Rd) and differentiable
at zero. Then

C∞c (D,Rd)→ R : θ 7→ J ′(ω; θ)

defines a distribution of order less than or equal to k ≥ 0. Moreover, if ∂ω is of class
Ck+1 then there exists a continuous functional l1 : Ck(∂ω)→ R such that

J ′(ω, θ) = l1(θΓ · n).

Proof. See Chapter 9, Section 3.4 of [21], Theorem 3.6. and Corollary 1. See also Section
5.9 of [30].

It means that the support of J ′(ω; θ) is on the boundary ∂ω. For example, in Theorem
2.2.16 the shape derivative of the energy functional in our transmission problem is given
by the expression (2.23):

(3.5) J ′(Ωα; θ) =

∫
Γ

θ · nα
[

2

{
α

∣∣∣∣ ∂uα∂nα

∣∣∣∣2 − β ∣∣∣∣ ∂uβ∂nα

∣∣∣∣2
}
−
{
α|∇uα|2 − β|∇uβ|2

}]
dS.

Usually, we have an existence of g0 ∈ L2(∂ω) such that

J ′(ω; θ) =

∫
∂ω

g0 θ · n dS.

Proposition 2.1.12 states that for all ”free PDE” shape functional G(ω) =
∫
ω
f(x) dx

if ω is Lipschitz domain and f ∈ W1,1(Rd) then its shape derivative at ω in direction
θ ∈Wk,∞(Rd;Rd) is in the following form:

G′(ω; θ) =

∫
∂ω

f θ · n,

Furthermore, one works with g0 ∈ C(∂ω) whenever it is possible. For the shape
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derivative of the volume this is satisfied since for any θ ∈Wk,∞
0 (Ω;Rd):

vol′(Ωα; θ) =

∫
Γ

1(θ · n) dS

if the Assumption 2.1.16 holds. For the expression (3.5) this is also true under higher
regularity assumptions to the interface and the right-hand side. For example in both
dimension two and three for the right hand side f ∈ H1(Ω) and the interface Γ being of
class C3 we have that uα ∈ H3(Ωα) and uβ ∈ H3(Ωβ). The classical Sobolev Embedding
Theorem then states that uα ∈ C1(Ωα) and uβ ∈ C1(Ωβ) (see Theorem 6.3 in [2]) meaning
that integrand in (3.5) consists of a continuous function multiplied with the term (θ ·n).
Therefore Lagrangian functional (3.2) for λ > 0 admits the form

L′(Ωα; θ) = J ′(Ωα; θ)− λ vol′(Ωα; θ) =

∫
Γ

g0 θ · n dS

where g0 ∈ C(Γ) under suitable regularity assumptions.
Let θ ∈Wk,∞

0 (Rd,Rd), k ∈ N be such that

(3.6) θ = g0n, on Γ.

Since the following holds

L((Id +tθ)Ωα)− L(Ωα) = tL′(Ωα; θ) + o(t)

= t

∫
Γ

g2
0 dS + o(t)

there exists δ > 0 such that for any t ∈ 〈0, δ〉

L((Id +tθ)Ωα)− L(Ωα) > 0,

meaning that θ is an ascent vector for L. Unfortunately, possible lack of regularity of g0

can make this reasoning ambiguous, e.g. for the interface Γ of C2 we have existence of
(3.5) but g0 may fail to be continuous. One way to mitigate this problem is by a classical
regularization technique by virtue of the Poisson equation:

(3.7)


−∆θ = 0, in Ω

∇θn = g0n, on Γ

θ = 0, on ∂Ω,+.

By the Lax-Milgram lemma we have a unique solution of (3.7) denoted by θ0 ∈ H1
0(Ω)
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which satisfies the following:

0 <

∫
Ω

∇θ0 : ∇θ0 dx =

∫
Γ

g0θ0 · n dS, for g0 6= 0,

making it an ascent vector for L. Moreover, (3.6) is replaced by the following condition
(in terms of traces):

∇θ0n = g0n, on Γ.

Remark 3.1.4. The previous extensions is motivated by the Neumann-to-Dirichlet map.
If θ ∈ H1(ω) solves the following problem:{

−∆θ = 0, in ω
∇θn = gn, on ∂ω,

then the map gn 7→ θ|∂ω : H−1/2(∂ω;Rd) → H1/2(∂ω;Rd) is well defined and gives an
ascent vector θ for the functional G(θ) =

∫
∂ω
gθ · n dS whenever the velocity field is

not regular enough. One can also smooth boundary data g directly by applying Laplace-
Beltrami operator on the boundary ∂ω. For details see [8].

In the same manner one can use a scalar product for H1(Ω) to obtain a vector function
θ ∈ H1

0(Ω) such that∫
Ω

η∇θ : ∇ϕ+ θ · ϕ dx =

∫
Γ

g0ϕ · n dS, ϕ ∈ H1
0(Ω)

for some fixed η > 0. Note that such θ also doesn’t satisfy condition (3.6) but it is an
ascent vector for the functional L since

0 <

∫
Ω

η∇θ : ∇θ + θ · θ dx =

∫
Γ

g0θ · n dS, for g0 6= 0.

Thus one can construct an ascent vector by solving the following boundary value problem:

(3.8)


find θ ∈ H1

0(Ω)d such that∫
Ω

η∇θ : ∇ϕ+ θ · ϕ dx = L′(Ωα;ϕ), ϕ ∈ H1
0(Ω).

where η > 0. The problem (3.8) is considered in [9],[34],[35] and it seems appropriate for
transmission problems, as well for problems arising in the electrical impedance tomog-
raphy. The right-hand side L′(Ωα; ·) is usually left in the distributional (volume) form.
From the numerical aspect, this is reasonable, since it requires less regularity then bound-
ary representations. Recent results have also shown that a distributed shape derivative is
more accurate than a boundary representation from a numerical point of view (see [42]).
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Remark 3.1.5. Let us emphasize the fact that the space Wk,∞
0 (Ω,Rd), k ∈ N is not a

Hilbert space, since the scalar product

〈θ, ϕ〉 =

∫
Ω

η∇θ : ∇ϕ+ θ · ϕ dx

is not complete for the norm induced by the preceding inner product. Note that the com-
pletion of the space Wk,∞

0 (Ω,Rd) with respect to the scalar product is H1
0(Ω), for which the

notion of shape differentiability is not defined. Indeed, as we can see in Definitions 2.1.9
and 2.1.10 the perturbations of identity Id +θ are not even continuous for θ ∈ H1

0(Ω).
Furthermore, in [35] a scalar product for Hk(Ω) is used but we are not going to implement
it because it may lead to excessive numerical regularization. Also we shall be using only
distributed representations of the shape derivative so there is no need for a scalar product
involving derivatives of the order higher then 1.

Therefore, we propose the following numerical method for solving problem (2.9):

Method 3.1.6 (Gradient method). In the second part of Algorithm 3.1.2 we con-
struct an ascent vector using the first order shape derivative of L by solving:
find θ ∈ H1

0(Ω) such that∫
Ω

η∇θ : ∇ψ + θ · ψ dx = L′(Ωα;ψ), ψ ∈ H1
0(Ω)

where η = η(Tk) > 0 depends on the average diameter of simplices in triangulation.

One can understand solution of (3.8) as an “extension” of L′(Ωα; θ) from interface Γ

to the domain Ω, so we shall be calling it a gradient method. Strictly speaking we are
dealing with an ascent method which uses an approximative extension in H1 obtained
from the first order shape derivative.

Remark 3.1.7. The constant η is a small positive parameter, typically of the order of
mesh cell diameters. The motivation behind this approach can be found indirectly in
[54],[23] and will play key role later for implementation of the second order shape deriva-
tive. For an ascent vector based only on the first order shape derivative standard scalar
product with η = 1 can be used. Numerically, an ascent vector calculated with smaller η
has the support smaller compared to the ascent vector corresponding to a larger η.

3.1.4 Level set function and applications
By using an explicit (Lagrange) representation of shapes we can apply any perturbation
Φtθ in a straightforward manner. In Section 3.1.6 an example of such implementation of
gradient method in 2D is written in Freefem++. While the simulation is quite stable one
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can easily observe that implemented explicit representations of shape does not change
the topology of the shape. Essentially, in order to achieve convergence one has to offer
an initial shape approximation which is topologically equivalent to the optimal solution
(notice that the existence of optimal solution is not a trivial questions for problems which
are not spherically symmetric).

Implementations based on level set functions, also known as the level set methods,
for a given shape Ωα introduce a scalar function φ which satisfy (3.4). There are several
ways how one can create such level set function. One canonical way to create it is by an
interface distance function (see Definition 2.2.7):

(3.9) φ(x) := dΓ|Ω(x) =


dist(x,Γ), x ∈ Ωβ

0, x ∈ Γ

−dist(x,Γ), x ∈ Ωα.

Numerically, one can obtain it as a steady state solution of the unsteady Eikonal equation,
also known as the redistancing equation:

(3.10)

{
∂tφ+ sgn(φ0)(‖∇φ‖ − 1) = 0, in 〈0,∞〉 × Ω

φ(0, ·) = φ0(x), on Ω,

where φ0 is any continuous function that satisfies (3.4). For details see [20].

Hamilton-Jacobi equation
Assume that the interface Γ evolves under fictitious time, meaning Γ(t) = Φtθ(Γ) where θ
is a given ascent/descent vector for L. Then, there exists a mapping t 7→ φ(t, ·) with the
following property

φ(t, x(t)) = 0 ⇐⇒ x(t) ∈ Γ(t).

Taking the derivative of the above expression with respect to t gives

∂tφ+ ẋ · ∇φ = 0.

Since the ascent/descent vector θ is already calculated and Γ(t) = (Id +tθ)Γ then ẋ(t) = θ

giving us a simple Hamilton-Jacobi equation:

(3.11) ∂tφ+ θ · ∇φ = 0.

Observe that the previous equation is posed in the whole domain Ω and not only on the
interface Γ.

Numerically, we are dealing with a sequence of level set function φk, k = 0, 1, . . . . For
the current function φk we calculate the respective ascent/descent vector θk and define
step size tk > 0. From (3.11) we know how to propagate φk by the following level set
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advection equation:

(3.12)

{
∂tφ+ θk · ∇φ = 0, in 〈0, tk〉 × Ω,

φ(0, ·) = φk, in Ω.

We can see that transporting φk with (3.12) is equivalent to moving the interface Γ along
direction θ. Then we use the solution φ of (3.12) to define the next level set function by
φk+1 := φ(tk, ·). Even if we start with φk = bΓk solution of advection equation (3.12) will
fail to be an interface distance function. Therefore, it is recommended to reinitialize the
level set function after several iterations.

Remark 3.1.8. Periodic reinitialization of the level set function by (3.9) is standard in
shape optimization, see [8]. The reinitialization is sometimes done after every step of
level set advection as in [6], meaning that bΓk is used instead of φk for initial condition in
(3.12).

To illustrate why this is needed, one can imagine a level set function φk with two
distinct disjunct areas: in area around Γ1 ⊂ Γ, ‖∇φk‖ ≈ 50‖n‖ and in area around
Γ2 ⊂ Γ ‖∇φk‖ ≈ 0.5‖n‖. Let’s say that ascent vector θk for L on Γk satisfies locally in
an area around Γ1 and Γ2 that θk ≈ n, meaning that homeomorphism Id +tθk should move
boundaries Γ1 and Γ2 approximately the same amount in the direction of the normal of Γ.
By solving (3.12) this is not satisfied since ”moving” of boundary Γ1 results in drastically
smaller change then that of boundary Γ2. This means that an advection (3.12) could
lead to an incorrect applications of the homeomorphism Φtθ = Id +tθk, making periodic
reinitialization of level set function a necessary step.

How often should one reinitialize a level set function? This depends on the concrete
optimization problem, particularly on regularity of state equations, functional, choice of
initial approximation, etc. Heuristically, one needs to find balance between the computa-
tional cost (speed) and the stability of numerical scheme. In [34] where the distributed
(volume) shape gradient was used it was observed experimentally that the level set func-
tions φk remained a good approximations of the corresponding oriented distance functions
during simulations. They hypothesized this is due to better regularity of the velocity vector.

Scalar approach
To complete this section let us also describe another popular approach for constructing
ascent/descent vectors. As we mentioned before when the shape derivative is given with

L′(Ωα; θ) =

∫
Γ

g0 θ · n dS

for some g0 ∈ L2(Γ), the main idea is to construct an ascent vector θ ∈ Wk,∞
0 (Rd,Rd)
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with the following property:
θ = g0n, on Γ.

Then Hamilton-Jacobi equation (3.11) on Γ satisfies

∂tφ+ g0n · ∇φ = 0.

Since the normal on Γ can be recovered from the level set function by n = ∇φ
‖∇φ‖ we get:

∂tφ+ g0n · ∇φ = ∂tφ+ g0
∇φ
‖∇φ‖ · ∇φ = ∂tφ+ g0‖∇θ‖ = 0, on Γ.

If we were given an extension g of g0, we have well defined Hamilton-Jacobi equation on
Ω:

(3.13) ∂tφ+ g‖∇φ‖ = 0.

Then, we only have to solve a level set advection equation in order to move the interface.
Extension g ∈ H1

0(Ω) of g0 can be constructed by means of the following scalar elliptic
equation:

(3.14)
∫
Ω

∇g · ∇ϕ+ gϕ dx =

∫
Γ

g0ϕ dS, ϕ ∈ H1
0(Ω)

provided g0 ∈ H1/2(Γ).
There are several advantages for using scalar this approach. Main advantage is that

everything is done with less variables, e.g. in the vector case in order to define a vector
θ, one need to solve the system of partial differential equations, while in the scalar case
extensions g can be found with only one partial differential equation. The other advantage
of the scalar version is the fact that an ascent/descent vector is never fully constructed
since in (3.13) advection for φ only requires scalar function g. When dealing with contact
problems, i.e. connection of two disjunct parts of interfaces, there are also numerical
advantages regarding regularity of the vector field θ. If seen as distribution over Ω, the
normal velocity is more regular than the vector velocity (see Figure 3.1 where θ · n is of
constant sign unlike θ which changes orientation). For more details, see [23].

Remark 3.1.9. While the scalar approach offers several advantages, it always highly
depends on the background problem. Finding g0 numerically may be ill-posed, especially
for transmission problems where discontinuous jumps are present. Observe that for energy
functional respective boundary shape derivative is:

J ′(Ωα; θ) =

∫
Γ

θ · nα
[

2

{
α

∣∣∣∣ ∂uα∂nα

∣∣∣∣2 − β ∣∣∣∣ ∂uβ∂nα

∣∣∣∣2
}
−
{
α|∇uα|2 − β|∇uβ|2

}]
dS.
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making g0 a difference of two functions in L2(Γ). Generally, just evaluation of bound-
ary integrals is hard task and should be taken with special care making distributed shape
derivative much easier to implement as described in Method 3.1.6. Furthermore, support
of distributed L′(Ωα; θ) is again present in the vicinity of the interface as one can see in
Figure 3.3 where θ is well defined in a neighbourhood of the interface.

(a) η = 1 (b) η = 0.015 ≈ mesh size

Figure 3.3: Ascent vector θ obtained by Method 3.1.6.

By taking a smaller η and a finer mesh, the support of the distributed (volume) shape
derivative shrinks as demonstrated on Figure 3.3. While there is no difference for Method
3.1.6, with appropriate scaling of the step size smaller η will play key role for the second
order shape derivative. This also means that the distributed shape derivative can only be
computed in a neighbourhood of the interface as it was done in [1].

3.1.5 Newton-like methods
If L′′(Ωα; θ, ψ) and L′(Ωα; θ) are known, ideally one would like to find θ ∈ Wk,∞

0 (Rd,Rd)

such that

(3.15) L′′(Ωα; θ, ψ) = −L′(Ωα, ψ), ψ ∈Wk,∞
0 (Rd,Rd),

or equivalently an extreme point of

θ 7→ L′(Ωα, θ) +
1

2
L′′(Ωα; θ, θ)

since locally we want to maximize (or minimize) Lagrange function L.
There are many approaches for implementation of Newton’s like methods for the pre-

vious problem. For Newton methods based on the second order shape derivatives in a
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boundary form we refer the interested reader to the doctoral dissertation by Vie [54],
where an extensive overview of several numerical implementations is given (see also Re-
mark 3.1.11). Naturally, we would like to find a solution to (3.15) directly, again by
replacing space Wk,∞

0 (Rd,Rd) by Hk
0 (Ω;Rd) but this trick does not work particularly well

for the second order methods. One can show that the map (θ, ψ) 7→ L′′(Ωα; θ, ψ) is a bilin-
ear continuous functional which is not coercive on Hk

0 (Ω;Rd), i.e. there are no guaranties
that there exists θ ∈ H1

0(Ω) such that

L′′(Ωα; θ, ψ) = −L′(Ωα, ψ), ψ ∈ H1
0(Ω)

This is quite standard since differentiability is usually expressed in terms of the norm of
space Wk,∞(Rd;Rd), but even if the coercivity holds, it holds only for a (weaker) norm of
spaces like C(Γ) or H1/2(Γ). One way to treat this deficiency is by solving (3.15) directly
on the interface Γ.

Let us recall the structure theorem regarding the first and the second order shape
derivative:

Theorem 3.1.10. Assume that ∂ω is compact, J = J(ω) is a given shape functional and
k ∈ N.

1) If ∂ω is of class Ck+1 and J is differentiable at ω then there exists a continuous
linear map l1 : C1(∂ω)→ R such that for all θ ∈ W k+1,∞(Rd,Rd):

J ′(ω; θ) = l1(θ · n).

2) If ∂ω is of class Ck+2 and J is twice differentiable at ω then there exists a continuous
bilinear map l2 : C2(∂ω)→ R such that for all θ, ψ ∈ W k+2,∞(Rd,Rd):

J ′′(ω; θ, ψ) = l2(θ ·n, ψ ·n) + l1(∇nT θ∂ω · ψ∂ω −∇∂ω(θ ·n) · ψ∂ω −∇∂ω(ψ ·n) · θ∂ω)

Remark 3.1.11. The structure theorem depends highly on the choice of a family of home-
omorphism by which the shape ω, or rather the boundary of the shape, is propagated. A
shape derivation with respect to a normal evolution is considered, particularly we refer to
Theorem 10.1.4. in [54]:

Theorem 3.1.12. Let k ∈ N, J = J(ω) be a shape functional, twice differentiable at
domain ω0 with Ck+2 boundary and v(t, x) be a Ck real function defined on R+ × Rd.
Let φ0 be the signed distance function associated to ω0. For some time τ > 0, let φ ∈
Ck+2([0, τ ]× Rd) be a smooth solution of

(3.16)

{
∂tφ(t, x) + v(t, x)|∇φ(t, x)| = 0,

φ(0, x) = φ0(x).
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Define ωt = {x ∈ Rd : φ(t, x) < 0} and k(t) = J(ωt). Then k is twice differentiable at 0

and it holds

k′(0) = l1(v(0, ·)) and k′′(0) = l2(v(0, ·), v(0, ·)) + l1(zv(0, ·)),

where linear form l1 and bilinear form l2 are defined as in Theorem 3.1.10, and where
zv = ∂tv + v∇v · n.

Then

J(ωt) = J(ω0) + tk′(0) +
t2

2
k′′(0) + o(t2)

= J(ω0) + tl1(vγ) +
t2

2
(l2(vγ, vγ) + l1(∂tvγ + vγ∇vγ · n)) + o(t2)

where vγ is chosen as an function from ∂ω to R, which for simplicity is time-independent,
i.e. ∂tvγ = 0. By choosing vγ such that

(3.17) l2(vγ, w) = −l1(w), w ∈ Ck(∂ω)

one can construct an extensions of vγ such that l1(vγ∇vγ · n) ≤ 0 by adapting Eikonal
equation (3.10). Problem (3.17) is solved numerically on the ∂ω, offering scalar version
of a descent vector.

As we can see the support of the second order shape derivative is again present in Γ,
e.g. see result of the Theorem 2.3.5, therefore it is natural to try to solve a problem (3.15)
on the interface Γ. Notice that u′α(θ) and u′β(θ) can be understood as functions of (θ ·n)

from (2.28) which justifies the expression in Theorem 3.1.10.
Now we have everything to present a modified Newton method for searching an ascent

vector for the Lagrange functional L. The main idea is to solve (3.15) using distributed
volume representation:

L′′(Ωα; θ, ψ) = −L′(Ωα, ψ), ψ ∈ H1
0(Ω).

First due to Remark 2.3.9 instead of using the full second order shape derivative

J ′′(Ωα; θ, ψ) = J ′′design(Ωα; θ, ψ) + J ′′u (Ωα; θ, ψ)

we replace it with only J ′′design(Ωα; θ, ψ) since J ′′u (Ωα; θ, ψ) always leads to a full matrix.
Now we need to solve

L′′design(Ωα; θ, ψ) = −L′(Ωα, ψ), ψ ∈ H1
0(Ω),

where L′′design(Ωα; θ, ψ) = J ′′design(Ωα; θ, ψ) − λvol′′(Ωα; θ, ψ). Due to the obvious lack of
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coercivity and since we are searching for the maximum we introduce L′′design(Ωα; θ, ψ) −
〈θ, ψ〉 instead of L′′design(Ωα; θ, ψ) on the left-hand side of the equation, thus giving us

−〈θ, ψ〉+ L′′design(Ωα; θ, ψ) = −L′(Ωα, ψ), ψ ∈ H1
0(Ω).

Since we want to solve L′′design(Ωα; θ, ψ) = −L′(Ωα, ψ) on the interface Γ for scalar product
we choose

〈θ, ψ〉 =

∫
Ω

η∇θ : ∇ψ + θ · ψ dx

where η is small positive parameter, typically of the order of mesh cell diameters. We
propose the following heuristic for finding the ascent vector:

Method 3.1.13 (Newton-like method). In the second part of Algorithm 3.1.2 con-
struct an ascent vector using the first and the second order shape derivative of L:
find θ ∈ H1

0(Ω) such that∫
Ω

η∇θ : ∇ψ + θ · ψ dx = L′(Ωα;ψ) + J ′′design(Ωα; θ, ψ)− λvol′′(Ωα; θ, ψ), ψ ∈ H1
0(Ω),

where η = η(Tk) > 0 depends on the size of average diameter of simplices in trian-
gulation.

Remark 3.1.14. The idea behind this Newton-like method is rather simple. Let Th be a
uniform conforming triangulation of Ω of size h. We introduce Vh ⊂ H1

0(Ω) the Lagrange
finite elements space of continuous scalar function that are piecewise linear functions on
each simplex of the triangulation. For each vertex qi, i = 1, 2, ..., Nh the basis function φi
in Vh is given with the following properties:

φj(qi) = δij i = 1, ..., Nh, j = 1, ...., Nh

and for every v ∈ Vh

v(x) =

Nh∑
i=1

v(qi)φi(x).

Ideally, we would like to solve the following variational equation:

(3.18)

{
find uh ∈ Vh, such that

L′′design(Ωα;uh, vh) = −L′(Ωα; vh), vh ∈ Vh.

but this leads to severely ill-posed problem since the support of the L′′(Ωα;uh, vh) is present
only on the interface Γ. If we write uh =

∑Nh
i=1 uiφi(x) and test with v = φj for j =

1, 2, ..., Nj we obtain stiffness matrix of problem (3.18) Ai,j = L′′design(Ωα;φi, φj) and the
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right hand side Fi = −L′(Ωα;φi) giving us the following linear system

(3.19) AU = F,

where Ui = (u1, ..., uNh)τ . After testing with initial distribution of phases (see Figure 3.4)

Figure 3.4: Initial approximation

with the best ascent method we have found the following: the stiffness matrix A from
(3.19) is indefinite matrix. In particular as can be seen in Figure 3.5 minimal eigenvalues
are always less the −0.5. Furthermore, in several iteration if one takes ascent vector
θk ∈ H1

0(Ω) from Method 3.1.6 for Ωk
α then both values L′′design(Ωk

α; θk, θk) and L′′(Ωk
α; θk, θk)

change signs. This limits possible numerical approaches but Method 3.1.13 shows rather
nice behaviour.

Figure 3.5: Minimal and maximal eigenvalue of stiffness matrix for each iteration of the
best ascent method.
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3.1.6 Code in Freefem++
1 r e a l alpha = 0 . 5 ; // conduc t i v i t y
2 r e a l beta = 1 . 0 ;
3 r e a l r0 =0.1 ; // r a d i i o f annulus
4 r e a l r1 =1.0 ;
5 r e a l lambda = . 0 5 ; // lagrange mu l t i p l i e r ( f i xed , f o r s imp l i c i t y )
6 r e a l c o e f =1; // s i z e o f the s tep f o r shape grad i en t method
7 r e a l s i zeT =0.06; // f o r mesh s i z e
8 r e a l eta =0.1 ; // f o r ascent vec to r
9 i n t maxIterat =200; // number o f i t e r a t i o n s

10 func t runcate =(((x∗x+y∗y ) <0.999∗ r1^2 && (x∗x+y∗y ) >1.001∗ r0 ^2)? 1 : 0 ) ;
11 // borders :
12 border OuterBorder ( t =0 ,2∗ pi ) { x=r1 ∗ cos ( t ) ; y=r1 ∗ s i n ( t ) ; } // outer border
13 border InnerBorder ( t =0 ,2∗ pi ) { x=r0 ∗ cos ( t ) ; y=r0 ∗ s i n ( t ) ; } // inner border
14 border I n t e r f a c e ( t =0 ,2∗ pi ) { x=0.4+0.2∗ cos ( t ) ; y=0.0+0.4∗ s i n ( t ) ; } // i n t e r f a c e
15 // areas :
16 mesh Omega = buildmesh ( OuterBorder (50)+I n t e r f a c e (30)+InnerBorder (−20) ) ;
17 Omega = adaptmesh (Omega , s izeT , I sMet r i c=1) ;
18 // i t e r a t i o n o f the method
19 f o r ( i n t k=0 ; k<maxIterat ; ++k) {
20 // f o r c r e a t i n g conduc t i v i t y
21 f e spac e Ph(Omega , P0) ;
22 Ph reg=reg i on ;
23 i n t nBeta=reg ( . 4 5 , . 0 ) ;
24 i n t nAlpha=reg(−r1 +0 .1 , . 0 ) ;
25 Ph AA = alpha ∗( r eg i on==nAlpha ) + beta ∗( r eg i on==nBeta ) ;
26 // f o r v i sua l , could be turn o f f
27 p lo t (AA, f i l l =1,ShowMeshes=1,wait=0) ;
28 // c r e a t i n g space f o r vec to r func t i on
29 f e spac e VO(Omega , P1) ;
30 VO u , theta1 , theta2 , v1 , v2 ;
31 problem StateEquation (u , v1 ) =
32 int2d (Omega) (AA∗(dx(u) ∗dx( v1 )+dy(u) ∗dy( v1 ) ) )− int2d (Omega) ( v1 )
33 + on ( OuterBorder , u=0 ) + on ( InnerBorder , u=0 ) ;
34 // c r e a t i on o f ascent / descent vec to r func t i on theta
35 problem Main ( [ theta1 , theta2 ] , [ v1 , v2 ] ) =
36 int2d (Omega) ( eta ∗(dx( theta1 ) ∗dx( v1 )+dy( theta1 ) ∗dy( v1 )+dx( theta2 ) ∗dx( v2 )+dy( theta2 )

∗dy( v2 ) )+ theta1 ∗v1+theta2 ∗v2 )
37 − int2d (Omega) (2∗AA∗( dx(u) ∗dx(u) ∗dx( v1 )+dy(u) ∗dy(u) ∗dy( v2 ) + dx(u) ∗dy(u) ∗(dx( v2

)+dy( v1 ) ) )+ (dx( v1 )+dy( v2 ) ) ∗(2∗u−AA∗(dx(u) ∗dx(u)+dy(u) ∗dy(u) ) ) )
38 − int2d (Omega) ( lambda∗ reg ∗(dx( v1 )+dy( v2 ) ) )
39 + on ( OuterBorder , theta1=0 , theta2=0 ) + on ( InnerBorder , theta1=0, theta2=0 ) ;
40 StateEquation ; Main ;
41 co e f =2.0 ; // f o r determining i f movemesh could be app l i ed
42 r e a l minT0 = checkmovemesh (Omega , [ x , y ] ) / 5 . 0 ;
43 whi le (1 ) {
44 r e a l minT = checkmovemesh (Omega , [ x+coe f ∗ t runcate ∗psi1 , y+coe f ∗ t runcate ∗ ps i 2 ] ) ;
45 i f (minT > minT0) break ;
46 co e f /=2;
47 }
48 // moving mesh
49 Omega = movemesh (Omega , [ x+coe f ∗ t runcate ∗psi1 , y+coe f ∗ t runcate ∗ ps i 2 ] ) ;
50 Omega = adaptmesh (Omega , s izeT , I sMet r i c=1) ;
51 }

The implementation of the algorithm in Freefem++ is particularly simple and results
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by a code no longer then 100 lines as we can see above. Applying the map Φtθ = Id +tθ is
done using movemesh. The procedure checkmovemesh was used to generate the step size
which ensures that moving of mesh doesn’t create wrong ordering of elements, i.e. volume
of triangle should not be negative. In 2D for Freefem++ we used adaptmesh which plays
a key role for creating uniform regular mesh. Surprisingly, the previous code works very
well in finding the optimal shape of the problem (2.9) considering that Lagrange (direct)
representation is not best suited for changing the topology of a shape. For details about
used procedures and short overview we recommend [29]. See also [9] for using Freefem++

with shape derivatives. The most recent manual and software can be find on the webpage:
https://freefem.org/.

Several versions of the algorithm using level set function approach were created. In
current implementations we have used two algorithms mshdist and advect which do not
come with Freefem++. The latter is a program for solving linear advection problems
in two and three dimensions and mshdist is a simple algorithm to generate the signed
distance function to given objects in two and three space dimensions (see [20]). They
can be find on webpage: https://github.com/ISCDtoolbox. We would like to thank C.
Dapogny for his advices and help on this topic.

3.2 Numerical results
3.2.1 Test of gradient based methods
In Figure 3.6 several iterations of the Algorithm 3.1.2 with 3.1.6 applied to (2.9) with a
constant right-hand side f ≡ 1 on the annulus Ω are presented. White circles with radii
r+, r− are calculated from system (1.40a)-(1.40c) with the prescribed amount q0 of the
first phase and represent interface between phases for the optimal shape given by Theorem
1.3.5.

Notice that we can guess the optimal radii r+, r− after few iterations: in all iterations
the shape which represents phase β is a subset of the corresponding optimal shape. This
phenomena is observed for different qα but with small constant step size of the algorithm.

Figure 3.7 compares the optimal radii calculated from (1.40a)-(1.40c) and numerical
approximations of radii obtained by the shape gradient method. While resulting differ-
ences are expected since domain is not a perfect annulus, with finer mesh one obtains
more accurate approximation.

In Figure 3.8 the comparison of numerical and exact solution for multiple state optimal
design problem is presented in terms of radii r∗ and r∗, where annulus Ω was approxi-
mated with 2100 triangles. Here, the calculation of the shape derivative is straightforward:
J ′(Ωα, ψ) = µ1J

′
1(Ωα, ψ) + µ2J

′
2(Ωα, ψ) where J ′1(Ω, ψ) and J ′2(Ω, ψ) are the shape deriva-

tives of energy functionals which are expressed by the formula (2.22).
Level set function was utilized in several manners. Particularly, we combined it with
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Chapter 3. Numerical approximation

Figure 3.6: Numerical results for the single-state problem (d = 2) obtained with
Freefem++; the white circles represent interface between phases in the optimal shape.
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Figure 3.7: The comparison of the exact and numerical radii on a mesh with approximately
5300 triangles (the example from Section 2, d = 2).
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Figure 3.8: The comparison of the exact and numerical radii for the multiple state problem
for α = 1, β = 2, r1 = 1, r2 = 2, µ1 = µ2 = 0.5, and b = 2.5.

Figure 3.9: Topological changes by using level set functions.
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Figure 3.10: 3D case with level set method.

Lagrange (direct) representation to handle topological changes (see Figure 3.9). There are
several issues with three-dimensional problems for Lagrange (direct) representation. On
the other hand adapting level set function as the representations of shapes seems rather
easy. Results for 3D case can be seen in Figure 3.10.

3.2.2 Comparison of gradient and Newton-like methods
In Figures 3.11 and 3.12 a comparison of two different strategies for construction of an
ascent vector described by Methods 3.1.6 and 3.1.13 We follow the same example as in
the last subsection. Convergence history of Lagrange functional L = J −λvol is shown in
Figure 3.13. We have implemented the optimal step size, meaning that at any iteration
we solve numerically the following problem.

min
t≥0

L((Id +tθ)Ωα)

for given ascent vector θ. Note that for the small step size there is no significant differ-
ences between methods. We would like to point out that Newton-like method achieves
convergence in a small number of only 13 iterations which is half the number of iterations
needed for gradient method. Furthermore, the second order method may offer fast way
of calculating the optimal step size making it significantly faster then gradient method.
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Figure 3.11: Gradient method

Figure 3.12: Newton-like method
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Figure 3.13: Convergence history of L for gradient and Newton-like method
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