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Povjerenstvo je rad ocijenilo ocjenom .
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Chapter 1

Introduction

The Latin word optimum means the best. Therefore, optimization is the art of determin-
ing the best among a number of different alternatives. Maximization and minimization
problems have been studied and solved since the beginning of the mathematical analysis,
but modern optimization theory started around 1948 with George Dantzig who introduced
and popularized the concept of linear programming and proposed a solution algorithm [7].
Constrained optimization is one of the most used mathematical concepts for modelling
real-world problems. Problems of that type often appear in different areas of science, such
as structural engineering, protein folding and machine learning. Also, making any kind
of business decision typically involves using optimization, i.e., when maximizing profit
or minimizing loss. But, despite their widespread usage, constrained problems may be
extremely difficult to solve. On the contrary, there is a wide variety of algorithms which
solve unconstrained problems easily and efficiently. This leads to an idea of rewriting a
constrained problem as unconstrained one. While solving a constrained nonlinear mini-
mization problem in which we can not eliminate the constraints easily, it is very important
to balance the aims of reducing the objective function and staying inside the feasible re-
gion. The basic idea of a penalty function is a combination of the objective function and a
penalty parameter which controls constraints violations by penalizing them. Penalty meth-
ods offer a simple and straightforward method for handling constrained problems. Also,
they are especially interesting because, to be able to overcome possible slow convergence,
all aspects of optimization theory are brought into play.

1.1 A Brief Introduction to Optimization
First of all, some useful details for further consideration and development of the theory
will be described. As stated earlier, our strategy for solving a constrained problem is
to solve a sequence of unconstrained ones. The next step is to present important results
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CHAPTER 1. INTRODUCTION 2

related to constrained as well as unconstrained optimization from [7]. We start with the
basic definitions about functions and then state important results connected to constrained
optimization. There are two types of optimization, constrained and unconstrained. An
unconstrained optimization problem is to minimize function f (x) without any constraints
on x.

Definition 1.1.1. A point x̄ ∈ X is a local minimum point of the function f : X → R̄ if there
exists an open ball B = B(x̄; r) with center at x̄ such that f (x) ≥ f (x̄) for all x ∈ X ∩ B.
The point is a global minimum point if f (x) ≥ f (x̄) for all x ∈ X.

Definition 1.1.2. A subset X ⊆ Rn is called convex if the segment [x, y] ⊆ X, for any
x, y ∈ X.

Definition 1.1.3. Let f : X −→ R̄ be a function with a domain X ⊆ Rn. The set epi f =

{(x, t) ∈ X × R | f (x) ≤ t} is called the epigraph of the function.

Definition 1.1.4. A function f : X −→ R̄ is called convex if its domain X and epigraph epi f
are convex sets.

Theorem 1.1.5. A function f : X → R̄ with a convex domain is convex if and only if

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y),

for all points x, y ∈ X and all numbers λ ∈ [0, 1].

Theorem 1.1.6. Suppose that the function f : X → R̄ is convex and that x̄ is its local
minimum point. Then x̄ is a global minimum point. The minimum point is unique if f is
strictly convex.

Theorem 1.1.7. Suppose f : X −→ R is a differentiable convex function. Then x̄ ∈ X is a
global minimum point if and only if D f (x̄) = 0.

The theorem above uses the gradient vector whose components are the first partials of
f . Therefore, it is called the first-order condition. Necessary and sufficient conditions can
also be stated in terms of the Hessian matrix H whose elements are the second partials of
f . Hence, they are called the second-order conditions.

Definition 1.1.8. A symmetric real matrix M is said to be positive definite if xT Mx > 0 for
all x ∈ Rn.

Theorem 1.1.9. Suppose that f : Rn → R is twice differentiable at x̄. If ∇ f (x̄) =

0 and H(x̄) is positive definite, then x̄ is a strict local minimum.
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The goal of constrained optimization is to find a point that minimizes the objective
function among all points which satisfy the constraints. If the objective function and the
set of constraints are determined by a set of linear equations and inequalities, the problem
is referred to as a linear programming problem. However, we are especially interested in
nonlinear programming where, on the contrary, the objective function or some or all of the
constraints are not linear. That problem can be formulated as:

minimize
x

f (x)

subject to gi(x) ≤ 0, i = 1, . . . ,m
h j(x) = 0, j = 1, . . . , l
x ∈ Rn

(P)

where f : Rn → R, gi : Rn → R, h j : Rn → R.

Definition 1.1.10. Any vector x that satisfies the constraints is called a feasible solution.
The set of all feasible vectors Ω = {x ∈ Rn : h(x) = 0, g(x) ≤ 0} is called the feasible
region.

Definition 1.1.11. The minimization problem (P) is called convex if the constraint set Ω

is convex, the objective function f is convex, the constraint functions gi are convex for
i = 1, . . . ,m and the constraint functions h j are affine for j = 1, . . . , l.

Definition 1.1.12. A point x̄ satisfying the constraint h(x̄) = 0 is said to be a regular point
of the constraint if the gradient vectors ∇h1(x̄), . . . ,∇hl(x̄) are linearly independent.

Definition 1.1.13. Let f : X → R̄ be a convex function defined on a subset X of Rn. A
vector ξ ∈ Rn is called a subgradient of f at the point a ∈ X if the inequality

f (x) ≥ f (a) + ξt(x − a)

holds true for all x ∈ X. The set of all subgradients of f at a is called the subdifferential of
f and is denoted by δ f (a).

Definition 1.1.14. The problem (P) satisfies Slater’s condition if there is a feasible point x̄
in the relative interior of Ω, i.e., such that gi(x̄) < 0 for each non-affine constraint function
gi.

Definition 1.1.15. Function L : Ω × Rm × Rl → R̄, defined by

L(x, u, v) = f (x) +

m∑
i=1

uigi(x) +

l∑
j=1

v jh j(x) (1.1)

is called the Lagrangian function of the minimization problem (P) and the variables u1, . . . , um,
v1, . . . , vl are called the Lagrangian multipliers.
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Theorem 1.1.16 (The Karush-Kuhn-Tucker Theorem). Let the minimization problem (P)
be a convex problem and suppose that the objective and constraint functions are differen-
tiable at the feasible point x̄. Also, let I = {i : gi(x̄) = 0}.

(i) If there exist scalars ūi ≥ 0, for i ∈ I and v̄ j for j = 1, . . . , l that satisfy the KKT-
condition ∇ f (x̄) +

∑
i∈I ūi∇gi(x̄) +

∑l
j=1 v̄ j∇h j(x̄) = 0.

ūigi(x̄) = 0 for i = 1, . . . ,m.

then x̄ is an optimal solution to the problem (P).

(ii) If Slater’s condition is fulfilled, x̄ is an optimal solution and ∇gi(x̄), i ∈ I and ∇h j(x̄),
j = 1, . . . , l are linearly independent then there exist unique scalars ūi for i ∈ I and
v̄ j for j = 1, . . . , l that satisfy KKT-condition.

Theorem 1.1.17 (Karush-Kuhn-Tucker Second-Order Necessary Conditions). Consider
the minimization problem (P) where the objective function and constraints are all twice
differentiable, X a nonempty and open set in Rn. Let x̄ be a local minimum for (P) and
I = {i : gi(x̄) = 0}. Denote the Hessian of Lagrangian function at x̄ with associated
multipliers ū, v̄ by:

∇2
x̄L(x̄, ū, v̄) = ∇2 f (x̄) +

∑
i∈I

ūi∇
2gi(x̄) +

l∑
j=1

v̄ j∇
2h j(x̄)

∇2 f (x̄), ∇2gi(x̄) for i ∈ I and ∇2h j(x̄) for j = 1, . . . , l are the Hessians of the corresponding
functions at x̄. Let us assume that∇gi(x̄), i ∈ I and∇h j(x̄), j = 1, . . . , l are linearly indepen-
dent. It follows that x̄ is a KKT point with Lagrangian multipliers ū ≥ 0 and v̄ associated
with the inequality and equality constraints, respectively. In addition, dt∇2L(x̄)d ≥ 0, for
any d ∈ C = {d , 0 : ∇gi(x̄)td = 0 for i ∈ I+,∇gi(x̄)td ≤ 0 for i ∈ I0,∇h j(x̄)td = 0 for j =

1, . . . , l}, where I0 = {i ∈ I, ūi = 0} and I+ = {i ∈ I : ūi > 0}.

Theorem 1.1.18 (Karush-Kuhn-Tucker Second-Order Sufficient Conditions). Consider the
minimization problem (P) where the objective function and constraints are all twice differ-
entiable, X a nonempty and open set in Rn. Let x̄ be a KKT point for (P) with Lagrangian
multipliers ū and v̄ associated with the inequality and equality constraints. Denote I, I+,
I0, the Hessian of Lagrangian function ∇2L(x̄) and the cone C as in the Theorem 1.1.17. If
dt∇2L(x̄)d > 0 for all d ∈ C, x̄ is a strict local minimum for minimization problem (P).



Chapter 2

Concept of Penalty Functions

2.1 Penalty Function Definition
As already mentioned, the goal is to approximate a constrained minimization problem by
a sequence of problems that are easier to solve. For that purpose we will introduce penalty
function. The basic idea is to place constraints into the objective function via a penalty
parameter which assigns a high cost to infeasible points. Consider the following problem:

minimize
x

f (x)

subject to h(x) = 0
(EQ)

Suppose that we can rewrite the previous problem as:

minimize
x

f (x) + µh2(x)

subject to x ∈ Rn,
(2.1)

where µ is a large number.
Intuitively, it can easily be imagined that an optimal solution of (2.1) has to have h2(x),

as well as h(x), close to zero. If that is not the case, a large penalty would be incurred. How-
ever, the penalty µh(x)2 is not always appropriate. It depends on the type of the constraint.
Now consider the following problem:

minimize
x

f (x)

subject to g(x) ≤ 0
(NEQ)

It is obvious that, in the case of using the form f (x)+µg(x)2, the penalty would be incurred
whether g(x) < 0 or g(x) > 0. But, we do not need penalty for feasible points. That is why
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CHAPTER 2. CONCEPT OF PENALTY FUNCTIONS 6

we formulate the belonging unconstrained problem as follows:

minimize
x

f (x) + µmax{0, g(x)}

subject to x ∈ Rn
(2.2)

When x is a feasible point, no penalty is incurred. On the other hand, any point x for which
g(x) is greater than zero is penalized. For general constrained optimization problem (P) a
suitable penalty function must incur a positive penalty for infeasible points and no penalty
for feasible ones.

Definition 2.1.1. A suitable penalty function α for the problem (P) is defined by

α(x) =

m∑
i=1

φ(gi(x)) +

l∑
j=1

ψ(h j(x)), (2.3)

where φ and ψ are continuous functions and satisfy the following:

1. φ(x′) = 0 if x′ ≤ 0 and φ(x′) > 0 if x′ > 0

2. ψ(x′) = 0 if x′ = 0 and ψ(x′) > 0 if x′ , 0

The penalty function α is typically of the form:

α(x) =

m∑
i=1

[max{0, gi(x)}]p +

l∑
j=1

|h j(x)|p.

Example 2.1.2. Consider the following problem:

minimize
x

− x

subject to x + 3 ≤ 0
(2.4)

We notice that the constraint is of the form g(x) ≤ 0, where g(x) = x + 3. Thus, α(x) =

[max{0, x + 3}]2. The minimum of f + µα occurs at the point 1/(2µ) − 3. If we let µ −→ ∞,
1/(2µ) − 3 −→ x̄ = −3, which is the minimizing point of the original constrained problem.
The figure below illustrates this example for two different values of µ.
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f + µ2

f + µ1

µ1 = 0.2
µ2 = 0.5

−3 0
x

Figure 2.1: The minimum of f + µα approaches −3 as µ is getting larger

Example 2.1.3. Now, consider the minimization problem with the equality constraint.

minimize
x

2x2
1 + 2x2

2

subject to x1 + x2 − 2 = 0
(2.5)

After solving the previous problem with classical methods, we get x = y = 1 and the
objective value 4. Now, consider the equivalent penalty problem.

minimize
x

2x2
1 + 2x2

2 + µ(x1 + x2 − 2)2

subject to (x1, x2) ∈ R2
(2.6)

Suppose that µ is a very large number. The objective function is convex, regardless of the
parameter µ. From the Theorem 1.1.7, in order to find a minimum point, we calculate the
following:

2x1 + µ(x1 + x2 − 2) = 0
2x2 + µ(x1 + x2 − 2) = 0.

(2.7)

We get x1 = x2 = µ/(µ + 1). Obviously, by choosing µ large enough, we approach the
optimal solution.

2.2 Interpretation of Penalty Function

2.2.1 The Primal Function
Firstly, the function that gives the optimal value of the objective function for diverse values
of the right-hand side is defined.
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Definition 2.2.1. Consider the problem (EQ). The corresponding primal value function is
defined in a neighborhood of 0 as

ν(ε) = min{ f (x) : h(x) = ε}

The existence of ν(ε), as well as ∇ν(ε) = −vt, where v is Lagrangian multiplier vector
associated with a local solution x∗, follows directly from the Sensitivity theorem stated
below. The proof can be found in [8].

Theorem 2.2.2 (Sensitivity Theorem). Let f , h ∈ C2 and consider the problem:

minimize
x

f (x)

subject to h(x) = ε
(2.8)

Suppose that for ε = 0 there exists a local solution x∗ that is a regular point and that,
together with its associated Lagrangian multiplier vector v, satisfies the second-order suf-
ficiency conditions for a strict local minimum. Then for every ε ∈ Xl in a region containing
0 there is an x(ε) such that x(0) = x∗ and such that x(ε) is a local minimum of (2.8)
Furthermore,

∇ε f (x(ε))
∣∣∣
ε=0

= −vt

Note the following relations:

min

 f (x) + µ

l∑
j=1

h2
j(x)

 = min
x,ε
{ f (x) + µ ‖ε‖2 : h(x) = ε}

= min
ε
{µ ‖ε‖2 + ν(ε)}

(2.9)

Geometric interpretation of the primal function is illustrated in the Figure 2.2. The
value of primal function, the lowest curve, at ε = 0 is the value of the original constrained
problem. Above it are penalty function for various values of µ. The minimum value of the
penalty problem is, according to (2.9), the minimum point of this curve. We see that, as
penalty parameter µ increases, this curve becomes convex near 0, even if ν(ε) is not convex.

2.2.2 Geometric Interpretation
Now consider the following minimization problem to illustrate the idea behind penalty
functions geometrically.

minimize
x

2x2
1 + 2x2

2

subject to x1 + x2 − 2 = ε
(2.10)
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ν(ε)

ν + µε2

h(x) = ε

Figure 2.2: Geometric interpretation of the
primal function with associated penalty
functions

First we substitute x2 by x2 = 2+ε−x1 and get the objective function of form 2x2
1+2(2+

ε − x1)2. Then we find the optimum by calculating the derivative and equating it to zero.
Hence, 4x1−4(2+ε− x1) = 0. For any ε, the optimal solution is given by x1 = x2 = 1+ε/2
with objective value ν(ε) = (2 + ε)2. Obviously, given any point (x1, x2) in R2 that satisfies
the constraint h(x) = ε, its objective value lies between (2+ε)2 and∞. Consider the penalty
problem to minimize f (x) + µh2(x) where x ∈ R2, µ > 0 fixed. We want to minimize the
term f + µh2, so the parabola f + µh2 = k needs to be moved downward until it becomes
tangential to the shaded set. Therefore, for µ, the optimal value of the penalty problem
is the intercept of the parabola on the f-axis. The set {(h(x), f (x)) : x ∈ R2} is illustrated
in the Figure 2.3. The lower envelope of this set is given by the parabola (2 + h)2, which
is actually equal to (2 + ε)2 = ν(ε). The set of feasible points to the primal problem is
the shaded set above ν(ε). Also, µ′ > µ and points A, B, C denote the optimal solution
to the primal problem, penalty problem with parameter µ and µ′, respectively. Notice that
optimal solution to the penalty problem with larger penalty parameter µ′ is closer to the
optimal solution than one with smaller penalty parameter µ. Therefore, as µ increases, the
parabola of the penalty function becomes steeper and the point of tangency comes closer
to the optimal solution of the original problem.
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f + µh2

f + µ′h2

A

C

B

h(x) = ε

f(x)

Figure 2.3: Geometric interpretation of the convex example

Remark 2.2.3. When it comes to a nonconvex case, we know that Lagrangian dual ap-
proach would fail in finding an optimal solution because of a duality gap. Penalty func-
tions, using a nonlinear support, can get arbitrarily close to an optimum if a large penalty
parameter µ is used. This is illustrated in the Figure 2.4. Point A denotes an optimal solu-
tion to the primal problem while point B is an optimal solution to the penalty problem with
parameter µ and C is an optimal objective value of the Lagrangian dual problem.
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h(x) = ε

f(x)

A

B

C

f + µh2

εµ

Figure 2.4: Geometric interpretation of the nonconvex example



Chapter 3

Exterior Penalty Function Method

3.1 Important Results
Let α be a function defined as in the Definition 2.1.1. The basic approach in the penalty
method is to find

sup
µ

θ(µ)

subject to µ ≥ 0,
(3.1)

where θ(µ) = inf{ f (x) + µα(x) : x ∈ X}.
Before stating the main theorem, we need the following lemma from [10]. Consider

the problem (P).

Lemma 3.1.1. Suppose that f , g1, . . . , gm, h1, . . . , hl are continuous functions on Rn and let
X ⊆ Rn, X , Ø. Let α be a function on Rn defined in (2.1.1) and suppose that for every µ,
there is an xµ ∈ X such that θ(µ) = f (xµ) +µα(xµ). Then, the following statements are true:

1) inf{ f (x) : x ∈ X, g(x) ≤ 0, h(x) = 0} ≥ supµ≥0 θ(µ), where θ(µ) = inf{ f (x) + µα(x) :
x ∈ X} and where g is the vector function whose components are g1, . . . , gm and h is the
vector function whose components are h1, . . . , hl.

2) f (xµ) is a non-decreasing function of µ ≥ 0, θ(µ) is a non-decreasing function of µ and
α(xµ) is a non-increasing function of µ.

Proof. Let x ∈ X such that g(x) ≤ 0 and h(x) = 0. Therefore, α(x) = 0 because x satisfies
the constraints. Let µ ≥ 0. From

f (x) = f (x) + µα(x) ≥ inf{ f (y) + µα(y) : y ∈ X} = θ(µ). (3.2)

12
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follows the first statement.
Now, let λ < µ. By the definition of θ(λ) and θ(µ), we have:

f (xµ) + λα(xµ) ≥ f (xλ) + λα(xλ) (3.3)
f (xλ) + µα(xλ) ≥ f (xµ) + µα(xµ) (3.4)

By adding the previous two inequalities, we get:

(µ − λ)(α(xλ) − α(xµ)) ≥ 0. (3.5)

We assumed µ > λ, so is α(xλ) ≥ α(xµ). It follows from (3.3) that f (xµ) ≥ f (xλ), for λ ≥ 0.
If we add and subtract µα(xµ) to the left-hand side, we get

f (xµ) + µα(xµ) + (λ − µ)α(xµ) ≥ θ(λ). (3.6)

It implies that θ(µ) ≥ θ(λ) because µ > λ and α(xµ) ≥ 0. This establishes the second
statement. �

The following theorem from [10] says that finding the infimum of the primal problem
(P) is equivalent to finding the supremum of θ(µ). It justifies the use of the penalty functions
for solving constrained problems.

Theorem 3.1.2. Consider the problem (P), where f , g1, . . . , gm,h1, . . . , hl are continuous
functions on Rn and X ⊆ Rn, X , Ø. Suppose that the problem has a feasible solution and
let α be a continuous function given by the Definition 2.1.1. Furthermore, suppose that for
every µ there exists a solution xµ ∈ X to the problem of minimization f (x) + µα(x) subject
to x ∈ X and that {xµ} is contained in a compact subset of X. Then

inf{ f (x) : x ∈ X, g(x) ≤ 0, h(x) = 0} = sup
µ≥0

θ(µ) = lim
µ→∞

θ(µ),

where θ(µ) = inf{ f (x) + µα(x) : x ∈ X} = f (xµ) + µα(xµ). Furthermore, the limit x̄ of
any convergent subsequence of {xµ} is an optimal solution to the original problem and
µα(xµ)→ 0 as µ→ ∞.

Proof. From the second statement of the Lemma 3.1.1, θ(µ) is monotone. That implies
that supµ≥0 θ(µ) = limµ→∞ θ(µ).

Firstly, let us show that α(xµ) → 0 as µ → ∞. Let y be a feasible point and ε > 0.
Also, let x1 be an optimal solution to the minimization problem of f (x) + µα(x) subject to
x ∈ X for µ = 1. If µ ≥ (1/ε)| f (y)− f (x1)|+ 2, then, from the Lemma 3.1.1 2), follows that
f (xµ) ≥ f (x1).
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We now show that α(xµ) ≤ ε. By contradiction, suppose α(xµ) > ε. Again, from the
Lemma 3.1.1 1), we get:

inf{ f (x) : g(x) ≤ 0, h(x) = 0, x ∈ X} ≥ θ(µ) = f (xµ) + µα(xµ) ≥ f (x1) + µα(xµ)
> f (x1) + | f (y) − f (x1)| + 2ε > f (y).

However, it is a contradiction to the fact y is a feasible point. Therefore, α(xµ) ≤ ε, for any
µ ≥ (1/ε)| f (y) − f (x1)| + 2. It follows that α(xµ)→ 0 as µ→ ∞.

Let {xµk} be any convergent subsequence of {xµ} and x̄ its limit. Then

sup
µ≥0

θ(µ) ≥ θ(µk) = f (xµk) + µkα(xµk) ≥ f (xµk). (3.7)

Since xµk → x̄ and f is a continuous function, (3.7) implies that

sup
µ≥0

θ(µ) ≥ f (x̄). (3.8)

Because α(xµ) → 0 when µ → ∞, α(x̄) = 0. In other words, x̄ is a feasible solution
to (P). From (3.8) and the Lemma (3.1.1) 1), it follows that x̄ is an optimal solution and
supµ≥0 θ(µ) = f (x̄). Notice that µα(xµ) = θ(µ) − f (xµ). When µ → ∞, both θ(µ) and f (xµ)
approach f (x̄). Therefore, µα(xµ)→ 0. �

Now, it is obvious that as µ takes higher values, the approximation becomes more
accurate.

Remark 3.1.3. If α(xµ) = 0 for some µ, then xµ is an optimal solution to the problem.

3.2 Karush-Kuhn-Tucker Multipliers at Optimality
Consider the problem (P). Suppose that the penalty function α is defined by (2.1.1). In
addition to that definition, suppose that φ and ψ are continuously differentiable with φ′(y) >
0, for any y > 0 and φ′(y) = 0, for any y ≤ 0. Furthermore, suppose that for every µ there
exists a solution xµ ∈ Rn to the problem of minimization f (x) + µα(x) subject to x ∈ Rn

and that {xµ} is contained in a compact subset of Rn (Theorem 3.1.2). Because xµ is the
solution to the minimization problem, the gradient of the objective function must vanish at
that point. Hence,

∇ f (xµ) +

m∑
i=1

µφ′(gi(xµ))∇gi(xµ) +

l∑
j=1

µψ′(h j(xµ))∇h j(xµ) = 0, ∀µ (3.9)

Let x̄ be a limit point of the sequence {xµ}. Also, assume that {xµ} → x̄. Label I = {i :
gi(x̄) = 0}. I is the set of inequality constraints that bind at x̄. From the Theorem 3.1.2
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and the fact that gi(x̄) < 0, for any i < I, it follows that gi(xµ) < 0 for µ sufficiently large.
Therefore, xµ is a feasible point and µφ′(gi(xµ)) = 0. Hence, for all µ large enough, we can
rewrite (3.9) as follows:

∇ f (xµ) +
∑
i∈I

(uµ)i∇gi(xµ) +

l∑
j=1

(vµ) j∇h j(xµ) = 0, (3.10)

where

(uµ)i = µφ′(gi(xµ)) ≥ 0,∀i ∈ I and (vµ) j = µψ′(h j(xµ)),∀ j = 1, . . . , l. (3.11)

Now, assume that x̄ is a regular solution as defined in the Theorem 1.1.16. Then there exist
unique Lagrangian multipliers ūi ≥ 0, i ∈ I and v̄ j, j = 1, . . . , l such that:

∇ f (x̄) +
∑
i∈I

ūi∇gi(x̄) +

l∑
j=1

v̄ j∇h j(x̄) = 0. (3.12)

From continuous differentiabillity of g, h, φ, ψ and {xµ} → x̄ where x̄ is a regular point, what
follows is that (uµ)i → ūi, for any i ∈ I and (vµ) j → v̄ j, for any j = 1, . . . , l. Therefore, for
all µ large enough, the multipliers from (3.11) can be used in order to estimate the Karush-
Kuhn-Tucker multipliers at optimality. The following example from [10] illustrates the
discussion above.

Example 3.2.1. Let us suppose that the penalty function α is given by

α(x) =

m∑
i=1

[max{0, gi(x)}]2 +

l∑
j=1

h2
j(x).

Then, φ′(y) = 2 max{0, y}, ψ′(y) = 2y. From (3.11) we see that (uµ)i = 2µmax{0, gi(xµ)},
for any i ∈ I and (vµ) j = 2µh j(xµ), for any j = 1, . . . , l. Notice that if ūi > 0 for some i ∈ I
then (uµ)i is also greater than 0 for µ large enough. Hence, gi(xµ) is greater than 0. That
means that the constraint gi(x) ≤ 0 is violated all the way to x̄ and in the accumulation
point, gi(x̄) = 0.

Remark 3.2.2. As seen in the previous example, the optimal points {xµ} do not satisfy the
constraints, but for µ large enough, the points converge to optimal solution from outside
the feasible region. This defines the name exterior penalty function method.
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3.3 Computational Difficulties
As already mentioned, by choosing µ large enough, the solution to the penalty problem can
be made arbitrarily close to an optimal solution. Naturally, we inquire about the degree of
the difficulty in solving those kind of problems. When a very large µ is chosen, it might
incur some computational difficulties related to ill-conditioning.

Consider the equality constrained problem (EQ). Let F(x) = f (x) + µα(x) be the
penalized objective function, where α(x) =

∑l
j=1 ψ[h j(x)]. Also, ψ is assumed to be twice

differentiable. It follows:

∇F(x) = ∇ f (x) + µ

l∑
j=1

ψ′[h j(x)]∇h j(x)

∇2F(x) =

∇2 f (x) +

l∑
j=1

µψ′[h j(x)]∇2h j(x)

 + µ

l∑
j=1

ψ′′[h j(x)]∇h j(x)∇h j(x)t,

(3.13)

where ∇, ∇2 denote the gradient and the Hessian operators, respectively, and ψ′, ψ′′ the
first and the second derivatives of ψ.

The degree of difficulty depends on eigenvalue structure of ∇2F. Let us analyse the
eigenstructure of (3.13) as µ → ∞, and, under the conditions of Theorem 3.1.2, as x =

xµ → x̄. If x̄ is a regular solution, it follows that µψ′[h j(xµ)]→ v̄ j, the optimal Lagrangian
multiplier associated with jth constraint. Hence, the term inside the brackets approaches
the Hessian of the Lagrangian function L(x) = f (x) +

∑l
j=1 v̄ jh j(x). Suppose that ψ(y) = y2,

then the second term is equal to 2µ times a matrix that approaches
∑l

j=1 ∇h j(x̄)∇h j(x̄)t, a
matrix of rank l. It can then be shown that as µ → ∞, we have x = xµ → x̄ and ∇2F has l
eigenvalues that approach infinity. To conclude, for high values of penalty parameter µ the
corresponding optimization problem can easily become ill-conditioned. In that case, more
importance is placed on feasibility and most of the procedures for solving unconstrained
optimization problems will move quickly to a feasible point. Despite the fact that the point
might be far from the optimum point, premature termination could occur. Hence, usual
methods as steepest descent method stumble upon significant difficulties if the penalty
parameter is very large and the starting point is not near an optimal solution.

Example 3.3.1. Consider the same problem as in the Example 2.1.3. Hessian of F(x) =

2x2
1 + 2x2

2 + µ(x1 + x2 − 2)2 is given by

∇2F(x) =

[
4 + 2µ 2µ

2µ 4 + 2µ

]
.

The eigenvalues of the matrix are λ1 = 4 and λ2 = 4(1 + µ) with the corresponding eigen-
vectors (−1, 1)t and (1, 1)t. When µ → ∞, also λ2 → ∞. Therefore, the condition number
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of ∇2F approaches ∞ as µ → ∞. For a very large value of penalty parameter µ, the steep-
est descent method would zigzag to the optimum if we do not choose a convenient starting
point.

3.4 Algorithm
• Initialization Step Let ε > 0 be a termination scalar. Choose a starting point x1, a

penalty parameter µ1 > 0, and a scalar δ > 1. Let k = 1.

• Main Step

1. Starting with xk, solve:

minimize
x

f (x) + µkα(x)

subject to x ∈ X

Let xk+1 be an optimal solution and go to Step 2.

2. If α(xk+1) < ε, stop. Otherwise, let µk+1 = δµk, replace k by k + 1 and return to
Step 1.



Chapter 4

Exact Penalty Methods

From the previous sections, it can been seen that, in order to get an optimal solution, we
need to make the penalty parameter µ infinitely large. However, by changing the origin of
the penalty term, we can recover an optimal solution for finite µ. Those kind of functions
are known as exact penalty functions. With these functions it is not necessary to solve an
infinite sequence of penalty problems in order to obtain an optimum.

4.1 The l1 Exact Penalty Function
Firstly, we introduce the absolute value or l1 penalty function. It is the simplest exact
penalty function in which constraint violations are penalized by weighted l1 terms. But, a
new difficulty is its non-smoothness. Therefore, many techniques for smooth optimization
can not be used. Throughout this chapter, given a penalty parameter µ > 0, we shall
consider the following problem:

minimize
x

f (x)

subject to gi(x) ≤ 0, i = 1, . . . ,m
h j(x) = 0, j = 1, . . . , l

(4.1)

Then, the l1 objective function is given by:

FE(x) = f (x) + µ

 m∑
i=1

max{0, gi(x)} +
l∑

j=1

|h j(x)|

 (4.2)

The following result from [10] presents conditions under which there exists a finite value
of penalty parameter µ that will recover an optimum solution to (P) via the minimization
of (4.2).

18
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Theorem 4.1.1. Consider the problem (4.1). Let x be a KKT point with Lagrangian mul-
tipliers ui, i ∈ I and v j, j = 1, . . . , l associated with the inequality and the equality con-
straints, respectively, where I = {i ∈ {1, . . . ,m} : gi(x) = 0} is the index set of active
inequality constraints. Furthermore, suppose that f and gi, i ∈ I are convex functions and
that h j, j = . . . , l are affine functions. Then, for µ ≥ max{ui, i ∈ I, |v j|, j = 1, . . . , l}, x also
minimizes the exact l1 penalized objective function FE defined by (4.2).

Proof. As assumed, x is a KKT point for problem (4.1). Thus, it is feasible to (4.1) and
satisfies

∇ f (x) +
∑
i∈I

ūi∇gi(x̄) +

l∑
j=1

v̄ j∇h j(x̄) = 0, ūi ≥ 0, ∀i ∈ I (4.3)

Problem of minimizing FE(x) over x ∈ Rn, for any µ ≥ 0, can be reformulated as follows:

minimize f (x) + µ

 m∑
i=1

yi +

l∑
j=1

z j


subject to yi ≥ gi(x), yi ≥ 0 ∀i = 1, . . . ,m

z j ≥ h j(x), z j ≥ −h j(x) ∀ j = 1, . . . , l.

(4.4)

That follows easily by noticing that for any x ∈ Rn, the maximum value of the problem (4.4)
is obtained by taking yi = max{0, gi(x)}, for i = 1, . . . ,m and z j = |h j(x)|, for j = 1, . . . , l.

Note that of the inequalities yi ≥ gi(x), i = 1, . . . ,m, only those where i ∈ I are binding,
while all the other inequalities in (4.4) are binding at (x̄, ȳ, z̄). In order to (x̄, ȳ, z̄) be a
KKT point for (4.4), we must find Lagrangian multipliers u+

i , u−i , i = 1, . . . ,m and v+
j , v−j ,

j = 1, . . . , l, associated with the constraints in (4.4) so that:

∇ f (x̄) +
∑
i∈I

u+
i ∇gi(x̄) +

l∑
j=1

(v+
j − v−j )∇h j(x̄) = 0

µ − u+
i − u−i = 0 ∀i = 1, . . . ,m

µ − v+
j − v−j = 0 ∀ j = 1, . . . , l

(u+
i , u

−
i ) ≥ 0 ∀i = 1, . . . ,m

(v+
j , v
−
j ) ≥ 0 ∀ j = 1, . . . , l

u+
i = 0 ∀i < I.

From µ ≥ max{ūi, i ∈ I, |v̄ j|, j = 1, . . . , l} follows that u+
i = ūi, ∀i ∈ I, u+

i = 0, ∀i < I,
u−i = µ − u+

i , ∀i = 1, . . . ,m, v+
j = (µ + v̄ j)/2 and v−j = (µ − v̄ j)/2, ∀ j = 1, . . . , l satisfy the

KKT conditions. From the Theorem 1.1.16, it follows that (x̄, ȳ, z̄) solves the equivalent
problem. Therefore, x̄ minimizes FE. �
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Example 4.1.2. Once again, let us consider the following problem:

minimize
x

2x2
1 + 2x2

2

subject to x1 + x2 − 2 = 0
(4.5)

From before, it is known that optimum lies at x̄ = (1, 1). The associated Lagrangian multi-
plier in the KKT conditions is v̄ = −4x̄1 = −4x̄2 = −4. Consider the exact penalty function
FE = (2x2

1 + 2x2
2) + µ|x1 + x2 − 2|. If µ = 0, it is minimized at (0, 0). On the other hand, if

µ > 0, minimizing FE(x̄) is equivalent to:

minimize
x

2x2
1 + 2x2

2 + µz

subject to z ≥ x1 + x2 − 2
z ≥ −x1 − x2 + 2

From the KKT conditions, it follows that 4x1+(v+−v−) = 0, 4x2+(v+−v−) = 0. µ = v++v−,
v+(z − x1 − x2 + 2) = v−(z + x1 + x2 − 2) = 0. Also, z = |x1 + x2 − 2|.

• If x1 + x2 < 2, then z = −x1 − x2 + 2 and v+ = 0, v− = µ, x1 = x2 = µ/4 where x̄ is a
KKT point and µ < 4.

• If x1 + x2 = 2, then z = 0, x1 = x2 = 1 = (v− − v+)/4, therefore, v− = (µ + 4)/2,
v+ = (µ − 4)/2 and x̄ is a KKT point where µ ≥ 4.

• If x1 + x2 > 2, then z = x1 + x2 − 2, v− = 0, x1 = x2 = −v+/4, v+ = µ. It follows that
2x1 + 2x2 = −µ > 4 which is a contradiction to the assumption that µ ≥ 0.

Therefore, the minimum of FE occurs at the point (µ/4, µ/4) for µ < 4. For all µ ≥ 4, the
optimum is the same as the optimum of the original problem, (1, 1).

4.1.1 Geometric Interpretation
Let us consider the same example as in geometric interpretation illustrated in the Figure
2.3. The main difference is the fact that we want to minimize f (x̄) + µ|h(x)|. As before,
the contour f + µ|h(x)| = k needs to be moved downward until it becomes tangential to the
shaded set. This is illustrated in the the Figure 4.1

The blue-colored graph represents a function f + µ|h| for µ < 4 and the point B is the
corresponding optimum. The red-colored one represents the same function for µ ≥ 4 and A
denotes its optimum. It can be easily seen that for µ = 4 (and for every µ > 4), minimizing
FE is equivalent to minimizing the original problem.
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A

B

h(x) = ε

f(x)

Figure 4.1: Geometric interpretation of the l1 penalty function

4.2 Multiplier Penalty Functions
After examining the absolute value penalty function, we are motivated to construct an exact
penalty function but, unlike the absolute, a differentiable one. The augmented Lagrangian
penalty function enjoys that property. The area of Lagrangian multiplier methods for con-
strained optimization has undergone a radical transformation starting with the introduction
of augmented Lagrangian functions and methods of multipliers in 1968 by Hestenes and
Powell. The initial success of these methods in computational practice motivated further
efforts at understanding and improving their properties. Firstly, we shall consider the prob-
lem (EQ). The main idea of the augmented Lagrangian penalty function (ALAG) is to add
one more parameter to the penalty function. This suggests using the function

f (x) + µ

l∑
j=1

[h j(x) − θ j]2 (4.6)

The parameters θ j correspond to shifts from 0 in constraint right-hand sides. Now, it be-
comes possible to recover an optimal solution without letting µ→ ∞. It is more convenient
to omit the constant term and rewrite (4.6) as:

FALAG(x, v) = f (x) +

l∑
j=1

v jh j(x) + µ

l∑
j=1

h2
j(x), (4.7)
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where v j = −2µθ j, ∀ j = 1, . . . , l. There exists a corresponding optimum value of v for
which x̄ minimizes FALAG(x, v). Note that if (x̄, v̄) is a primal-dual KKT solution, then at
v = v̄, we have:

∇xFALAG(x̄, v̄) =

∇ f (x̄) +

l∑
j=1

v̄ j∇h j(x̄)

 + 2µ
l∑

j=1

h j(x̄)∇h j(x̄) = 0 (4.8)

for all µ. Now it is suitable to use v as the control parameter in a sequential minimization
algorithm stated below.

(i) Determine a sequence {vk} → v̄.

(ii) For every vk find a local minimization solution, x(vk), to FALAG(x, v).

(iii) Terminate when h(x(vk)) is sufficiently small.

It is obvious that we only need to make µ large enough to recover a local minimizer. The
name multiplier penalty function was motivated by the fact that (4.7) is a quadratic penalty
function with additional multiplier term

∑l
j=1 v jh j(x). Function (4.7) can be viewed as

the usual quadratic penalty function where we want to minimize the following equivalent
problem:

minimize

 f (x) +

l∑
j=1

v jh j(x) : h j(x) = 0,∀ j = 1, . . . , l

 . (4.9)

Alternatively, (4.7) is the Lagrangian function in which the objective function is augmented
by the term µ

∑l
j=1 h2

j(x). Hence the term augmented Lagrangian function. Also, the prob-
lem below is equivalent to our original problem.

minimize

 f (x) + µ

l∑
j=1

h2
j(x) : h j(x) = 0,∀ j = 1, . . . , l

 . (4.10)

The result that v̄ is the optimum choice of the control parameter is expressed in the theorem
below from [10].

Theorem 4.2.1. Consider problem (EQ). If second order sufficient conditions hold true at
KKT solution x̄ and v̄ (Theorem 1.1.18) then there exist a µ̄ such that for any µ ≥ µ̄, the
augmented Lagrangian penalty function FALAG(·, v̄) also achieves a strict local minimum
at x̄. Specifically, if f is convex and h j, j = 1, . . . , l are affine, then any minimizing solution
x̄ for (EQ) also minimizes FALAG(·, v̄), ∀µ ≥ 0.
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Proof. Firstly, observe that because (x̄, v̄) is a KKT solution, we have

∇xFALAG(x̄, v̄) =

∇ f (x̄) +

l∑
j=1

v̄ j∇h j(x̄)

 + 2µ
l∑

j=1

h j(x̄)∇h j(x̄) = 0.

Let H(x) denote the Hessian of FALAG(·, v̄) at x = x̄. It follows:

H(x̄) = ∇2 f (x̄) +

l∑
j=1

v̄ j∇
2h j(x̄) + 2µ

l∑
j=1

[h j(x̄)∇2h j(x̄) + ∇h j(x̄)∇h j(x̄)t]

= ∇2L(x̄) + 2µ
l∑

j=1

∇h j(x̄)∇h j(x̄)t,

(4.11)

where ∇2L(x̄) denotes the Hessian of the Lagrangian function for (EQ). From the assump-
tion that (x̄, v̄) satisfies the second-order sufficiency conditions it follows that ∇2L(x̄) is the
positive definite matrix on the cone C = {d , 0 : ∇h j(x̄)td = 0,∀ j = 1, . . . , l}.

Suppose to the contrary that there does not exist a µ̄ such that H(x̄) is positive definite
for all µ ≥ µ̄. Then, for any given µk = k, k = 1, 2, . . . there exists a dk, such that ‖dk‖ = 1
and

dt
kH(x̄)dk = dt

k∇
2L(x̄)dk + 2k

l∑
j=1

[∇h j(x̄)tdk]2 ≤ 0. (4.12)

Since ‖dk‖ = 1, ∀k, there exists a convergent subsequence for {dk} with an accumulation
point d̄,

∥∥∥d̄
∥∥∥ = 1. In order to (4.12) hold true for every k, we must have ∇h j(x̄)td̄ equal

to 0, ∀ j = 1, . . . , l. Obviously, d̄ ∈ C. Now, because dt
k∇

2L(x̄)dk ≤ 0, ∀k, we also have
d̄t∇2L(x̄)d̄ ≤ 0. But, it is in contradiction to the second-order sufficiency conditions. Thus,
H(x̄) is positive definite for all µ greater or equal to some value µ̄. By Theorem (1.1.9), x̄
is a strict local minimum for FALAG(·, v̄).

Lastly, let f be a convex function, h j, j = 1, . . . , l affine and x̄ optimal to (EQ). Then
there exists a Lagrangian multiplier vector v̄ such that (x̄, v̄) is a KKT solution. Again,
∇xFALAG(x̄, v̄) = 0. Also, FALAG(·, v̄) is convex for all µ ≥ 0. Therefore, x̄ minimizes
FALAG(·, v̄), ∀µ ≥ 0. �

Example 4.2.2. Consider the same problem as in the Example 4.1.2. It follows that x̄ =

(1, 1) with v̄ = −4 is the unique KKT optimal point. Let us find out if the assumptions of
the Theorem 4.2.1 are fulfilled. Firstly, from

FALAG(x̄, v̄) = (2x2
1 + 2x2

2) − 4(x1 + x2 − 2) + µ(x1 + x2 − 2)2

follows that FALAG is minimized at x̄ = (1, 1), for any µ ≥ 0. After that, we observe that
∇2L(x̄) is positive definite, which implies that the second-order sufficiency conditions holds
true at (x̄, v̄). Consequently, both assertions from the Theorem 4.2.1 hold true.
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The following example from [5] states that assumption of second-order sufficiency con-
ditions is important and not easily relaxed.

Example 4.2.3. Consider the following problem:

minimize
x

x4
1 + x1x2

subject to x2 = 0
(4.13)

Obviously, x̄ = 0 solves the problem above with the unique Lagrangian multiplier v̄ = 0.
The second-order sufficiency conditions are not satisfied. Indeed,

∇2L(x̄) = ∇2 f (x) =

[
0 1
1 2µ

]
is indefinite. We have FALAG(x̄, v̄) = x4

1 + x1x2 + µx2
2.

∇FALAG(x, v) =

[
4x3

1 + x2

x1 + 2µx2

]
For any µ > 0, ∇FALAG(x, v) vanishes at x̄ = 0, but also at x̂ = (1/

√
8µ,−1/(2µ

√
8µ))t.

From

∇2FALAG(x, v) =

[
12x2

1 1
1 2µ

]
we see that ∇2FALAG(x̄, v) is indefinite so x̄ is not a local minimizer. But, ∇2FALAG(x̂, v)
is positive definite, and x̂ is the minimizer. Taking µ → ∞, x̂ approaches the optimum
solution.

4.2.1 Geometric Interpretation
Firstly, let us assume that x̄ is a regular point and that (x̄, v̄) satisfies the second-order suf-
ficiency conditions for a strict local minimum. From the Sensitivity theorem 2.2.2 follows
that ∇v(0) = −v̄ where v(ε) is a primal function as defined as in (2.2.1). The augmented
Lagrangian method looks for a minimum of f (x) + v̄h(x) + µh2(x) for x ∈ R2. In other
words, the goal is to find the smallest value of k for which f + v̄h + µh2 = k has inter-
section with the epigraph of v. We can rewrite it as f = −µ(h + (v̄/2µ))2 + (k + (v̄2/4µ)).
That equation represents a parabola whose axis are shifted to h = −v̄2/2µ, what makes it
different from the interpretation in the Figure 2.3 where h = 0. This is illustrated in the
figure below. It represents function v(ε), as well as penalty functions f + v̄h + µh2 for two
different values of µ. The point A represents an optimal solution to penalty problem for
µ > 0, while points B and C represent the x-axis of the vertex of parabolas. It is equal to
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−v̄/(2µ). Note that when k equals the optimal objective value for considered problem, i.e.,
k = v(0), the parabola passes through (0, v(0)) and the tangent to the parabola has a slope
that equals −v̄. Thus, for any µ > 0, the minimum of the augmented Lagrangian coincides
with the optimal point to the considered problem.

A

CB

h(x) = ε

f(x)

Figure 4.2: Geometric interpretation of the augmented Lagrangian penalty function

Note the following relations, for any v:

min
x

{
f (x) + vth(x) + µ ‖h(x)‖2

}
= min

x,ε
{ f (x) + vtε + µ ‖ε‖2 : h(x) = ε}

= min
ε
{v(ε) + vtε + µ ‖ε‖2}.

(4.14)

When it comes to nonconvex case, when∇v(0) = −v̄, the above described situation happens
only for µ large enough. Let us define V(ε) = v(ε) + v̄tε + µ ‖ε‖2 and let v = v̄. When µ
is large enough, V becomes convex function in the neighborhood of ε = 0 and ∇V(0) =

∇v(0) + v̄ = 0. Therefore, V has a strict local minimum at ε = 0. This is illustrated in the
Figure 4.3.
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V (ε)

h(x) = ε

f(x)

Figure 4.3: Geometric interpretation of the augmented Lagrangian penalty function, non-
convex case

4.2.2 Algorithm
Consider the problem:

minimize
x

f (x)

subject to h j(x) = 0, j = 1, . . . , l
(4.15)

Let us, instead of one common parameter µ, assign each constraint h j its own µ j. Therefore,

FALAG(x, v) = f (x) +

l∑
j=1

v jh j(x) +

l∑
j=1

µ jh2
j(x). (4.16)

• Initialization Step Let v = v̄ be an initial Lagrangian multiplier and let µ1, . . . , µl

be some positive numbers, also let x0 be a null vector and VIOL(x0) = ∞, where
VIOL(x) = max{|h j(x)| : j = 1, . . . , l}. Put k = 1 and go to the inner loop.

• Inner Loop Step Let xk denote the optimal solution to minimization problem of
FALAG(x, v̄). If VIOL(xk) = 0, stop. xk is a KKT point. Also, we could stop the
algorithm if VIOL(xk) is less than some ε > 0. Else, if VIOL(xk) ≤ (1/4)VIOL(xk−1),
go to the outer loop. But, if VIOL(xk) > (1/4)VIOL(xk−1), then for each constraint
for which |h j(x)| > (1/4)VIOL(xk−1), j = 1, . . . , l, multiply the penalty parameter µ j

by 10, µ j = 10µ j and repeat the inner loop step.
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• Outer Loop Step Let, ∀ j, (v̄new) j = v̄ j + 2µ jh j(xk), k = k + 1 and return to the inner
loop.

When it comes to solving the minimization problem in the inner loop, we can use xk−1 as
a starting point and employ some of the methods for solving unconstrained minimization
problems. Note that if VIOL(xk) = 0, then xk is a feasible point and from

∇xFALAG(xk, v̄) = ∇ f (xk) +

l∑
j=1

v̄ j∇h j(xk) +

l∑
j=1

2µ jh j(xk)∇h j(xk) = 0, (4.17)

it follows that xk is actually a KKT point. Whenever the VIOL measure is not improved
by the factor 1/4, the µ j is multiplied by 10. We know that, from the Theorem 3.1.2,
h j(xk) → 0 as µ j → ∞, ∀ j = 1, . . . , l. Because of that, when some ε > 0 is used, the outer
loop of the algorithm will be visited after a finite number of iterations.

The previous argument is true in spite of updating a dual multiplier in the outer loop.
Note that if we use the standard quadratic penalty function approach on the problem (4.9),
the estimate of the Lagrangian multipliers is given by 2µ jh j(xk), ∀ j = 1, . . . , l. Equation
in the outer loop gives an estimation for the Lagrangian multipliers associated with the
constraints of the original problem because the fact that the Lagrangian multiplier for the
original problem equals v̄ plus the Lagrangian multiplier vector for (4.9).

There exists an alternative Lagrangian duality-based interpretation of the update of v̄
in the outer loop when µ j = µ, ∀ j = 1, . . . , l. That leads to a procedure that has a better
rate of convergence. The original problem is equivalent to the problem (4.10). At v = v̄,
the inner loop evaluates θ(v̄) = minx{FALAG(x, v̄)}, determining an optimal solution xk.
This yields h(xk) as a subgradient (1.1.13) of θ at v = v̄. The update of v̄new is actually a
fixed-step-length subgradient direction-based iteration for the dual function.

Example 4.2.4. Once again, consider the same minimization problem as in the Example
4.1.2. Let us suppose that we start the multiplier method algorithm with some v. We have
FALAG(x, v) = 2x2

1 + 2x2
2 + v(x1 + x2 − 2) + µ(x1 + x2 − 2)2. The inner loop will evaluate

θ(v) = minx{FALAG(x, v)}. From solving ∇xFALAG(x, v) = 0, we get x1(v) = x2(v) = (4µ −
v)/(4 + 4µ). After that, we go to the outer loop which updates the Lagrangian multiplier,
vnew = v + 2µ(x1(v) + x2(v) − 2) = (2v − 8µ)/(2 + 2µ). Now, obviously, when µ→ ∞, vnew

approaches -4, which is the optimal Lagrangian multiplier value.
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4.2.3 Inequality Constraints in the ALAG Penalty Function
Consider the following problem:

minimize
x

f (x)

subject to gi(x) ≤ 0 i = 1, . . . ,m
h j(x) = 0 j = 1, . . . , l

(4.18)

Note that now minimization problem consists of equality as well as inequality constraints.
In order to incorporate the inequality constraints in the augmented Lagrangian penalty
method and the method of multipliers, we write the inequalities as the equalities gi(x)+s2

i =

0, ∀i = 1, . . . ,m. Let us assume that there is x̄, a KKT point for the problem above, with
optimal Lagrangian multipliers v̄ j, j = 1, . . . , l and ūi, i = 1, . . . ,m, associated with the
equality and inequality constraints. Denote I(x̄) = {i : gi(x̄) = 0} as earlier. Suppose that
ūigi(x̄) = 0, ∀i = 1, . . . ,m and ūi > 0, ∀i ∈ I(x̄). Moreover, let ∇2L(x̄) be positive definite
over the cone C = {d , 0 : ∇gi(x̄)td = 0,∀i ∈ I(x̄),∇h j(x̄)td = 0,∀ j = 1, . . . , l}. In other
words, the second-order sufficiency condition holds true at (x̄, ū, v̄). Now it follows that
the conditions of the Theorem 4.2.1 are satisfied for the problem

minimize
x

f (x)

subject to gi(x) + s2
i = 0, i = 1, . . . ,m

h j(x) = 0, j = 1, . . . , l

(4.19)

at the solution (x̄, s̄, ū, v̄) where s̄2
i = −gi(x̄), ∀i = 1, . . . ,m. Thus, at (u, v) = (ū, v̄),

(x̄, s̄) is a strict local minimizer for the augmented Lagrangian penalty function below, for
sufficiently large penalty parameter µ:

FALAG(x, s,u, v) = f (x) +

m∑
i=1

µi(gi(x) + s2
i ) +

l∑
j=1

v jh j(x) + µ

 m∑
i=1

(gi(x) + s2
i )2 +

l∑
j=1

h2
j(x)

 .
(4.20)

In order to simplify the (4.20), let θ(u, v) be the minimum of (4.20) for a given µ > 0 and
any set of Lagrangian multipliers (u, v). (4.20) is equivalent to:

FALAG(x, s,u, v) = f (x)+µ
m∑

i=1

[
gi(x) + s2

i +
ui

2µ

]2

−

m∑
i=1

u2
i

4µ
+

l∑
j=1

v jh j(x)+µ
l∑

j=1

h2
j(x). (4.21)

By letting s2
i = max{−(gi(x) + (ui/2µ)), 0} , we can easily minimize (4.21) over (x, s).

Firstly, we minimize (gi(x) + s2
i + (ui/2µ)) over si in terms of x, ∀i = 1, . . . ,m and then

minimize the whole expression over x. Therefore,
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θ(u, v) = min
x

 f (x) + µ

m∑
i=1

max2
{

gi(x) +
ui

2µ
, 0

}
−

m∑
i=1

u2
i

4µ
+

l∑
j=1

v jh j(x) + µ

l∑
j=1

h2
j(x)


= min

x
{FALAG(x,u, v)}.

(4.22)
When it comes to the method of multipliers, the inner loop will evaluate θ(u, v) and calcu-
late VIOL(xk) and proceed as earlier. If xk minimizes (4.22), the the subgradient compo-
nent of θ(u, v) corresponding to ui at (ū, v̄) is given by 2µmax{gi(xk) + (ūi/2µ), 0}(1/2µ) −
(2ūi/4µ) = (−ūi/2µ) + max{gi(xk) + (ūi/2µ), 0}. If we set the fixed step length of 2µ along
this subgradient direction, in the outer loop step we get:

(ūnew)i = ūi + max{2µgi(xk),−ūi}, ∀i = 1, . . . ,m. (4.23)

As for the alternative, we can also revise ui using an approximate second-order update
scheme as for the case of the equality constrains.



Chapter 5

Application of Penalty Functions

5.1 Convex and Smooth Problem
By this point, we have elaborated all the important results about penalty functions. The next
step is to check how well all of those methods approximate the exact solution. Consider
the following minimization problem:

minimize
x1,x2

(x1 − 3)2 + 2x2
2

subject to x1 + x2 = 4

(x1 − x2)2 ≤ 9.

(5.1)

The optimal solution lies at x̄ = (7
2 ,

1
2 ) with objective function value 3

4 . The KKT multipliers
at optimality are v = −3

2 and u = 1
14 ≈ 0.07

As in developing theory behind penalty functions, first consider the following penalty
function:

α(x1, x2) = (x1 + x2 − 4)2 + max{0, (x1 − x2)2 − 9}2 (5.2)

and define the violation of constraints as follows:

violation1 = |x1 + x2 − 4|

violation2 = max{0, (x1 − x2)2 − 9}
violation = max{violation1, violation2}

(5.3)

Therefore, our goal is to minimize:

F(x1, x2) = (x1 − 3)2 + 2x2
2 + µ(x1 + x2 − 4)2 + µmax{0, (x1 − x2)2 − 9}2. (5.4)

As in the algorithm from (3.4), we set:

30
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• a termination scalar ε = 10−5

• a starting point x0 = (0, 0)

• a penalty parameter µ1 = 10

• a scalar δ = 10

In each iteration, we calculate the minimum of (5.4) depending on the current µ value.
Every optimal solution is a starting point in the next iteration. The loop is stopped when
violation is smaller than ε. All calculations are done in Python using scipy minimize
function. It can be seen in the Table 5.1 that we are approaching the feasible region from

iteration µ x objective value violation
1 10 (3.46544586, 0.4648014) 0.648721 0.06975
2 100 (3.49631232, 0.49624341) 0.73884 0.00744
3 1000 (3.49962861, 0.49962167) 0.74887 0.00075
4 10000 (3.49996271, 0.49996202) 0.749887 7.527e-05
5 100000 (3.49999615, 0.49999608) 0.74999 7.77561e-06

Figure 5.1: Iterations and solutions in exterior penalty method

the outside and finally reach the point (3.49999615, 0.49999608) which is still slightly
infeasible but very close to the exact optimal solution. The objective value differs from the
exact optimum objective value in 0.00001. In order to obtain the maximum permitted level
of violation, µ has to be at least 100000.

1 i m p o r t math
2 i m p o r t numpy as np
3 i m p o r t pandas as pd
4 from s c i p y . o p t i m i z e i m p o r t min imize
5
6
7 d e f e x t e r i o r ( x ) :
8 o b j = ( x [0 ] −3) ∗∗2+2∗x [ 1 ] ∗ ∗2
9 o b j += mu∗ ( x [0 ]+ x [1 ] −4) ∗∗2

10 o b j += mu∗max ( 0 , ( x [0] −x [ 1 ] ) ∗∗2−9) ∗∗2
11 r e t u r n o b j
12
13 eps = 10∗∗−5
14 mu = 10
15 d e l t a = 10
16 x0 = np . z e r o s ( 2 )
17 v i o l e n c e = np . z e r o s ( 2 )
18 v i o l e n c e [ 0 ] = max ( 0 , ( x0 [0] − x0 [ 1 ] ) ∗∗2−9)
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19 v i o l e n c e [ 1 ] = abs ( x0 [0 ]+ x0 [1 ] −4)
20 v i o l = max ( v i o l e n c e )
21 i = 1
22 w h i l e ( v i o l >= eps ) :
23 x0 = minimize ( e x t e r i o r , x0 ) . x
24 v i o l e n c e [ 0 ] = max ( 0 , ( x0 [0] − x0 [ 1 ] ) ∗∗2−9)
25 v i o l e n c e [ 1 ] = abs ( x0 [0 ]+ x0 [1 ] −4)
26 v i o l = max ( v i o l e n c e )
27 o b j e c t i v e = ( x0 [0 ] −3) ∗∗2+2∗x0 [ 1 ] ∗ ∗2
28 v i = 2∗mu∗ ( x0 [0 ]+ x0 [1 ] −4)
29 u i = 2∗mu∗max ( 0 , ( x0 [0] − x0 [ 1 ] ) ∗∗2−9)
30 p r i n t ( ” { } −> mu= { } , x = { } , v i o l = { } , o b j v a l u e = { } , e x t e r i o r = { } ” .

f o r m a t ( i , mu , x0 , v i o l , o b j e c t i v e , e x t e r i o r ( x0 ) ) )
31 mu = mu∗ d e l t a
32 i += 1

Listing 5.1: Python code for the exterior penalty function

Secondly, we want to examine the exact penalty functions. l1 penalty function for the above
given example is:

α(x1, x2) = max{0, (x1 − x2)2 − 9} + |x1 + x2 − 4| (5.5)

So the original problem can be rewritten as:

minimize
x1,x2

(x1 − 3)2 + 2x2
2 + µmax{0, (x1 − x2)2 − 9} + µ|x1 + x2 − 4| (5.6)

and violation calculations are as written in (5.3). Once again, we have set the termination
scalar ε = 10−5, the starting point x0 = (0, 0) and the scalar δ = 10 and have done exactly
as in the example above. But, because of dealing with non-differentiable penalty function,
we use shgo minimization solver.

iteration µ x objective value violation
1 10 (3.4999967,4 0.50000326) 0.750003 6.37595e-09

Figure 5.2: Iterations and solutions in l1 penalty method

Unlike the exterior penalty function, we have reached the end of the algorithm in just
one iteration, for µ = 10. The difference between the exact optimum objective value and
objective value calculated by this method is 0.000003 which is less than the difference in
the exterior method.

1 from shgo i m p o r t shgo
2
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3 d e f l 1 ( x ) :
4 o b j = ( x [0 ] −3) ∗∗2+2∗x [ 1 ] ∗ ∗2
5 o b j += mu∗ abs ( x [0 ]+ x [1 ] −4)
6 o b j += mu∗max ( 0 , ( x [0] −x [ 1 ] ) ∗∗2−9)
7 r e t u r n o b j
8
9

10 i = 1
11 eps = 10∗∗−5
12 mu = 10
13 d e l t a = 10
14 x0 = np . z e r o s ( 2 )
15 v i o l e n c e = np . z e r o s ( 2 )
16 v i o l e n c e [ 0 ] = abs ( x0 [0 ]+ x0 [1 ] −4)
17 v i o l e n c e [ 1 ] = max ( 0 , ( x0 [0] − x0 [ 1 ] ) ∗∗2−9)
18 v i o l = max ( v i o l e n c e )
19 w h i l e ( v i o l >= eps ) :
20 bounds = [ ( None , None ) , ( None , None ) ]
21 x0 = shgo ( l1 , bounds ) . x
22 v i o l e n c e [ 0 ] = abs ( x0 [0 ]+ x0 [1 ] −4)
23 v i o l e n c e [ 1 ] = max ( 0 , ( x0 [0] − x0 [ 1 ] ) ∗∗2−9)
24 v i o l = max ( v i o l e n c e )
25 o b j e c t i v e = ( x0 [0 ] −3) ∗∗2+2∗x0 [ 1 ] ∗ ∗2
26 p r i n t ( ” { } −> mu= { } , x = { } , v i o l = { } , o b j v a l u e = { } , l 1 = { } ” . f o r m a t

( i , mu , x0 , v i o l , o b j e c t i v e , l 1 ( x0 ) ) )
27 mu = mu∗ d e l t a
28 i += 1

Listing 5.2: Python code for the l1 penalty function

Finally, let us consider the augmented Lagrangian penalty function

α(x1, x2) = max
{

0, (x1 − x2)2 − 9 +
u

2µ

}2

−
u2

4µ2 +
1
µ

v(x1 + x2 − 4) + (x1 + x2 − 4)2 (5.7)

and find the minimum value of

FALAG(x1, x2) = (x1−3)2+2x2
2+µmax

{
0, (x1 − x2)2 − 9 +

u
2µ

}2

−
u2

4µ
+v(x1+x2−4)+µ(x1+x2−4)2,

(5.8)
where u and v are Lagrangian multipliers associated with the inequality and equality con-
straints, respectively.

We follow the algorithm from (4.2.2) and set:

• the initial Lagrangian multipliers, v = 0 and u = 0

• a termination scalar ε = 10−5
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• a initial solution x0 = (0, 0)

• VIOL(x0)=∞,

where violation is also defined in (5.3).

iteration µ x objective value violation
1 10 (3.46544586, 0.4648014) 0.64872 0.06975
2 10 (3.49758304 0.49753662) 0.74267 0.00488
3 10 (3.49983088, 0.49982763) 0.74949 0.00034
4 10 (3.49998817, 0.49998794) 0.74996 2.38932e-05
5 10 (3.49999917, 0.49999915) 0.749997 1.67562e-06

Figure 5.3: Iterations and solutions in multiplier penalty method

We see that the penalty parameter µ has not increased. Therefore, in every iteration
violation was 4 times smaller than the previous one. In the final step, we get the optimal
solution x̄ = (3.49999917, 0.49999915), corresponding Lagrangian multipliers u = 0.083
and v = −1.5 and objective value 0.749997. The difference from the actual objective value
is only 0.000003.

1 d e f a l a g ( x ) :
2 o b j = ( x [0 ] −3) ∗∗2+2∗x [ 1 ] ∗ ∗2
3 o b j += mu∗ ( x [0 ]+ x [1 ] −4) ∗∗2 + v ∗ ( x [0 ]+ x [1 ] −2)
4 o b j += mu∗max ( ( x [0] −x [ 1 ] ) ∗∗2−9 + ( u / ( 2 ∗mu) ) , 0 ) ∗∗2 − u ∗ ∗2 / ( 4 ∗mu)
5 r e t u r n o b j
6
7
8 eps = 10∗∗−5
9 mu = 10

10 d e l t a = 10
11 x0 = np . z e r o s ( 2 )
12 v i o l = math . i n f
13 o l d v i o l = v i o l
14 v = 0
15 u = 0
16 i = 1
17 w h i l e ( v i o l >= eps ) :
18 x0 = minimize ( a l ag , x0 ) . x
19 v i o l e n c e [ 0 ] = abs ( x0 [0 ]+ x0 [1 ] −4)
20 v i o l e n c e [ 1 ] = max ( 0 , ( x0 [0] − x0 [ 1 ] ) ∗∗2−9)
21 v i o l = max ( v i o l e n c e )
22 o b j e c t i v e = ( x0 [0 ] −3) ∗∗2+2∗x0 [ 1 ] ∗ ∗2
23 p r i n t ( ” { } −> mu= { } , x = { } , v i o l = { } , o b j v a l u e = { } ” . f o r m a t ( i , mu ,

x0 , v i o l , o b j e c t i v e ) )
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24 i f ( v i o l <= 1 /4 ∗ o l d v i o l ) :
25 v = v + 2∗mu∗ ( x0 [0 ]+ x0 [1 ] −4)
26 u = u + max(−u , 2∗mu∗ ( ( x0 [0] − x0 [ 1 ] ) ∗∗2−9) )
27 e l s e :
28 mu = mu∗10
29 o l d v i o l = v i o l
30 i += 1

Listing 5.3: Python code for the ALAG penalty function

5.2 Cardinality Constrained Portfolio
After showing that the method approximates the optimum very well when it comes to
academic examples, it is natural to wonder if it solves real-world problems equally well.
Let us consider the following portfolio problem:

minimize
x

xT Qx

subject to mT x ≥ ρ,

eT x ≤ 1,
0 ≤ xi ≤ ui ∀i = 1, . . . , n,
||x||0 ≤ χ,

(5.9)

where Q and m are the covariance matrix and mean of n possible assets, respectively and
eT x ≤ 1 is a resource constraint. ||x||0 denotes the number of non-zero elements in x. It
is a classical mean-variance portfolio selection model of Markowitz [9] with limits on the
number of assets to be held in a portfolio, what makes it a mixed-integer problem. These
requirements come from real-world practice. In general, a portfolio made up of a large
number of assets with very small holdings is not desirable mainly because of transactions
costs. Because of its wide usage, cardinality constrained portfolio optimization problem
has lately been intensively studied, especially from the computational viewpoint. In gen-
eral, mixed-integer optimization problems are very difficult to solve. While the classical
Markowitz model is a convex quadratic programming problem with a polynomial com-
plexity, the cardinality constrained problem is a NP-hard problem. Therefore, real-world
cardinality constrained problems involving markets with less than a hundred assets have
not yet been solved to optimality. This all being said motivates our attempt to solve the
problem (5.9) using the penalty method. Firstly, from [3] follows that (5.9) can be refor-
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mulated as
minimize

x
xT Qx

subject to mT x ≥ ρ,

eT x ≤ 1,
0 ≤ xi ≤ uiyi ∀i = 1, . . . , n,
yi ∈ {0, 1} ∀i = 1, . . . , n,

eT y ≤ χ.

(5.10)

Also, we consider the standard relaxation of the mixed-integer problem:

minimize
x

xT Qx

subject to mT x ≥ ρ,

eT x ≤ 1,
0 ≤ xi ≤ ui ∀i = 1, . . . , n,

eT y ≥ n − χ,
xiyi = 0 ∀i = 1, . . . , n,
0 ≤ yi ≤ 1 ∀i = 1, . . . , n,

(5.11)

To test our approach, we use the same data as in [6] but reduce the dimension to avoid
memory issues. We take the first 15 rows from [2] and set the cardinality constraint to
be 5. In order to compare the efficiency of the penalty method, we solved (5.10) directly
using GUROBI via the provided Python interface. For more details about GUROBI see [1].
Because of dimension reduction, GUROBI has found the optimal point in every example.
Our approach is based on the regularization problem below:

minimize
x

xT Qx

subject to mT x ≥ ρ,

eT x ≤ 1,
0 ≤ xi ≤ ui ∀i = 1, . . . , n,

eT y ≥ n − χ,
φ(xi, yi; t) ≤ 0 ∀i = 1, . . . , n,
φ̃(xi, yi; t) ≤ 0 ∀i = 1, . . . , n,
0 ≤ yi ≤ 1 ∀i = 1, . . . , n,

(5.12)

where function φ and φ̃ are of the form:

φ(a, b; t) :=

(a − t)(b − t) if a + b ≥ 2t,
−1

2 [(a − t)2 + (b − t)2] if a + b < 2t
(5.13)
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φ̃(a, b; t) :=

(−a − t)(b − t) if − a + b ≥ 2t,
−1

2 [(−a − t)2 + (b − t)2] if − a + b < 2t
(5.14)

t is called the regularization parameter. It can be easily seen that ∀t ≥ 0

φ(a, b; t) ≤ 0 ⇐⇒ a ≤ t or b ≤ t ⇐⇒ min{a, b} ≤ t

as well as
φ̃(a, b; t) ≤ 0 ⇐⇒ −a ≤ t or b ≤ t ⇐⇒ min{−a, b} ≤ t

(5.12) is solved iteratively, also using GUROBI, beginning with the regularization param-
eter t = 1 and decreasing it by 0.1 in every iteration. The algorithm would stop if the
regularization parameter became too small, i.e., t ≤ 10−10 or if the violation of the orthog-
onality conditions was sufficiently small, i.e., maxi=1,...,n |xiyi| ≤ 10−6. Convergence result
of the regularization method can be found in [4]. Finally, we rewrite (5.12) using penalty
functions as

minimize
x,y

xT Qx + µmax{0, eT x − 1}2 + µmax{0, ρ − mT x}2 + µmax{0, n − χ − eT y}2+

µ

n∑
i=1

max{0, φ(xi, yi, t)}2 + µ

n∑
i=1

max{0, φ̃(xi, yi, t)}2 + µ

n∑
i=1

max{0, xi − ui}
2+

µ

n∑
i=1

max{0,−xi}
2 + µ

n∑
i=1

max{0,−yi}
2 + µ

n∑
i=1

max{0, yi − 1}2

(5.15)
where the penalty parameter µ is set to be µ = 1/t.

GUROBI regularization penalty method
orl200-005-a 45.31297 45.31297 45.29229
orl200-005-b 67.34859 67.34859 67.43854
orl200-05-a 32.41775 32.41775 32.40874
orl200-05-b 15.96268 15.96268 16.22719

Figure 5.4: Solutions of the cardinality constrained portfolio problem

From (5.4) can be seen that in every example solution of regularized portfolio problem
is the same as the solution of original problem. Our approach approximates solutions very
close to the optimal ones. Python codes for each of these methods are listed below.

1 from g u r o b i p y i m p o r t ∗
2 i m p o r t pandas as pd
3 i m p o r t numpy as np
4
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5 s i z e = 15
6 c a r d i n a l i t y = 5
7 s igma = np . g e n f r o m t x t ( ” o r l200 −005−a . mat ” , s k i p h e a d e r =1 , d t y p e= ’ i n t ’ )
8 s igma = s igma [ 0 : s i z e , 0 : s i z e ]
9 m = pd . r e a d c s v ( ” o r l200 −005−a . t x t ” , sep=” ” , i n d e x c o l =F a l s e , s k i p r o w s

=1 , names =[ ’ mu i ’ , ’ i g n o r e ’ ] )
10 rho = np . g e n f r o m t x t ( ” o r l200 −005−a . rho ” )
11 rho = rho . i t em ( )
12 m = m. i l o c [ 0 : s i z e , 0 ]
13 bounds = pd . r e a d c s v ( ” o r l200 −005−a . bds ” , sep=” ” , i n d e x c o l =F a l s e , names

=[ ’ l i ’ , ’ u i ’ ] )
14 bounds = bounds . t r a n s p o s e ( )
15 u i = bounds . i l o c [ 1 , 0 : s i z e ]
16 model = Model ( ’ p o r t f o l i o ’ )
17 v a r s = pd . S e r i e s ( model . addVars ( s i z e ) )
18 y = pd . S e r i e s ( model . addVars ( s i z e , v t y p e=GRB. BINARY) )
19 v a r s . s t a r t = np . z e r o s ( s i z e )
20 y . s t a r t = np . ones ( s i z e )
21 p o r t f o l i o r i s k = v a r s . d o t ( s igma ) . d o t ( v a r s )
22 model . s e t O b j e c t i v e ( p o r t f o l i o r i s k , GRB. MINIMIZE )
23 model . a d d C o n s t r ( v a r s . sum ( ) <= 1 , ’ bu dg e t ’ )
24 m = np . a s a r r a y (m)
25 model . a d d C o n s t r s ( ( 0 <= v a r s [ i ] f o r i i n r a n g e ( s i z e ) ) , ’ n o n n e g a t i v e ’ )
26 model . a d d C o n s t r s ( ( v a r s [ i ] <= u i [ i ]∗ y [ i ] f o r i i n r a n g e ( s i z e ) ) , ’ u i ’ )
27 model . a d d C o n s t r ( y . sum ( ) <= c a r d i n a l i t y , ’ c a r d i n a l i t y ’ )
28 p o r t f o l i o r e t u r n = m. d o t ( v a r s )
29 model . a d d C o n s t r ( rho <= m. d o t ( v a r s ) , ’ p o r t f r e t u r n ’ )
30 model . a d d C o n s t r s ( ( y [ i ] <= 1 f o r i i n r a n g e ( s i z e ) ) , ’ i n t e r v a l ’ )
31 model . a d d C o n s t r s ( ( 0 <= y [ i ] f o r i i n r a n g e ( s i z e ) ) , ’ i n t e r v a l 2 ’ )
32 model . u p d a t e ( )
33 model . o p t i m i z e ( )

Listing 5.4: Python code for directly solving portfolio optimization problem using
GUROBI

1 t = 1
2 x g u e s s = np . z e r o s ( s i z e )
3 y g u e s s = np . ones ( s i z e )
4 cond = 1
5 w h i l e ( ( t >= 10∗∗ −10) & ( cond > 10∗∗ −6) ) :
6 model = Model ( ’ p o r t f o l i o ’ )
7 v a r s = pd . S e r i e s ( model . addVars ( s i z e ) )
8 y = pd . S e r i e s ( model . addVars ( s i z e ) )
9 min1 = pd . S e r i e s ( model . addVars ( s i z e ) )

10 min2 = pd . S e r i e s ( model . addVars ( s i z e ) )
11 p o r t f o l i o r i s k = v a r s . d o t ( s igma ) . d o t ( v a r s )
12 model . s e t O b j e c t i v e ( p o r t f o l i o r i s k , GRB. MINIMIZE )
13 model . a d d C o n s t r ( v a r s . sum ( ) <= 1 , ’ bu dg e t ’ )
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14 model . a d d C o n s t r s ( ( ( y [ i ] <= 1) f o r i i n r a n g e ( s i z e ) ) , ’ yL1 ’ )
15 model . a d d C o n s t r s ( ( ( 0 <= v a r s [ i ] ) f o r i i n r a n g e ( s i z e ) ) , ’ u i ’ )
16 model . a d d C o n s t r s ( ( ( v a r s [ i ] <= u i [ i ] ) f o r i i n r a n g e ( s i z e ) ) , ’ u i ’ )
17 model . a d d C o n s t r ( s i z e − c a r d i n a l i t y <= y . sum ( ) , ’ c a r d i n a l i t y ’ )
18 model . a d d C o n s t r ( rho <= m. d o t ( v a r s ) , ’ p o r t f r e t u r n ’ )
19 v a r s . s t a r t = x g u e s s
20 y . s t a r t = y g u e s s
21 model . a d d C o n s t r s ( ( min1 [ i ] == min ( v a r s [ i ] , y [ i ] ) f o r i i n r a n g e (

s i z e ) ) , ’ min1 ’ )
22 model . a d d C o n s t r s ( ( min1 [ i ] <= t f o r i i n r a n g e ( s i z e ) ) , ’ min1t ’ )
23 model . u p d a t e ( )
24 model . o p t i m i z e ( )
25 x g u e s s = np . a r r a y ( [ v . x f o r v i n v a r s ] )
26 y g u e s s = np . a r r a y ( [ v . x f o r v i n y ] )
27 t = t ∗0 . 0 1
28 cond = max ( abs ( np . m u l t i p l y ( x gues s , y g u e s s ) ) )

Listing 5.5: Python code for solving regularized portfolio optimization problem using
GUROBI

1 i m p o r t math
2 from s c i p y . o p t i m i z e i m p o r t min imize
3
4
5 d e f p h i ( a , b , t ) :
6 i f ( a+b >= 2∗ t ) :
7 r e s u l t = ( a− t ) ∗ ( b− t )
8 e l s e :
9 r e s u l t = −1 /2∗ ( ( a− t ) ∗∗2+( b− t ) ∗∗2 )

10 r e t u r n r e s u l t
11
12
13 d e f p h i ( a , b , t ) :
14 i f (− a+b >= 2∗ t ) :
15 r e s u l t = (−a− t ) ∗ ( b− t )
16 e l s e :
17 r e s u l t = −1 /2∗ ( ( − a− t ) ∗∗2+( b− t ) ∗∗2 )
18 r e t u r n r e s u l t
19
20
21 d e f o b j e c t i v e ( x ) :
22 o b j = x [ 0 : s i z e ] . d o t ( s igma ) . d o t ( x [ 0 : s i z e ] )
23 o b j += mu∗max ( 0 , x [ 0 : s i z e ] . sum ( ) −1) ∗∗2
24 o b j += mu∗max ( 0 , rho−m. d o t ( x [ 0 : s i z e ] ) ) ∗∗2
25 o b j += mu∗max ( 0 , s i z e − c a r d i n a l i t y −x [ s i z e : s i z e ∗ 2 ] . sum ( ) ) ∗∗2
26 f o r i i n r a n g e ( s i z e ) :
27 o b j += mu∗max ( 0 , x [ i ]− u i [ i ] ) ∗∗2
28 o b j += mu∗max ( 0 , −x [ i ] ) ∗∗2
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29 o b j += mu∗max ( 0 , −x [ i + s i z e ] ) ∗∗2
30 o b j += mu∗max ( 0 , x [ i + s i z e ] −1) ∗∗2
31 o b j += mu∗max ( 0 , p h i ( x [ i ] , x [ i + s i z e ] , t ) ) ∗∗2
32 o b j += mu∗max ( 0 , p h i ( x [ i ] , x [ i + s i z e ] , t ) ) ∗∗2
33 o b j += mu∗max ( 0 , −1 /2∗ ( ( − x [ i ]− t ) ∗∗2+( x [ i + s i z e ]− t ) ∗∗2 ) ) ∗∗2
34 r e t u r n o b j
35
36 v i o l = math . i n f
37 x0 = np . append ( np . z e r o s ( s i z e ) , np . ones ( s i z e ) )
38 o l d v i o l = v i o l
39 eps = 10∗∗−10
40 cond = 1
41 i t = 0
42 t = 1
43 w h i l e ( ( eps <= v i o l ) & ( t >= 10∗∗ −10) ) :
44 mu = 1 / t
45 i t += 1
46 x = minimize ( o b j e c t i v e , x0 ) . x
47 v i o l e n c e = np . z e r o s (3+5∗ s i z e )
48 v i o l e n c e [ 0 ] = max ( 0 , x [ 0 : s i z e ] . sum ( ) −1)
49 v i o l e n c e [ 1 ] = max ( 0 , s i z e − c a r d i n a l i t y −x [ s i z e : s i z e ∗ 2 ] . sum ( ) )
50 v i o l e n c e [ 2 ] = max ( 0 , rho−m. d o t ( x [ 0 : s i z e ] ) )
51 f o r i i n r a n g e ( s i z e ) :
52 v i o l e n c e [ i +3] = max ( 0 , p h i ( x [ i ] , x [ i + s i z e ] , t ) )
53 v i o l e n c e [ i +3] = max ( 0 , p h i ( x [ i ] , x [ i + s i z e ] , t ) )
54 v i o l e n c e [ ( i +3)+ s i z e ] = max ( 0 , −x [ i + s i z e ] )
55 v i o l e n c e [ ( i +3)+2∗ s i z e ] = max ( 0 , x [ i + s i z e ] −1)
56 v i o l e n c e [ ( i +3)+3∗ s i z e ] = max ( 0 , −x [ i ] )
57 v i o l e n c e [ ( i +3)+4∗ s i z e ] = max ( 0 , x [ i ]− u i [ i ] )
58 v i o l = max ( v i o l e n c e )
59 p r i n t ( ’ { } −> { } ’ . f o r m a t ( i t , x [ 0 : s i z e ] . d o t ( s igma ) . d o t ( x [ 0 : s i z e ] ) ) )
60 x0 = x
61 t = t ∗0 . 1

Listing 5.6: Python code for solving portfolio optimization problem using penalty function
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Summary

This master thesis deals with penalty methods in constrained optimization. The approach
is used to convert a constrained problem into an equivalent unconstrained problem. At the
beginning, the most important definitions and results related to unconstrained, as well as
constrained, optimization are presented. In the second chapter we begin with the basic def-
inition of penalty function. Furthermore, the concept of the penalty function is elaborated
and geometrically illustrated. In the next chapter, important result which justifies the use of
the penalty function is stated and proven. Also, computational difficulties which motivate
the next chapter are discussed. In the fourth chapter, exact penalty functions are presented.
Finally, in the last chapter all the methods presented are applied on examples. Firstly, a
simple convex optimization problem is solved by all of the methods and results are dis-
cussed. After that, cardinality constrained portfolio optimization problem is presented and
solved with GUROBI and exterior penalty function method.



Sažetak

Ovaj rad bavi se s metodom kaznenih funkcija u uvjetnoj optimizaciji koja se koristi kako
bi se problem uvjetne optimizacije ekvivalentno zapisao kao problem bezuvjetne opti-
mizacije. Na početku rada navedene su najvažnije definicije i rezultati o bezuvjetnoj, kao i
uvjetnoj, optimizaciji. U drugom poglavlju počinjemo s osnovnim definicijama o kaznenim
funkcijama. Nadalje, prikazan je koncept kaznenih funkcija i njihova geometrijska inter-
pretacija. U sljedećem poglavlju, naveden je i dokazan rezultat koji opravdava korištenje
kaznenih funkcija u uvjetnoj optimizaciji. Takoder, opisane su računske složenosti koje
su motivirale sljedeće poglavlje. U četvrtom poglavlju predstavljene su egzaktne kaznene
funkcije. Na kraju rada nalazi se primjena opisanih metoda na jednostavnom konvek-
snom primjeru. Nakon toga, predstavljen je problem optimizacije portfelja s uvjetom
kardinalnosti i riješen je pomoću GUROBI-ja i kaznene funkcije te su dobiveni rezultati
usporedeni.
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