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MATEMATIČKI ODSJEK

Matko Ljulj

Modeliranje medudjelovanja

trodimenzionalnog elastičnog tijela i
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SUMMARY

In this thesis we analyse an interaction problem between two elastic three-dimensional

bodies of which one is much thinner than the other. Furthermore, the thin body is assumed

to be more stiff with elastic coefficients related to the small thickness parameter. We con-

sider this problem in context of both linear and nonlinear elasticity. We analyse asymp-

totic behaviour of solutions of these problems and obtain different limit models in various

regimes as thickness tends to zero. Furthermore, we propose both linear and nonlinear

models given by three-dimensional elasticity equations and two–dimensional elastic plate

equations as a boundary condition instead of the three–dimensional body equations that

includes the thin body and investigate the asymptotic behaviour of the proposed model as

the thickness parameter goes to zero. We prove that proposed model has the same asymp-

totic behaviour as firstly observed three–dimensional model that includes the thin body in

the same regimes. By using proposed models, one can avoid numerical challenges that

implementing a scheme for a three–dimensional model including a thin domain can cause

as in similar situations.

The nonlinear model we propose is based on a nonlinear shell model we formulate

and it is an additional contribution of the thesis. It is a nonlinear shell model of Naghdi

type defined for shells which allow Lipschitz–continuous parametrizations of its middle

suface, so it also models shells with middle surfaces having corners and folded plates and

shells. Energy of the formulated model contains membrane, shear, drill and flexural terms,

and (in appropriate regimes) it has the same asymptotic behaviour as models rigorously

justified in the literature: membrane shell model, flexural shell model and constrained

membrane plate model.

Keywords: interaction model, nonlinear elasticity, linearised elasticity, thin structure,
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Summary

justification, Γ–convergence, shells, Naghdi model, Cosserat model, membrane model,

flexural model, Koiter model.
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SAŽETAK

U ovom radu analiziramo problem medudjelovanja dva elastična trodimenzionalna

tijela od kojih je jedno mnogo tanje od drugoga. Nadalje, za tanko tijelo pretpostavlja-

mo da je kruće, s koeficijentima elastičnosti ovisnima o parametru male vrijednosti koji

predstavlja debljinu tankog tijela. Promatramo taj problem koristeći i linearnu i nelin-

earnu elastičnost. Analiziramo asimptotsko ponašanje rješenja tih problema i dobivamo

različite granične modele u raznim režimima kada vrijednost tog parametra teži k nuli.

Nadalje, predlažemo i linearan i nelinearan model opisan jednadžbama trodimenzion-

alne elastičnosti i jednadžbama elastične ploče kao rubnim uvjetom umjesto jednadžbama

trodimenzionalnog tijela koje uključuje tanko 3d tijelo, te istražujemo asimptotska svo-

jstva predloženog modela kada parametar debljine teži k nuli. Dokazujemo da predloženi

model ima jednako asimptotsko ponašanje kao trodimenzionalni model koji uključuje

tanko 3d tijelo u istim režimima. Koristeći novopredložene modele moguće je izbjeći

poteškoće kod numeričke implementacije trodimenzionalnih modela koji uključuju tanku

domenu.

Predloženi nelinearni model baziran je na nelinearnom modelu elastične ljuske koji

smo zadali i koji je dodatni doprinos ovog rada. To je nelinearan model ljuske Naghdijeva

tipa definiran za ljuske kojima je središnja ploha parametrizirana Lipschitzovom funkci-

jom, pa takoder modelira i ljuske kojima središnja ploha sadrži kutove te presavinute

ploče i ljuske. Energija u zadanom modelu sadži membranske i fleksijske efekte te efekte

smicanja i uvrtanja, te u odgovarajućem režimu ima ista asimptotska svojstva kao modeli

koji su strogo izvedeni u literaturi: membranski model ljuske, fleksijski model ljuske i

uvjetni membranski model ploče.

Ključne riječi: model interakcije, nelinearna elastičnost, linearizirana elastičnost,
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tanka struktura, rigorozno opravdanje, Γ–konvergencija, model ljuske, Naghdijev model,

Cosseratov model, membranski model, fleksijski model, Koiterov model.
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INTRODUCTION

Interaction of two continua appears in a vast number of real life situations and is of big

interest in many applications. The same holds for interaction of structures made of two

continua in which one of them is much thinner than the other. Examples are countless:

flow of a fluid through a pipe, bridges, roads and various other elements in construction,

interaction of Earth’s layers with application in geophysics, etc. In this thesis we focus on

such three–dimensional structures in which both layers are modelled as elastic bodies.

In numerical solving in purposes of research and applications of mathematical models,

the thickness of a medium plays an important role. In thin domains mesh for solving

mathematical models has to be very fine in order to obtain regular mesh. Very similar

problem arises in the interaction of two continua where one of them is much thinner than

the other. In this situation the thin layer has to be modelled on a fine mesh, which also

causes problems in numerical coupling to the other continuum.

To better describe this numerical challenge, let us observe the following example. A

two–dimensional body of length 1 and height 1 + h, h � 1 is modelled by linearised

elasticity equations. It is clamped at the bottom, and a force is applied at the top. This

body is made of two different materials, on the lower part of dimension 1 × 1 and on

the upper part of dimension 1 × h. Difference between those materials is seen through

different Lamé coefficients λ, µ. Ratio of coefficients for the thin part and for the lower

part is assumed to be h−1−α, where α is a real parameter. Such problem is observed

in [63].

In case α = −1, elastic properties of the thin part and the thick part coincide. Due to

continuous dependance on the geometry, it is expected that for small value of thickness

h the thin part does not contribute in any way to the structure. However, for values

α > −1 we expect some contribution of the thin layer. We numerically solve the described
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Introduction

problem for various values of that parameter. We present behaviour of the structure for

values α = −1, 0, 1, 2, 3 and h = 2−4, for forcing term equal to

f (x1) = 106

��
x1 −

1

2

�
e1 +

�
4 (x1 − 0.2) (x1 − 0.7)− 7

75

�
e2

�
. (1)

The results are in Figure 1. In the Figure 1.(a) example we see the confirmation of our

mathematical based conclusions – the thin part of the body is quite deformed, but in

essence the top of the lower part has the same shape as the thin part. In the limit there will

be no contribution of this material to the total structure.

As α gets larger, we observe different behaviour of the upper part of domain. What all

cases have in common is that the larger α implies higher level of rigidity of the thin part.

Two effects can be seen with a bare eye. Firstly, for values α = −1, 0 the thin part of the

domain is getting more resistant to stretching, until in cases α = 1, 2, 3 the thin part gets

approximately of the same length as in undeformed geometry (it is easily seen by looking

at the top side length of the deformed rectangle). Secondly, in cases α = 0, 1, 2 the same

thin part is becoming reluctant to bend, until the case α = 3 is reached. In this case it is

neither bent nor stretched, it is again of the form of the (thin) undeformed rectangle. In

elasticity theory, those two effects (stretching and bending) are also called membrane and

flexural effects and are related to the plate models and energy terms of the same name.

Looking at the same figures, let us also observe the mesh density. All problems are

solved on the same mesh. At the top the mesh is dense to obtain regular triangulation and

precise enough approximation, which is common for problems defined on thin domains.

However, due to coupling, this dense mesh is spread partially to a lower part of the domain

as well. Thus that part of domain is meshed denser than it can be when the problem is

defined only on this lower part of domain (without the thin layer). This makes numerical

algorithm more challenging and time–consuming than we would like.

One solution to approach this drawback (apart from treating it with some numerical

methods designed for non–matching meshes) is, since h � 1, to rigorously derive the

limit model when h → 0. More precisely, one can approximate the solution of this

problem by a limit of solutions of problems when h → 0, which is defined as a solution

to a PDE defined on a 1 × 1 square, i.e. without the thin layer. In this way numerical

drawbacks are avoided.

2
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(a) α = −1 (b) α = 0

(c) α = 1 (d) α = 2

(e) α = 3

Figure 1: Numerical approximation of solutions for deformation of two–dimensional mul-

timaterial body, for various values of parameters α, thickness h = 2−4 and the forcing

only at the top given in (1).
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However, for this we have to rigorously derive mentioned limit model when h → 0.

We show that for different values of α different limit models are obtained, considering

either the membrane or flexural energy model on the thin part of the domain. On the

other hand, by observing numerical solutions in Figure 1 we see that both membrane and

flexural effects can happen. Also, in real life applications, we do not deal with a regime

(related to α), but only one fixed set of parameters for this problem, so it is sometimes not

clear a priori which regime we relate to and consequently which limit model we should

choose.

For the same reasons, in the same paper [63] a 2d–1d model is proposed, dependant

on the parameter h � 1, representing the thickness of the thin layer at the top. It takes

into account the 2d elastic energy of the larger body and 1d model including membrane

and flexural energies for the layer at the top. Its main properties are that it is easy to

numerically approximate it and that in all regimes (related to the parameter α) when

h → 0 the particular limit model is the same the limit model obtained in the rigorous

derivation of the 2d problem related to the same α. In this way, neither do we have to

numerically approximate the problem on a dense mesh, nor do we have to choose α (and

the limit model for that α) in advance – both were major drawbacks of other ways of

approaching to our problem.

This motivates the problem setting for this thesis.

In this thesis we observe a structure made of two elastic bodies. One is situated in the

closure of Ω0 := 〈0, 1〉×〈0, 1〉×〈−1, 0〉 and another (thin) body is situated in the closure

of Ωh := 〈0, 1〉 × 〈0, 1〉 × 〈0, h〉, for a small parameter h. The thinner body is assumed

to be more stiff than the larger body, again by an order of magnitude h−α−1, as in the

numerical example. A force is applied to the top of the structure (at 〈0, 1〉×〈0, 1〉×{h}),
and the whole structure is clamped at the bottom (at 〈0, 1〉 × 〈0, 1〉 × {−1}).

Firstly, for each structure we define a model to which the solution is the deformation

of the structure, for each parameter α and h. Secondly, for various parameters α we will

rigorously derive a limit model when h→ 0. Finally, as in the numerical example, we will

propose a 3d–2d model and prove that it has the same asymptotic properties as original

model.

We will perform announced analysis in terms of linearised elasticity (Part I) and in

4
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terms of nonlinear elasticity (Part II). Key differences from the numerical example are

that in the thesis the emphasis is on the theoretical approach (thus we will not implement

numerical algorithms), and that the problem is observed on 3d domains instead of the 2d

domains as in the numerical example. On the other hand, even though Figure 1 shows nu-

merically obtained (and not mathematically justified) approximation of solutions and even

though it describes the situation in two dimensions, the analogous behaviour is expected

in our three–dimensional modelling in this thesis.

The 3d–2d model we will propose takes into account different effects that a thin elastic

body can have, for example membrane and flexural effects mentioned earlier. For this

reason, in Part I (in case of linearised elasticity) we will base our 3d–2d model on an

existing linear shell model of the Naghdi type ([87]). In the case of nonlinear modelling

(Part II) we need a nonlinear generalization of this shell model, which does not exist

in the literature so far. Thus in this thesis in Chapter 5 we propose a nonlinear shell

model of the Naghdi type, having similar properties as the linear model from [87] and that

could be considered as a nonlinear generalisation of that model. Apart from the rigorous

asymptotic derivation and obtaining 3d–2d limit models for various values of parameter α

and apart from proposing adequate 3d–2d model having the same asymptotic properties as

the 3d–thin 3d model, both in linear and nonlinear case, proposition of the new nonlinear

shell model is another major contribution of this thesis.

Main contributions of this thesis are:

• We rigorously derive limit models of 3d–thin 3d problem when the thickness pa-

rameter h tends to zero, in as many regimes (regarding α) as possible, in both linear

and nonlinear case. In the existing literature within the scope of linearised elasticity

the asymptotics is discussed in a bit different setting, so the arguments are quite

different. In the nonlinear setting only particular values of alpha are discussed in

the literature.

• We formulate a new nonlinear shell model of the Naghdi type and investigate and

prove some of its properties. The most important are, as a difference to majority

of shell models in the literature, that the model is well defined for shells with little

regularity (W 1,∞(ω;R3) parametrisations of the middle surface) and that it asymp-

5
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totically (with respect to the thickness of the shell), in corresponding regimes, be-

haves as 3d equations (this is analysed in rigorous derivation of shell models in the

literature).

• We propose 3d–2d model and prove that its limit models when thickness parame-

ter h tends to zero coincide with limit models for 3d–thin 3d problem, in various

regimes (regarding α), in both linear and nonlinear case. To our knowledge, this

model is novel and does not exist in the literature.

More detailed list of contributions can be found in Conclusion. Parts of this thesis already

resulted in published or submitted articles. The whole linear modelling part is published

in [62], and the proposition of the nonlinear shell model with the majority of its properties

is presented in [61].

Literature overview

Modelling of thin structures in context of elasticity equations is important area within

continuum mechanics not only because of more simple structure of the plate and shell

equations but also because they are more simple to analyse and it is easier to build numer-

ical schemes for them. For a modern general theory of nonlinear elastic plate and shell

theory see [6, 20, 21, 28]. The nonlinear plate and shell theories can be classified in two

categories. A first category is made of two-dimensional models that are obtained from the

three-dimensional equations of shell–like bodies by letting the thickness of the body tend

to zero. One of the first attempts of such approach was in [37] by means of asymptotic

formalism. Later on, various plate models (and afterwards shell models) were justified by

means of Γ–convergence. Now there exists a hierarchy of models depending on the order

of the elastic energy, and works in which those limit models are investigated in more de-

tails, see [30,31,38–40,51–54,57–60,74]. The second category of plate and shell models

are obtained from the three-dimensional models by taking a priori assumptions on the

range of admissible deformations and stresses that a thin body can have, such as Cosserat

assumptions, Koiter assumptions etc. For foundation of the Naghdi and Koiter models of

shells see [47, 67]. Precise justifications and generalizations of the Koiter model can be

found in [13,22,26,27,29,65,66,84], and some existence results for the Koiter and some

6
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other nonlinear shell models can be found in [3, 4, 25]. Some shell models coming from

nonlinear theory based on Cosserat assumptions also can be found in [11, 69–72].

The problems of interaction of different continua or continua of different dimensions

are the area of great interest as well. Presently in the literature dominant are problems

that include linear modelling. The asymptotics of the linear 3d–thin 3d problem in a

very similar setting as ours in the Section 2.3 was considered in [18], where the author

obtained the convergence results in all cases for the parameter α, however the setting

used in this thesis is slightly different which results in different proofs. Essentially the

same linear 3d–thin 3d problem asymptotics, but only for α = 2, is considered in [23]

and elaborated in [20]. In the case of shells the 3d–2d asymptotics is discussed in [9].

Due to the curved geometry the considered problem is more complicated but gives the

asymptotics of the 3d–2d problem only for α = 0 and α = 2. One can also see [1]

for the variational approach to the thin inclusion problem in linear elasticity and [8] in

both linear and nonlinear elasticity. For hyperelastic materials and α = 0 the asymptotics

of the 3d–thin 3d problem is discussed in [35] by Γ–convergence techniques. A similar

analysis for micropolar elastic media is done in [82]. Interaction of the viscous fluid

and the linearised elasticity/elastic plate for the same choice of the stiffness of the elastic

coefficients (α = 2) and thin structure is considered in [64,73]. For inclusion of 1d elastic

and rigid bodies in 2d linearised elasticity see [46]. An example from electromagnetism

can be found in [77]. Linear problems of interaction of thin 3d bodies and elastic plates

and shells is cases α = 0 and α = 2 are observed in [10]. Contact problems between linear

3d body and rigid plates are observed in [36]. This topic is also related to the problem

of modelling of joints within both nonlinear and linearised elasticity, see [43, 49] for thin

elastic interfaces, linear and nonlinear, isotropic and functionally graded, with or without

constraints, see [33, 41, 55, 56, 75]. Interaction of linear elastic plates is observed in [42]

and [83]. For piezoelectric interfaces see [79, 81] and for magneto-electro-thermo-elastic

see [80]. For application of elastic interfaces to geophysics, see [78].

Chapter overview

The thesis is divided in two parts. In Part I the problem explained earlier is observed

7



Introduction Notation

from the perspective of linearised elasticity and Part II is dedicated to nonlinear elasticity.

In Chapter 1 we present a linear Naghdi type model (from [87]) on which we will base

the linear 3d–2d model. In the same chapter some definitions regarding the geometry of

the shell are also announced. In Chapter 2 we present the first contribution of the thesis.

There we rigorously derive limit models in all cases for α ≥ −1 of interaction of 3d body

and thin 3d body (3d–thin 3d) in aspect of linear elasticity. Also, we propose a linear

3d–2d model and prove its asymptotic properties.

In Part II we observe the problem using nonlinear elasticity modelling. We start with

presenting known results in asymptotically derived nonlinear plate models in Chapter 3.

In Chapter 4 we rigorously derive limit models of the 3d–thin 3d problem in various

cases depending on the real parameter α. Chapter 5 is dedicated to the new nonlinear

shell model of Naghdi type. We propose the model and prove its properties. Finally,

in Chapter 6 we propose a nonlinear 3d–2d model based on the new shell model from

Chapter 5, and compare its asymptotics to the one in Chapter 4. At the end of the thesis,

in Appendix A, there is a technical density lemma used in Chapter 5 and Chapter 6.

1. NOTATION

At the beginning, we introduce the notation we are going to use throughout the thesis.

Sets of natural numbers (positive integers) and real numbers are denoted by N and R,

respectively. We also use notation R := [−∞,+∞]. If not stressed differently, Latin

letters i, j, k denote indices from the set {1, 2, 3}, and for indices from the set {1, 2} we

use Greek letters β, β1, β2. The Greek letter α is not used here since it is reserved for a

parameter related to the ratio of elasticity properties between the 3d and thin 3d part of

the structure explained earlier.

Small bold letter x = (x1, x2, x3), if not noted differently, is reserved for a point

(x1, x2, x3) in the space R3, while x′ = (x1, x2) is reserved for a point (x1, x2) in R2. We

will often use x′ as abbreviation for first two coordinates of the point x.

Most other small bold latin and greek letters are used for vectors or vector functions.

Capital bold latin letters are reserved for matrices.

The set of m× n real matrices is denoted by Mm×n. The determinant and trace of the
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Introduction Notation

matrix X are denoted by det(X) and tr(X), respectively. The identity matrix is denoted

by I.

Very often we will use a particular subset of M3×3:

SO(3) := {S ∈M3×3 : STS = SST = I, det S = 1};

such matrices are referred as rotations. It is clearly a compact subset of M3×3.

For vector and matrix norms, the following notation is used

• ‖a‖ denotes the 2–norm of a vector a ∈ Rn;

• ‖A‖F denotes the Frobenius norm of a matrix A ∈Mm×n, defined by

‖A‖F =
(
tr(ATA)

)1/2
;

• ‖A‖2 denotes the induced operator 2–norm of a matrix A ∈Mm×n, defined by

‖A‖2 = sup
y∈Rn,y 6=0

‖Ay‖
‖y‖ .

Scalar (dot, inner) product and vector (cross) product of vectors a and b are denoted by

a·b and a×b, respectively. The Frobenius scalar product of matrices tr(ATB) is denoted

by A ·B.

For matrices X,Y ∈ Mm×n of the same type we define dist(X,Y) = ‖X − Y‖F .

For a set of matrices S ⊂Mm×n and a matrix X ∈Mm×n we define

dist(X,S) := inf
Y∈S

dist(X,Y).

Most often we will use dist function for S := SO(3). Since SO(3) is a compact set

and dist is a continuous function, in definition of dist(X, SO(3)) the ”inf” can be sub-

stituted by ”min”. Thus, for each X ∈ M3×3 there exists the ”closest” rotation RX ∈
SO(3) (at least one) for which dist(X, SO(3)) = dist(X,RX). If X has a positive

determinant and X = RU is its polar decomposition, by simple calculations we have

dist(X, SO(3)) = ‖U − I‖F . If a condition on determinant is dropped, we still have a

bound dist(X, SO(3)) ≥ ‖(XTX)1/2 − I‖F .

For a matrix A the numbers λi(A) and σi(A) denote ith largest eigenvalue and sin-

gular value, respectively. Sometimes, for simplicity, self–explanatory notations λmin(A),

λmax(A), σmin(A) and σmax(A) are also used.
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We will use Lebesgue function spaces Lp(Ω;Rn) on different domains and codomain

dimensions. For a power (p in the above example) we use real constants (most often

2 and 4) or letters p and q. We denote their Hölder counjugates by p′ = (1 − 1/p)−1

and q′ = (1 − 1/q)−1. In the case that the codomain is a subset of matrices Mm×n,

the Frobenius norm is used in the definition of the Lp(Ω;Rm×n) norm. (Weak) partial

derivatives of a function η are denoted by ∂1η, ∂2η, . . ., and the differential of order n is

denoted by Dnη. The gradient is denoted by∇η. In case when the gradient is taken with

respect of just two first variables or the function η is defined on a subset of R2, we will

emphasise it by notation∇′η :=
[
∂1η ∂2η

]
. We will also use Sobolev functions spaces:

if Ω ⊂ Rm we define

W k,p(Ω;Rn) = {η ∈ Lp(Ω;Rn) : ∂iη ∈ W k−1,p(Ω;Rn), i = 1, . . . ,m}

(with the convention W 0,p(Ω;Rn) ≡ Lp(Ω;Rn)). Also, Hk(Ω;Rn) := W k,2(Ω;Rn).

In Part II of the thesis we will often use Γ–convergence. For a metric space X , a

family of functionals (Fn)n≥1, Fn : X → R Γ–converges to a functional F : X → R in

the topology of X if the following claims hold:

The ”lim inf” part: For all x ∈ X and for any (xn)n≥1 ⊂ X , xn → x in X holds

lim inf
n→∞

Fn(xn) ≥ F (x);

The ”lim sup” part: For all x ∈ X there exists (xn)n≥1 ⊂ X , xn → x in X such that

lim sup
n→∞

Fn(xn) ≤ F (x).

In that case, we will denote F = Γ ((Fn)n≥1). If the sequence of functionals is a constant

sequence (i.e. Fn = F0 for all n ∈ N), then we will denote F = Γ − F0. In case that X

is a Lesbegue function space, it is known that F is then the weakly lower semicontinous

envelope of F0.
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1. A NAGHDI TYPE LINEAR SHELL

MODEL

1.1. INTRODUCTION

In the first part of the thesis we deal with interaction between a 3d elastic body and a

thin 3d body. Apart from determining limit models (with respect to h→ 0, where h is the

thickness of the thin 3d part), we would like to propose an adequate 3d–2d model that has

the same asymptotic properties as the 3d–thin 3d model. For that reason in this chapter

we present a linear shell model on which our 3d–2d model is based, and in Chapter 2 we

preform all asymptotic analysis.

This shell model we use is from [87]. It accounts for all three basic notions of the

deformation of shells, namely stretching, shear and bending, like in the classical Naghdi

shell model, see [67]. However, the model we use has simple structure, and one can build a

numerical algorithm for it simpler than in the case of the classical Naghdi model, see [87]

for details. It is a six parameter model. In the case of planar case of undeformed geometry

of the middle surface, for the flexural deflection we obtain exactly the Reissner–Mindlin

plate model, but the model also contains the in-plane deformation and the in-plane drill.

These properties suggest that it will suit us for 3d–2d model we will propose in Chapter 2.

The main features of the model are:

• The model is formulated for the unknown (ũ, ω̃) in a subset VN(ω) of H1(ω;R3)×
H1(ω;R3) defined by boundary conditions (ω ⊂ R2 being open, bounded with

Lipschitz boundary).
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A Naghdi type linear shell model Introduction

• The proof of existence and uniqueness of the solution has a very simple proof with-

out use of delicate Korn’s type estimate.

• The model is well defined for the middle surface parametrised by θ ∈ W 1,∞(ω;R3)

(and thus the model for shells with middle surfaces with corners (or folded plates

or shells) is inherently built into the model).

• The energy of the model contains the membrane, transverse shear and flexural terms

which are of different order with respect to the thickness h of the shell.

• For smooth geometry the solution of the model in the elliptic membrane and flexural

regime tends to the solution of the corresponding shell model, when thickness h

tends to zero.

• The model can be seen as a small perturbation of the classical Naghdi shell model.

• The solution of the model continuously depends on the change in the geometry

(with respect to parametrization θ in W 1,∞(ω;R3)).

• The model can be seen as the special Cosserat shell model with a single director for

a particular linear constitutive law.
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A Naghdi type linear shell model Geometry

1.2. GEOMETRY

In order to formulate shell we firstly give necessary geometry definitions for the mid-

dle surface. Let ω ⊂ R2 be an open bounded and simply connected set with Lipschitz-

continuous boundary γ and let an injective function θ ∈ C3(ω;R3) be the parametrization

of the middle surface of the shell, see Figure 1.1. Points in ω we denote by x′ = (xβ) and

let ∂β := ∂/∂xβ . The assumption that aβ(x′) = ∂βθ(x′) are linearly independent at all

points x′ ∈ ω assures that θ parametrizes two-dimensional surface S = θ(ω) in R3.

x3

x1

x2

θa3

a1
a2

ω

θ(ω)

h

Figure 1.1: Parametrization of the undeformed shell.

Vectors a1(x′),a2(x′) form the covariant basis of the tangent plane of S at θ(x′), and

the contravariant basis of the same plane is given by aβ(x′),

aβ1(x′) · aβ2(x′) = δβ1,β2 .

We also define a vector

a3(x′) = a3(x′) =
a1(x′)× a2(x′)

‖a1(x′)× a2(x′)‖ .

Note that sets {a1,a2,a3} and {a1,a2,a3} form bases for R3. The first fundamental

form, or the metric tensor in covariant Ac = (aβ1β2) or contravariant Ac = (aβ1β2)

components of the surface S is given respectively by aβ1β2 = aβ1 ·aβ2 , a
β1β2 = aβ1 ·aβ2 .

Note that we have Ac = A−1
c and

a1 × a3 = −√aa2, a2 × a3 =
√
aa1. (1.2.1)
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A Naghdi type linear shell model Geometry

The area element along S is then
√
adx′, where a := det Ac. It is easy to prove that

Ac,Ac and a are uniformly positive definite, i.e., that

ess inf
x′∈ω

λmin (Ac(x′)), ess inf
x′∈ω

λmin (Ac(x
′)), ess inf

x′∈ω
a(x′) > 0. (1.2.2)

However, for less regular parametrizations, i.e. θ ∈ W 1,∞(ω;R3), this will be an assump-

tion. For more details see [21, 85–87].
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A Naghdi type linear shell model The linear shell model

1.3. THE LINEAR SHELL MODEL

In this section we formulate the shell model of Naghdi type from [87]. The model is

defined for middle surfaces parametrised by a θ ∈ W 1,∞(ω;R3). That implies that the

vectors of the covariant and contravariant bases belong to L∞(ω;R3).

Let the part of the boundary γ0 ⊂ ∂ω be of positive length. Let us define (Hilbert)

spaces

VN(ω) = H1
γ0

(ω;R3)×H1
γ0

(ω;R3) =
{

(ṽ, w̃) ∈ H1(ω;R3)2 : ṽ|γ0 = w̃|γ0 = 0
}
,

VK(ω) =
{

(ṽ, w̃) ∈ VN(ω) :

w̃ =
1√
a

((∂2ṽ · a3)a1 − (∂1ṽ · a3)a2 +
1

2
(∂1ṽ · a2 − ∂2ṽ · a1)a3)

}
,

VF (ω) = {(ṽ, w̃) ∈ VN(ω) : ∂βṽ + aβ × w̃ = 0, β = 1, 2}

equipped with the norm

‖(ṽ, w̃)‖VN (ω) =
�
‖ṽ‖2

H1(ω;R3) + ‖w̃‖2
H1(ω;R3)

�1/2
.

In the couple of functions (ũ, ω̃) ∈ VN(ω), ũ is the displacement vector of the middle

surface of the shell, while ω̃ is the infinitesimal rotation of the cross–section (i.e. the

segment in undeformed shell perpendicular to the middle surface). The subspace VK(ω)

corresponds to the set of unknowns in which the infinitesimal rotation ω̃ is uniquely deter-

mined by the displacement ũ such that the deformed cross–section remains perpendicular

to the deformed middle surface (within the linear theory). Thus in VK(ω) the shell is

unshearable. The set VF (ω) contains only inextensional displacements in VK(ω) (again

within the linear theory). Thus in VF (ω) the shell is unshearable and inextensible. The

subscripts of these function spaces suggest that they correspond to the Naghdi, the Koiter

and the flexural shell type models. Note also that usually in the shell theories a model

is given for a vectorial function which are components in the local basis (a1,a2,a3).

To emphasise the difference we use the notation ũ for the physical displacement vector.

It is physically natural to consider these vector displacements and actually widens the

applicability of the model.
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A Naghdi type linear shell model The linear shell model

We define the bilinear forms on VN(ω)× VN(ω) by

Bms((ũ, ω̃), (ṽ, w̃)) :=

∫
ω

QCm
(
QT
[
∂1ũ+ a1 × ω̃ ∂2ũ+ a2 × ω̃

])
·
[
∂1ṽ + a1 × w̃ ∂2ṽ + a2 × w̃

]√
adx′,

Bf ((ũ, ω̃), (ṽ, w̃)) :=
1

12

∫
ω

QCf
(
QT∇ω̃

)
· ∇w̃√adx′.

The linear shell model of Naghdi type we use is following: find (ũ, ω̃) ∈ VN(ω) such that

hBms((ũ, ω̃), (ṽ, w̃)) + h3Bf ((ũ, ω̃), (ṽ, w̃)) =

∫
ω

f̃ · ṽ√adx′, (ṽ, w̃) ∈ VN(ω).

(1.3.1)

Here, h is the shell thickness, f̃ is the surface force density and the elasticity tensors Cm,

Cf : M3×2 →M3×2 are given by

CmĈ · D̂ =
2λµ

λ+ 2µ
(I ·C)(I ·D) + 2µAcCAc ·D + µAcc · d,

CfĈ · D̂ = aA (JC) · JD + aAfc · d,
(1.3.2)

where we have used the notation Q̂ =
[
a1 a2

]
, Q =

[
a1 a2 a3

]
, J =

 0 1

−1 0

 and

Ĉ =

 C

cT

 , D̂ =

 D

dT

 ∈M3×2,C,D ∈M2×2, c,d ∈ R2.

We use the notationˆ just to compactly express the definition of elasticity tensors Cm and

Cf . The matrix Af ∈ M2×2 is assumed to be positive definite and the elasticity tensor A
is given by

AD =
2λµ

λ+ 2µ
(Ac ·D)Ac + 2µAcDAc, D ∈M2×2(R), (1.3.3)

where λ and µ are the Lamé coefficients. Under usual assumptions 3λ+2µ, µ > 0, tensor

A is positive definite. On the space of symmetric matrices,A coincides with the elasticity

tensor that appears in the classical shell theories.

The billineal form hBms((ũ, ω̃), (ũ, ω̃)) is related to the extensibility and shearability

of the shell and measures the membrane and shear energy of the shell. The other billineal

form h3Bf ((ũ, ω̃), (ũ, ω̃)) is related to the flexural energy. If we use space VF (ω) instead

of VN(ω) in (1.3.1) we obtain the flexural shell model (see [24]), and if we use VK(ω) is

used instead of VN(ω), we obtain a Koiter type model (see [86]).
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Remark 1.3.1. Note that when θ(x′) = (x′, 0) (i.e. θ is the parametrization of the

middle surface of a plate), the model can be written in a simpler form. Due to ai = ei

and Ac = Ac = I, we have that the elasticity tensors Cm, Cf are given by

CmĈ · D̂ = AC ·D + µc · d,

CfĈ · D̂ = A (JC) · JD + aAfc · d
(1.3.4)

and

AD =
2λµ

λ+ 2µ
(I ·D)I + 2µD, D ∈M2×2. (1.3.5)
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2. LINEAR 3D–THIN 3D AND 3D–2D

MODEL

2.1. INTRODUCTION

We formulate the interaction problem between 3d body and a thin layer in context of

linear modelling and propose the 3d–2d linear model. Afterwards we give the main result

of the chapter: the convergence theorem and all obtained limit models for all α ≥ −1. In

Section 2.3 we do the asymptotic analysis of the 3d–thin 3d problem while in Section 2.4

we present the asymptotic analysis of the 3d–2d model.
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Linear 3d–thin 3d and 3d–2d model Description of the problem

2.2. DESCRIPTION OF THE PROBLEM AND THE

MAIN RESULT

Let us define sets
ω = 〈0, 1〉 × 〈0, 1〉,

Ω0 = ω × 〈−1, 0〉,

Ωh = ω × 〈0, h〉,

Ω0+h = ω × 〈−1, h〉,

Γs = ω × {s}, for s ∈ R.

(2.2.1)

We consider Ω0+h = Ω0 ∪ Ωh to be an elastic body made of two materials whose prop-

erties are described by elasticity tensors C0 and Ch, corresponding to Ω0 and Ωh (see

Figure 2.1). Further we assume that the body is clamped at x3 = −1, that contact force

ω

Ω0

ΩhΓh

x1

x2

x3

Figure 2.1: 3d elastic body.

f is applied at the boundary Γh = ω × {h}, and that the remaining boundary is force

free. For simplicity we assume that there are no body forces applied. Since we consider

linearized elasticity as a model this implies that the displacement uh corresponding to the
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Linear 3d–thin 3d and 3d–2d model Description of the problem

described problem belongs to the function space

V (Ω0+h) = {v ∈ H1(Ω0+h) : v|x3=−1 = 0}

and satisfies∫
Ω0

C0e(uh)·e(v)dx+

∫
Ωh
Che(uh)·e(v)dx =

∫
Γh
f ·vdx′, v ∈ V (Ω0+h). (2.2.2)

Here e(v) = 1/2(∇v +∇vT ) is the symmetrized gradient and x′ = (x1, x2).

We assume that the elasticity tensors are positive definite. Then for given h the exis-

tence and uniqueness of the solution of (2.2.2) is obtained by the use of the Lax-Milgram

lemma and the Korn inequality: there is CK(h) > 0 such that

CK(h)‖v‖2
H1(Ω0+h;R3) ≤ ‖e(v)‖2

L2(Ω0+h;R3×3), v ∈ V (Ω0+h). (2.2.3)

In this chapter we consider the asymptotic behaviour of the solution uh when h tends

to zero for Ch = 1
hα+1C1, α ≥ −1, where C1 is isotropic with the associated Lamé con-

stants given by λ and µ, i.e., C1E = λ tr EI + 2µE, for E ∈ R3×3 symmetric (the explicit

elasticity coefficients of C0 will never be needed). It will turn out that the limit function is

independent of x3 on Ωh which will lead to 2d equations on ω. As a consequence we will

obtain 3d–2d models for the whole structure Ω0+h.

This kind of derivation is not new in linearized elasticity. When Ω0 is not present

this approach corresponds to the derivation of the plate model for α = 2. Because of the

linearity of the elasticity tensor - forcing relation this is equivalent to the scaling of the

normal force with h3 for α = 0, see [20]. For α < 2 we do not get models for all possible

forces, see [2] for such models in case of the elliptic equation. Note also that here the thin

plate has ”support” in the elastic body and therefore can sustain the forces of order h0. In

our setting we obtain models for all α ≥ −1 and differ five models.

Further in Section 2.4 we propose the model of interaction of the elastic body Ω0

and the plate equation given at Γ0 which incorporates all models obtained by asymptotic

analysis (in Section 2.3). See Theorem 2.2.1 for the precise statement. The model for the

whole structure is the following: find

(uh, ũh, ω̃h) ∈ V3d−2d = {(v, ṽ, w̃) ∈ H1(Ω0;R3)×H1(ω;R3)×H1(ω;R3)

: v|x3=−1 = 0,v|x3=0 = ṽ}
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Linear 3d–thin 3d and 3d–2d model Description of the problem

such that∫
Ω0

C0e(uh) · e(v)dx+
1

hα+1

�
h

∫
ω

Cm
(
∇′ũh + Aω̃h

)
· (∇′ṽ + Aw̃) dx′

+
h3

12

∫
ω

Cf∇′ω̃h · ∇′w̃dx′
�

=

∫
ω

f̃ · ṽdx′, (v, ṽ, w̃) ∈ V3d−2d.

(2.2.4)

Here∇′ = (∂1 ∂2), Ax =
[
e1 × x e2 × x

]
∈ R3×2 and Cm and Cf are elasticity tensors

Cm, Cf : M3×2 →M3×2 given by (1.3.4).

One can easily show, by Lax-Milgram lemma, that the solution of (2.2.4) exists and

is unique. The proof is given in Theorem 2.4.1. The plate model present in (2.2.4) is

obtained from the shell model of the Naghdi type for plane geometry from Chapter 1. It

contains flexural, membrane and shear terms in the energy and allows all possible dis-

placements.

In this chapter we consider asymptotics of the solution of the 3d–thin 3d problem

(2.2.2) and the 3d–2d problem (2.2.4) when the thickness described by h of the top layer

tends to zero. We obtain that the limits for the same α ≥ −1 are the same. In both cases,

(2.2.2) and (2.2.4), the limit models can be expressed in terms of the limits of uh|Ω0 and

its trace ũh = uh|x3=0. Thus here we formulate the convergence property only for these

two functions u0, ũ0 = u|x3=0. Detailed convergence results are given in Theorems 2.3.4

and 2.4.5.

We obtain five different limit models. The function spaces of the models are

V I = {(v, ṽ) ∈ H1(Ω0;R3)× L2(ω;R3) : v0|x3=−1 = 0,v0|x3=0 = ṽ0},

V II = {(v, ṽ) ∈ V I : ṽ1, ṽ2 ∈ H1(ω)},

V III = {(v, ṽ) ∈ V II : e′(ṽ) = 0},

V IV = {(v, ṽ) ∈ V III : ṽ3 ∈ H2(ω)},

V V = {(v, ṽ) ∈ V IV : D2ṽ3 = 0}.

These spaces form a monotone family

V I ⊇ V II ⊇ V III ⊇ V IV ⊇ V V .

These spaces appear in a sequence of models we obtain for different values of α ∈
[−1,∞〉. Bigger exponent corresponds to a higher α which corresponds to more stiff
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thin layer. In the spaces V III , V IV and V V we have that the tangential displacements

satisfy e′(ṽ) = 0, i.e, the plate is infinitesimally rigid in tangential directions. In V V we

additionally have that the transversal displacement is affine and thus the plate is infinites-

imally rigid in all directions.

Theorem 2.2.1. Let uh3d ∈ V (Ω0+h) be the solution of (2.2.2) and let (uh2d, ũ
h
2d, w̃

h
2d) ∈

V3d−2d be the solution of (2.2.4). Let ũh3d := uh3d|x3=0. Then for all α ≥ −1 the families

are convergent with the same limits

uh3d|Ω0 → u0 strongly in H1(Ω0;R3),

uh2d|Ω0 → u0 strongly in H1(Ω0;R3),

ũh3d → ũ0 strongly in L2(ω;R3),

ũh2d → ũ0 strongly in H1(ω;R3),

where ũ0 = u0|x3=0. Further (u0, ũ0) is characterized by

I) for −1 ≤ α < 0, (u0, ũ0) ∈ V I is the unique solution of∫
Ω0

C0e(u0) · e(v)dx =

∫
ω

f · ṽdx′, (v, ṽ) ∈ V I . (2.2.5)

II) for α = 0, (u0, ũ0) ∈ V II is the unique solution of∫
Ω0

C0e(u0) · e(v)dx+

∫
ω

Ae′(ũ0) · e′(ṽ)dx′ =

∫
ω

f · ṽdx′, (v, ṽ) ∈ V II .

(2.2.6)

III) for 0 < α < 2, (u0, ũ0) ∈ V III is the unique solution of∫
Ω0

C0e(u0) · e(v)dx =

∫
ω

f · ṽdx′, v ∈ V III . (2.2.7)

IV) for α = 2, (u0, ũ0) ∈ V IV is the unique solution of∫
Ω0

C0e(u0) · e(v)dx+
1

12

∫
ω

AD2ũ0
3 ·D2ṽ3dx

′ =

∫
ω

f · ṽdx′, (v, ṽ) ∈ V IV .

(2.2.8)

V) for 2 < α, e0 = 0 and (u0, ũ0) ∈ V V is the unique solution of∫
Ω0

C0e(u0) · e(v)dx =

∫
ω

f · ṽdx′, v ∈ V V . (2.2.9)
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Remark 2.2.2. The previous theorem is the main result of the chapter, not only because

it defines limits of solutions of problems (2.2.2) and (2.2.4) for all α ≥ −1, but also since

it states that those limits coincide for all α ≥ −1. In other words, the result of the above

theorem also implies that

‖uh3d|Ω0 − uh2d‖H1(Ω0;R3) → 0,

which means that in the 3d model of linearized elasticity a thin layer can be replaced

by shell model of Naghdi type. Among all models mentioned in the theorem, models

(2.2.5)-(2.2.9) as a drawback have that one should determine which regime (regarding

the parameter α) is the best suited for the specific situation. On the other hand, model

(2.2.4) approximates (2.2.2) in all regimes, and moreover has advantages over the original

problem (2.2.2) which are stated in the Introduction.

In the model given by I) α ∈ [−1, 0〉 the thin layer is not stiff enough so it has no

influence on the limit. For α = −1 (meaning that the thin layer is of the same material as

the remaining cube) this is in accordance with the continuous dependence of the solution

on the domain. For α = 0, i.e. in the case II) the membrane term of the plate appears

in the total energy of the system. For all α > 0 this membrane energy is equal to zero.

For α ∈ 〈0, 2〉, i.e. in the case III) there is no other influence of the thin layer except

of this membrane stiffening. In the case IV) (α = 2) the flexural effects appear in the

total energy (the plate model), while in the case V) (α > 2) the thin layer is too stiff and

behaves as a thin rigid body (no longitudinal membrane effects and no bending).
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2.3. LIMITS OF THE 3D–THIN 3D MODEL

In this section we consider the asymptotic behavior of the solution of (2.2.2) rescaled

on a reference domain for different values of α ≥ −1. For the limit function we will

obtain the equation that uniquely determines the limit constituting the model in the case

of particular α. The first step in the derivation is to rescale the domain of the problem on

the domain independent of h, see [19, 21] for more examples. Then we consider cases

for different values of α. It turns out that there are five different models as commented in

Remark 2.2.2.

The uniform (with respect to h) a priori estimates are essential for any asymptotic

analysis. However, as stressed in (2.2.3) the constant in the Korn inequality depends on

the domain, and thus in general it depends on h. However in the present setting it can be

replaced by a constant independent of h as stated in the following lemma.

Lemma 2.3.1. There is CK > 0 such that for all h ∈ [0, 1] and for all v ∈ V (Ω0+h) one

has

CK‖v‖2
H1(Ω0+h;R3) ≤ ‖e(v)‖2

L2(Ω0+h;R3×3), v ∈ V (Ω0+h).

Proof. Let us define the optimal constant (the largest) for the h problem by

c(h) = inf
v∈V (Ω0+h)

v 6=0

‖e(v)‖2
L2(Ω0+h;R3×3)

‖v‖2
H1(Ω0+h;R3)

.

In the following we prove that function c is decreasing. Let 0 ≤ h1 < h2 ≤ 1. For a

function v1 ∈ V (Ω0+h1) we define v2 ∈ V (Ω0+h2) by

v2 =

v
1(x′, x3 − h2 + h1) x3 ∈ 〈h2 − h1, 1 + h2],

0 x3 ∈ [0, h2 − h1].

Then
‖e(v1)‖2

L2(Ω0+h1 ;R3×3)

‖v1‖2
H1(Ω0+h1 ;R3)

=
‖e(v2)‖2

L2(Ω0+h2 ;R3×3)

‖v2‖2
H1(Ω0+h2 ;R3)

and thus c(h1) ≥ c(h2).

As a consequence c(h) ≥ c(1) =: CK . �
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This lemma will provide us with the first a priori estimates after we rescale the prob-

lem on a domain independent of h. This is a natural step in order to obtain the asymptotics

of the solution since then dependence on h is expressed through the coefficients in the

problem. Let

Rh : Ω0+1 → Ω0+h, Rh(x′, x3) =

(x′, x3) x3 ≤ 0,

(x′, hx3) x3 > 0,

see Figure 2.2. Now the rescaled displacement u(h) = uh ◦Rh belongs to V (Ω0+1) and

ω

Ω0

Ω1

Γ1

x1

x2

x3

ω

Ω0

ΩhΓh

x1

x2

x3
Rh

Figure 2.2: The rescaled 3d elastic body.

satisfies∫
Ω0

C0e(u(h)) ·e(v)dx+h−α
∫

Ω1

C1eh(u(h)) ·eh(v)dx =

∫
Γ1

f ·vdx′, v ∈ V (Ω0+1),

(2.3.1)

where

eh(v) =
1

h
e3(v) + e12(v), e3(v) =


0 0 1

2
∂3v1

0 0 1
2
∂3v2

1
2
∂3v1

1
2
∂3v2 ∂3v3

 ,

e12(v) =


∂1v1

1
2
(∂2v1 + ∂1v2) 1

2
∂1v3

1
2
(∂2v1 + ∂1v2) ∂2v2

1
2
∂2v3

1
2
∂1v3

1
2
∂2v3 0

 .

26



Linear 3d–thin 3d and 3d–2d model Limits of the 3d–thin 3d model

The following type of inequalities are essential for the asymptotic analysis. For similar

results see [68].

Corollary 2.3.2. a) For all h ∈ [0, 1], all α ≥ −1 and all v ∈ V (Ω0+1) one has

CK

(
‖v‖2

H1(Ω0;R3) + h‖v‖2
L2(Ω1;R3)

+ h‖∂1v‖2
L2(Ω1;R3) + h‖∂2v‖2

L2(Ω1;R3) +
1

h
‖∂3v‖2

L2(Ω1;R3)

)
≤
∫

Ω0

C0e(v) · e(v)dx+
1

hα

∫
Ω1

C1eh(v) · eh(v)dx.

b) For all h ∈ [0, 1], all α ≥ −1 and all v ∈ V (Ω0+1) one has

‖v‖2
L2(Γ1;R3) ≤ ‖v‖2

L2(Ω0;R3) + ‖∂3v‖2
L2(Ω0;R3) + h‖v‖2

L2(Ω1;R3) +
1

h
‖∂3v‖2

L2(Ω1;R3).

Proof. a) is a direct consequence of Lemma 2.3.1 after rescaling the domain Ω0+h to

Ω0+1.

b) We estimate v|Γ1 using the Newton-Leibniz theorem and the generalized Young’s

inequality

‖v‖2
L2(Γ1;R3) =

∫
ω

∫ 1

−1

∂3(v2)dx3dx
′ =

∫
Ω0

2v · ∂3vdx+

∫
Ω1

2v · ∂3vdx

≤ ‖v‖2
L2(Ω0;R3) + ‖∂3v‖2

L2(Ω0;R3) + h‖v‖2
L2(Ω1;R3) +

1

h
‖∂3v‖2

L2(Ω1;R3).

�

The application of this corollary for the solution of (2.3.1) is given in the following

corollary.

Corollary 2.3.3. For all α ≥ −1 there are sequences (hk)k ⊂ [0, 1] and (uk)k ⊂
V (Ω0+1) and limits u0 such that u0|Ω0 ∈ V (Ω0), u0|Ω1 ∈ L2(Ω1;R3), ∂3u

0 = 0 in

Ω1 and e0 ∈ L2(Ω1;R3×3) such that hk → 0 and

uk ⇀ u0 weakly in H1(Ω0;R3),

uk ⇀ u0 weakly in L2(Ω1;R3),

∂3u
k → 0 strongly in L2(Ω1;R3),

h
−α/2
k ehk(uk) ⇀ e0 weakly in L2(Ω1;R3×3).

(2.3.2)
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Proof. Inserting u(h) as a test function in (2.3.1) we obtain∫
Ω0

C0e(u(h)) · e(u(h))dx+ h−α
∫

Ω1

C1eh(u(h)) · eh(u(h))dx =

∫
Γ1

f · u(h)dx′.

(2.3.3)

The right hand side can now be estimated using first the statement b) and then statement

a) of Corollary 2.3.2∫
Γ1

f · u(h)dx′ ≤ ‖f‖L2(Γ1;R3)‖u(h)‖L2(Γ1;R3)

≤ ‖f‖L2(Γ1;R3)

(
‖u(h)‖2

L2(Ω0;R3) + ‖∂3u(h)‖2
L2(Ω0;R3)

+ h‖u(h)‖2
L2(Ω1;R3) +

1

h
‖∂3u(h)‖2

L2(Ω1;R3)

)1/2

≤ ‖f‖L2(Γ1;R3)√
CK

�∫
Ω0

C0e(u(h)) · e(u(h))dx+ h−α
∫

Ω1

C1eh(u(h)) · eh(u(h))dx

�1/2

.

Inserting this estimate in (2.3.3) we obtain that∫
Ω0

C0e(u(h)) · e(u(h))dx+ h−α
∫

Ω1

C1eh(u(h)) · eh(u(h))dx

is bounded and then are also bounded

‖u(h)‖H1(Ω0;R3),

∥∥∥∥ 1√
h
∂3u(h)

∥∥∥∥
L2(Ω1;R3)

, ‖h−α/2eh(u(h))‖L2(Ω1;R3×3)

by Corollary 2.3.2a). Further, by the Newton-Leibniz theorem and the Schwarz-Cauchy

inequality we obtain

u(h)(x′, x3) =

∫ x3

−1

∂3u(h)(x′, ξ)dξ ≤
√
x3 + 1

�∫ x3

−1

(∂3u(h)(x′, ξ))2dξ

�1/2

≤
√

2

�∫ 1

−1

(∂3u(h))2dξ

�1/2

.

After integration we obtain∫
Ω1

u(h)2dx ≤ 2

∫
ω

∫ 1

−1

(∂3u(h))2dξdx′ = 2

∫
Ω0+1

(∂3u(h))2dx.

Since the right hand side is uniformly bounded with respect to h we obtain that the ex-

pression ‖u(h)‖L2(Ω1;R3) is also bounded. Then by Banach–Alaoglu–Bourbaki theorem

we have the stated convergences. Further, because of uniqueness of the limits we obtain

that ∂3u
0 = 0 in Ω1. �
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Since the behaviour of u(h) is different on Ω0 and Ω1 we denote its limits by u0 and

ũ0, respectively. Since ∂3ũ
0 = 0 on Ω1 ũ0 can be viewed as a function on ω. We will

often use the equivalence of the spaces {v ∈ L2(Ω1;R3) : ∂3v = 0} and L2(ω;R3) and

thus consider the limit of u(h) as a function (u0, ũ0) ∈ H1(Ω0;R3) × L2(ω;R3) such

that u0|x3=0 = ũ0. Therefore the limit functions belongs to V I . We collect all results on

the asymptotics of u(h) in the following theorem.

Theorem 2.3.4. Let α ≥ −1 and let (u(h))h ⊂ V (Ω0+1) be a family of solutions of

(2.3.1). Then

u(h)→ u0 strongly in H1(Ω0;R3),

u(h)→ u0 strongly in L2(Ω1;R3),

∂3u(h)→ 0 strongly in L2(Ω1;R3),

h−α/2eh(u(h))→ e0 strongly in L2(Ω1;R3×3).

(2.3.4)

The limit function u0 is independent of x3 in Ω1, i.e. (u0, ũ0) ∈ V I . Furthermore

(u0, ũ0) and e0 are uniquely determined by:

I) for −1 ≤ α < 0, e0 = 0 and u0 is the unique solution of (2.2.5).

II) for α = 0

e0 =


∂1ũ

0
1

1
2
(∂1ũ

0
2 + ∂2ũ

0
1) 0

· ∂2ũ
0
2 0

· · − λ
λ+2µ

(∂1ũ
0
1 + ∂2ũ

0
2)

 .
and (u0, ũ0) ∈ V II is the unique solution of (2.2.6). Furthermore

(ũh1 , ũ
h
2)→ (ũ0

1, ũ
0
2) strongly in H1(ω;R2). (2.3.5)

III) for 0 < α < 2, e0 = 0 and (u0, ũ0) ∈ V III is the unique solution of (2.2.7).

Furthermore (2.3.5) holds.

IV) for α = 2

e0 =


1
2
D2ũ0

3 − x3D
2ũ0

3

0

0

0 0 − λ
λ+2µ

(1
2
∆ũ0

3 − x3∆ũ0
3)

 .
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and (u0, ũ0) ∈ V IV is the unique solution of (2.2.8). Furthermore, the second

convergence in (2.3.4) is strong in H1(Ω1;R3).

V) for α > 2, e0 = 0 and (u0, ũ0) ∈ V V is the unique solution of (2.2.9). As in the

previous case, the second convergence in (2.3.4) is also strong in H1(Ω1;R3).

2.3.1. 3d–thin 3d model: case −1 ≤ α < 0

We first apply Corollary 2.3.3 and extract sequences that satisfy (2.3.2). As noted

above, the limit function (u0, ũ0) belongs to V I . Then we insert v ∈ C1(Ω0+1) such that

v|x3=−1 = 0 and v is independent of x3 on Ω1 in (2.3.1) for this sequence and obtain∫
Ω0

C0e(uk) · e(v)dx+ h
−α/2
k

∫
Ω1

C1(h
−α/2
k ehk(uk)) · e12(v)dx

=

∫
Γ1

f · vdx′ =
∫

Γ0

f · vdx′.

Since α < 0 one has −α > −α/2. Then from the last convergence in (2.3.2) it follows

that h−αk ehk(uk)→ 0 strongly in L2 and thus, after taking k to infinity we obtain∫
Ω0

C0e(u0) · e(v)dx =

∫
ω

f · ṽdx′. (2.3.6)

Since chosen test functions are dense in the function space V (Ω0) we obtain that (2.3.6)

is satisfied for v ∈ V (Ω0). This is the problem of linearized elasticity for the unit cube

clamped at the bottom side (x3 = −1) and with non-zero contact force at the top side

(x3 = 0). As such it has unique solution. Therefore the first three convergences in (2.3.2)

hold for the whole family (u(h))h>0.

Let us now consider the following sequence of non-negative numbers

Λ(k) =

∫
Ω0

C0(e(uk)− e(u0)) · (e(uk)− e(u0))dx

+

∫
Ω1

C1(h
−α/2
k ehk(uk)− e0) · (h−α/2k ehk(uk)− e0)dx.

Eliminating the quadratic terms using the equation (2.3.1) we obtain

Λ(k) =

∫
Γ1

f · uk − 2

∫
Ω0

C0e(uk) · e(u0)dx+

∫
Ω0

C0e(u0) · e(u0)dx

− 2

∫
Ω1

C1(h
−α/2
k ehk(uk)) · e0dx+

∫
Ω1

C1e0 · e0dx.
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Next we let k to infinity using convergences (2.3.2) and in the limit obtain that Λ(k)

converges to

Λ :=

∫
Γ1

f · u0 −
∫

Ω0

C0e(u0) · e(u0)dx−
∫

Ω1

C1e0 · e0dx = −
∫

Ω1

C1e0 · e0dx.

The last equation follows since u0 satisfies the equation (2.3.6). Since Λ ≥ 0 as the limit

of non-negative sequence we conclude that e0 = 0 and therefore Λ = 0. Now we have

also the uniqueness of the limit for the strain in the thin part of the domain and thus we

have that all convergences in (2.3.2) hold for the whole h family. Further, since Λ = 0 we

obtain that
e(u(h))→ e(u0) strongly in L2(Ω0;R3×3),

eh(u(h))→ 0 strongly in L2(Ω1;R3×3).

Then Corollary 2.3.2 implies that the convergences in (2.3.2) are all strong.

2.3.2. 3d–thin 3d model: case α = 0

In this case the equation is given by find u(h) ∈ V (Ω0+1) such that∫
Ω0

C0e(u(h)) · e(v)dx+

∫
Ω1

C1eh(u(h)) · eh(v)dx =

∫
Γ1

f · vdx′, v ∈ V (Ω0+1).

(2.3.7)

From Corollary 2.3.3 we immediately know that there are sequences such that hk → 0

and
uk ⇀ u0 weakly in H1(Ω0;R3),

uk ⇀ u0 weakly in L2(Ω1;R3),

∂3u
k → 0 strongly in L2(Ω1;R3),

ehk(uk) ⇀ e0 weakly in L2(Ω1;R3×3).

(2.3.8)

and that ∂3u
0 = 0 in Ω1. As argued before the limit function (u0, ũ0) ∈ V I a subspace

of H1(Ω0;R3) × L2(ω;R3). The second and the fourth convergences, by the uniqueness

of the limit, imply that

e0
11 = ∂1ũ

0
1, e0

22 = ∂2ũ
0
2, e0

12 = e0
21 =

1

2
(∂1ũ

0
2 + ∂2ũ

0
1). (2.3.9)

Since e0
ij belong to L2(Ω1) we get some additional regularity on tangential displacements,

namely

(u0, ũ0) ∈ V II = {(v, ṽ) ∈ V I : ṽ1, ṽ2 ∈ H1(ω)}.

31



Linear 3d–thin 3d and 3d–2d model Limits of the 3d–thin 3d model

Now we proceed in two steps. In the first step we multiply (2.3.7) by hk and let k to

infinity. We obtain ∫
Ω1

(C1e0) · e3(v) = 0, v ∈ V (Ω0+1).

This implies (C1e0)i,3 = (C1e0)3,i = 0 for i = 1, 2, 3 and thus

e0
13 = e0

23 = e0
31 = e0

32 = 0, e0
33 = − λ

λ+ 2µ
(e0

11 + e0
22) = − λ

λ+ 2µ
(∂1u

0
1 + ∂2u

0
2).

(2.3.10)

In the second step we insert in (2.3.7) test functions from V (Ω0+1) independent of x3

on Ω1 and take the limit when k tends to infinity. Due to (2.3.8) we obtain∫
Ω0

C0e(u0) · e(v)dx+

∫
Ω1

C1e0 · e12(v)dx =

∫
Γ1

f · vdx′ =
∫

Γ0

f · vdx′.

Now (2.3.10) implies that

C1e0 · e12(v) = Ae′(u0) · e′(v),

where e′(v) = 1/2(∇′(v1, v2) +∇′(v1, v2)T ), where in∇′ only derivative with respect to

variables x1 and x2 are taken and A is given in (1.3.5). Since the function integrated over

Ω1 does not depend on x3 this integral can be replaced by the integral over ω. Thus we

obtain that the limit function (u0, ũ0) ∈ V II satisfies∫
Ω0

C0e(u0) ·e(v)dx+

∫
ω

Ae′(ũ0) ·e′(ṽ)dx′ =

∫
ω

f ·ṽdx′, (v, ṽ) ∈ V II . (2.3.11)

Due to the Korn inequality on Ω0, the trace theorem for (v, ṽ) ∈ V II and the Korn

inequality on ω we have

‖e(v)‖2
L2(Ω0;R3×3) + ‖e′(ṽ)‖2

L2(ω;R2×2)

≥ c(‖v‖2
H1(Ω;R3) + ‖v‖2

L2(Γ0;R3)) + ‖e′(ṽ)‖2
L2(ω;R2×2)

≥ c‖v‖2
H1(Ω;R3) + c‖ṽ‖2

L2(ω;R3) + ‖e′(ṽ)‖2
L2(ω;R2×2)

≥ c(‖v‖2
H1(Ω;R3) + ‖(ṽ1, ṽ2)‖2

H1(ω;R2) + ‖ṽ3‖2
L2(ω)).

(2.3.12)

This implies coercivity of the form on the left hand side on V II with respect to the natural

norm on L2(Ω0;R3)×H1(ω)×H1(ω)×L2(ω) and thus existence and uniqueness of the

solution of (2.3.11) in V II . Therefore e0 is also unique and given by

e0 =


∂1ũ

0
1

1
2
(∂1ũ

0
2 + ∂2ũ

0
1) 0

· ∂2ũ
0
2 0

· · − λ
λ+2µ

(∂1ũ
0
1 + ∂2ũ

0
2)

 .
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Thus the whole h-families, corresponding to (2.3.8) converge.

To obtain the strong convergence we argue as before. We define

Λ(h) =

∫
Ω0

C0(e(u(h))− e(u0)) · (e(u(h))− e(u0))dx+∫
Ω1

C1(eh(u(h))− e0) · (eh(u(h))− e0)dx.

We eliminate the quadratic terms using the equation (2.3.1) and take the limit as h tends

to zero. We obtain

Λ(h)→ Λ :=

∫
Γ1

f · u0 −
∫

Ω0

C0e(u0) · e(u0)dx−
∫

Ω1

C1e0 · e0dx

=

∫
ω

Ae′(ũ0) · e′(ũ0)dx′ −
∫

Ω1

C1e0 · e0dx.

A simple calculation for obtained e0 implies that Λ = 0. Thus we have the strong conver-

gence of the term e(u(h)) on Ω0 and eh(u(h)) on Ω1 and thus all convergences in (2.3.8)

are strong.

2.3.3. 3d–thin 3d model: case 0 < α < 2

Since α > 0 from the last convergence in (2.3.2) we conclude that ehk(uk) → 0

strongly in L2(Ω1;R3×3). Arguing as in the case α = 0 we conclude that

∂1u
0
1 = ∂2u

0
2 =

1

2
(∂1u

0
2 + ∂2u

0
1) = 0 in Ω1,

i.e.

e′(ũ0) = 0 in Ω1. (2.3.13)

Additionally, because of (2.3.13) we get some additional information on tangential dis-

placements

(u0, ũ0) ∈ V III = {(v, ṽ) ∈ V II : e′(ṽ) = 0}.

Let v ∈ V (Ω0+1) be such that ∂3v = 0, e′(v) = 0 in Ω1 and ṽ3 smooth. Let

v1 = 0 in Ω0, v1 = −x3


∂1v3

∂2v3

0

 in Ω0. (2.3.14)
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Then in Ω1

eh(v+hv1) =
1

h
e3(v)+e12(v)+e3(v1)+he12(v1) = −hx3

D
2(v3)

0

0

0 0 0

 . (2.3.15)

We insert v + hv1 in (2.3.1) and get

∫
Ω0

C0e(u(hk)) · e(v)dx+

∫
Ω1

C1 1

h
α/2
k

ehk(u(hk)) · (h(2−α)/2
k )x3

D
2(v3)

0

0

0 0 0

 dx
=

∫
Γ1

f · vdx′.

Since 0 < α < 2 by letting k to infinity we obtain that (u0, ũ0) ∈ V III satisfies∫
Ω0

C0e(u0) · e(v)dx =

∫
Γ0

f · vdx′, (v, ṽ) ∈ V III , (2.3.16)

since used test functions v are dense in V III . The estimate from (2.3.12) implies that on

V III one has

‖e(v)‖2
L2(Ω0;R3×3) ≥ c(‖v‖2

H1(Ω;R3) + ‖(ṽ1, ṽ2)‖2
H1(ω;R2) + ‖ṽ3‖2

L2(ω)). (2.3.17)

This implies coercivity of the form on the left hand side with respect to the natural norm

onL2(Ω0;R3)×H1(ω)×H1(ω)×L2(ω) and thus existence and uniqueness of the solution

of (2.3.16) in V III . Therefore the whole h-family (u(h))h converges as in the first three

convergences in (2.3.8).

The same arguments as in the case α ∈ [−1, 0〉 leads to the same conclusion, that

e0 = 0 and that all convergences in (2.3.2) hold for the whole h family and that they are

all strong.

2.3.4. 3d–thin 3d model: case α = 2

In this case the equation is given by: find u(h) ∈ V (Ω0+1) such that∫
Ω0

C0e(u(h))·e(v)dx+
1

h2

∫
Ω1

C1eh(u(h))·eh(v)dx =

∫
Γ1

f ·vdx′, v ∈ V (Ω0+1).

(2.3.18)

Since we have 1/h2 in front of the thin part, now we have better a priori estimate than

in Corollary 2.3.2.
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Lemma 2.3.5. There is CK ≥ 0 such that for all h ∈ [0, 1] and all v ∈ V (Ω0+1) one has

CK‖v‖2
H1(Ω0+1;R3) ≤

∫
Ω0

C0e(v) · e(v)dx+
1

h2

∫
Ω1

C1eh(v) · eh(v)dx.

Proof. If we assume the opposite there exist a sequence (vk) ⊂ V (Ω0+1) and a limit

function v ∈ V (Ω0+1) such that ‖v‖H1(Ω0+1;R3) = 1 and

vk ⇀ v weakly in H1(Ω0+1;R3),

e(vk)→ 0 strongly in H1(Ω0;R3×3),

1

hk
ehk(vk)→ 0 strongly in H1(Ω1;R3×3).

(2.3.19)

From the first two convergences and the classical Korn inequality we have v = 0 in Ω0

and

vk → 0 strongly in H1(Ω0;R3).

From Corollary 2.3.2a) we obtain that ∂3v
k → 0 strongly in L2(Ω1;R3). Next we apply

the classical Korn inequality on V (Ω0+1), but for the sequence (vk1 , v
k
2 , hkv

k
3). We obtain

CK‖(vk1 , vk2 , hkvk3)‖2
H1(Ω0+1;R3)

≤ ‖e(vk1 , v
k
2 , hkv

k
3)‖2

L2(Ω0;R3×3) + ‖e(vk1 , v
k
2 , hkv

k
3)‖2

L2(Ω1;R3×3)

≤ ‖vk‖2
H1(Ω0;R3) + ‖e′(vk1 , vk2)‖2

L2(Ω1;R2×2)

+ ‖hk∂1v
k
3 + ∂3v

k
1‖2

L2(Ω1) + ‖hk∂2v
k
3 + ∂3v

k
2‖2

L2(Ω1) + ‖hk∂3v
k
3‖2

L2(Ω1)

≤ ‖vk‖2
H1(Ω0;R3) + ‖ehk(vk)‖2

L2(Ω1;R3×3).

Thus we also have that vk1 , v
k
2 → 0 strongly in H1(Ω1). Thus v1 = v2 = 0 in Ω1 and we

only have to prove that

vk3 → 0 strongly in H1(Ω1). (2.3.20)

Since ∂3v
k → 0 strongly in L2(Ω1) we know that ∂3v3 = 0 in Ω1. Since v|x3=0 = 0 as a

trace of H1 function on Ω0 we obtain that v3 = 0. Now we are missing the following two

strong convergences

∂1v
k
3 ,→ 0, ∂2v

k
3 → 0 strongly in L2(Ω1). (2.3.21)

We now prove the first convergence by use of the Lions lemma (f ∈ L2 is isomorphic to

f,∇′f ∈ H−1). This part of the proof is the same as in the case of the plate equation.
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From the third convergence in (2.3.19) we have

∂11v
k
3 = 2hk∂1ehk(vk)13 − ∂3ehk(vk)11,

∂21v
k
3 = hk∂2ehk(vk)13 + hk∂1ehk(vk)23 − ∂3ehk(vk)12,

∂31v
k
3 = h2

k∂1ehk(vk)13.

Since the all terms on the right hand side converge strongly in H−1(Ω1) to 0 we have

the same convergence for ∇∂1v
k
3 . Further from the first convergence in (2.3.19) we ob-

tain that ∂1v
k
3 converges strongly in H−1(Ω). Thus by the Lions lemma we have the

strong convergence of ∂1v
k
3 in L2(Ω1). The same arguments proves the strong conver-

gence of ∂2v
k
3 in L2. As a consequence we obtain that the first convergence in (2.3.19) is

also strong. Since we already have that the limit v = 0 we arrive at contradiction with

‖v‖H1(Ω0+1;R3) = 1. �

From Corollary 2.3.3 and the previous lemma we immediately know that there are

sequences such that hk → 0 and

uk ⇀ u0 weakly in H1(Ω0;R3),

∂3u
k → 0 strongly in L2(Ω1;R3),

uk ⇀ u0 weakly in H1(Ω1;R3),

1

hk
ehk(uk) ⇀ e0 weakly in L2(Ω1;R3×3).

(2.3.22)

and that ∂3u
0 = 0 in Ω1.

The following theorem relates u0 and e0 on Ω1. It is classical in the plate derivations

and is the most delicate part of the derivation of the plate model.

Theorem 2.3.6 ( [21, Theorem 5.2-2]). Let the family (w(h))h>0 ⊂ H1(Ω1) satisfies

w(h) ⇀ w0 weakly in H1(Ω1;R3),

1

h
eh(w(h)) ⇀ e0 weakly in L2(Ω1;R3×3)

as h→ 0. Then the limit functionw0 is independent of transverse variable x3, belongs to

H1(ω)×H1(ω)×H2(ω) and satisfies the following conditions

e′(w0) = 0 and
∂e0

β1β2

∂x3

= −∂β1β2w3, β1, β2 ∈ {1, 2}.
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Applying this theorem on u(h) we conclude that e′(ũ0) = 0 and that
∂e0β1β2

∂x3
=

−∂β1β2ũ
0
3, β1, β2 ∈ {1, 2}. Thus the limit belongs to

(u0, ũ0) ∈ V IV = {(v, ṽ) ∈ V III : ṽ3 ∈ H2(ω)}.

Now we proceed in three steps. In the first step we multiply (2.3.18) for hk by h2
k and

let k to infinity. We obtain, as in the step α = 0,∫
Ω1

(C1e0) · e3(v) = 0, v ∈ V (Ω0+1).

This implies (C1e0)i,3 = (C1e0)3,i = 0 for i = 1, 2, 3 and thus

e0
13 = e0

23 = 0, e0
33 = − λ

λ+ 2µ
(e0

11 + e0
22).

Thus we characterize e0 up to a 2 by 2 matrix ẽ function independent of x3:

e0(x) =

ẽ(x′)− x3D
2ũ0

3(x′)
0

0

0 0 − λ
λ+2µ

(tr ẽ(x′)− x3∆ũ0
3(x′))

 .
In the second step we gain further information about ẽ. We insert v ∈ V (Ω0+1) such

that ∂3v = 0 in Ω1, i.e., (v, ṽ) ∈ V II in (2.3.18), multiply the equation by hk, and let k

tends to infinity. We obtain that ∫
Ω1

C1e0 · e12(ṽ)dx = 0.

From the form of e0 this implies∫
Ω1

A(ẽ− x3D
2ũ0

3) · e′(ṽ)dx = 0.

Thus we obtain ∫
ω

Aẽ · e′(ṽ)dx′ =
1

2

∫
ω

A(D2ũ0
3) · e′(ṽ)dx′. (2.3.23)

In the third step we insert in (2.3.18) test functions of the form v+hv1, where (v, ṽ) ∈
V IV and v1 is given in (2.3.14). Then, according to (2.3.15) the obtained equation is given

by

∫
Ω0

C0e(u(hk)) · e(v)dx+

∫
Ω1

C1 1

hk
ehk(u(hk)) ·

x3D
2(v3)

0

0

0 0 0

 dx =

∫
Γ1

f · vdx′.
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Taking the limit as k tends to infinity from this equation we obtain

∫
Ω0

C0e(u0) · e(v)dx+

∫
Ω1

C1e0 ·

−x3D
2(ṽ3)

0

0

0 0 0

 dx =

∫
Γ0

f · ṽdx′. (2.3.24)

Now the form of e0 implies that

C1e0 ·

−x3D
2(ṽ3)

0

0

0 0 0

 = x2
3AD2ũ0

3 ·D2ṽ3 − x3Aẽ ·D2ṽ3.

We insert this in (2.3.24) and get∫
Ω0

C0e(u0) · e(v)dx+

∫
ω

1

3
AD2ũ0

3 ·D2ṽ3 −
1

2
Aẽ ·D2ṽ3dx

′ =

∫
ω

f · ṽdx′.

Since the functionD2ṽ3 can be written in the form of symmetrized gradient using (2.3.23)

we get that the limit function (u0, ũ0) ∈ V IV and satisfies∫
Ω0

C0e(u0) · e(v)dx+
1

12

∫
ω

AD2ũ0
3 ·D2ṽ3dx

′ =

∫
ω

f · ṽdx′, (v, ṽ) ∈ V IV .

(2.3.25)

Using (2.3.17) we obtain

‖e(v)‖2
L2(Ω0;R3×3) + ‖D2ṽ3‖2

L2(ω) ≥ c‖v‖2
H1(Ω;R3) + c‖(ṽ1, ṽ2)‖2

H1(ω;R2) + c‖ṽ3‖2
H2(ω).

(2.3.26)

Thus the form on the left hand side of (2.3.25) is elliptic with respect to the standard norm

on V IV given by L2(Ω0;R3) × H1(ω) × H1(ω) × H2(ω). Thus we can apply the Lax-

Milgram lemma to obtain existence and uniqueness of the solution of (2.3.25). Hence the

whole family u(h) converges to the same limit u0.

Next we identify ẽ and thus the limit e0 and prove the strong convergences in (2.3.22).

Let us substitute

ẽ =
1

2
D2ũ0

3 + ˜̃e.

Then from (2.3.23) ˜̃e satisfies ∫
ω

A˜̃e · e′(ṽ)dx = 0 (2.3.27)

for all ṽ ∈ H1(ω)×H1(ω)× L2(ω).
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To obtain the strong convergence we argue as before. We define

Λ(k) =

∫
Ω0

C0(e(u(hk))− e(u0)) · (e(u(hk))− e(u0))dx

+

∫
Ω1

C1

�
1

hk
ehk(u(hk))− e0

�
·
�

1

hk
ehk(u(hk))− e0

�
dx.

As before we eliminate the quadratic terms using the equation (2.3.18) and take the limit

as k tends to infinity. After taking into account (2.3.25) we obtain

Λ(k)→ Λ : =

∫
Γ1

f · u0 −
∫

Ω0

C0e(u0) · e(u0)dx−
∫

Ω1

C1e0 · e0dx

=
1

12

∫
ω

AD2ũ0
3 ·D2ũ0

3dx
′ −
∫

Ω1

C1e0 · e0dx.

Next we compute∫ 1

Ω

C1e0 · e0dx =

∫ 1

Ω

A(ẽ− x3D
2ũ0

3) · (ẽ− x3D
2ũ0

3)dx

=

∫
ω

Aẽ · ẽdx′ −
∫
ω

Aẽ ·D2ũ0
3dx

′ +
1

3

∫
ω

AD2ũ0
3 ·D2ũ0

3dx
′.

Then, we substitute ẽ by ˜̃e and obtain∫ 1

Ω

C1e0 · e0dx =

∫
ω

A˜̃e · ˜̃edx′ +
∫
ω

A˜̃e ·D2ũ0
3dx

′ +
1

4

∫
ω

AD2ũ0
3 ·D2ũ0

3dx

−
∫
ω

A˜̃e ·D2ũ0
3dx

′ − 1

2

∫
ω

AD2ũ0
3 ·D2ũ0

3dx
′ +

1

3

∫
ω

AD2ũ0
3 ·D2ũ0

3dx
′.

Using (2.3.27) we obtain∫ 1

Ω

C1e0 · e0dx =

∫
ω

A˜̃e · ˜̃edx′ + 1

12

∫
ω

AD2ũ0
3 ·D2ũ0

3dx.

Then we insert this expression in formula for Λ and obtain

Λ(k)→ Λ : = −
∫
ω

A˜̃e · ˜̃edx′.

Since Λ(k) ≥ 0 this implies that Λ = 0 and therefore ˜̃e = 0. Therefore e0 is uniquely

determined and we obtain the convergence of the whole families in (2.3.22). Further we

obtain the strong convergence of the term e(u(h)) on Ω0 and 1
h

eh(u(h)) on Ω1 and thus

all convergences in (2.3.22) are strong.
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2.3.5. 3d–thin 3d model: case α > 2

From the last convergence in (2.3.2), since α > 2, we conclude that

1

hk
ehk(uk)→ 0 strongly in L2(Ω1;R3×3).

Therefore we can apply Lemma 2.3.5 and obtain that (2.3.22) hold. Thus, as in the case

α = 2, we can apply Theorem 2.3.6 with e0 = 0 and conclude that

e′(ũ0) = 0, D2ũ0
3 = 0.

Thus the limit belongs to

(u0, ũ0) ∈ V V = {(v, ṽ) ∈ V IV : D2ṽ3 = 0}.

Let (v, ṽ) ∈ V V and choose test functions in the form v(h) = v + hv1 as defined in

(2.3.14). Thus according to (2.3.15) one has that eh(v(h)) = 0. Therefore for such test

functions in (2.3.1) the integral over Ω1 disappears. Then we let k to infinity and easily

obtain that the limit function (u0, ũ0) ∈ V V satisfies∫
Ω0

C0e(u0) · e(v)dx =

∫
ω

f · ṽdx′, (v, ṽ) ∈ V V . (2.3.28)

From (2.3.26) we obtain that on V V one has

‖e(v)‖2
L2(Ω0;R3×3) ≥ c‖v‖2

H1(Ω;R3) + c‖(ṽ1, ṽ2)‖2
H1(ω;R2) + c‖ṽ3‖2

H2(ω)

which implies ellipticity of the form on the left hand side of (2.3.28) with respect to the

norm on V V given by the standard norm on L2(Ω0;R3) × H1(ω) × H1(ω) × H2(ω).

The existence and uniqueness of solution of (2.3.28) follows. Again, convergence of the

whole family u(h) follows by uniqueness.

Arguing as in the cases α ∈ [−1, 0〉 and α ∈ 〈0, 2〉 we obtain that e0 = 0, that the

convergence of the whole family h−α/2eh(u(h)) holds and that all convergences in (2.3.2)

and (2.3.22) are strong.
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2.4. LIMITS OF THE 3D–2D MODEL

In this section we start from the model in which a twodimensional structure is attached

to the unit cube at x3 = 0. At the unit cube we consider the linearized elasticity with fixed

material, while for the plate we use the Naghdi type shell model from the Chapter 1 with

plane geometry. We attach the plate to the cube by setting that the plate displacement is

equal to the displacement of the cube at the top (for x3 = 0), similarly as it was done

in Section 2.3 in different models. We assume the thickness of the plate h is a small,

i.e. h � 1, and that the elasticity coefficients of the plate are related to the thickness

as before, i.e. of order 1/hα+1, α ≥ −1. Then we show that this 3d–2d model in each

regime asymptotically with respect to h behaves in the same way the 3d–thin 3d model

from Section 2.3 behaves. Thus instead of models from the previous section we can use

this model not paying attention on the orders of ratio of the elasticity coefficients.

Theorem 2.4.1. The problem (2.2.4) has unique solution.

The statement of the theorem follows from the Lax-Milgram lemma. The key part

is the V3d−2d ellipticity of the form in the left hand side of (2.2.4). It follows from the

following estimate.

Lemma 2.4.2. There is C > 0 such that for all (v, ṽ, w̃) ∈ V3d−2d one has

‖v‖2
H1(Ω0;R3) + ‖ṽ‖2

H1(ω;R3) + ‖w̃‖2
H1(ω;R3)

≤ C
�
‖e(v)‖2

L2(Ω0;R3×3) + ‖∇′ṽ + Aw̃‖2
L2(ω;R3×2) + ‖∇′w̃‖2

L2(ω;R3×2)

�
.

Proof. Let us suppose the opposite. Then there is a sequence (vk, ṽk, w̃k) ∈ V3d−2d such

that

‖vk‖2
H1(Ω0;R3) + ‖ṽk‖2

H1(ω;R3) + ‖w̃k‖2
H1(ω;R3) = 1 (2.4.1)

and

vk ⇀ v0 weakly in H1(Ω0;R3),

ṽk ⇀ ṽ0 weakly in H1(ω;R3),

w̃k ⇀ w̃0 weakly in H1(ω;R3),

‖e(vk)‖2
L2(Ω0;R3×3) + ‖∇′ṽk + Aw̃k‖2

L2(ω;R3×2) + ‖∇′w̃k‖2
L2(ω;R3×2) → 0.

(2.4.2)
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By the trace theorem ṽ0 = v0|x3=0. The last convergence in (2.4.2) and the Korn in-

equality implies that the first convergence in (2.4.2) is strong and that v0 = 0. Thus also

ṽ0 = 0. From the last convergence we also get that the second and third convergence are

also strong in H1(ω;R3). Furthermore we obtain that

∇′ṽ0 + Aw̃0 = 0.

Since ṽ0 = 0 this implies that Aw̃0 = 0, which implies w̃0 = 0. This contradicts (2.4.1)

since the norm is preserved for strongly convergent sequences. �

Using the definition of V3d−2d, the trace theorem and the classical Korn inequality we

obtain

‖ṽ‖L2(ω;R3) ≤ C‖v|x3=0‖L2(ω;R3) ≤ C‖v‖H1(Ω0;R3) ≤ C‖e(v)‖L2(Ω0;R9).

Therefore, we obtain the following a priori estimates.

Lemma 2.4.3. Let (uh, ũh, ω̃h) ∈ V3d−2d be the solution of the problem (2.2.4). Then

for all α ≥ −1 there is C > 0 such that for all h the following estimates hold

‖e(uh)‖L2(Ω0;R9), h
−α/2‖∇′ũh + Aω̃h‖L2(Ω0;R3×2), h

(2−α)/2‖∇′ω̃h‖L2(Ω0;R3×2) ≤ C.

Using the Korn inequality on Ω0 from the a priori estimates from Lemma 2.4.3 we

obtain the following convergence result.

Corollary 2.4.4. There is a sequence (hk)k such that hk → 0 and u0 ∈ V (Ω0) and

em, ef ∈ L2(Ω0;R3×2) such that

uhk ⇀ u0 weakly in H1(Ω0;R3),

h
−α/2
k

(
∇′ũhk + Aω̃hk

)
⇀ em weakly in L2(ω;R3×2),

h
(2−α)/2
k ∇ω̃hk ⇀ ef weakly in L2(ω;R3×2).

(2.4.3)

Theorem 2.4.5. Let α ≥ −1 and let (uh, ũh, ω̃h) ∈ V3d−2d be the solution of the prob-

lem (2.2.4). Then

uh → u0 strongly in H1(Ω0;R3);

ũh → ũ0 strongly in L2(ω;R3);

h−α/2
(
∇′ũh + Aω̃h

)
→ em strongly in L2(ω;R3×2),

h(2−α)/2∇′ω̃h → ef strongly in L2(ω;R3×2).

(2.4.4)
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The limit functionu0 is such that ũ0 = u0|x3=0 and (u0, ũ0) ∈ V I . Furthermore (u0, ũ0),

em and ef are uniquely determined by:

I) for −1 ≤ α < 0, em = ef = 0 and (u0, ũ0) ∈ V I is the unique solution of (2.2.5).

II) for α = 0

em =


∂1ũ

0
1

1
2
(∂1ũ

0
2 + ∂2ũ

0
1)

1
2
(∂1ũ

0
2 + ∂2ũ

0
1) ∂2ũ

0
2

0 0

 ,
ef = 0 and (u0, ũ0) ∈ V II is the unique solution of (2.2.6). Furthermore

(ũh1 , ũ
h
2)→ (ũ0

1, ũ
0
2) strongly in H1(ω;R2).

III) for 0 < α < 2, em = ef = 0 and (u0, ũ0) ∈ V III is the unique solution of (2.2.7).

Furthermore

ω̃h ⇀ ω̃0 = (∂2ũ
0
3,−∂1ũ

0
3, ∂1ũ

0
2) weakly in H−1(ω;R3). (2.4.5)

IV) for α = 2 em = 0,

ef =


∂12ũ

0
3 ∂22ũ

0
3

−∂11ũ
0
3 −∂12ũ

0
3

0 0

 .
and (u0, ũ0) ∈ V IV is the unique solution of (2.2.8). Furthermore, the second

convergence in (2.4.4) is strong in H1(ω;R3) and the convergence in (2.4.5) is

strong in H1(ω;R3).

V) for 2 < α, em = ef = 0 and (u0, ũ0) ∈ V V is the unique solution of (2.2.9). As

in the previous case, the second convergence in (2.4.4) is also strong in H1(ω;R3)

and the convergence in (2.4.5) is strong in H1(ω;R3).

2.4.1. 3d–2d model: case −1 ≤ α < 0

Let V (Ω0) = H1(Ω0;R3). From Corollary 2.4.4 we have that convergences (2.4.3)

hold. Thus we can take the limit in the model (2.2.4), when k tends to infinity, and obtain

that the limit function u0 ∈ V (Ω0) satisfies∫
Ω0

C0e(u0) · e(v)dx =

∫
ω

f · ṽdx′, (v, ṽ, w̃) ∈ V3d−2d.
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Thus u0 ∈ V (Ω0) satisfies∫
Ω0

C0e(u0) · e(v)dx =

∫
ω

f · vdx′, v ∈ V (Ω0). (2.4.6)

This is the problem (2.2.5) obtained already in (2.3.6) and possesses unique solution.

Therefore the whole family (uh)h>0 converges to u0. Note also that according to the

trace theorem then ũh = uh converges weakly in L2(ω;R3).

Let us define the sequence

Λ(k) =

∫
Ω0

C0e(uhk − u0) · e(uhk − u0)dx

+

∫
ω

Cm
�
h
−α/2
k

(
∇′ũhk + Aω̃hk

)
− em

�
·
�
h
−α/2
k

(
∇′ũhk + Aω̃hk

)
− em

�
dx′

+
1

12

∫
ω

Cf
�
h

(2−α)/2
k ∇′ω̃h − ef

�
·
�
h

(2−α)/2
k ∇′ω̃h − ef

�
dx′.

(2.4.7)

Eliminating the quadratic terms using the equation (2.2.4) we obtain

Λ(k) =

∫
ω

f · uhkdx′ − 2

∫
Ω0

C0e(uhk) · e(u0)dx+

∫
Ω0

C0e(u0) · e(u0)dx

− 2

∫
ω

Cm
�
h
−α/2
k

(
∇′ũhk + Aω̃hk

)�
· emdx′ +

∫
ω

Cmem · emdx′

− 1

6

∫
ω

Cf (h(2−α)/2
k ∇′ω̃hk) · efdx′ + 1

12

∫
ω

Cfef · efdx′.

(2.4.8)

Next we let k to infinity using convergences (2.3.2) and in the limit obtain

Λ(k)→ Λ :=

∫
ω

f · u0dx′ −
∫

Ω0

C0e(u0) · e(u0)dx

−
∫
ω

Cmem · emdx′ − 1

12

∫
ω

Cfef · efdx′

=−
∫
ω

Cmem · emdx′ − 1

12

∫
ω

Cfef · efdx′

since u0 satisfies the equation (2.4.6). Since Λ ≥ 0 we conclude that em = ef = 0 and

therefore Λ = 0. Now we also have the uniqueness of the limit for the strains in the plate

and thus we have that all convergences in (2.4.3) hold for the whole h family. Further,

since Λ = 0 we obtain that

e(u(h))→ e(u0) strongly in L2(Ω0;R3×3),

h−α/2
(
∇′ũh + Aω̃h

)
→ 0 strongly in L2(ω;R3×2),

h(2−α)/2∇′ω̃h → 0 strongly in L2(ω;R3×2).

Then the classical Korn inequality implies that the convergences in (2.4.3) are all strong.
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2.4.2. 3d–2d model: case α = 0

Let σm = Cmem. Now we can take the limit in the model (2.2.4), when k tends to

infinity, and obtain that the limit functions u0 ∈ V (Ω0) and σm ∈ L2(Ω0;R3×2) satisfy∫
Ω0

C0e(u0) ·e(v)dx+

∫
ω

σm ·(∇′ṽ + Aw̃) dx′ =

∫
ω

f · ṽdx′, (v, ṽ, w̃) ∈ V3d−2d.

(2.4.9)

Thus for all test functions w̃ ∈ H1(ω;R3) we obtain

0 =

∫
ω

σm · (e1 × w̃ e2 × w̃) dx′ =

∫
ω

σme1 · e1 × w̃ + σme2 · e2 × w̃dx′

=

∫
ω

w̃ · (σme1 × e1 + σme2 × e2)dx′.

Since w̃ is arbitrary we obtain

σm31 = σm32 = σm21 − σm12 = 0.

By the definition of Cm this implies em31 = em32 = em21 − em12 = 0. Now the second conver-

gence in (2.4.3) implies by components

∂1ũ
hk
1 ⇀ em11, ∂2ũ

hk
1 + ω̃hk3 ⇀ em12,

∂1ũ
hk
2 − ω̃hk3 ⇀ em21, ∂2ũ

hk
2 ⇀ em22,

∂1ũ
hk
3 + ω̃hk2 ⇀ 0, ∂2ũ

hk
3 − ω̃hk1 ⇀ 0,

(2.4.10)

all weakly in L2(ω). Since ũhk = uhk |x3=0 from the trace theorem we obtain that

ũhk ⇀ ũ0 weakly in L2(ω;R3)

and thus ũ0 ∈ L2(ω;R3), i.e. (u, ũ) ∈ V I . From the (2.4.10) we now identify the limits

em11 = ∂1ũ
0
1, em22 = ∂2ũ

0
2, em12 + em21 = ∂2ũ

0
1 + ∂2ũ

0
1

and obtain that ũ0
1 and ũ0

2 are also in H1(ω). Therefore (u, ũ) ∈ V II . Since em12 = em21 we

obtain that also

em12 = em21 =
1

2
(∂2ũ

0
1 + ∂2ũ

0
1).

Therefore

em =


∂1ũ

0
1

1
2
(∂2ũ

0
1 + ∂2ũ

0
1)

1
2
(∂2ũ

0
1 + ∂2ũ

0
1) ∂2ũ

0
2

0 0

 .
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We insert this into (2.4.9) and obtain∫
Ω0

C0e(u0) · e(v)dx+

∫
ω

Cmem · ∇′ṽdx′ =
∫
ω

f · ṽdx′, (v, ṽ, w̃) ∈ V3d−2d.

Thus, since Cmem is symmetric and since the projection on the first two components of

V3d−2d is dense in V II , we obtain that the limit (u, ũ) ∈ V II satisfies∫
Ω0

C0e(u0) · e(v)dx+

∫
ω

Ae′(ũ) · e′(ṽ)dx′ =

∫
ω

f · ṽdx′, (v, ṽ) ∈ V II .

(2.4.11)

Here e′(ṽ) = 1
2
(∇′(ṽ1, ṽ2) +∇′(ṽ1, ṽ2)T ). This problem is given in (2.2.6) and has been

already obtained in (2.3.11). As shown before its solution is unique. Therefore the whole

family (uh)h>0 converges to u0. Note also that according to the trace theorem ũh = uh

converges weakly in L2(ω;R3) to ũ.

Next we define Λ(k) as in the previous subsection, i.e., as in (2.4.7). Then we use

(2.2.4) and eliminate the quadratic terms and then let k to infinity. As before we obtain

Λ(k)→ Λ :=

∫
ω

f · u0dx′ −
∫

Ω0

C0e(u0) · e(u0)dx

−
∫
ω

Cmem · emdx′ − 1

12

∫
ω

Cfef · efdx′.

Now the application of the model (2.4.11) and knowledge of em implies

Λ =

∫
ω

Ae′(ũ) · e′(ṽ)dx′ −
∫
ω

Cmem · emdx′ − 1

12

∫
ω

Cfef · efdx′

= − 1

12

∫
ω

Cfef · efdx′,

since Cmem · em = Ae′(ũ) · e′(ũ). Therefore ef = 0 and

e(u(h))→ e(u0) strongly in L2(Ω0;R3×3),(
∇′ũh + Aω̃h

)
→ em strongly in L2(ω;R3×2),

h∇′ω̃h → 0 strongly in L2(ω;R3×2).

From the second convergence we have that convergences in (2.4.10) are strong. Thus we

have e′(ũh)→ e′(ũ) strongly in L2(ω;R2×2). The Korn inequality on H1(ω;R2) gives

‖(ũh1 , ũh2)‖2
H1(ω;R2) ≤ C(‖e′(ũh)‖2

L2(ω;R2×2) + ‖ũh‖2
L2(ω;R2)). (2.4.12)

By the continuity of the trace operator from H1(Ω0;R3) to L2(ω;R3) we have that ũh →
ũ0 strongly in L2(ω;R3). Now the Korn inequality (2.4.12) implies that uh → u0

strongly in H1(ω0;R3) and (ũh1 , ũ
h
2) strongly to (ũ0

1, ũ
0
2) in H1(ω;R2).
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2.4.3. 3d–2d model: case 0 < α < 2

From the first convergence in (2.4.3) and the trace theorem we obtain

ũhk ⇀ ũ0 weakly in L2(ω;R3). (2.4.13)

From the second convergence, since −α > 0, we obtain that(
∂1ũ

hk + e1 × ω̃hk ∂2ũ
hk + e2 × ω̃hk

)
→ 0 strongly in L2(ω;R3×2).

This implies that

e′(ũhk)→ 0 strongly in L2(ω;R2×2), and

∂1ũ
hk
2 − ω̃hk3 → 0, ∂2ũ

hk
1 + ω̃hk3 → 0,

∂1ũ
hk
3 + ω̃hk2 → 0, ∂2ũ

hk
3 − ω̃hk1 → 0 strongly in L2(ω).

(2.4.14)

From (2.4.13), by the uniqueness of the limit we obtain that e′(ũ) = 0 and further

ω̃hk3 ⇀ ∂1ũ
0
2 = −∂2ũ

0
1, ω̃hk2 ⇀ −∂1ũ

0
3, ω̃hk1 ⇀ ∂2ũ

0
3 weakly in H−1(ω).

(2.4.15)

This implies that the limit longitudinal displacement of the plate is an infinitesimal rigid

displacement, i.e.,

(ũ0, w̃0) ∈ {(ṽ, w̃) ∈ H1(ω;R3)× L2(ω;R3)

: ∂1ṽ + e1 × w̃ = ∂2ṽ + e2 × w̃ = 0} =: W III .

The two conditions in this space imply that e′(ṽ) = 0 and that the infinitesimal rotation

w̃ can be expressed in terms of derivatives of displacement

w̃1 = ∂2ṽ3, w̃2 = −∂1ṽ3, w̃3 = ∂1ṽ2.

Therefore the limit of (uhk , ũhk), (u0, ũ0) belongs to the space V III .

After taking the limit in (2.2.4) for the test function (v, ṽ, w̃) ∈ W III the limit

(u0, ũ0) ∈ V III satisfies∫
Ω0

C0e(u0) · e(v)dx =

∫
ω

f · ṽdx′, (v, ṽ) ∈ V III . (2.4.16)

This is problem (2.2.7), already obtained in (2.3.16). Its solution is unique. Therefore

the whole family (uh)h>0 converges to u0. Note also that according to the trace theorem
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ũh = uh converges weakly in L2(ω;R3) to ũ. Additionally, e′(ũh) converges to zero

strongly in L2(ω;R2×2). Thus, by the Korn inequality we obtain the strong convergence

of (ũh1 , ũ
h
2) in H1(ω;R2).

In this case we can repeat the arguments from the end of Subsection 2.4.1 and prove

that em = ef = 0 and that the whole families are convergent and that all convergences in

(2.4.3) are in fact strong. This holds since the model equation is the same for both limit

models and sets the first line in definition of Λ in (2.4.8) to zero.

2.4.4. 3d–2d model: case α = 2

From the first convergence in (2.4.3) and the trace theorem we obtain

ũhk ⇀ ũ0 weakly in L2(ω;R3). (2.4.17)

From the second convergence we obtain that(
∂1ũ

hk + e1 × ω̃hk ∂2ũ
hk + e2 × ω̃hk

)
→ 0 strongly in L2(ω;R3×2).

This implies that

e′(ũhk)→ 0 strongly in L2(ω;R2×2), and

∂1ũ
hk
2 − ω̃hk3 → 0, ∂2ũ

hk
1 + ω̃hk3 → 0,

∂1ũ
hk
3 + ω̃hk2 → 0, ∂2ũ

hk
3 − ω̃hk1 → 0 strongly in L2(ω).

(2.4.18)

From (2.4.17), by the uniqueness of the limit we obtain that e′(ũ) = 0 and further

ω̃hk3 ⇀ ∂1ũ
0
2 = −∂2ũ

0
1, ω̃hk2 ⇀ −∂1ũ

0
3, ω̃hk1 ⇀ ∂2ũ

0
3 weakly in H−1(ω).

(2.4.19)

Together with the third convergence in (2.4.3) and the Lions lemma (f ∈ L2 is equivalent

to f ∈ H−1 and ∇′f ∈ H−1) this implies that the convergences in (2.4.19) are in fact

in L2(ω) (and the limit functions are in L2(ω) as well). Again, together with the third

convergence in (2.4.3) this implies that the convergences in (2.4.19) are actually weak in

H1(ω) (and the limit functions are in H1(ω) as well and thus ũ0 ∈ H2(ω;R3)). Then

from (2.4.18) using the Korn inequality this implies that

ũhk → ũ0 strongly in H1(ω;R3),

ω̃hk → ω̃0 = (∂2ũ
0
3,−∂1ũ

0
3, ∂1ũ

0
2)T weakly in H1(ω;R3),

e′(u0) = 0.

(2.4.20)
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Further from the third convergence in (2.4.3) we obtain that

ef = ∇′ω̃0 =


∂12ũ

0
3 ∂22ũ

0
3

−∂11ũ
0
3 −∂12ũ

0
3

−∂12ũ
0
2 −∂12ũ

0
2

 =


∂12ũ

0
3 ∂22ũ

0
3

−∂11ũ
0
3 −∂12ũ

0
3

0 0

 .
Since ef ∈ L2(ω;R3×2) we obtain that D2ũ0

3 ∈ L2(ω;R2×2) and thus ũ0
3 ∈ H2(ω).

Therefore the limit (u, ũ) belongs to V IV and ω̃ is expressed using derivatives of ũ0
3.

Let us now take the test function (v, ṽ, w̃) that satisfies the same conditions as the

limit, i.e.,

∂1ṽ + e1 × w̃ = ∂2ṽ + e2 × w̃ = 0 (2.4.21)

and for such test function take the limit in (2.2.4). We obtain that the limit (u0, ũ0, ω̃0)

satisfies ∫
Ω0

C0e(u0) · e(v)dx+
1

12

∫
ω

Cfef · ∇′w̃dx′ =
∫
ω

f · ṽdx′.

Inserting ef and expressing w̃ in terms of ṽ from (2.4.21) we obtain that the limit belongs

to (u0, ũ0) ∈ V IV and satisfies∫
Ω0

C0e(u0) · e(v)dx+
1

12

∫
ω

AD2ũ0
3 ·D2ṽ3dx

′ =

∫
ω

f · ṽdx′, (v, ṽ) ∈ V IV .

(2.4.22)

This problem is the same as the one in (2.2.8) and (2.3.25). Its solution is unique. There-

fore the whole families (ũh, ω̃h)h in (2.4.20) converge.

Next we define Λ(k) as in Subsection 2.4.1, i.e., as in (2.4.7). Then we use (2.2.4)

and eliminate the quadratic terms and then let k to infinity. As before we obtain that Λ(k)

converges to

Λ :=

∫
ω

f · u0dx′ −
∫

Ω0

C0e(u0) · e(u0)dx−
∫
ω

Cmem · emdx′ − 1

12

∫
ω

Cfef · efdx′.

Now the application of the model (2.4.22) and knowledge of ef implies

Λ =
1

12

∫
ω

AD2ũ0
3 ·D2ũ0

3dx
′ −
∫
ω

Cmem · emdx′ − 1

12

∫
ω

Cfef · efdx′

= − 1

12

∫
ω

Cmem · emdx′,

since (by P ∈ R2×3 we denote the projector defined by Pij = δij)

Cfef · ef = A
(
JPef

)
· JPef = A

(
D2ũ0

3

)
·D2ũ0

3.
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Therefore em = 0 and

e(uh)→ e(u0) strongly in L2(Ω0;R3×3),

1

h

(
∇′ũh + Aω̃h

)
→ 0 strongly in L2(ω;R3×2),

∇′ω̃h → ∇′ω̃0 strongly in L2(ω;R3×2).

Now by the Korn inequality we obtain that uh → u0 strongly in H1(Ω0;R3). From the

second convergence and the second in (2.4.20) we have that

ũh → ũ0 strongly in H1(ω;R3).

Uniqueness of all limits implies that the whole h families are convergent. Further, from

(2.4.20) and the strong convergence of∇′ω̃h in L2 we have the strong convergence of ω̃h

in H1(ω;R3).

2.4.5. 3d–2d model: case α > 2

From the second and the third convergence in (2.4.3) we obtain that(
∂1ũ

hk + e1 × ω̃hk ∂2ũ
hk + e2 × ω̃hk

)
→ 0 strongly in L2(ω;R3×2),

∇′ω̃hk → 0 strongly in L2(ω;R3×2).

As in the case α = 2 this implies that (2.4.20) holds. Furthermore we obtain that∇′ω̃0 =

0, which implies that D2ũ0
3 = 0. Therefore the limit (u0, ũ0) belongs to V V .

Let us now take the test function (v, ṽ, w̃) that satisfies the same conditions as the

limit

(∂1ṽ + e1 × w̃ ∂2ṽ + e2 × w̃) = ∇′w̃ = 0

and for such test function take the limit in (2.2.4). Thus the limit (u0, ũ0) belongs to V V

and satisfies∫
Ω0

C0e(u0) · e(v)dx =

∫
ω

f · ṽdx′, (v, ṽ) ∈ V V . (2.4.23)

This problem is the same as the one in (2.2.9) and (2.3.28). Its solution is unique. There-

fore the whole families (ũh, ω̃h)h in (2.4.20) converge.
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In this case we can also repeat the arguments from the end of Subsection 2.4.1 and

prove that em = ef = 0 and that the whole families are convergent and that all con-

vergences in (2.4.3) are in fact strong. This holds from the same reason as in Subsec-

tion 2.4.3, since the model equation is the same for both models and sets the first line in

definition of Λ to zero.
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Nonlinear models of elastic bodies

interaction
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3. ASYMPTOTICALLY OBTAINED

NONLINEAR PLATE MODELS

In the Part II of the thesis we are going to make a similar analysis as in the Part I

but in the context of nonlinear modelling. We start with this chapter in which we give an

overview of existing results in the literature regarding the asymtotic analysis of nonlinear

elasticity models for plate–like bodies, i.e. thin in one direction with plane geometry. For

similar overviews of such results, see [39], and [60] for case of the curved geometry.

3.1. PROBLEM SETUP

Let ω ⊂ R2 be a bounded Lipschitz domain and h > 0 a small parameter. Let us

define a domain Ωh := ω× 〈0, h〉 in which the thin body is situated. Let its stored energy

function is given by a function W 1 : R × M3×3 → R and let us apply a force to it at

Γh := ω × {h}. Then the total energy is given by∫
Ωh
W 1(h;∇φ)dx−

∫
Γh
f · φdx′,

where the φ : Ωh → R is a function describing the position φ(x) of the point x ∈ Ωh

after deformation of the body. We are interested in finding φ (possibly satisfying some

boundary conditions) for which the total energy is minimal (if there exists such φ).

To derive the plate model, not only that we want to find a minimizer φ for particular

domain Ωh (i.e. a particular value h > 0), we want to explore the behaviour of those

minimizers for different values of h > 0, and observe their limit when h → 0 in some

topology. In nonlinear modelling this is usually done by performing Γ–limit. In order to

do that we have to be more specific about the definitions.
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Firstly, it is convenient and usual in such problems to rescale all problems for different

parameters h > 0 to a fixed domain Ω1 by using the mapping

(x′, x3) ∈ Ω1 rh7→ (x′, hx3) ∈ Ωh.

Secondly, it is easy to see that if W 1 is independent of the first variable (h), the term∫
Ωh
W 1(h;∇φ)dx goes to zero as h → 0. Hence, it is natural to scale Lamé coefficients

for the thin body so that the body becomes more stiff as the thickness goes to zero. Sim-

ilarly as in the linear case in Section 2.2, we suppose that the elasticity coefficients (on

which the functionW 1 depends in an implicit way) for the body of the thickness h depend

on the parameter h in such way that there is a function W 1
α : M3×3 → R, independent of

h, such that

W 1(h; X) =
1

hα+1
W 1
α(X) (3.1.1)

for all h > 0, X ∈ M3×3, and for a real parameter α > −1. The assumptions on the

stored energy function W 1
α will be different for different values of α which explains the

subscript α in the energy density function. Thus we obtain that the total energy for a body

Ωh on the rescaled domain is described by

1

hα

∫
Ω1

W 1
α(∇hφ)dx−

∫
Γ1

f · φdx′

where

∇′φ :=
[
∂1φ ∂2φ

]
, ∇hφ :=

[
∇′φ 1

h
∂3φ

]
.

and φ : Ω1 → R, φ = φ ◦ rh, is a parametrization of the deformed body defined on the

rescaled fixed domain.

The introduction of the function W 1
α in (3.1.1) in various papers in the literature is

often explained as the scalling of the energy functional. Even though it is a fair argument,

since in the Chapter 4 we are going to couple two elastic bodies and their energy func-

tionals, for our case it is more convient to introduce W 1
α as we did through scalling the

elasticity coefficients in the thin body.

To make this applicable to the theory of Γ–convergence, let us fix q ∈ 〈1,+∞〉 and

define a functional J3d,α
h : Lq(Ω1;R3)→ R,

J3d,α
h (φ) =


1

hα

∫
Ω1

W 1
α (∇hφ) dx−

∫
Γ1

f · φdx φ ∈ B3d,α,

+∞ otherwise,
(3.1.2)
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where B3d,α = W 1,q(Ω1;R3) is the set of admissible functions and f ∈ Lq
′
(Γ1;R3),

q′ = (1 − 1/q)−1. Note that no Dirichlet boundary conditions are assumed here. For a

fixed α > −1 we are interested in the Γ–limit of the family of functionals (J3d,α
h )h>0.

As announced, the assumptions on W 1
α will be different for different values of α >

−1. The common assumptions and the assumptions we are going to need for the further

analysis are:

W1.1) W 1
α : M3×3 → [0,+∞] is continuous,

W1.2) W 1
α is frame indifferent: W 1

α(RX) = W 1
α(X) for X ∈M3×3, R ∈ SO(3),

W1.3) W 1
α satisfies the coercivity condition: W 1

α(X) ≥ c1‖X‖qF − c2, for X ∈ M3×3, for

real constants c1 > 0, c2.

The other assumptions we are going to assume for particular α > −1 are:

W2.1) there exists C > 0 such that W 1
α(X) ≤ C(1 + ‖X‖qF ),

W2.2) W 1
α(X) = +∞ if det(X) ≤ 0,

W2.3) ∀δ > 0 ∃Cδ > 0 s.t. ∀X ∈ M3×3 with det(X) ≥ δ it holds W 1
α(X) ≤ Cδ(1 +

‖X‖qF ),

W2.4) W 1
α(X) ≥ c dist2(X, SO(3)), for all X ∈ M3×3, for some c > 0, W 1

α(R) = 0 for

R ∈ SO(3),

W2.5) W 1
α(X) ≤ C dist2(X, SO(3)) in a neigbourhood of SO(3), for some C > 0,

W2.6) W 1
α ∈ C2 in the neighbourhood of SO(3).

Clearly, the assumption W2.3) is an adjusted type of growth condition W2.1), and

it is going to be used together with W2.2). The assumption W2.4) implies the already

assumed coercivity condition W1.3) for q = 2:

W 1
α(X) ≥ c dist2(X, SO(3)) = c‖X−RX‖2

F ≥
c

2
‖X‖2

F − c‖RX‖2
F =

c

2
‖X‖2

F − 9c,

(3.1.3)

where RX is the SO(3) matrix which is the closest to X. Similarly the assumption W2.5)

implies W2.1) for q = 2.
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Remark 3.1.1. Note that for W 1
α we didn’t assume quasiconvexity, the most usual as-

sumption to assure that the functional J3d,α
h (for particular values of α and h) is weakly

lower semicontinuous. Thus, we did not make assumptions to assure that the problem

find φ0 ∈ B3d,α
α , J3d,α

h (φ0) = min
φ∈B3d,α

J3d,α
h (φ) (3.1.4)

has a solution. This is often in the asymptotic analysis of Γ–limits of functionals describ-

ing thin 3d elastic bodies. One can show that (if some Dirichlet boundary conditions are

prescribed) each of the functionals J3d,α
h is uniformly bounded from below, so it attains

the infimum. Thus there exists an infimizing sequence (φn)n≥1 attaining the infimum in

B3d,α. As usual this is not a problem since we will analyze the behaviour of the system as

h→ 0 through the Γ–limit of the functionals (J3d,α
h )h>0. Firstly, analogous minimization

problem defined for the Γ–limit will have a solution (as a property of Γ–convergence).

Secondly, again by properties of Γ–convergence, it will hold that ”almost infimizers” of

the problem (functionsφh for which the energy J3d,α
h is o(h) apart from the infimum) con-

verge (up to a subsequence) to the minimizer of the Γ–limit of the family of functionals�
J3d,α
h

�
h>0

.

Remark 3.1.2. The Γ–limit of the family of functionals (J3d,α
h (φ))h>0 will be observed

in the strong Lq(Ω1;R3) topology. However, due to uniform coercivity properties of

the family of functionals (in particular Lemma 3.3.1), the Γ–convergence in the strong

Lq(Ω1;R3) topology is equivalent to the Γ–convergence in the weak W 1,q(Ω1;R3) topol-

ogy.
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3.2. THE MAIN RESULT

In this section we are going to determine the Γ–limit of families (J3d,α
h )h>0 for differ-

ent values of α > −1.

In asymptotic analysis using Γ–convergence of functionals describing thin 3d elastic

bodies it is natural that in the limit model all admissible functions φ do not depend on

the third variable. For that reason, limit equations and functions can be defined on two–

dimensional domain instead of three–dimensional domain. In other words, we will often

use isomorphisms

{φ ∈ Lq(Ω1;R3) : ∂3φ = 0} ≡ Lq(ω;R3), (3.2.1)

and

{φ ∈ W 1,q(Ω1;R3) : ∂3φ = 0} ≡ W 1,q(ω;R3). (3.2.2)

For that reason we introduce notation using tilde: for function φ ∈ Lq(Ω1;R3) with

∂3φ = 0, the function φ̃ ∈ Lq(ω;R3) denotes its corresponding function. Also, in the

same manner (in the case when φ is independent of x3) we will identify the forcing

function f ∈ Lq′(Γ1;R3) with a function from Lq
′
(ω;R3). In other words, we will write

the forcing term as

−
∫

Γ1

f · φdx′ ≡ −
∫
ω

f · φdx′.

We can now state the main theorem:

Theorem 3.2.1. Let the family of functionals (J3d,α
h )h>0 be as defined in (3.1.2), with

W 1
α satisfying assumptions W1.1), W1.2), W1.3).

a) Let α ∈ 〈−1, 0〉. Let additionally W 1
〈−1,0〉 satisfies the condition W2.1). Then

the Γ–limit of the family of functionals (J
3d,〈−1,0〉
h )h>0 when h → 0 in the strong

Lq(Ω1;R3) topology is

J
3d,〈−1,0〉
0 (φ̃) =


−
∫
ω

f · φ̃dx′ φ̃ ∈ Lq(ω;R3),

+∞ otherwise.
(3.2.3)
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b) Let α = 0. Let additionally W 1
0 satisfies either the condition W2.1), or conditions

W2.2) and W2.3). Then the Γ–limit of the family of functionals (J3d,0
h )h>0 when

h→ 0 in the strong Lq(Ω1;R3) topology is

J3d,0
0 (φ̃) =


∫
ω

QW̃ 1
0 (∇′φ̃)dx−

∫
ω

f · φ̃dx′ φ̃ ∈ W 1,q(ω;R3),

+∞ otherwise,
(3.2.4)

where

W̃ 1
0 (X) := inf

z∈R3
W 1

0

([
X z

])
(3.2.5)

for all X ∈M3×2.

c) Let α ∈ 〈0, 5/3〉, and let q = 2. Let additionally W 1
〈0,5/3〉 satisfies conditions W2.4)

and W2.5). Then the Γ–limit of the family of functionals (J
3d,〈0,5/3〉
h )h>0 when

h→ 0 in the strong Lq(Ω1;R3) topology is

J
3d,〈0,5/3〉
0 (φ̃) =


−
∫
ω

f · φ̃dx′ φ̃ ∈ B3d,〈0,5/3〉
0 ,

+∞ otherwise,
(3.2.6)

where

B3d,〈0,5/3〉
0 := {φ̃ ∈ W 1,∞(ω;R3) : ∇′φ̃T∇′φ̃ ≤ I a.e.}. (3.2.7)

d) Let α = 2, and let q = 2. Let additionally W 1
2 satisfies conditions W2.4) and

W2.6). Then the Γ–limit of the family of functionals (J3d,2
h )h>0 when h→ 0 in the

strong Lq(Ω1;R3) topology is

J3d,2
0 (φ̃) =


1

24

∫
ω

Q2(b(φ̃))dx′ −
∫
ω

f · φ̃dx′ φ̃ ∈ B3d,2
0 ,

+∞ otherwise,
(3.2.8)

where

B3d,2
0 := {φ̃ ∈ W 2,2(ω;R3) : ∇φ̃T∇φ̃ = I} (3.2.9)

and b(φ̃) = (bβ1,β2(φ̃))β1,β2 is the curvature tensor:

bβ1,β2(φ̃) = ∂β1a
φ̃
3 · ∂β2φ̃, aφ̃3 =

∂1φ̃× ∂2φ̃

‖∂1φ̃× ∂2φ̃‖
.
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The quadratic form Q2 on M2×2 is defined by

Q2(X) := min
z∈R3

Q3

(
2∑

i,j=1

Xi,jei ⊗ ej + z ⊗ e3

)
(3.2.10)

where Q3(X) := ∂2

∂X2W
1
2 (I)(X,X).

e) Let α ∈ 〈2,+∞〉, and let q = 2. Let additionally W 1
2,+∞ satisfies conditions W2.4)

and W2.6). Then the Γ–limit of the family of functionals (J
3d,〈2,+∞〉
h )h>0 when

h→ 0 in the strong Lq(Ω1;R3) topology is

J
3d,〈2,+∞〉
0 (φ̃) =


−
∫
ω

f · φ̃dx′ φ̃ ∈ B3d,〈2,+∞〉
0 ,

+∞ otherwise,
(3.2.11)

where

B3d,〈2,+∞〉
0 := {φ̃ ∈ C(ω;R3) :

∃R ∈ SO(3),d ∈ R3 s.t. φ̃(x′) = R
[
x′ 0

]T
+ d}. (3.2.12)

The claim b) is proved in [52], Theorem 2 (under the additional assumption W2.1))

and in [7], Theorem 1 (under the additional assumption W2.2) and W2.3)). The claim c)

is proved in [30], Theorem 1.1. and (1.6). The claim d) is proved in [38], Theorem 6.1.

In Section 3.3 we will give proofs for claims a) and e).

Remark 3.2.2. By observing limits of thin 3d bodies obtained in Theorem 3.2.1 in var-

ious regimes, we can compare their properties to the limits of thin parts of 3d–thin 3d

structures we obtained in the linear case in Theorem 2.2.1 and explained in Remark 2.2.2.

For α = 2 we obtain the nonlinear flexural plate model. Similarly as in the linear case,

it penalizes the apropriate bending energy in the set of inextensible deformations. For

α > 2 we obtain that the model allows only rigid transformation (i.e. the layer is so stiff

that allows only rotations and translations). Key differences to linear case for thin layer

are that mentioned results from Theorem 3.2.1 correspond to linear models from Theo-

rem 2.2.1, but are not the same due to linearizations in Part I. For α < 0 we again get no

contribution of the thin layer, neither in the energy nor in the set of admissible functions.

The largest differences between linear and nonlinear modelling are seen in cases α ∈
[0, 2〉. Firstly, there are no results in literature that prove rigourous asymptotic derivation
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of the model in the case α ∈ [5/3, 2〉. Up to the today’s knowledge, it is an open problem.

For that reason Theorem 3.2.1 lacks such result. Also, all similar convergence results in

Part II of the thesis will again lack a result in the case α ∈ [5/3, 2〉. In the case α = 0 in the

limit we obtain the nonlinear membrane plate model. In the case α ∈ 〈0, 5/3〉 we obtain

the so called constrained membrane plate model. It has no contribution in the energy, only

a constraint in the set of admissible functions that allows only short maps. It is different to

the linear case α ∈ 〈0, 2〉 where only (linearly) inextensible deformations were allowed.

Here one can see the main difference between linear and nonlinear modelling of thin

elastic structures.

Under certain assumptions, in the membrane plate energy short maps do not contribute

in energy as well, i.e. nonlinear membrane plates offer no resistance to crumpling. To

quote Le Dret and Raoult ( [52]), ”This is an empirical fact, witnessed by anyone who

ever played with a deflated baloon”. Indeed, for a thin membrane as a deflated ballon one

can compress the body with investing (almost) zero energy. On the other hand, a balloon

does resist when stretched. This makes the nonlinear theory more precise for modelling

real life examples, since in the linear theory both stretching and compressing are equally

penalized in the membrane energy.
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3.3. TECHNICAL RESULTS AND PROOFS

Before proving the two remaining parts from Theorem 3.2.1, we need a coercivity

lemma we are going to use in this proofs and later on in the thesis.

Lemma 3.3.1. Let f ∈ Lq′(Γ1;R3) and α ∈ 〈−1,+∞〉. Let W 1
α satisfies assumptions

W1.1), W1.2) and W1.3). Then there are constants c > 0, C ∈ R such that the inequality

‖φ‖qLq(Ω1;R3) +
1

hα

∫
Ω1

W 1
α(∇hφ)dx−

∫
Γ1

f · φdx′

≥ c

�
1

hq−1
‖∂3φ‖qLq(Ω1;R3) + χ{α≥0}‖φ‖qW 1,q(Ω1;R3) + ‖φ‖qLq(Γ0;R3)

�
− C (3.3.1)

holds for all φ ∈ W 1,q(Ω1;R3) and all h ∈ 〈0, 1].

Proof. Let us define hα := hmax{0,α} and h−α := hmax{0,−α} Note that hα ≤ 1 and

h−α ≤ 1. Also: hα
hα

= hmax{−α,0} = h−α.

Since W 1
α is nonnegative and coercive (from W1.1)and W1.3)), for each λ ∈ [0, 1] it

holds

W 1
α(X) ≥ λ(c1‖X‖qF − c2).

We apply this inequality for λ = hα and obtain:

1

hα

∫
Ω1

W 1
α(∇hφ)dx ≥ c1h−α‖∇′φ‖qLq(Ω1;R3×2)+

c1h−α
hq
‖∂3φ‖qLq(Ω1;R3)−c2h−α. (3.3.2)

Since h−α ≤ 1, the last term can estimated from below by −c2.

Let us now take any nonnegative η ∈ W 1,1(Ω1;R). For a.e. x = (x′, x3) ∈ Ω1 we

have

η(x′, 1) ≤ η(x′, x3) +

∣∣∣∣∫ 1

x3

∂3η(x′, y3)dy3

∣∣∣∣ ≤ η(x′, x3) +

∫ 1

0

|∂3η(x′, y3)|dy3. (3.3.3)

After integrating over x′ ∈ ω and then x3 ∈ [0, 1] we obtain∫
Γ1

ηdx′ ≤
∫

Ω1

ηdx+

∫
Ω1

|∂3η|dx. (3.3.4)

We will use this inequality for η(x) = |φ(x)|q. For its derivative we use Young’s inequal-

ity

|∂3η(x)| ≤ q|φ|q−1|∂3φ| ≤ (q − 1)|φ|q + |∂3φ|q (3.3.5)
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to obtain

‖φ‖qLq(Γ1;R3) ≤ q‖φ‖qLq(Ω1;R3) + ‖∂3φ‖qLq(Ω1;R3). (3.3.6)

From (3.3.2), (3.3.6) and Hölder inequality we obtain

‖φ‖qLq(Ω1;R3) +
1

hα

∫
Ω1

W 1
α(∇hφ)dx−

∫
Γ1

f · φdx′

≥ ‖φ‖qLq(Ω1;R3) + c1h−α‖∇′φ‖qLq(Ω1;R3×2)

+
c1h−α
hq
‖∂3φ‖qLq(Ω1;R3) − c2 −M‖φ‖Lq(Γ1;R3)

≥ ‖φ‖qLq(Ω1;R3) + c1h−α‖∇′φ‖qLq(Ω1;R3×2) +
c1h−α
hq
‖∂3φ‖qLq(Ω1;R3) − c2 −M ′I,

(3.3.7)

where

I =
�
‖φ‖qLq(Ω1;R3) + ‖∂3φ‖qLq(Ω1;R3)

�1/q
. (3.3.8)

Note that from α > −1, we have max{0,−α} < 1, so h−α
hq
≥ 1

hq−1 . Also, 1
hq−1 ≥ 1.

Combining these inequalities with conclusion in (3.3.7), we obtain

‖φ‖qLq(Ω1;R3) +
1

hα

∫
Ω1

W 1
α(∇hφ)dx−

∫
Γ1

f · φdx′

≥ 1

2
‖φ‖qLq(Ω1;R3) + c1h−α‖∇′φ‖qLq(Ω1;R3×2) +

c1

2hq−1
‖∂3φ‖qLq(Ω1;R3) − c2

+
1

2
‖φ‖qLq(Ω1;R3) +

c1

2hq−1
‖∂3φ‖qLq(Ω1;R3) −M ′I

≥ 1

2
‖φ‖qLq(Ω1;R3) + c1h−α‖∇′φ‖qLq(Ω1;R3×2) +

c1

2hq−1
‖∂3φ‖qLq(Ω1;R3) − c2

+ (mIq −M ′I) , (3.3.9)

with m = min
{

1
2
, c1

2

}
. Since the function x 7→ axq + bx (for a > 0, b ∈ R) is bounded

from below on x ∈ [0,+∞〉, a direct consequence is that

‖φ‖qLq(Ω1;R3) +
1

hα

∫
Ω1

W 1
α(∇hφ)dx−

∫
Γ1

f · φdx′

≥ 1

2
‖φ‖qLq(Ω1;R3) + c1h−α‖∇′φ‖qLq(Ω1;R3×2) +

c1

2hq−1
‖∂3φ‖qLq(Ω1;R3) − c′2

≥ c′′1

�
1

hq−1
‖∂3φ‖qLq(Ω1;R3) + χ{α≥0}‖∇′φ‖qLq(Ω1;R3×2) + ‖φ‖qLq(Ω1;R3)

�
− c′2.

(3.3.10)

To conclude inequality (3.3.1) we need two final observations. Firstly, in the same manner

we obtained the inequality (3.3.6), we can bound the term ‖φ‖Lq(Γ0;R3) by ‖∂3φ‖qLq(Ω1;R3)
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and ‖φ‖qLq(Ω1;R3) and adjusting constants (note that 1
hq−1 ≥ 1). Secondly, when α ≥

0, on the right hand side we have all derivatives of φ, so we have bounded the term

‖∇φ‖qLq(Ω1;R3×3). �

We know prove the two remaining parts of Theorem 3.2.1.

Proof of Theorem 3.2.1.a). Let us prove the claim by the definition. For the ”lim inf”

part, let us take any φ ∈ Lq(Ω1;R3) and any (φh)h>0 ⊂ Lq(Ω1;R3) converging strongly

to φ in Lq(Ω1;R3). We have to prove that ∂3φ = 0 and lim infh→0 J
3d,〈−1,0〉
h (φh) ≥

J
3d,〈−1,0〉
0 (φ̃). We can firstly take subsequence of (φh)h>0 (without changing its notation)

such that lim infh→0 J
3d,〈−1,0〉
h (φh) = limh→0 J

3d,〈−1,0〉
h (φh) =: L. If L = +∞, we have

nothing to prove. Thus in the sequel we assume L < +∞ and consequently there is a

constant C ∈ R such that J3d,〈−1,0〉
h (φh) < C for all h > 0. Due to strong convergence of

(φh)h>0, we know that ‖φh‖Lq(Ω1;R3) is uniformly bounded. By applying Lemma 3.3.1,

we obtain that ∂3φh → 0. Due to uniqueness of limits in distributions, we obtain that

∂3φ = 0, and thus for the limit φ we have J3d,〈−1,0〉
0 (φ) < +∞. Now, since the first part

of functionals J3d,〈−1,0〉
h is nonnegative and the second one is linear, we clearly have the

desired inequality lim infh→0 J
3d,〈−1,0〉
h (φh) ≥ J

3d,〈−1,0〉
0 (φ̃).

Let as now prove the ”lim sup” part of the definition. Since the part φ̃ 7→
∫
ω
f · φ̃dx′

is linear, it is continuous with respect to the convergence in Lq(ω;R3), so it does not affect

the convergence so without loss of generality f = 0. Let us take arbitrary φ̃ ∈ Lq(ω;R3).

Let us take any (φ̃n)n≥1 ⊂ C∞(ω;R3) that strongly converges to φ̃ in Lq(ω;R3).

Let us define

n(h) := arg max
n≥1

{‖∇φ̃n‖Lq(ω;R3×3) < hα/(2q)}, (3.3.11)

in case that ‖∇φ̃n‖Lq(ω;R3×3) is not uniformly bounded (note that hα/(2q) → +∞ as h →
0, so the mapping is well defined for all sufficiently small values of h), and n(h) = d1/he
if ‖∇φ̃n‖Lq(ω;R3×3) is uniformly bounded.

If ‖∇φ̃n‖Lq(ω;R3×3) is uniformly bounded, then clearly n(h) → +∞ and due to

hα/(2q) → +∞ the bound ‖∇φ̃n(h)‖Lq(ω;R3×3) < hα/(2q) is satisfied for sufficiently small

values of h. If ‖∇φ̃n‖Lq(ω;R3×3) is not uniformly bounded, as h → 0, due to hα/(2q) →
+∞ we have n(h) → +∞. In both cases we have that (φh)h>0, defined as φh := φn(h),
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converges to φ in Lq(Ω1;R3). From the growth condition W2.1) for sufficiently small

values of h we obtain

0 ≤ J
3d,〈−1,0〉
h (φh) ≤

1

hα
C
�
1 + ‖∇′φh‖qLp(ω;R3×2)

�
≤ 1

hα
C
�
1 + 2qhα/2

�
→ 0.

(3.3.12)

This proves that lim sup J
3d,〈−1,0〉
h (φh) = 0 = J

3d,〈−1,0〉
0 (φ̃). �

Proof of Theorem 3.2.1.e). Let us firstly prove the lower bound. Let (J3d,2
h )h>0, J3d,2

0

and B3d,2
0 be the energy functionals for h > 0, its Γ–limit and the set of admissible

functions from Theorem 3.2.1.d). Since assumptions in Theorem 3.2.1.d) coincide with

assumptions in Theorem 3.2.1.e), we are able to use mentioned objects. Since now α > 2,

we have J3d,〈2,+∞〉
h (φ) ≥ J3d,2

h (φ), so the same holds for their Γ–limits and the set of

admissible functions of Γ–limit of J3d,〈2,+∞〉
h (φ) is necessarily a subset of B3d,2

0 . Now,

without loss of generality let f = 0 (since the linear part will not affect the Γ–limit).

Note that now all functionals are nonnegative.

Let us take any φ̃ ∈ B3d,2
0 and any (φh)h>0 ⊂ W 1,2(Ω1;R3) that strongly converges to

φ in L2(Ω1;R3) and such that values J3d,〈2,+∞〉
h (φh) are uniformly bounded by C > 0. If

there does not exists such sequence, there is nothing to prove, the ”lim inf” inequality is

trivially satisfied. For those functions we have lim infh→0 J
3d,2
h (φh) ≥ J3d,2

0 (φ̃), so there

exists a subsequence of (φh)h>0 (still denoted the same) such that

(∀δ > 0) (∃h0 > 0) (∀h ∈ 〈0, h0〉) J3d,2
h (φh) ≥ J3d,2

0 (φ̃)− δ. (3.3.13)

Let us take δ = 1
2
J3d,2

0 (φ̃) and multiply the last inequality by h2−α. Then we have

C ≥ J
3d,〈2,+∞〉
h (φh) ≥

1

2hα−2
J3d,2

0 (φ̃), (3.3.14)

so when h → 0 we obtain that necessarily J3d,2
0 (φ̃) = 0. From Lemma 3.3.2 we obtain

that φ̃ is rigid transformation. Now the lower bound is clear.

For the ”lim sup” part, let us take any φ̃ ∈ B3d,〈2,+∞〉
0 . Let us define

φh(x) := φ̃(x′) + h(∂1φ̃× ∂2φ̃)x3. (3.3.15)

Since ∇hφh is a constant rotation from SO(3) (for which W 1
〈2,+∞〉 is equal to zero by the

assumptions), and since clearly φh → φ in L2(Ω1;R3), the claim is proven. �
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Lemma 3.3.2. Let φ̃ ∈ W 2,2(ω;R3) such that
∫

Ω1 Q2(b(φ̃))dx′ = 0. Then φ̃ is rigid

transformation.

Proof. Since Q2 is coercive quadratic form, we have that b(φ̃) = 0 a.e., bβ1,β2(φ̃) =

∂β1a
φ̃
3 · ∂β2φ̃, aφ̃3 = ∂1φ̃×∂2φ̃

‖∂1φ̃×∂2φ̃‖
. We see that ∂βa

φ̃
3 is perpendicular to ∂1φ̃ and ∂2φ̃. By

differentiating the equality ‖aφ̃3 ‖2 = 1, we obtain ∂βa
φ̃
3 · aφ̃3 = 0, so specially ∂βa

φ̃
3 is

perpendicular to all vectors in the basis {∂1φ̃, ∂2φ̃,a
φ̃
3 }, so ∂βa

φ̃
3 = 0, β = 1, 2. Specially,

aφ̃3 is a constant.

By differentiating ‖∂1φ̃‖2 = 1 we obtain ∂12φ̃ · ∂1φ̃ = 0. Similarly ∂12φ̃ · ∂2φ̃ = 0.

Lastly, from definition of aφ̃3 we have ∂βφ̃ · aφ̃3 = 0, so by differentiating this and using

aφ̃3 = const we obtain ∂β1,β2φ̃ · aφ̃3 = 0, β1, β2 = 1, 2. Thus, ∂12φ̃ is also perpendicular

to all vectors in the basis, and thus ∂12φ̃ = 0.

We again differentiate ‖∂1φ̃‖2 = 1 and ∂1φ̃ · ∂2φ̃ = 0 and use obtained conclusions

to get ∂11φ̃ · ∂1φ̃ = ∂11φ̃ · ∂2φ̃ = 0. From before we know that ∂β1,β2φ̃ are perpendicular

to aφ̃3 , so again by the same argument ∂11φ̃ = 0. After applying analogous arguments

for ∂22φ̃, we obtain D2φ̃ = 0, thus φ̃ is affine function. Due to conditions ‖∂1φ̃‖ =

‖∂2φ̃‖ = 1 and ∂1φ̃ · ∂2φ̃ = 0, we obtain that it is necessarily a rigid transformation. �

Remark 3.3.3. All the parts in Theorem 3.2.1 are proved by the definition of the Γ-

convergence, which included the ”lim sup” part of the definition: the step in which for

arbitrary admissible φ ∈ Lq(Ω1;R3) the family (φh)h>0 ⊂ Lq(Ω1;R3) is obtained such

that φh → φ in Lq(Ω1;R3) and

lim sup
h→0

J3d,α
h (φh) ≤ J3d,α

0 (φ).

The properties of these families (φh)h>0 is going to play important role in the rest of this

thesis, so we are now going to get into more details about those families.

a) For α ∈ 〈−1, 0〉, from the proof of Theorem 3.2.1.a) we see that the family is

obtained by smooth approximations of the function φ̃ ∈ Lq(ω;R3). However, for

φ̃ ∈ W 1,q(ω;R3) the proof would hold for the constant family φ̃h = φ̃:

J
3d,〈−1,0〉
h (φh) ≤

1

hα
C
�
1 + ‖∇′φ̃‖qLq(ω;R3×2)

�
−
∫
ω

f · φ̃

→ −
∫
ω

f · φ̃ = J
3d,〈−1,0〉
0 (φ̃). (3.3.16)
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b) For α = 0, from [52] (Proposition 7., (24)) and [7] (Theorem 1) we see that the

”lim sup” part of the proof is obtained by the family of the form φh = φ̃
0

+h(x3−
1/2)φ̃

1
for some φ̃

0
, φ̃

1 ∈ W 1,q(ω;R3), h > 0.

c) For α ∈ 〈0, 5/3〉, from [30] (Lemma 5.1.) we see that the ”lim sup” part of the

proof is obtained by the family of the form φh = φ̃
0

h + hx3φ̃
1

h, where φ̃
0

h, φ̃
1

h ∈
W 1,2(ω;R3), h > 0.

d) For α = 2, from [38] (Theorem 6.1. and (6.24.)) we see that the ”lim sup” part

of the proof is obtained by the family of the form φh = φ̃
0

h + h(x3 − 1/2)φ̃
1

h +

h2 (x3−1/2)2

2
φ̃

2

h, where φ̃
0

h, φ̃
1

h, φ̃
2

h ∈ W 1,2(ω;R3), h > 0.

e) For α ∈ 〈2,+∞〉, from (3.3.15) in the proof of Theorem 3.2.1.e) we see that the

family is of the form φh = φ̃
0

+ hx3hφ̃
1

for some φ̃
0
, φ̃

1 ∈ W 1,2(ω;R3), h > 0.
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4. NONLINEAR 3D–THIN 3D MODEL

4.1. PROBLEM SETUP

In this chapter we are going to observe the same problem as in Chapter 2, but in terms

of the nonlinear modelling.

Let us define sets
ω = 〈0, 1〉 × 〈0, 1〉,

Ω0 = ω × 〈−1, 0〉,

Ωh = ω × 〈0, h〉,

Ω0+h = ω × 〈−1, h〉,

Γs = ω × {s}, for s ∈ R.

(4.1.1)

We consider Ω0+h = Ω0 ∪ Ωh to be an elastic body made of two materials with possibly

different properties at different parts of the domain (Ω0 and Ωh), see Figure 4.1. The

stored energy function for Ω0 is given by W 0 : M3×3 → R and the stored energy function

for Ω1 is given by W 1 : R ×M3×3 → R (it also depends on the thickness parameter h).

Let φ : Ωh → R be a function describing the position φ(x) of the point x ∈ Ωh after

deformation of the body; similarly we define function ψ : Ω0 → R. Further we assume

that the body is clamped at x3 = −1, that a contact force f is applied at the boundary

Γh = ω × {h}, and that the remaining boundary is force free. For simplicity we assume

that there are no body forces applied.

Analogously as in Chapter 3, we perform the rescaling of the thin part by the function

(x′, x3) ∈ Ω1 7→ (x′, hx3) ∈ Ωh,
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ω

Ω0

ΩhΓh

x1

x2

x3

Figure 4.1: 3d elastic body.

so that problems for all h > 0 are defined on the same domain Ω0+1. With the same rea-

soning in the Section 3.1, in the thin part of the domain we also incorporate the behaviour

of elasticity coefficients in W 1 in such way that there is a function W 1
α : M3×3 → R,

independent of h, such that

W 1(h; X) =
1

hα+1
W 1
α(X) (4.1.2)

for all h > 0, X ∈M3×3, and for a real parameter α > −1.

Now the total energy functional for the thin part of the structure from the Figure 4.1

on the rescaled domain Ω1 is given by the functional J3d,α
h : Lq(Ω1;R3) → R defined in

(3.1.2).

For p ∈ 〈1,+∞〉 let us define the total energy functional for the elastic body situated

in Ω0 asW0(ψ) : Lp(Ω0;R3)→ R given by

W0(ψ) =


∫

Ω0

W 0(∇ψ)dx ψ ∈ W 1,p(Ω0;R3),

+∞ otherwise.
(4.1.3)

The functionalW0 is independent of h, and so its elasticity coefficients are.

Then the total energy functional for the whole structure is defined as the sum of those

two functionals up to a definition of the set of admissible functions. For abitrary α > −1
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and h > 0 we define K3d,α
h : Lp(Ω0;R3)× Lq(Ω1;R3)→ R by

K3d,α
h (ψ,φ) =



∫
Ω0

W 0(∇ψ)dx

+
1

hα

∫
Ω1

W 1
α (∇hφ) dx−

∫
Γ1

f · φdx
(ψ,φ) ∈ A3d,α,

+∞ otherwise,
(4.1.4)

where

A3d,α := {(ψ,φ) ∈ W 1,p(Ω0;R3)×W 1,q(Ω1;R3) :

ψ|x3=0 = φ|x3=0, ψ|x3=−1 = id}.
(4.1.5)

We are interested in obtaining Γ–limits of the families of (K3d,α
h )h>0, for various α > −1.

For the W 1
α and f ∈ Lq′(Γ1;R3), q′ = (1 − 1/q)−1 we assume the same conditions

W1.1), W1.2) andW1.3) as in Chapter 3. Additionally, for W 0 we assume

W0.1) 1 < p ≤ q < +∞,

W0.2) W 0 : M3×3 → [0,+∞〉 is continuous,

W0.3) W 0 satisfies the coercivity condition: W 0(X) ≥ c1‖X‖pF − c2, for X ∈ M3×3, for

real constants c1 > 0, c2,

W0.4) there exists C > 0 such that W 0(X) ≤ C(1 + ‖X‖pF ), for all X ∈M3×3.

Again, for W 0 we didn’t assume that it is quasiconvex. It will not cause us problems

in our work due to reasons explained in the Remark 3.1.1. If QW 0 is its quasiconvex

envelope, then

Γ−
(
W0(ψ)

)
=

∫
Ω0

QW 0(∇ψ).
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4.2. THE MAIN RESULT

In this section we are going to determine the Γ–limit of families (K3d,α
h )h>0 for dif-

ferent values of α > −1.

We again use the tilde notation and isomorphisms

{φ ∈ Lq(Ω1;R3) : ∂3φ = 0} ≡ {φ̃ ∈ Lq(ω;R3)}, (4.2.1)

and

{φ ∈ W 1,q(Ω1;R3) : ∂3φ = 0} ≡ {φ̃ ∈ W 1,q(ω;R3)}. (4.2.2)

Theorem 4.2.1. Let the family of functionals (K3d,α
h )h>0 be as defined in (4.1.4). Let us

assume that conditions W1.1)–W1.3) and W0.1)–W0.4) are satisfied.

a) Let α ∈ 〈−1, 0〉. Let additionally W 1
〈−1,0〉 satisfes the condition W2.1). Then the

Γ–limit of the family of functionals (K
3d,〈−1,0〉
h )h>0 when h → 0 in the strong

Lp(Ω0;R3)× Lq(Ω1;R3) topology is

K
3d,〈−1,0〉
0 (ψ, φ̃) =


∫

Ω0

QW 0(∇ψ)dx−
∫
ω

f · φ̃dx′ (ψ, φ̃) ∈ A3d,〈−1,0〉
0 ,

+∞ otherwise,

(4.2.3)

where

A3d,〈−1,0〉
0 = {(ψ, φ̃) ∈ W 1,p(Ω0;R3)× Lq(ω;R3) : ψ|x3=0 = φ̃, ψ|x3=−1 = id}.

(4.2.4)

b) Let α = 0. Let additionally W 1
0 satisfies either the condition W2.1), or conditions

W2.2) and W2.3). Then the Γ–limit of the family of functionals (K3d,0
h )h>0 when

h→ 0 in the strong Lp(Ω0;R3)× Lq(Ω1;R3) topology is

K3d,0
0 (ψ, φ̃) =



∫
Ω0

QW 0(∇ψ)dx

+

∫
ω

QW̃ 1
0 (∇′φ̃)dx−

∫
ω

f · φ̃dx′
(ψ, φ̃) ∈ A3d,0

0 ,

+∞ otherwise,
(4.2.5)
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where

A3d,0
0 = {(ψ, φ̃) ∈ W 1,p(Ω0;R3)×W 1,q(ω;R3) : ψ|x3=0 = φ̃, ψ|x3=−1 = id}

(4.2.6)

and W̃ 1
0 (X) is from (3.2.5).

c) Let α ∈ 〈0, 5/3〉, and let q = 2. Let additionally W 1
〈0,5/3〉 satisfies conditions W2.4)

and W2.5). Then the Γ–limit of the family of functionals (K
3d,〈0,5/3〉
h )h>0 when

h→ 0 in the strong Lp(Ω0;R3)× Lq(Ω1;R3) topology is

K
3d,〈0,5/3〉
0 (ψ, φ̃) =


∫

Ω0

QW 0(∇ψ)dx−
∫
ω

f · φ̃dx′ (ψ, φ̃) ∈ A3d,〈0,5/3〉
0 ,

+∞ otherwise,

(4.2.7)

where

A3d,〈0,5/3〉
0 = {(ψ, φ̃) ∈ W 1,p(Ω0;R3)×W 1,∞(ω;R3) :

ψ|x3=0 = φ̃, ψ|x3=−1 = id, ∇′φ̃T∇′φ̃ ≤ I a.e.}. (4.2.8)

d) Let α = 2, and let q = 2. Let additionally W 1
2 satisfies conditions W2.4) and

W2.6). Then the Γ–limit of the family of functionals (K3d,2
h )h>0 when h→ 0 in the

strong Lp(Ω0;R3)× Lq(Ω1;R3) topology is

K3d,2
0 (ψ, φ̃) =



∫
Ω0

QW 0(∇ψ)dx

+
1

24

∫
ω

Q2(b(φ̃))dx′ −
∫
ω

f · φ̃dx′
(ψ, φ̃) ∈ A3d,2

0 ,

+∞ otherwise,
(4.2.9)

where

A3d,2
0 = {(ψ, φ̃) ∈ W 1,p(Ω0;R3)×W 2,2(ω;R3) :

ψ|x3=0 = φ̃, ψ|x3=−1 = id, ∇φ̃T∇φ̃ = I} (4.2.10)

where b(φ̃) = (bβ1,β2(φ̃))β1,β2 is the curvature tensor andQ2 quadratic form defined

in (3.2.10).
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e) Let α ∈ 〈2,+∞〉, and let q = 2. Let additionally W 1
〈2,+∞〉 satisfies conditions

W2.4) and W2.6). Then the Γ–limit of the family of functionals (K
3d,〈2,+∞〉
h )h>0

when h→ 0 in the strong Lp(Ω0;R3)× Lq(Ω1;R3) topology is

K
3d,〈2,+∞〉
0 (ψ, φ̃) =


∫

Ω0

QW 0(∇ψ)dx−
∫
ω

f · φ̃dx′ (ψ, φ̃) ∈ A3d,〈2,+∞〉
0 ,

+∞ otherwise,

(4.2.11)

where

A3d,〈2,+∞〉
0 = {(ψ, φ̃) ∈ W 1,p(Ω0;R3)× C(ω;R3) :

ψ|x3=0 = φ̃, ψ|x3=−1 = id,

∃R ∈ SO(3),d ∈ R3 s.t. φ̃(x′) = R(x′, 0) + d}.

(4.2.12)
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4.3. TECHNICAL RESULTS

In this section we prove technical results needed for the proof of Theorem 4.2.1. The

main part of the proof will be done by Proposition 4.3.1. Its key part of the proof is based

on Lemma 4.3.4, which is already proved in [8] as a part of Lemma 2.

For purposes of the next proposition, let us define spaces

Lq×SO(3) := Lq(Ω1;R3)× L2(ω; SO(3))

Lp×q×SO(3) := Lp(Ω0;R3)× Lq×SO(3).
(4.3.1)

Proposition 4.3.1. Let 1 < p ≤ q < ∞. Let there be a family of functionals (Jh)h>0,

Jh : Lq×SO(3) → R with the set of admissible functions B. Let its Γ–limit (in the strong

Lq×SO(3) topology) be the functional J0 with the set of admissible functions B0.

Let Jh satisfy following inequality:

‖φ‖qLq(Ω1;R3) + Jh(φ, S̃) ≥ cJ‖φ‖qLp(Γ0;R3) − CJ (4.3.2)

with cJ > 0, CJ ∈ R independent of (φ, S̃) ∈ B and h > 0.

Let there be a function g : M3×3 → R satisfying the growth condition 0 ≤ g(X) ≤
C(1 + ‖X‖pF ), X ∈M3×3. Let g defines a functional G : Lp(Ω0;R3)→ R by

G(ψ) =


∫

Ω0

g(∇ψ)dx ψ ∈ W 1,p(Ω0;R3), ψ|x3=−1 = id,

+∞ otherwise.
(4.3.3)

Additionally, let G satisfies the following inequality:

‖ψ‖pLp(Ω0;R3) +G(ψ) ≥ cG
�
‖ψ‖pW 1,p(Ω0;R3) + ‖ψ‖pLp(Γ−1;R3) + ‖ψ‖pLp(Γ0;R3)

�
− CG

(4.3.4)

with cG > 0, CG ∈ R independent of ψ ∈ W 1,p(Ω0;R3). Let G0(ψ) := Γ−G(ψ).

Let us define a family of functionals (Kh)h>0, Kh : Lp×q×SO(3) → R,

Kh(ψ,φ, S̃) =

G(ψ) + Jh(φ, S̃) (ψ,φ, S̃) ∈ A,

+∞ otherwise,
(4.3.5)

where

A := {(ψ,φ, S̃) ∈ Lp×q×SO(3) :

ψ ∈ W 1,p(Ω0;R3), ψ|x3=−1 = id, ψ|x3=0 = φ|x3=0, (φ, S̃) ∈ B}. (4.3.6)
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Let us define K0 : Lp×q×SO(3) → R by

K0(ψ,φ, S̃) =

G0(ψ) + J0(φ, S̃) (ψ,φ, S̃) ∈ A0,

+∞ otherwise,
(4.3.7)

where

A0 := {(ψ,φ, S̃) ∈ Lp×q×SO(3) :

ψ ∈ W 1,p(Ω0;R3), ψ|x3=−1 = id, ψ|x3=0 = φ|x3=0, (φ, S̃) ∈ B0}. (4.3.8)

Then we have the following:

a) The functional K0 satisfies the ”lim inf” part of the definition of the Γ–limit for

(Kh)h>0: for all (ψ,φ, S̃) ∈ Lp×q×SO(3) and for all (ψh,φh, S̃h)h>0 ⊂ Lp×q×SO(3)

converging strongly to (ψ,φ, S̃) in Lp×q×SO(3) we have

lim inf
h→0

Kh(ψh,φh, S̃h) ≥ K0(ψ,φ, S̃). (4.3.9)

b) Additionally, let the following condition hold: for all (φ, S̃) ∈ B0 there exists

(φh, S̃h)h>0 ⊂ B converging strongly to (φ, S̃) in Lq×SO(3) such that Jh(φh, S̃) →
J0(φ, S̃) and

‖φh‖W 1,q(Γ0;R3) < C. (4.3.10)

ThenK0 satisfies the ”lim sup” part of the definition of the Γ–limit for (Kh)h>0: for

all (ψ,φ, S̃) ∈ Lp×q×SO(3) there exists (ψh,φh, S̃h)h>0 ⊂ Lp×q×SO(3) converging

strongly to (ψ,φ, S̃) in Lp×q×SO(3) such that

lim sup
h→0

Kh(ψh,φh, S̃h) ≤ K0(ψ,φ, S̃). (4.3.11)

Specially this implies that K0(ψ,φ, S̃) is the Γ–limit of Kh(ψ,φ, S̃), as h→ 0.

Remark 4.3.2. One can note that in the second part of the proposition (the ”lim sup”

part) we always know that for all (φ, S̃) ∈ B0 there exists (φh, S̃h)h>0 ⊂ B that converges

strongly to (φ, S̃) in Lp×q×SO(3) and satisfies Jh(φh, S̃h)→ J0(φ, S̃) (from the definition

of the Γ–limit of the family (Jh)h>0). However, the condition (4.3.10) is additional. We

will need to check it separately each time we use the second part of the proposition.
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Remark 4.3.3. Note that Proposition 4.3.1 can be applied even in following cases:

1◦ Jh is independent of S̃, and/or

2◦ Jh is defined for φ̃ ∈ Lq(ω;R3) – by including ∂3φ = 0 in B and using the isomor-

phism

{φ ∈ Lq(Ω1;R3) : ∂3φ = 0} ≡ {φ̃ ∈ Lq(ω;R3)}.

Thus we will be able to use this proposition to determine the Γ–limit of family of func-

tionals (K3d,α
h )h>0 from (4.1.4) (by taking into account 1◦). The part 2◦ will be used in

following chapters.

Proof. Let us prove the first claim. Let us take any (ψ,φ, S̃) ∈ Lp×q×SO(3) and any

(ψh,φh, S̃h)h>0 ⊂ Lp×q×SO(3) converging strongly to (ψ,φ, S̃) in Lp×q×SO(3). Without

loss of generality, we can take subsequence of (ψh,φh, S̃h)h>0 (without changing its

notation) such that

lim inf
h→0

Kh(ψh,φh, S̃h) = lim
h→0

Kh(ψh,φh, S̃h) =: L.

If L = +∞, we have nothing to prove. Thus in the sequel we assume L < +∞ and

consequently there is a constant C ∈ R such that Kh(ψh,φh, S̃h) < C for all h > 0

small enough. Therefore (ψh,φh, S̃h) ∈ A. There are now three things we are going to

prove:

(i) the triple (ψ,φ, S̃) satisfies

ψ ∈ W 1,p(Ω0;R3), ψ|x3=−1 = id, ψ|x3=0 = φ|x3=0; (4.3.12)

(ii) the admissible (φ, S̃) are necessarily from B0;

(iii) the desired inequality (4.3.9) holds.

Due to strong convergence of the sequence (ψh,φh, S̃h)h>0 we know that ‖ψh‖Lp(Ω0;R3)

and ‖φh‖Lq(Ω1;R3) are uniformly bounded. According to (4.3.2) and (4.3.4) we have that

‖ψh‖W 1,p(Ω0;R3), ‖ψh‖Lp(Γ−1;R3), ‖ψh‖Lp(Γ0;R3) and ‖φh‖Lq(Γ0;R3) are uniformly bounded.

The first consequence is that there is a subsequence of (ψh)h>0 that converges weakly in

W 1,p(Ω0;R3), so by the uniqueness of limits we have that ψ ∈ W 1,p(Ω0;R3). Secondly,
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there are weakly convergent subsequences (in Lp(Γ−1;R3), Lp(Γ0;R3) and Lq(Γ0;R3))

of sequences (ψh|x3=−1)h>0, (ψh|x3=0)h>0 and (φh|x3=0)h>0. Since for all h > 0 we

have (ψh,φh, S̃h) ∈ A, we can apply weak convergences in equations ψh|x3=−1 = id

and ψh|x3=0 = φh|x3=0 to finally obtain (4.3.12), i.e. the part (i).

Since g is nonnegative, we have that Kh(ψh,φh, S̃h) ≥ Jh(φh, S̃h), so specially

+∞ > L = lim
h→0

Kh(ψh,φh, S̃h) = lim inf
h→0

Kh(ψh,φh, S̃h)

≥ lim inf
h→0

Jh(φh, S̃h) ≥ J0(φ, S̃).

Thus J0(φ, S̃) < +∞, and consequently (φ, S̃) ∈ B0, i.e. we have the part (ii). Finally,

the part (iii) is a consequence of superadditivity of lim inf.

Let us now prove the second part of the proposition. Let us take any (ψ,φ, S̃) ∈
A0. Let (φh, S̃h)h>0 ⊂ B be a family converging strongly to (φ, S̃) in Lq×SO(3) such

that Jh(φh, S̃) → J0(φ, S̃) and with condition (4.3.10) satisfied. Due to definition of

quasiconvex envelope of G, there exists (ψh)h>0 ⊂ W 1,p(Ω0;R3) such that ψh → ψ

in Lp(Ω0;R3) and additionally G(ψh) → G0(ψ). Due to (4.3.4), ‖ψh‖W 1,p(Ω0;R3) is

uniformly bounded. Due to (4.3.10) ‖φh‖W 1,q(Γ0;R3) is uniformly bounded as well.

Let us apply Lemma 4.3.4 for (ψh)h>0 and (φh|x3=0)h>0. We obtain (ψh)h>0 ⊂
W 1,p(Ω0;R3) such that functions ψh are small perturbations of ψh (in a sense that we

still have properties ψh → ψ in Lp(Ω0;R3) and lim suph→0G(ψh) ≤ G0(ψ)), but with

the property ψh|x3=0 = φh|x3=0.

Since ψh|x3=0 = φh for all h > 0 and Jh(φh, S̃h) → J0(φ, S̃), we finally obtain that

for sequence (ψh,φh, S̃h)h>0 we have desired property: it strongly converges to (ψ,φ, S̃)

and satisfies

lim sup
h→0

�
G(ψh) + Jh(φh, S̃)

�
≤ G0(ψ) + J0(φ, S̃). (4.3.13)

�

Lemma 4.3.4 ([8]). Let 1 < p ≤ q <∞. Let there be a functional G : Lp(Ω0;R3)→ R

defined as

G(ψ) =


∫

Ω0

g(∇ψ)dx ψ ∈ W 1,p(Ω0;R3), ψ|x3=−1 = id,

+∞ otherwise,
(4.3.14)

76



Nonlinear 3d–thin 3d model Technical results

with g : M3×3 → R satisfying the growth condition 0 ≤ g(X) ≤ C(1 + ‖X‖qF ) for all

X ∈ M3×3. Let G0(ψ) := Γ − G(ψ). Let (ψ, φ̃) ∈ W 1,p(Ω0;R3) ×W 1,q(ω;R3) with

ψ|x3=0 = φ̃. Let there be (ψn)n≥1 ⊂ W 1,p(Ω0;R3) and (φ̃n)n≥1 ⊂ W 1,q(ω;R3) such

that

ψn → ψ in Lp(Ω0;R3), φ̃n → φ̃ in Lq(ω;R3), lim
n→∞

G(ψn) = G0(ψ) (4.3.15)

and such that (‖∇ψn‖Lp(Ω0;R3×3))n≥1 and (‖∇′φ̃n‖Lq(ω;R3×2))n≥1 are uniformly bounded.

Then there exists (ψn)n≥1 ⊂ W 1,p(Ω0;R3) (up to a subsequence) such that

ψn → ψ in Lp(Ω0;R3),ψn|x3=0 = φ̃n, and lim sup
n→+∞

G(ψn) ≤ G0(ψ). (4.3.16)

Proof. This claim is originally a part of Lemma 2 in [8]. For the completness of the thesis,

we hereby present its proof.

Note that since p ≤ q we have that Lq(ω;R3) ⊂ Lp(ω;R3), so all assumptions regard-

ing Lq spaces for functions (φ̃n)n≥1 hold for Lp spaces as well.

The idea of the proof is to change the behaviour of the functions ψn near Γ0 such that

the trace becomes equal to the functions φ̃n, keeping the value of G(ψn) controlled.

From the assumptions, we see that φ̃, φ̃n ∈ W 1,p(ω;R3). This is why we can identify

those functions with functions defined on Ω0 (φn(x′, x3) := φ̃n(x′), φ(x′, x3) := φ̃(x′)).

Those functions are from W 1,p(Ω0;R3), moreover, they are again uniformly bounded by

the same constant since ∂3φ = ∂3φn = 0.

Since (‖∇′φ̃n‖Lp(ω;R3×2))n≥1 is uniformly bounded and since ∂3ψ ∈ Lp(Ω0;R3), for

every m ∈ N there exists η > 0 such that for Ση := ω × 〈−η, 0]∫
Ση

(1 + ‖∇φn‖pF ) ≤ 1

m
,∫

Ση

‖∂3ψ‖p ≤
1

mp
.

(4.3.17)

We use slicing method of De Giorgi. For i = 1, . . . ,m we define Σi := ω×〈−i η
m
, 0] and

decreasing sequence Ui := Ω0 \ Σi of subsets of Ω0.

Let (ϕi)i=1,...,m−1 be a sequence of functions in C1(R3;R) satisfying ϕi(R3) ∈ [0, 1],

ϕi = 1 on Ui+1, ϕi = 0 on Σi, ‖∇ϕ‖Lp(Ω0;R3) ≤ C1
m
η

. We now define ψn,i := ϕi(ψn −
φn) + φn on Ω0. Since ψn,i near ω behaves as φn, we have ψn,i|x3=0 = φ̃n. Let us see
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the error made: for each i = 0, . . . ,m− 1 we have

G(ψn,i) =

∫
Ω0

g(∇ψn,i)dx

=

∫
Σi

g(∇ψn,i)dx+

∫
Σi+1\Σi

g(∇ψn,i)dx+

∫
Ui+1

g(∇ψn,i)dx

≤
∫

Ση

g(∇φn)dx+

∫
Σi+1\Σi

g(∇ψn,i)dx+

∫
Ω0

g(∇ψn)dx.

(4.3.18)

We now bound terms on the right hand side. In the first term, we use growth condition on

g and (4.3.17) to obtain∫
Ση

g(∇φn)dx ≤ C

∫
Ση

(1 + ‖∇φn‖pF )dx ≤ C

m
. (4.3.19)

For the second term on the right hand side of (4.3.18) we will again use the growth con-

dition. Note that since ψn,i = (1− ϕi)(φn −ψn) +ψn we have

‖∇ψn,i‖F ≤ C1
m

η
‖φn −ψn‖+ ‖∇φn −∇ψn‖F + ‖∇ψn‖F

≤ C1
m

η
‖φn −ψn‖+ 2‖∇ψn‖F + ‖∇φn‖F . (4.3.20)

Applying obtained to (4.3.18) we get

G(ψn,i) ≤ C ′
( 1

m
+

∫
Σi+1\Σi

�
m

η

�p
‖φn −ψn‖p + ‖∇ψn‖pF

+ ‖∇φn‖pFdx
)

+

∫
Ω0

g(∇ψn)dx,

(4.3.21)

for i = 0, . . . ,m. By averaging these m inequalities, we obtain

1

m

m−1∑
i=0

G(ψn,i) ≤ C ′
( 1

m
+

1

m

∫
Ση

�
m

η

�p
‖φn −ψn‖p + ‖∇ψn‖pF + ‖∇φn‖pFdx

)
+

∫
Ω0

g(∇ψn)dx. (4.3.22)

Since ‖∇ψn‖Lp(Ω0;R3×3) and ‖∇φn‖Lp(Ω0;R3×3) = ‖∇′φ̃n‖Lp(ω;R3×2) are uniformly boun-

ded from above, we can write

1

m

m−1∑
i=0

G(ψn,i) ≤ C ′′
�

1

m
+

1

m

∫
Ση

�
m

η

�p
‖φn −ψn‖pdx

�
+

∫
Ω0

g(∇ψn)dx.

(4.3.23)

Let i(n,m) be the index such that

G(ψn,i(n,m)) = min
i=0,...,m−1

G(ψn,i). (4.3.24)
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We know that this term is less or equal to the average over all i, so

G(ψn,i(n,m)) ≤ C ′′
�

1

m
+

1

m

∫
Ση

�
m

η

�p
‖φn −ψn‖pdx

�
+

∫
Ω0

g(∇ψn)dx. (4.3.25)

Taking the lim sup with respect to n ∈ N on the both sides, we obtain

lim sup
n→∞

G(ψn,i(n,m)) ≤ C ′′
�

1

m
+

1

m

∫
Ση

�
m

η

�p
‖φ−ψ‖pdx

�
+G0(ψ). (4.3.26)

Using Lemma 4.3.5 for u = φ−ψ, ∂3φ = 0 and (4.3.17), we obtain∫
Ση

‖φ−ψ‖pdx ≤ Cηp
∫

Ση

‖∂3ψ‖pdx ≤ CP

( η
m

)p
. (4.3.27)

Thus we obtain

lim sup
n→∞

G(ψn,i(n,m)) ≤
C ′′′

m
+G0(ψ). (4.3.28)

By taking lim sup with respect to m ∈ N and by the diagonalization argument, we con-

clude that there exists mapping n→ m(n) such that

lim sup
n→∞

G(ψn,i(n,m(n))) ≤ G0(ψ). (4.3.29)

We define ψn := ψn,i(n,m(n)). Let us prove that ψn → ψ strongly in Lp(Ω0;R3):∫
Ω0

‖ψn −ψ‖pdx =

∫
Ω0

∥∥(1− ϕi(n,m(n)))(φn −ψn) + (ψn −ψ)
∥∥p dx

≤ C

�∫
Ση(n)

‖φn −ψn‖pdx+

∫
Ω0

‖ψn −ψ‖pdx
�

≤ C

�∫
Ση(n)

‖φn − φ‖pdx+

∫
Ση(n)

‖φ−ψ‖pdx+ 2

∫
Ω0

‖ψ −ψn‖pdx
�
.

(4.3.30)

For the second term on the right hand side we use (4.3.27), in other two terms the strong

convergence of (φn)n≥1 and (ψn)n≥1, and thus the strong convergence of (ψn)n≥1 is

proved. �

Lemma 4.3.5. Let there be a bounded Lipschitz set ω. Let for any η define the set

Ση := ω × [−η, 0]. There exists a constant CP > 0 such that the Poincaré–type estimate

‖u‖pLp(Ση ;R3) ≤ CPη
p‖∂3u‖pLp(Ση ;R3) (4.3.31)

holds for any η > 0 and any u ∈ W 1,p(Ση;R3) with u|x3=0 = 0.
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Proof. Let us now take any nonnegative ξ ∈ W 1,1(Ση;R). For a.e. x = (x′, x3) ∈ Ση

we have

ξ(x′, x3) ≤
∣∣∣∣∫ 0

x3

∂3ξ(x
′, y3)dy3

∣∣∣∣ ≤ ∫ 0

−η
|∂3ξ(x

′, y3)|dy3. (4.3.32)

After integrating over x′ ∈ ω and then x3 ∈ [−η, 0] we obtain∫
Ση

ξdx′ ≤ η

∫
Ση

|∂3ξ|dx. (4.3.33)

We will use this inequality for ξ(x) = |u(x)|p:

|∂3ξ(x)| ≤ p|u|p−1|∂3u|. (4.3.34)

We use Hölder inequality to obtain

‖u‖pLp(Ση ;R3) ≤ pη

∫
Ση

|u|p−1|∂3u|dx ≤ pη‖u‖p−1
Lp(Ση ;R3)‖∂3u‖Lp(Ση ;R3). (4.3.35)

We obtain the inequality (4.3.31) after dividing both sides of the last inequality with

‖u‖p−1
Lp(Ση ;R3) and lifting them to the power of p. �

We finish with two more technical results.

Lemma 4.3.6. There are constants c > 0, C ∈ R such that the inequality

‖ψ‖pLp(Ω0;R3) +

∫
Ω0

W 0(∇ψ)dx

≥ c
�
‖ψ‖pW 1,p(Ω0;R3) + ‖ψ‖pLp(Γ−1;R3) + ‖ψ‖pLp(Γ0;R3)

�
− C (4.3.36)

holds for all ψ ∈ W 1,p(Ω0;R3).

Proof. From coercivity of W 0 (condition W0.3)), for c′1 = min{1, c1} we obtain

‖ψ‖pLp(Ω0;R3) +

∫
Ω0

W 0(∇ψ)dx ≥ c′1‖ψ‖pW 1,p(Ω0;R3) − c2. (4.3.37)

Two other terms on the right hand side of (4.3.36) we obtain by applying the trace theorem

on the term ‖ψ‖W 1,p(Ω0;R3), with editing constants c′1, c2. �

Lemma 4.3.7. Let n ≥ 1 and s ∈ [0, 1]. Let (φh)h>0 be uniformly bounded family in

W 1,2(Ω1;R3), with

φh =
n∑
k=0

hk(x3 − s)kφ̃
k

h, (φ̃
k

h)h>0 ⊂ W 1,2(ω;R3), k ∈ {0, . . . , n}. (4.3.38)

Then (φh|x3=0)h>0 is uniformly bounded in W 1,2(ω;R3).
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Proof. Without loss of generality, let s = 0. If this is not the case, we will perform the

proof for functions (ψ̃
k

h)h>0 ⊂ W 1,2(ω;R3) for which

n∑
k=0

hk(x3 − s)kφ̃
k

h =
n∑
k=0

hkxk3ψ̃
k

h.

Note that now φh|x3=0 = φ̃
0

h, for all h > 0.

For β ∈ {1, 2}, we calculate

C ≥ ‖∂βφh‖2
L2(Ω1;R3) =

∫
ω

∫ 1

0

(
n∑
k=0

hkxk3∂βφ̃
k

h

)2

dx

=

∫
ω

∫ 1

0

n∑
k1=0

n∑
k2=0

xk1+k2
3 hk1+k2∂βφ̃

k1

h · ∂βφ̃
k2

h dx

=

∫
ω

n∑
k1=0

n∑
k2=0

1

k1 + k2 + 1
hk1+k2∂βφ̃

k1

h · ∂βφ̃
k2

h dx
′

≥ λmin (Hn+1)

∫
ω

n∑
k=0

∥∥∥hk∂βφ̃kh∥∥∥2

dx′

≥ λmin (Hn+1)

∫
ω

∥∥∥∂βφ̃0

h

∥∥∥2

dx′

= λmin(Hn+1)‖∂βφ̃
0

h‖2
L2(ω;R3),

(4.3.39)

where λmin (HN) > 0 is the smallest eigenvalue of the N × N Hilbert matrix (the in-

equality is the consequence of the fact that the Hilbert matrix is positive definite). For

‖φ̃h‖2
L2(ω;R3) we perform analogous calculation. �
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4.4. PROOF OF THEOREM 4.2.1

Proof of Theorem 4.2.1. We prove the theorem by using Proposition 4.3.1 for each part

of the theorem separately.

Let us take any α ∈ 〈−1, 5/3〉 ∪ [2,+∞〉. Let us define family of functionals (Jh)h>0

by Jh(φ) = J3d,α
h (φ) (defined in (3.1.2)), for all φ ∈ Lq(Ω1;R3) (in the view of Re-

mark 4.3.3, each functional Jh is independent of matrices S̃ ∈ L2(ω; SO(3))), and its set

of admissible functions is W 1,p(Ω1;R3). According to Theorem 3.2.1, the Γ–limit of the

family (Jh)h>0 is J0 = J3d,α
0 , depending on the value of α. Due to Lemma 3.3.1, family

(Jh)h>0 satisfies the condition (4.3.2).

Let us define g(X) = W 0(X), for all X ∈ M3×3. Then we have G(ψ) = W0(ψ),

whereW0 is defined in (4.1.3), and

G0(ψ) = Γ−W0(ψ) =


∫

Ω0

QW 0(∇ψ)dx ψ ∈ W 1,p(Ω0;R3), ψ|x3=−1 = id,

+∞ otherwise.

(4.4.1)

Due to assumptions W0.2) and W0.4) g satisfies the nonnegativity conditions and the

growth condition. Due to Lemma 4.3.6 G satisfies the condition (4.3.4).

Since for all α and h > 0 the functional K3d,α
h from (4.1.4) can be written as

K3d,α
h (ψ, φ̃) =

W
0(ψ) + J3d,α

h (φ) ψ|x3=0 = φ|x3=0, ψ|x3=−1 = id,

+∞ otherwise,

which is of the form (4.3.5), we conclude that we have Kh = K3d,α
h for all h > 0 and

A = A3d,α. Also, functionals K3d,α
0 from all parts of Theorem 4.2.1 are given by

K3d,α
0 (ψ, φ̃) =

Γ−W0(ψ) + J3d,α
0 (φ) ψ|x3=0 = φ|x3=0, ψ|x3=−1 = 0,φ ∈ B3d,α

0 ,

+∞ otherwise,

(with J3d,α
0 and B3d,α

0 are from particular parts of Theorem 3.2.1). This is of the form as

in (4.3.7), so we conclude that K0 = K3d,α
0 .

Since all assumptions of Proposition 4.3.1.a) on (Kh)h>0 are fulfilled, we can ap-

ply it and conclude that for each for all (ψ,φ) ∈ Lp(Ω0;R3) × Lq(Ω1;R3) and for all
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(ψh,φh)h>0 ⊂ Lp(Ω0;R3)× Lq(Ω1;R3) converging strongly to (ψ,φ) in Lp(Ω0;R3)×
Lq(Ω1;R3) we have

lim inf
h→0

Kh(ψh,φh) ≥ K0(ψ,φ). (4.4.2)

By taking into account that Kh = K3d,α
h and K0 = K3d,α

0 , we conclude that each of five

parts of Theorem 4.2.1 the particular functional K3d,α
0 satisfies the ”lim inf” part of the

definition of the Γ–convergence for the family (K3d,α
h )h>0.

For the ”lim sup” part we now have to check if for arbitrary φ ∈ B3d,α
0 there exists

(φh)h>0 ⊂ B3d,α converging strongly to φ in Lq(Ω1;R3) such that J3d,α
h (φh)→ J3d,α

0 (φ)

and that the additional condition (4.3.10) is satisfied. For that we are going to use Re-

mark 3.3.3, and then apply the part b) of Proposition 4.3.1.

Since from for α ∈ 〈−1, 0〉 admissible functions φ̃ are in Lq(ω;R3), there is no

guarantee that a strongly convergent sequence (φn)n≥1 ⊂ W 1,q(Ω1;R3) (converging to φ

in Lq(Ω1;R3)) satisfies the condition (4.3.10). Thus the part a) of Theorem 4.2.1 we will

have to prove in a different way, which will be done at the end of this proof.

For α = 0, from Remark 3.3.3.b) we see that the family (φh)h>0 ⊂ W 1,q(Ω1;R3)

in the ”lim sup” part of the proof is of the form φh = φ̃
0

+ h(x3 − 1/2)φ̃
1

with some

φ̃
0
, φ̃

1 ∈ W 1,q(ω;R3), h > 0. For that it holds

‖φh‖qW 1,q(Γ0;R3) ≤ q

�
‖φ̃0‖qW 1,q(ω;R3) +

1

2q
‖φ̃1‖qW 1,q(ω;R3)

�
for all h ∈ 〈0, 1], thus the condition (4.3.10) holds, so the b) part of Proposition 4.3.1

holds, and consequently Theorem 4.2.1.b) is proved.

For α ∈ 〈2,+∞〉 from Remark 3.3.3.e) we see that the family of functions (φh)h>0 ⊂
W 1,q(Ω1;R3) in the ”lim sup” part of the proof is of the form φh = φ̃

0
+ hx3hφ̃

1
with

some φ̃
0
, φ̃

1 ∈ W 1,q(ω;R3), h > 0. Then, similarly as for proof for Theorem 4.2.1.b),

proof of Theorem 4.2.1.e) follows.

For cases α ∈ 〈0, 5/3〉 and α = 2 from Remark 3.3.3.c) and Remark 3.3.3.d), we see

that the ”lim sup” part of the proof for arbitrary admissible φ̃ ∈ L2(ω;R3) is obtained by

families (φh)h>0 ⊂ W 1,2(Ω1;R3) of the form

φh =
n∑
k=0

hk(x3 − s)kφ̃
k

h, k ∈ {0, . . . , n}. (4.4.3)

for particular n ≥ 1 and s ∈ [0, 1]. Since this family (φh)h>0 converges to φ in

L2(Ω1;R3), it is uniformly bounded in the same topology. By Lemma 3.3.1 (φh)h>0
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is uniformly bounded in W 1,2(Ω0;R3), so by Lemma 4.3.7 (φh|x3=0)h>0 is uniformly

bounded in W 1,2(ω;R3). Thus, condition (4.3.10) is satisfied as well, and this finishes the

proof of Theorem 4.2.1.c) and Theorem 4.2.1.d).

The only thing left to prove is Theorem 4.2.1.a), more precisely, the ”lim sup” part of

the definition of the Γ–limit for the family (K
3d,〈−1,0〉
h )h>0. Let us take arbitrary (ψ, φ̃) ∈

A3d,〈−1,0〉
0 . We will prove that for all ε > 0 there exists h∗ > 0 and (ψ∗, φ̃

∗
) ∈ A3d,〈−1,0〉

such that

‖ψ∗ −ψ‖Lp(Ω0;R3) ≤ ε, ‖φ̃∗ − φ̃‖Lq(ω;R3) ≤ ε

and K3d,〈−1,0〉
h∗ (ψ∗,φ∗)−K3d,〈−1,0〉

0 (ψ, φ̃) ≤ ε. (4.4.4)

Note that without loss of generality assume that f = 0, since the source term is linear

and does not affect the convergence. Now we have that J3d,〈−1,0〉
0 (φ̃) = 0 for all φ̃ ∈

Lq(ω;R3).

Let us take arbitrary ε > 0. Firstly, let (ψm)m≥1 ⊂ C∞(ω;R3) with ψm|x3=−1 = id

be smooth W 1,p(Ω0;R3) approximations of ψ. Since W 0 satisfies the growth condition

W0.4) (and so does QW 0), due to the Lebesgue dominated convergence theorem (domi-

nated by x 7→ C(1 + ‖∇ψ(x)‖pF )) we get

Γ−W0(ψm) =

∫
Ω0

QW 0(∇ψm)dx→
∫

Ω0

QW 0(∇ψ)dx = Γ−W0(ψ). (4.4.5)

So there is m ∈ N and ψ∞ := ψm such that

‖ψ∞ −ψ‖W 1,p(Ω0;R3) <
ε

2
and

∣∣(Γ−W0(ψ∞)
)
−
(
Γ−W0(ψ)

)∣∣ < ε

3
. (4.4.6)

Due to the trace theorem, we additionally demand that∥∥∥φ̃∞ − φ̃∥∥∥
Lq(ω;R3)

= ‖ψ∞ −ψ‖Lq(Γ0;R3) < ε, (4.4.7)

where φ̃∞ := ψ∞|x3=0.

Let us define a constant sequence φ̃n = φ̃∞. Due to Remark 3.3.3.a), for this se-

quence we have J3d,〈−1,0〉
1/n (φn) → J

3d,〈−1,0〉
0 (φ̃∞) = 0. Due to the definition of weakly

lower semicontinuous envelope, there exists a sequence (ψn)n≥1 such that ψn ⇀ ψ∞ in

W 1,p(Ω0;R3) andW0(ψn)dx→ Γ−W0(ψ∞). Let us apply Lemma 4.3.4 for sequence
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ψn → ψ∞ and the constant sequence φ̃n → ψ∞|x3=0. We conclude that there exists

(ψn)n≥1 ⊂ W 1,p(Ω0;R3) such that

ψn → ψ∞ in Lp(Ω0;R3),ψn|x3=0 = φn|x3=0 and lim sup
n→+∞

W0(ψn) ≤ Γ−W0(ψ∞).

(4.4.8)

We can conclude that there is n ∈ N large enough such that:

‖ψn −ψ∞‖Lp(Ω0;R3) <
ε

2
(due to (4.4.8)),

‖φ̃n − φ̃∞‖Lq(ω;R3) = 0 (due to the definition of the sequence (φ̃n)n≥1),

J
3d,〈−1,0〉
1/n (φn) ≤ ε

3
(due to Remark 3.3.3.a) and J3d,〈−1,0〉

0 ≡ 0),

W0(ψn)−
(
Γ−W0(ψ∞)

)
<
ε

3
(due to (4.4.8)).

(4.4.9)

Together with (4.4.6) and (4.4.7), from triangle inequalities we conclude that h∗ = 1/n

and (ψ∗, φ̃
∗
) := (ψn, φ̃n) satisfy (4.4.4) and conclude the proof for Theorem 4.2.1.a),

and the proof for the whole Theorem 4.2.1. �
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5. A NAGHDI TYPE NONLINEAR SHELL

MODEL

5.1. INTRODUCTION

After the asymptotic analysis of the 3d–thin 3d model in various regimes and its inter-

action with an other (not thin) 3d body, now we proceed to proposition of adequate 3d–2d

model that has the same convergence properties as the model observed in the Chapter 4.

In order to do this, in this chapter we formulate a new nonlinear shell model that will be

applicable in all situations, irrespective of the geometry, boundary conditions or scaling

order of energy. This original model is already presented in [61], together with majority

of properties given in this chapter.

The model is formulated in terms of two unknown functions ψ,S, where ψ parame-

trizes the middle surface of the deformed shell and S is a function with values in rotations

that describe the rotation of the cross-section of the shell. The cross-sections are allowed

to shear with respect to the deformed middle surface, which is typical to the Naghdi type

models. This is continuation of the research in the linear case and the formulation of a

two-dimensional linear shell model of Naghdi type from [16,87] (presented in Chapter 1),

and the previous work for Koiter type models from [5,14,15,86] and flexural shell model

from [85].

The main features of the model we formulate are the following:

• The model is well defined for shells with undeformed geometry parametrized by

W 1,∞ function. Approach of adding (infinitesimal) rotations in the model as ad-
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ditional unknowns in order to extend the model for less regular geometries is well

known, see e.g. [5, 16]. Similar considerations in the case of nonlinear rods can be

found in [48].

• The model is frame indifferent.

• There are two terms in the elastic energy of the shell, one scaled by h and the other

by h3, where h is the thickness of the shell. This is also typical for the Koiter’s and

Naghdi’s type models, see [5, 25, 26, 50]

• In the energy of the model all types of shell deformations can be recognized: mem-

brane, shear, drill, flexural. Membrane, shear and flexural deformations are well

known in shell theories, but inclusion of drilling rotations is also not new in the

literature, see [12, 44, 45] for example. Thus the model can be considered as a

6-parameter shell model.

• Additional restriction of the unknowns that implies unshearability (cross–sections

remain perpendicular to the deformed middle surface) and no twist of the cross-

section (no drill) leads to a model that is a perturbation of the nonlinear Koiter

model from [21, 47].

• Further restriction that rotation S maps covariant vectors of undeformed shell to

covariant vectors of deformed shell leads to the classical nonlinear flexural shell

model from [40].

• Linearization of the strains in the proposed model leads to exactly the same strains

as in the linear Naghdi’s type model from [87], moreover if in addition we consider

the model for the St. Venant–Kirchhoff material linearization leads exactly to the

model from [87].

• Differential formulation of the model implies that it can be interpreted as a Cosserat

model with one director, see [6].

• When the total energy functional is scaled by h it Γ–converges in the appropriate

topology to the model with no flexural, no shear and no drill energy which cor-

87



A Naghdi type nonlinear shell model Introduction

responds to the nonlinear membrane shell model derived from three-dimensional

nonlinear elasticity in [51].

• When the total energy functional is scaled by h3 it Γ–converges in the appropri-

ate topology to the nonlinear flexural shell model derived from three–dimensional

nonlinear elasticity in [40].

• In the case when the middle surface of undeformed geometry is planar and when

the total energy functional is scaled by hα+1, α ∈ 〈0, 5/3〉 it Γ–converges in the ap-

propriate topology to the model with no energy contribution, with only conditions

on the set of admissible functions being short maps, which corresponds to the non-

linear constrained membrane plate model derived from three-dimensional nonlinear

elasticity in [30].

• When the total energy functional is scaled by hα+1, α ∈ 〈−1, 0〉, in Γ–limit we

obtain a model with no energy contribution and with no conditions in the set of

admissible functions, meaning that in that regime the shell is so flexible so that

appears as the shell is not there.

• When the total energy functional is scaled by hα+1, α ∈ 〈2,+∞〉, in Γ–limit we

obtain a model with no energy contribution and with conditions on the set of admis-

sible functions being only rigid transformations, meaning that in the limit the shell

is so stiff that only rotations and translations of the shell are possible.

The last five items present the main mathematical contribution of this chapter through the

Γ–convergence arguments.

In Section 5.2 we formulate the nonlinear shell model of Naghdi’s type and sets of

admissible deformations also for the Koiter’s type model and the flexural model. In Sec-

tion 5.3 we give relations between these sets of admissible deformations and analyse the

models when considered on these subsets of deformations. We also linearise the model

and obtain exactly the model from [87]. At the end of Section 5.3 we also derive the weak

and differential formulation of the original formulation and conclude that the model can

be recognized as the Cosserat model with one director for a particular constitutive law. In
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Section 5.4 we do the asymptotic analysis with respect to the thickness h of the shell, us-

ing Γ–convergence, of the proposed model in five regimes, obtaining in the limit models

similar to the ones presented in Chapter 3 (in the case of the planar undeformed geometry

of the middle surface) and appearing in the literature. This is presented in Theorem 5.4.1

and Theorem 5.4.2. An the end of this section several technical lemmas for matrices and

matrix functions are proved.
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A Naghdi type nonlinear shell model Definition of the model

5.2. DEFINITION OF THE MODEL

Let ω ⊂ R2 be an open bounded and simply connected set with a Lipschitz-continuous

boundary and let θ : ω → R3 be an injective mapping that belongs to W 1,∞(ω;R3). We

use notations from Chapter 1.2 for (a.e. linearly independent) vectors aβ(x′) = ∂βθ(x′),

2–surface S = θ(ω), vectors a3 and ai (i = 1, 2, 3), matrices Ac and Ac and the area

element along S equal to
√
adx′ (see Figure 5.1). In addition we assume that

ess inf
y∈ω

λmin(Ac(x′)), ess inf
y∈ω

λmin(Ac(x
′)) > 0. (5.2.1)

In models of Naghdi’s type (or in the case of the plane geometry Reissner-Mindlin’s

x3

x1

x2

θa3

a1
a2

ω

θ(ω)

h

Figure 5.1: Parametrization of the undeformed shell.

type) in addition to the parametrization of the deformed shell ψ : ω → R3 there are

independent functions that are used to describe shear of the cross–section of the shell

with respect to the middle surface. In our case we will describe behavior of the cross–

section using function S : ω → SO(3). The relation of ψ and S will not a priori be given

as a restriction, but will be in a physical way penalized in the energy of the model.

For the surface parametrized by ψ we associate the notation

aψ3 =
∂1ψ × ∂2ψ

‖∂1ψ × ∂2ψ‖
.

for the normal vector at the surface. Furthermore let γ0 ⊆ ∂ω be with positive capacity,
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the set where the shell will be clamped. Then we define three sets of admissible functions

AN = {(ψ,S) ∈ W 1,4(ω;R3)×W 1,2(ω; SO(3)) : ψ|γ0 = θ|γ0 ,S|γ0 = I,

det
[
Sa3 ∂1ψ ∂2ψ

]
≥ 0 a.e.},

AK = {(ψ,S) ∈ AN : Sa3 = aψ3 ,Sa1 · ∂2ψ = Sa2 · ∂1ψ},

AF = {(ψ,S) ∈ AN : Saβ = ∂βψ, β = 1, 2}.

(5.2.2)

The subscripts in these functions sets suggest that they correspond to the Naghdi, the

Koiter and the flexural shell type models (see Section 5.3). On AN we will consider the

functional of the following form

J(ψ,S) = h

∫
ω

wm (x′; S,∇′ψ)
√
adx′+

h3

12

∫
ω

qf (x
′; S,∇′S)

√
adx′−

∫
ω

f ·ψ√adx′.
(5.2.3)

Here h stands for the thickness of the shell, the force surface density is for simplicity

assumed to be independent of the deformation and given by f ∈ L4/3(ω;R3) (since 4/3

is Hölder conjugate of 4), whilewm and qf are membrane (and shear and drill) and flexural

energy density functions incorporating all essential energies present in shell deformations.

Notation ∇′S should usually be interpreted as block matrix function
[
∂1S ∂2S

]
.

The nonlinear shell model of the Naghdi type we propose in this chapter is formulated

as the following minimization problem:

find (ϕ,R) ∈ AN , J(ϕ,R) = inf
(ψ,S)∈AN

J(ψ,S). (5.2.4)

The same problem can be also considered for subsets AK and AF which will lead us to a

different type problems.

In order that the functional J captures membrane, shear, drill and flexural behavior of

shell we have to specify particular energy density functions wm and qf . We assume

wm(S,∇′ψ) = Wm

�(ST∇′ψ +∇′θ)T (ST∇′ψ −∇′θ)

(Sa3)T∇′ψ

� ,

qf (S,∇′S) = Qf

(
ST∇′S

)
(5.2.5)

for some continuous functions Qf : R3×2 → R and Wm : R3×2 → R. Note here that for

each β ∈ {1, 2} the matrix ST∂βS is skew symmetric and thus can be represented only
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by three functions. Thus the matrix S(x′)T∇′S(x′) we always consider as an element

of R3×2. Since in the energy there are two terms scaled differently with respect to the

thickness h of the shell this kind of a shell model is not obtained as a limit model of the

three–dimensional elasticity when the thickness tends to zero. However the choice of the

energy densities is motivated by the obtained two–dimensional models in [51], for the

membrane part, i.e. wm, and [40] for the flexural part qf . This will be clear in Section 5.4

when we consider asymptotic behavior of the functional (5.2.3) when h tends to zero.

Also note that the strains do not change under the rigid deformations since ST∇′ψ and

ST∇′S are independent of R ∈ SO(3) and a ∈ R3 when we replace S by RS and ψ by

Rψ + a, i.e. the model is frame indifferent.

Remark 5.2.1. The strain in Wm can be also written by

(ST∇′ψ +∇′θ)T (ST∇′ψ −∇′θ) = XTX + 2∇′θTX,

for X = ST∇′ψ − ∇′θ, so in general setting this matrix contains all infromation about

membrane, shear and drill deformation.

Assumptions on functions Qf , Wm:

N1) ∃Bf ∈ L(R3×2,R3×2) such that Qf (X) = BfX ·X, ∀X ∈ R3×2,

N2) ∃C > 0 Qf (X) ≤ C(1 + ‖X‖2
F ), Wm(Y) ≤ C(1 + ‖Y‖2

F ), X,Y ∈ R3×2,

N3) ∃c > 0 Qf (X) ≥ c‖X‖2
F , Wm(Y) ≥ c‖Y‖2

F , X,Y ∈ R3×2.

Assumptions on qf are, for instance, clear consequences of Bf being uniformly boun-

ded and uniformly positive definite linear operator.

Remark 5.2.2. To be more specific we propose particular energy density functions that

will lead us to the model for St. Venant–Kirchhoff material (STVK):

wSTV Km (S,∇′ψ) =
1

2
C2
m

�1
2
Ac(ST∇′ψ +∇′θ)T (ST∇′ψ −∇′θ)

(Sa3)T∇′ψ

� ,

qSTV Kf (S,∇′S) =
1

2
C2
f

�
1√
a


ST∂1Sa2 · a3 ST∂2Sa2 · a3

ST∂1Sa3 · a1 ST∂2Sa3 · a1

ST∂1Sa1 · a2 ST∂2Sa1 · a2


�

,

(5.2.6)
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where C2
m(X) = CmX · X, C2

f (X) = CfX · X are quadratic in strains and the elasticity

tensors Cm, Cf : M3×2 → M3×2 are given by (1.3.2) In this case we obtain a model with

linear constitutive equations with nonlinear strains.
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5.3. PROPERTIES OF THE MODEL

5.3.1. On sets of admissible functions

Besides of the smoothness assumptions and clamping boundary conditions at γ0, the

only constraint in AN is det
[
Sa3 ∂1ψ ∂2ψ

]
≥ 0 which is related to the orientation

preservation. Additional constraints in AK and AF are material constraints. Also note

that the condition det
[
Sa3 ∂1ψ ∂2ψ

]
≥ 0 is relevant only in AN since it is directly

fulfilled in AF and AK since from condition aψ3 = Sa3 and the definition of aψ3 we see

that

det
[
Sa3 ∂1ψ ∂2ψ

]
= det

[
aψ3 ∂1ψ ∂2ψ

]
> 0.

Lemma 5.3.1. It holds AF ⊂ AK ⊂ AN .

Proof. The last inclusion is obvious. To check the other inclusion, we can directly see

that the condition Sa1 · ∂2ψ = Sa2 · ∂1ψ is satisfied for
[
∂1ψ ∂2ψ

]
= ∇′ψ = S∇′θ =

S
[
a1 a1

]
. For the other condition:

aψ3 =
∂1ψ × ∂1ψ

‖∂1ψ × ∂1ψ‖
=

Sa1 × Sa2

‖Sa1 × Sa2‖
= S

a1 × a2

‖a1 × a2‖
= Sa3.

�

In the view of Lemma 5.5.3, it is possible to express conditions inAK in various ways:

Sa3 · ∂βψ = 0, β = 1, 2 ⇐⇒ Saβ · aψ3 = 0, β = 1, 2 ⇐⇒ Sa3 = aψ3 .

(5.3.1)

Therefore the condition Sa3 = aψ3 fromAK (andAF ) can be rephrased by that the cross–

sections (described by a3) after deformation Sa3 remain normal to the deformed middle

surface (whose tangent space is spanned by ∂1ψ and ∂2ψ (i.e. the shell is unshearable).

Furthermore there is no extension in the normal direction since S is unitary. This is typical

for the Koiter–type models.

In AF we additionally have

∂β1ψ · ∂β2ψ = S∂β1θ · S∂β2θ = ∂β1θ · ∂β2θ
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since S ∈ SO(3). This means that there is no change of metric tensor in AF , so ψ from

AF are isometric deformations.

To analyse the energy functional (5.2.3) on the setsAF andAK we state the following

obvious lemma.

Lemma 5.3.2. It holds1
2
(ST∇′ψ +∇′θ)T (ST∇′ψ −∇′θ)

(Sa3)T∇′ψ


=

1
2
(∇′ψT∇′ψ −∇′θT∇′θ)

0

+

1
2
(∇′ψTS∇′θ −∇′θTST∇′ψ)

(Sa3)T∇′ψ

 . (5.3.2)

The matrices on the right hand side are orthogonal in the Frobenius scalar product.

Proof. Orthogonality follows since the first 2× 2 block is symmetric and the second one

is skew-symmetric. �

This lemma implies that in the strain on the left hand side of (5.3.2) (with six compo-

nents) the following is hidden:

• change of metric tensor (in the first term on the right hand side)

• the drill (in the upper 2 × 2 skew-symmetric block of the second term on the right

hand side)

• the shear (in the lower 1× 2 block in the second term on the right hand side).

5.3.2. The flexural shell model

We now observe the problem (5.2.4) set on the set of admissible functions AF . The

model is actually well formulated for θ ∈ W 1,∞ parametrizations, but for this comparison

we assume more smoothness, namely θ ∈ W 2,∞(ω;R3).

In AF the strain in Wm is zero, which is directly obvious from the definition since

S∇′θ = ∇′ψ implies ST∇′ψ − ∇′θ = 0 and Lemma 5.3.1 and (5.3.1). Thus only the

term qf from (5.2.3) is relevant for the problem.
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In the matrix ST∇′S some terms vanish as well. Firstly, we rewrite it in the following

form

ST∂βS =
∑

i,j=1,2,3

(ST∂βSai · aj)ai ⊗ aj,

which holds since I3 =
∑

i,j=1,2,3 ai · ajai ⊗ aj .
Since S is rotation, ST∂βS is skew symmetric, so ST∂βSai · ai = 0 for i ∈ {1, 2, 3}.

Moreover, since we have

∂2(a1) = ∂12θ = ∂1(a2) and ∂2(Sa1) = ∂12ψ = ∂1(Sa2), (5.3.3)

we obtain

ST∂2Sa1 · a2 = ∂2Sa1 · Sa2 = (∂2(Sa1)− S∂2a1) · Sa2

= (∂1(Sa2)− S∂1a2) · Sa2 = ∂1Sa2 · Sa2 = 0,

where the last equality is from skew symetricity of the matrix ST∂1S. We obtain similarly

ST∂2Sa2 · a1 = 0, so the only terms left in the strains are ST∂β1Sa3 · aβ2 . Moreover,

ST∂βSa3 = ST∂βSa3 + STS∂βa3 − ∂βa3 = ST∂β(Sa3)− ∂βa3 = ST∂β(aψ3 )− ∂βa3

= SM(ψ)aβ,

where SM is the shape mapping (Weingarten map). Furthermore, since Saβ2 = aψβ2

ST∂β1Sa3 · aβ2 = SM(ψ)aβ1 · aβ2 = ST∂β1a
ψ
3 · aβ2 − ∂β1a3 · aβ2

= ∂β1a
ψ
3 · Saβ2 − ∂β1a3 · aβ2 = ∂β1a

ψ
3 · aψβ2

− ∂β1a3 · aβ2

= bβ1β2(ψ)− bβ1β2(θ),

where b(ψ) = (bβ1β2(ψ))β1,β2 denote the curvature tensor of the surface parametrized by

ψ. Thus on AF the strain is the change of the curvature tensor. It typically appears in the

flexural shell models.

All obtained expressions for ST∂βSai · aj can be written in a matrix form. Let us for

this purpose define

Bβ =


0 0 −(bβ1(ψ)− bβ1(θ))

0 0 −(bβ2(ψ)− bβ2(θ))

bβ1(ψ)− bβ1(θ) bβ2(ψ)− bβ2(θ) 0

 , (5.3.4)
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for β = 1, 2. Then we have ST∂βSai · aj = Bβ
i,j , for i, j = 1, 2, 3. Also, using notations

Q =
[
a1 a2 a3

]
and B :=

[
B1 B2

]
, we can also write

ST∂βS =
∑

i,j=1,2,3

(ST∂βSai·aj)ai⊗aj =
∑

i,j=1,2,3

Bβ
i,j(Qej)(Qei)

T = QBβQT , (5.3.5)

and consequently

ST∇′S = QB

Q 0

0 Q

T . (5.3.6)

Let us define an operator P : M2×2 →M3×6 by

P

�a b

c d

� =


0 0 −a 0 0 −c
0 0 −b 0 0 −d
a b 0 c d 0

 . (5.3.7)

By its definition, we have P(b(ψ) − b(θ)) = B. Finally, we can define a function

q̃f : M2×2 → R (obtained from Qf by change of coordinates and incorporating terms

from undeformed geometry) by

q̃f (X) = Qf

�
QP(X)

Q 0

0 Q

T
�

. (5.3.8)

From above it is clear that satisfies

q̃f (b(ψ)− b(θ)) = Qf (S
T∇′S) = qf (S,∇′S). (5.3.9)

Therefore, the problem (5.2.4) on AF can be stated as minimization of the functional

J(ψ,S) =
h3

12

∫
ω

q̃f (b(ψ)− b(θ))
√
adx′ −

∫
ω

f ·ψ√adx′, (5.3.10)

which is a functional of the same form as obtained in [40]. Thus since the setAF is a set of

inextensional deformations minimization of the functional J from (5.2.3) onAF is exactly

the same as the flexural shell model from [40]. Note however that for the formulation

(5.3.10) at least W 2,∞ geometry is necessary and only W 1,∞ for the formulation (5.2.3)

on AF .

Remark 5.3.3. One can see that if we had∇′ψ = −S∇′θ as the condition inAF instead

of ∇′ψ = S∇′θ, all the calculations stay the same.
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Remark 5.3.4. Moreover, in the case of St. Venant–Kirchhoff material, the appropriate

function q̃f from [40] is exactly the tensorA from (1.3.3). By direct calculations as above,

this is equal to qSTV Kf (S,∇′S), where qSTV Kf is from (5.2.6). So, in the St. Venant–

Kirchhoff material functionals our functional (5.2.3) on AF and the functional from [40]

are not only of the same form, but they coincide.

Remark 5.3.5. In the case of the planar geometry for the middle surface of undeformed

shell (θ = (x′, 0)), since b(θ) = 0, we can also write

q̃f (b(ψ)− b(θ)) = q̃f (b(ψ)).

5.3.3. The Koiter shell model

According to (5.3.2), the membrane strain reduces to1
2
(∇′ψT∇′ψ −∇′θT∇′θ)

0

 . (5.3.11)

This is usual membrane strain, see e.g. [21]. Note that

∇′ψT∇′ψ = (aψβ1
· aψβ2

)β1,β2 = aβ1β2(ψ) = a(ψ)

is the metric tensor of the surface parametrized by ψ. Thus the above measure of mem-

brane deformation is given as the change of the metric tensor, i.e. the difference of metric

tensors on deformed and undeformed deformations a(ψ)− a(θ).

Moreover, since (ψ,S) ∈ AK we are in the assumptions of Lemma 5.5.4 for Pβ =

∂βψ, β = 1, 2 and Mβ = ∂βθ. Thus according to Remark 5.5.5, there are only two

pointwise choices for the matrix S. However assumed regularity of S implies that there

are only two choices for S but as a function. Now the boundary condition on S implies

that S is uniquely defined by terms of ∇′ψ and ∇′θ. We can check that we still have

(since for this we only use Sa3 = aψ3 )

ST∂βSa3 = SM,u(ψ)aβ. (5.3.12)
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However this now leads to

ST∂β1Sa3 · aβ2 = SM,u(ψ)aβ1 · aβ2 = ST∂β1a
ψ
3 · aβ2 − ∂β1a3 · aβ2

= ∂β1a
ψ
3 · Saβ2 − ∂β1a3 · aβ2

= ∂β1a
ψ
3 · aψβ2

− ∂β1a3 · aβ2 + ∂β1a
ψ
3 · (Saβ2 − aψβ2

)

= bβ1β2(ψ)− bβ1β2 + ∂β1a
ψ
3 · (Saβ2 − aψβ2

).

Now since aψ3 · Saβ2 = 0 and aψ3 · aψβ2
= 0 we obtain that

∂β1a
ψ
3 · (Saβ2 − aψβ2

) = −aψ3 · ∂β1(Saβ2 − aψβ2
) = −Sa3 · ∂β1(Saβ2 − ∂β2ψ). (5.3.13)

Furthermore

ST∂2Sa1 · a2 = ∂2Sa1 · Sa2 = (∂2(Sa1)− S∂2a1) · Sa2 = (∂2(Sa1)− S∂1a2) · Sa2

= (∂2(Sa1)− ∂1(Sa2) + ∂1Sa2) · Sa2 = (∂2(Sa1)− ∂1(Sa2)) · Sa2

= (∂2(Sa1 − ∂1ψ)− ∂1(Sa2 − ∂2ψ)) · Sa2.

(5.3.14)

Now we see from the from (5.3.13) and (5.3.14) that the flexural part of the strain is given

as a perturbation of the change of the curvature tensor of the order h3 of the derivatives of

the membrane strains which in the energy contribute by the factor h. Now the energy of

the nonlinear model of the Koiter type following from J on AK is given by

J(ψ,S) =
1

2
h

∫
ω

Wm (a(ψ)− a(θ))
√
adx′

+
h3

12

∫
ω

q̃f (b(ψ)− b(θ) + perturbation)
√
adx′ −

∫
ω

f ·ψ√adx′.
(5.3.15)

For a particular choice of the membrane energy density function Wm as in the case of the

St. Venant–Kirchhoff material in (5.2.6) the membrane energy is equal to the classical

Koiter model (see [21, 47]). As already noted the flexural strain is a perturbation of the

classical strain given as the change of curvature tensor. Similar situation occurred in

the linear models in [86] and [87]. In [47] Koiter argues that the theory obtained using

lower order perturbations are equivalent: ”We have stressed repeatedly that the addition

of terms of this type to the strain energy per unit area is often convenient in order to obtain

the equations in the simplest possible form for the problem at hand.”
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5.3.4. Linearization of the model

In this subsection we linearize the model given in (5.2.4). We first linearize the non-

linear strains from (5.2.5) and compare in Proposition 5.3.6 the obtained energy for the

St. Venant–Kirchhoff material as in (5.2.6). In the second step in Proposition 5.3.7 we

linearize the conditions in the sets of admissible functions. The obtained linearized strain,

the total energy functional and the constraints in the function spaces turn out to be exactly

the same as in the linear Naghdi type model from [87] (and presented in Chapter 1).

Proposition 5.3.6. Linearization of nonlinear strains given in (5.2.5) gives strains as in

the linear model of Naghdi type from [87]. Furthermore linearization of the nonlinear

STVK energy as given in Remark 5.2.2 gives energy as in the linear model of Naghdi

type from [87].

Proof. For both, it is sufficient to prove that1
2
Ac(ST∇′ψ +∇′θ)T (ST∇′ψ −∇′θ)

(Sa3)T∇′ψ


≈
[
a1 a2 a3

]T [
∂1u+ a1 × ω ∂2u+ a2 × ω

]
(5.3.16)

and

1√
a


ST∂1Sa2 · a3 ST∂2Sa2 · a3

ST∂1Sa3 · a1 ST∂2Sa3 · a1

ST∂1Sa1 · a2 ST∂2Sa1 · a2

 ≈ [a1 a2 a3

]T
∇′ω. (5.3.17)

Since S(x′) ∈ SO(3) a.e., there is a skew symmetric matrix Aω (ω denotes its axial

vector) such that

S = exp(Aω) =
∞∑
k=0

1

k!
Ak
ω ≈ I + Aω.

In linearized elasticity we usually use displacement u as the difference of the deformed

and undeformed geometry: u = ψ − θ. Now we have

ST∇′ψ −∇′θ ≈ (I−Aω)(∇′θ +∇′u)−∇′θ ≈ ∇′u−Aω∇′θ. (5.3.18)

Similarly, ST∇′ψ +∇′θ ≈ ∇′u−Aω∇′θ + 2∇′θ. Linearization of their product is

(ST∇′ψ +∇′θ)T (ST∇′ψ −∇′θ) ≈ 2∇′θT (∇′u−Aω∇′θ)

= 2∇′θT
[
∂1u+ a1 × ω ∂2u+ a2 × ω

]
. (5.3.19)
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Moreover (since aT3∇′θ = 0):

(Sa3)T∇′ψ ≈ ((I + Aω)a3)T (∇′θ +∇′u)

= aT3∇′θ + aT3∇′u+ (ω × a3)T∇′θ + (ω × a3)T∇′u

≈ aT3∇′u+ (ω × a3)T∇′θ = aT3

[
∂1u+ a1 × ω ∂2u+ a2 × ω

]
.

(5.3.20)

Since[
a1 a2 a3

]T
=
[
a1 a2 a3

]T [
a1 a2 a3

] [
a1 a2 a3

]T
=

Ac 0

0 1

[a1 a2 a3

]T
, (5.3.21)

we have the first claim. For the second

ST∂βSai ·aj = ∂βSai ·STaj ≈ A∂βωai · (I + Aω)aj ≈ A∂βωai ·aj = (ai×aj) · ∂βω.
(5.3.22)

Since from (1.2.1) we have a1 = 1√
a
(a2 × a3), a2 = 1√

a
(a3 × a1), a3 = 1√

a
(a1 × a2),

by checking each coordinate, we see that the second claim is also fulfilled. �

Proposition 5.3.7. Linearization of the conditions in sets AN , AK , AF gives conditions

in spaces VN , VK , VF , respectively, the spaces corresponding to the spaces in the linear

Naghdi type models from [87].

Proof. For AF we see that

(ψ,S) ∈ AF ⇐⇒ ST∇′ψ −∇′θ = 0, (ψ,S) ∈ AN . (5.3.23)

and we proved

ST∇′ψ −
[
a1 a2

]
≈
[
∂1u+ a1 × ω ∂2u+ a2 × ω

]
.

For AK we use (5.3.2) to see that (ψ,S) ∈ AK if and only if1
2
(ST∇′ψ +∇′θ)T (ST∇′ψ −∇′θ)

(Sa3)T∇′ψ

 =

1
2
(∇′ψT∇′ψ −∇′θT∇′θ)

0

 . (5.3.24)

The linearization of the matrix on the right hand side is given by

1

2

(
∇′ψT∇′ψ −∇′θT∇′θ

)
=

1

2

(
(∇′θ +∇′u)T (∇′θ +∇′u)−∇′θT∇′θ

)
≈ 1

2

(
∇′θT∇′u+∇′uT∇′θ

)
= γ(u)
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and is known as linearization of the change of metric tensor and usually appears in the lin-

ear membrane, flexural and Koiter shell models. Then from the proof of Proposition 5.3.6

we obtain linearization of the matrix on the left hand side and obtain

[
a1 a2 a3

]T [
∂1u+ ω × a1 ∂2u+ ω × a2

]
=

γ(u)

0

 , (5.3.25)

which is equivalent to (u,ω) ∈ VK due to Lemma 4.1. in [87]. �

Note that condition det
[
Sa3 ∂1ψ ∂2ψ

]
≥ 0 from AN after linearization implies

the condition 1 +
√
a(a1 · ∂1u + a2 · ∂2u) ≥ 0, which is inherently fulfilled for small

deformations in linear theories and leaves no condition in the function space.

5.3.5. Differential formulation

In this subsection we assume that the solution of (5.2.4) that is regular enough exists

and derive the differential equations.

In order to obtain the weak and differential formulation of the model we need to find

the Gâteaux derivative of the functional J overAN . Let (ψ,S) ∈ AN minimizes the total

energy functional (5.2.4) and satisfies det
[
Sa3 ∂1ψ ∂2ψ

]
> 0. The last condition on

the determinant is additional assumption in order to derive the differential equations of

the model. Let ε > 0 and let the perturbation (ψε,Sε) ∈ AN of (ψ,S) is in the following

form

ψε = ψ + εv, Sε = eεAwS,

for some smooth enough functions v,w : ω → R3 that satisfy boundary conditions

v|γ0 = wγ0 = 0. Here Aw is the skew-symmetric matric of order 3 with axial vector w.

Then we obtain

(STε∇′ψε +∇′θ)T (STε∇′ψε −∇′θ) = (ST∇′ψ +∇′θ)T (ST∇′ψ −∇′θ)

+ ε
(

(ST∇′ψ +∇′θ)TST (∇′v −Aw∇′ψ)

+

�
∇′v −Aw∇′ψ

)T
S(ST∇′ψ −∇′θ)

�
+O(ε2),

(Sεa3)T∇′ψε = (Sa3)T∇′ψ + ε(Sa3)T (∇′v −Aw∇′ψ) +O(ε2),

STε ∂βSε = ST∂βS + εSTA∂βwS +O(ε2) = ST∂βS + εAST ∂βw +O(ε2), β = 1, 2.
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Next we plug this perturbation into functional J from (5.2.3) with the energy density func-

tions given by (5.2.5). Then the stationary point of the functional satisfies the following

equation

h

∫
ω

W ′
m

�(ST∇′ψ +∇′θ)T (ST∇′ψ −∇′θ)

(Sa3)T∇′ψ

�
·

(∇′ψ + S∇′θ)T (∇′v −Aw∇′ψ)+(∇′v −Aw∇′ψ)T (∇′ψ − S∇′θ)

(Sa3)T (∇′v −Aw∇′ψ)

√adx′
+
h3

12

∫
ω

Q′f
(
ST∇′S

)
·
[
AST ∂1w AST ∂2w

]√
adx′ =

∫
ω

f · v√adx′,

(5.3.26)

for all smooth functions v and w. Since AST ∂βw, β = 1, 2 are skew-symmetric matrices

only skew-symmetric parts of sub-matrices of 3 × 6 matrix Q′f
(
ST∇′S

)
are relevant in

the flexural energy. Thus there are matrix functions n̂, m̂ of type 3× 2 such that (5.3.26)

can be written by∫
ω

n̂ ·
(
∇′v +

[
∂1ψ ×w ∂2ψ ×w

])√
adx′ +

∫
ω

m̂ · ∇′w√adx′ =
∫
ω

f · v√adx′.

(5.3.27)

From this equation we can derive the differential equations of the model.

1√
a

div (
√
an̂) + f = 0,

1√
a

div (
√
am̂) + ∂1ψ × n̂1 + ∂2ψ × n̂2 = 0,

(5.3.28)

where n̂1 and n̂2 are columns of the stress tensor n̂ =
[
n̂1 n̂2

]
. These equations are

exactly the equations of the special Cosserat shell model with a single director, see [6].

The first equation represents the equation of equilibrium of forces and the second equi-

librium of moments (n̂ and m̂ are the force and couple stress tensors). The dependance

of n̂ and m̂ on the variables S,∇′ψ and ∇′S represents particular constitutive law. The

linear Naghdi type model from [87] has a similar structure and the equilibrium equations

are the same as in (5.3.28) with ∂βψ replaced by ∂βθ, for β ∈ {1, 2}.
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5.4. CONVERGENCE IN REGIMES

In this section we analyse behavior of the total energy functional (5.2.3) using the

Γ-convergence with respect to the small parameter h (thickness). We do it in various

regimes with the same scaling the Lamé coefficients (implicitly given in functionswm and

qf ) as it was done when the corresponding regimes were analysed starting from the three-

dimensional nonlinear elasticity in Chapter 3. More precisely, we observe the Γ–limit of

the family of functionals (J2d,α
h (ψ,S))h>0, where J2d,α

h : L4(ω;R3)×L2(ω; SO(3))→ R

are defined by

J2d,α
h (ψ,S) =



h−α
∫
ω

wm(S,∇′ψ)
√
adx′

+
h2−α

12

∫
ω

qf (S,∇′S)
√
adx′ −

∫
ω

f ·ψ√adx′
(ψ,S) ∈ AN ,

+∞ otherwise.
(5.4.1)

Thus, in functional J from (5.2.3) we incorporated the effect of elasticity coefficients in

functions wm and qf (without the change of their notation) by explicitly pulling the factor

h−α−1 out of those functions, analogously to (3.1.1). The force term is kept unscaled.

Our goal is to prove a convergence result in various regimes for α > −1, simi-

lar to Theorem 3.2.1 where we formulated known results of the asymptotic analysis of

thin three–dimensional bodies in the case of planar middle surface (geometry). We will

seek for the Γ–limits of the family of functionals (J2d,α
h )h>0 in the strong L4(ω;R3) ×

L2(ω; SO(3)) topology, but due to reasons similar to the ones stated in Remark 3.1.2,

in view of Lemma 5.4.3, it is equivalent to seeking Γ–limits in the weak W 1,4(ω;R3) ×
W 1,2(ω; SO(3)) topology.

Due to technical reasons, we will also observe family of functionals (J2d,α
S,h )h>0 for

which we have J2d,α
S,h (ψ) = infS∈L2(ω;SO(3)) J

2d,α
h (ψ,S) for all h > 0 and α > −1. More
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precisely: we define J2d,α
S,h : L4(ω;R3)→ R by

J2d,α
S,h (ψ) =



inf
S∈L2(ω;SO(3))

[
h−α

∫
ω

wm(S,∇′ψ)
√
adx′

+
h2−α

12

∫
ω

qf (S,∇′S)
√
adx′ −

∫
ω

f ·ψ√adx′
] ψ ∈ ANS ,

+∞ otherwise,
(5.4.2)

where

ANS := {ψ ∈ W 1,4(ω;R3) : ∃S ∈ W 1,2(ω; SO(3)) s.t. (ψ,S) ∈ AN}. (5.4.3)

Note that even though the infimum for S in definition of the functional J2d,α
S,h is taken in

the set L2(ω; SO(3)), effectively due to the definition of the set of admissible functions

for the functional J2d,α
h this infimum is taken over the set W 1,2(ω; SO(3)). We will seek

the Γ–limit of this family of functionals (J2d,α
S,h )h>0 in the strong L4(ω;R3) topology.

As said, our goal is to find Γ–limits of family of functionals (J2d,α
h )h>0 in the strong

L4(ω;R3)× L2(ω; SO(3)) topology and of family of functionals (J2d,α
S,h )h>0 in the strong

L4(ω;R3) topology. These results have a theoretical value on its own, but they will be

used in the Chapter 6 as well. To make results broad enough for both purposes, in this

section we will observe functional in both settings regarding Dirichlet boundary condi-

tions: with the Dirichlet boundary conditions on a set γ0 ⊆ ∂ω of positive capacity and

without the Dirichlet boundary conditions (i.e. for γ0 = ∅). So in next two results if

Dirichlet boundary conditions are not explicitly mentioned in a assumption or claim of

the theorem, then it is implied that the claim holds for both mentioned settings (|γ0| > 0

and γ0 = ∅).
Additionally, even though our model is defined for geometries parametrized by θ ∈

W 1,∞(ω;R3), for this section we will assume θ ∈ C2(ω;R3) for technical reasons. Note

also that existing results of Γ-convergence for shell related problems starting from 3d

elasticity are done for the same increased smoothness of the middle surface geometry.

In the continuation we present two convergence theorems for families (J2d,α
h )h>0 and

(J2d,α
S,h )h>0. Note that in the case of Theorem 5.4.1, apart from the case α ∈ [5/3, 2〉, we

also for now lack a result for the case α ∈ 〈0, 5/3〉. In Theorem 5.4.2 we do have a claim

for mentioned case.
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Theorem 5.4.1. Let the family of functionals (J2d,α
h )h>0 be as defined in (5.4.1). Let us

assume that conditions N1), N2) and N3) are satisfied.

a) Let α ∈ 〈−1, 0〉. Let additionally γ0 = ∅, i.e. there is no Dirichlet boundary

condition. Then the Γ–limit of the family of functionals (J
2d,〈−1,0〉
h )h>0 when h→ 0

in the strong L4(ω;R3)× L2(ω; SO(3)) topology is

J
2d,〈−1,0〉
0 (ψ,S) = −

∫
ω

f ·ψ√adx′. (5.4.4)

b) Let α = 0. Then the Γ–limit of the family of functionals (J2d,0
h )h>0 when h→ 0 in

the strong L4(ω;R3)× L2(ω; SO(3)) topology is

J2d,0
0 (ψ,S) =


Γ−
�∫

ω

wm(S,∇′ψ)
√
adx′

�
−
∫
ω

f ·ψ√adx′ (ψ,S) ∈ AM ,

+∞ otherwise,

(5.4.5)

where

AM := {(ψ,S) ∈ W 1,4(ω;R3)× L2(ω; SO(3)) : ψ|γ0 = θ|γ0 ,

det
[
Sa3 ∂1ψ ∂2ψ

]
≥ 0 a.e.}. (5.4.6)

c) Let α = 2. Then the Γ–limit of the family of functionals (J2d,2
h )h>0 when h→ 0 in

the strong L4(ω;R3)× L2(ω; SO(3)) topology is

J2d,2
0 (ψ,S) =


1

12

∫
ω

qf (S,∇′S)
√
adx′ −

∫
ω

f ·ψ√adx′ (ψ,S) ∈ A±F ,

+∞ otherwise,

(5.4.7)

where

A±F = {(ψ,S) ∈ AN : Saβ = ∂βψ, β = 1, 2 or Saβ = −∂βψ, β = 1, 2}.
(5.4.8)

If the Dirichlet condition is prescribed on γ0 (with positive capacity), then A±F =

AF , where AF is defined in (5.2.2).
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d) Let α ∈ 〈2,+∞〉. Then the Γ–limit of the family of functionals (J
2d,〈2,+∞〉
h )h>0

when h→ 0 in the strong L4(ω;R3)× L2(ω; SO(3)) topology is

J
2d,〈2,+∞〉
0 (ψ,S) =


−
∫
ω

f ·ψ√adx′ (ψ,S) ∈ B2d,〈2,+∞〉
0 ,

+∞ otherwise,
(5.4.9)

where

B2d,〈2,+∞〉
0 := {(ψ,S) ∈ C(ω;R3)× SO(3) : ψ(x′) = Sθ(x′)T + d, d ∈ R3

or ψ(x′) = −Sθ(x′)T + d, d ∈ R3}.
(5.4.10)

If the Dirichlet condition is prescribed on γ0 (with positive capacity), then

B2d,〈2,+∞〉
0 = {(θ, I)}.

Theorem 5.4.2. Let the family of functionals (J2d,α
S,h )h>0 be as defined in (5.4.2). Let us

assume that conditions N1), N2) and N3) are satisfied.

a) Let α ∈ 〈−1, 0〉. Let additionally γ0 = ∅, i.e. there is no Dirichlet boundary

condition. Then the Γ–limit of the family of functionals (J
2d,〈−1,0〉
S,h )h>0 when h→ 0

in the strong L4(ω;R3) topology is

J
2d,〈−1,0〉
S,0 (ψ) = −

∫
ω

f ·ψ√adx′. (5.4.11)

b) Let α = 0. Then the Γ–limit of the family of functionals (J2d,0
S,h )h>0 when h→ 0 in

the strong L4(ω;R3) topology is

J2d,0
S,0 (ψ) =


∫
ω

QW0(∇′ψ)
√
adx′ −

∫
ω

f ·ψ√adx′ ψ ∈ B2d,0
S,0 ,

+∞ otherwise,
(5.4.12)

where

B2d,0
S,0 := {ψ ∈ W 1,4(ω;R3) : ψ|γ0 = θ|γ0} (5.4.13)

and

W0(F) := min
S∈SO(3)

wm(S,F). (5.4.14)
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c) Let α ∈ 〈0, 5/3〉. Let additionally θ(x′) = (x′, 0), γ0 = ∅ (i.e. no Dirichlet

boundary conditions) and Wm satisfies Wm(Y) ≤ C‖Y‖2
F for some C > 0. Then

the Γ–limit of the family of functionals (J
2d,〈0,5/3〉
S,h )h>0 when h → 0 in the strong

L4(ω;R3) topology is

J
2d,〈0,5/3〉
S,0 (ψ) =


−
∫
ω

f ·ψdx′ ψ ∈ B2d,〈0,5/3〉
S,0 ,

+∞ otherwise,
(5.4.15)

where

B2d,〈0,5/3〉
S,0 := {ψ ∈ W 1,∞(ω;R3) : ∇′ψT∇′ψ ≤ I a.e.}. (5.4.16)

d) Let α = 2. Then the Γ–limit of the family of functionals (J2d,2
S,h )h>0 when h→ 0 in

the strong L4(ω;R3) topology is

J2d,2
S,0 (ψ) =


1

12

∫
ω

q̃f (b(ψ)− b(θ))
√
adx′ −

∫
ω

f ·ψ√adx′ ψ ∈ B2d,2
S,0 ,

+∞ otherwise,

(5.4.17)

where

B2d,2
S,0 := {ψ ∈ W 2,2(ω;R3) : ψ|γ0 = θ|γ0 , ∇ψT∇ψ = ∇θT∇θ}, (5.4.18)

b(ψ) = (bβ1,β2(ψ))β1,β2 is the curvature tensor and q̃f is defined in (5.3.8).

e) Let α ∈ 〈2,+∞〉. Then the Γ–limit of family of functionals (J
2d,〈2,+∞〉
S,h )h>0 when

h→ 0 in the strong L4(ω;R3) topology is

J
2d,〈2,+∞〉
S,0 (ψ) =


−
∫
ω

f ·ψ√adx′ ψ ∈ B2d,〈2,+∞〉
S,0 ,

+∞ otherwise,
(5.4.19)

where

B2d,〈2,+∞〉
S,0 := {ψ ∈ C(ω;R3) :

∃R ∈ SO(3),d ∈ R3 s.t. ψ(x′) = Rθ(x′)T + d}.
(5.4.20)

If the Dirichlet condition is prescribed on γ0 (with positive capacity), then

B2d,〈2,+∞〉
S,0 = {θ}.
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Proofs from Theorem 5.4.1.b) and Theorem 5.4.2.b) are in Subsection 5.4.2. Claims

from Theorem 5.4.1.c) and Theorem 5.4.2.d) will be proved in Subsection 5.4.4 These

results in the case for α = 0 and α = 2 are already presented in [61]. Claim from

Theorem 5.4.2.c) will be proved in Subsection 5.4.5. The four remaining claims from last

two theorems will be proved in Subsection 5.4.6.

5.4.1. Technical lemmas

We start asymptotical analysis with four technical results related to coercivity and

growth properties of terms in the energy functional, and to certain limits of terms in the

membrane and flexural strains that will be needed later on.

Lemma 5.4.3. a) Let S ∈ L2(ω; SO(3)). Then the functional

m(ψ) :=

∫
ω

Wm

�(ST∇′ψ +∇′θ)T (ST∇′ψ −∇′θ)

(Sa3)T∇′ψ

�√adx′−∫
ω

f ·ψ√adx′

is coercive on W 1,4(ω;R3), i.e. there are constants ca > 0 and Ca ∈ R such that for

all for all ψ ∈ W 1,4(ω;R3) one has

‖ψ‖L4(ω;R3) +m(ψ) ≥ ca

(
‖∇′ψT∇′ψ −∇′θT∇′θ‖2

L2(ω;R2×2)

+ ‖∇′θTST∇′ψ −∇′ψTS∇′θ‖2
L2(ω;R2×2)

+ ‖(Sa3)T∇′ψ‖2
L2(ω;R2) + ‖ψ‖4

W 1,4(ω;R3)

)
− Ca,

where Ca is the undeformed geometry dependent.

b) The functional

f(S) :=

∫
ω

Qf

(
ST∇′S

)√
adx′

is coercive on W 1,2(ω; SO(3)), i.e., there is a constant cb > 0 such that for all

S ∈ W 1,2(ω; SO(3)) one has

‖S‖L2(ω;SO(3)) + f(S) ≥ cb‖S‖W 1,2(ω;SO(3)).

Proof. Let M := ‖f‖L4/3(ω;R3). Applying coercivity of Wm, and then the orthogonality
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mentioned in (5.3.2), we obtain

m(ψ) ≥ c1

(
‖
(
ST∇′ψ +∇′θ

)T (
ST∇′ψ −∇′θ

)
‖2
L2(ω;R2×2)

+ ‖(Sa3)T∇′ψ‖2
L2(ω;R2)

)
−M‖ψ‖L4(ω;R3)

≥ c1

(
‖∇′ψT∇′ψ −∇′θT∇′θ‖2

L2(ω;R2×2) + ‖∇′θTST∇′ψ −∇′ψTS∇′θ‖2
L2(ω;R2×2)

+ ‖(Sa3)T∇′ψ‖2
L2(ω;R2)

)
−M‖ψ‖L4(ω;R3).

Next we use the property ‖X‖2
2 = ‖XTX‖2 for general matrix X, equivalence of all

matrix norms and the triangle inequality to prove

‖∇′ψ‖4
L4(ω;R3×2) ≤ ‖∇′ψT∇′ψ‖2

L2(ω;R2×2)

≤ 2‖∇′ψT∇′ψ −∇′θT∇′θ‖2
L2(ω;R2×2) + 2‖∇′θT∇′θ‖L2(ω;R2×2).

By adding the contribution of ‖ψ‖4
L4(ω;R3), we have

‖ψ‖4
L4(ω;R3) +m(ψ) ≥ c′1

(
‖∇′ψT∇′ψ −∇′θT∇′θ‖2

L2(ω;R2×2)

+ ‖∇′θTST∇′ψ −∇′ψTS∇′θ‖2
L2(ω;R2×2)

+ ‖(Sa3)T∇′ψ‖2
L2(ω;R2) + ‖ψ‖4

W 1,4(ω;R3)

)
−M‖ψ‖L4(ω;R3) − C

≥ c′1

(
‖∇′ψT∇′ψ −∇′θT∇′θ‖2

L2(ω;R2×2)

+ ‖∇′θTST∇′ψ −∇′ψTS∇′θ‖2
L2(ω;R2×2)

+ ‖(Sa3)T∇′ψ‖2
L2(ω;R2) + ‖ψ‖4

W 1,4(ω;R3)

)
− C,

since the polynomial x 7→ ax4 + bx, a > 0, is bounded from below by some constant.

To prove b) we just apply the coercivity of Qf , the fact that S is with values in SO(3)

and the Poincaré inequality. �

Lemma 5.4.4. a) There is a constant Ma > 0 such that for all S ∈ L2(ω; SO(3)) and

ψ ∈ W 1,4(ω;R3) one has∫
ω

wm(S,∇′ψ)
√
adx′ ≤Ma(1 + ‖∇ψ‖4

L4(ω;R3×2)),

where Ma is undeformed geometry dependent.

b) There is a constant Mb > 0 such that for all S ∈ W 1,2(ω; SO(3)) one has∫
ω

qf (S,∇′S)
√
adx′ ≤Mb(1 + ‖∇S‖2

L2(ω;R3×6)),
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where Mb is undeformed geometry dependent.

Proof. For the a) part, from the growth condition N2) and by similar calculations as in

Lemma 5.4.3 we have∫
ω

wm(S,∇′ψ)
√
adx′

≤Ma,1

(
‖∇′ψT∇′ψ −∇′θT∇′θ‖2

L2(ω;R2×2)

+ ‖∇′θTST∇′ψ −∇′ψTS∇′θ‖2
L2(ω;R2×2) + ‖(Sa3)T∇′ψ‖2

L2(ω;R2) + C
)

≤Ma,2

(
‖∇′ψT∇′ψ‖2

L2(ω;R2×2) + c‖∇′ψ‖2
L2(ω;R2×2) + C

)
≤Ma,3(1 + ‖∇ψ‖4

L4(ω;R3×2)),

(5.4.21)

where we again used the identity ‖X‖2
2 = ‖XTX‖2. For the b) part we have similar and

even simpler calculations. �

Lemma 5.4.5. Let (ψn,Sn)n≥1 ⊂ AN , (ψ0,S0) ∈ AN be such that

(ψn,Sn) ⇀ (ψn,Sn) in W 1,4(ω;R3)×W 1,2(ω; SO(3)). (5.4.22)

Then

∇′ψT
nSn∇′θ −∇′θTSTn∇′ψn ⇀ ∇′ψTS∇′θ −∇′θTST∇′ψ in L4(ω;R3×2), (5.4.23)

STn∇′Sn ⇀ ST0∇′S0 in L2(ω;R3×2). (5.4.24)

∇′ψT
nSna3 ⇀ ∇′ψT

0 S0a3 in L4(ω;R2). (5.4.25)

Proof. Since the measurable functions with values in SO(3) belong to L∞(ω;R3×3), the

sequence
(
∇′ψT

nSn∇′θ −∇′θTSTn∇′ψn

)
n≥1

is bounded inL4(ω;R3×2), so it has weakly

convergent subsequence
(
∇′ψT

nk
Snk∇′θ −∇′θTSTnk∇′ψnk

)
nk≥1

in L4(ω;R3×2).

On the other hand, from compact embedding of H1(ω) to L2(ω), we have that Snk →
S0 in L2(ω;R3×2). Thus

(
∇′ψT

nk
Snk∇′θ −∇′θTSTnk∇

′ψnk

)
⇀
(
∇′ψTS∇′θ −∇′θTST∇′ψ

)
in L1(ω;R3×2).

(5.4.26)

Uniqueness of limits in distributions now implies the convergence (5.4.23).

The proof is analogous for sequences in (5.4.24) and (5.4.25). �
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Remark 5.4.6. We will use similar result without mention: if (Sn)n≥1 ⊂ L2(ω; SO(3))

converge strongly to S ∈ L2(ω;R3×3), then S ∈ L2(ω; SO(3)).

Namely, we firstly have that (STnSn)n≥1 converges in L1(ω;R3×3), so S is unitary

matrix. Secondly, the determinant of a 3 × 3 matrix can be observed as a polynomial of

the degree 3 of its elements. Since Sn ∈ SO(3), specially S ∈ L∞(ω;R3×3) so there

is a weak* L∞(ω;R3×3) convergent subsequence (Snk)k≥1, converging again to S due

to the uniqueness of limits. In each addend snki1,j1s
nk
i2,j2

snki3,j3 in det(Snk) we use strong

L2(ω;R3×3) convergence for first two factors and weak* L∞(ω;R3×3) convergence for

the third, to obtain that (det(Snk))k≥1 converges weakly in L1(ω;R3×3) to det S. Since

1 = det(Snk)→ det S, we have det S = 1, so S ∈ L2(ω; SO(3)).

5.4.2. Membrane shell model - convergence for the case α = 0

In this subsection we prove the claims of Theorem 5.4.1.b) and Theorem 5.4.2.b). The

goal is to obtain a limit and compare the result with the membrane shell model obtained as

the Γ–limit of the three-dimensional elastic energy in [51]. The result in [51] is a general-

ization of the result for the planar middle surface geometry presented in Theorem 3.2.1.b)

and [52].

We define J̃2d,0
0 as an accumulation point (in the sense of Γ–convergence) of the fam-

ily of functionals (J2d,0
h )h>0. In Theorem 5.4.1.b) we identify the Γ–limit of family of

functionals (J2d,0
h )h>0 and prove that it is independent of the flexural energy and deriva-

tives of the function S. Thus the matrix of rotations S of the cross-section of the shell

appears in the limit just as a parameter (without measuring its deformation). In order to

do that we consider the following function set

AM := {(ψ,S) ∈ W 1,4(ω;R3)× L2(ω; SO(3)) : ψ|γ0 = θ|γ0 ,

det
[
Sa3 ∂1ψ ∂2ψ

]
≥ 0 a.e.}, (5.4.27)

and the functional

J̃m(ψ,S) =


∫
ω

wm(S,∇′ψ)
√
adx′ −

∫
ω

f ·ψ√adx′ (ψ,S) ∈ AM ,

+∞ otherwise.
(5.4.28)
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We will actually prove that J̃2d,0
0 is weakly lower semicontinuous envelope of J̃m. The

main obstacle then is elimination of derivatives of S in the limit set of admissible functions

(note that due to lack of the regularity of S we even lose boundary conditions for rotations

in the set AM ). It is achieved in Lemma A.1, technical and complicated density result of

AN inAM . We are able to prove this density property only for C2 parametrizations of the

undeformed middle shell given on polygonal domains, i.e., θ ∈ C2(ω)), and only in two

cases: the Dirichlet boundary condition is applied on the entire boundary (γ0 = ∅) or the

parametrization of undeformed domain is piecewise affine on the part of the domain where

the Dirichlet boundary condition is prescribed (including the case γ0 = ∅). However, we

feel the statement holds in a more general setting.

Proof of Theorem 5.4.1.b). If we prove that an accumulation point J̃2d,0
0 satisfies the iden-

tity J̃2d,0
0 (ψ,S) = Γ− J̃m(ψ,S), the proof will be over: since sequentially weakly lower

semicontinuous envelope Γ − J̃m(ψ,S) is unique, we can conclude that J̃2d,0
0 (ψ,S) is

unique as well and thus the whole family (J2d,0
h (ψ,S))h>0 Γ-converges to the same func-

tional.

We will prove inequalities J̃2d,0
0 (ψ,S) ≤ J̃m(ψ,S) ≤ J2d,0

h (ψ,S). The second one is

clear. After we prove the first one, we can take the Γ–limit in the inequality and obtain

the statement.

Let us take arbitrary (ψ,S) ∈ AM . By Lemma A.1 there exists (ψn,Sn)n≥1 ⊂ AN

such that (ψn,Sn) → (ψ,S) in W 1,4(ω;R3) × L2(ω; SO(3)) strongly. The elements

of this sequence we can plug into J2d,0
h (ψ,S) to obtain the estimate. Let us define

(ψh,Sh)h>0 ⊂ AN as (ψh,Sh) = (ψn(h),Sn(h)) where

n(h) := arg max
n≥1

¦
‖∇′Sn‖2

L2(ω;R3×6) ≤ 1/h
©

(5.4.29)

in case that ‖∇′Sn‖L2(ω;R3×6) is not uniformly bounded (note that 1/h→ +∞ as h→ 0,

so the mapping is well defined for all sufficiently small values of h), and n(h) = d1/he if

‖∇′Sn‖L2(ω;R3×6) is uniformly bounded.

If ‖∇′Sn‖L2(ω;R3×6) is uniformly bounded, then clearly n(h) → +∞ and due to

1/h → +∞ the bound ‖∇′Sn‖L2(ω;R3×6) < 1/h is satisfied for sufficiently small val-

ues of h. If ‖∇′Sn‖L2(ω;R3×6) is not uniformly bounded, as h → 0, due to 1/h → +∞
we have n(h) → +∞. In both cases we have that (ψh,Sh) = (ψn(h),Sn(h)) converges
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to (ψ,S) in W 1,4(ω;R3) × L2(ω; SO(3)) strongly. However, due to the definition of the

sequence, for sufficiently small h:

h2

12

∫
ω

qf (S,∇′S) ≤ Ch (5.4.30)

and by the Lebesgue dominated convergence theorem (using also Lemma 5.4.4)∫
ω

wm(Sh,∇′ψh)
√
adx′−

∫
ω

f ·ψh

√
adx′ →

∫
ω

wm(S,∇′ψ)
√
adx′−

∫
ω

f ·ψ√adx′.
(5.4.31)

Thus, for h small enough we have

J2d,0
h (ψh,Sh) ≤ J̃m(ψh,Sh) + Ch, (5.4.32)

and, after h→ 0,

J̃2d,0
0 (ψ,S) ≤ lim

h→0
J2d,0
h (ψh,Sh) ≤ J̃m(ψ,S), (5.4.33)

which completes the proof. �

As announced in the introduction of this section, we can also observe the Γ–limit of

functionals J2d,0
S,h (ψ) = infS∈L2(ω;SO(3)) J

2d,0
h (ψ,S). Let J̃2d,0

S,0 (ψ) denotes a Γ–accumula-

tion point of the family (J2d,0
S,h (ψ))h>0 in the strong L4(ω;R3) topology.

Proposition 5.4.7. It holds

inf
S∈L2(ω;SO(3))

∫
ω

wm(S(x′),∇′ψ(x′))
√
adx′ =

∫
ω

min
S∈SO(3)

wm(S,∇′ψ(x′))
√
adx′

(5.4.34)

Proof. Let us denote the left hand side and right hand side of (5.4.34) with I1(ψ) and

I2(ψ), respectively. We need to prove I1(ψ) ≤ I2(ψ), since the other inequality is a

consequence of taking infimum over larger set.

Let us fix ψ ∈ W 1,4(ω;R3). Let us define function g : ω × SO(3)→ R,

g(x′,S) =


wm(S,∇′ψ(x′)) det

�
Sa3(x′) ∂1ψ(x′) ∂2ψ(x′)

�
≥ 0,

+∞ otherwise.
(5.4.35)

This function is a normal integrand (when it is not equal to +∞, it is continuous in the

second variable and measurable in the first, and the domain when it is not equal to +∞
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is closed). Also, note that for each ψ and each x′, the function g(x′, ·) is not identically

equal to +∞.

We can apply the Measurable selection lemma ([34], Chapter 8, Theorem 1.2) to this

function and conclude that there exists measurable function Rψ : ω → SO(3) such that

wm(Rψ(x′),∇′ψ(x′)) = inf
S∈SO(3)

wm(S,∇′ψ(x′)). (5.4.36)

Since Rψ is measurable and rotation, it is trivially in L2(ω; SO(3)). Now, it is clear that

I1(ψ) = inf
S∈L2(ω;SO(3))

∫
ω

wm(S(x′),∇′ψ(x′))
√
adx′

≤
∫
ω

wm(Rψ(x′),∇′ψ(x′))
√
adx′ = I2(ψ). (5.4.37)

which completes the proof. �

Proof of Theorem 5.4.2.b). We will actually prove equalities

J̃2d,0
S,0 (ψ) = Γ−

�
inf

S∈L2(ω;SO(3))
J2d,0

0 (ψ,S)

�
=

∫
ω

QW0(∇′ψ)
√
adx′ −

∫
ω

f ·ψ√adx′,
(5.4.38)

where

W0(F) := min
S∈SO(3)

wm(S,F), (5.4.39)

and Q denotes taking its quasiconvex envelope. The claim of Theorem 5.4.2.b) will be a

consequence of the unique value of the accumulation point.

In the inequality for (ψ,S) ∈ AN

J2d,0
h (ψ,S) =

∫
ω

wm(S,∇′ψ)
√
adx′ +

h2

12

∫
ω

qf (S,∇′S)
√
adx′ −

∫
ω

f ·ψ√adx′

≥
∫
ω

wm(S,∇′ψ)
√
adx′ −

∫
ω

f ·ψ√adx′,

we firstly take infS∈L2(ω;SO(3)), to obtain

J2d,0
S,h (ψ) ≥ inf

S∈L2(ω;SO(3))

∫
ω

wm(S,∇′ψ)
√
adx′ −

∫
ω

f ·ψ√adx′

=

∫
ω

inf
S∈SO(3)

wm(S,∇′ψ(x′))
√
adx′ −

∫
ω

f ·ψ√adx′,

and then take Γ–limit of both sides of inequality, to obtain

J̃2d,0
S,0 (ψ) ≥

∫
ω

QW0(∇′ψ)
√
adx′ −

∫
ω

f ·ψ√adx′. (5.4.40)
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On the other hand, for all S ∈ L2(ω; SO(3)) we have J2d,0
S,h (ψ) ≤ J2d,0

h (ψ,S). After

taking Γ–limit and by using Theorem 5.4.1.b), we obtain

J̃2d,0
S,0 (ψ) ≤ J2d,0

0 (ψ,S) = Γ− J̃m(ψ,S) ≤ J̃m(ψ,S).

After taking infS∈L2(ω;SO(3)) we obtain

J̃2d,0
S,0 (ψ) ≤ inf

S∈L2(ω;SO(3))
J2d,0

0 (ψ,S)

≤ inf
S∈L2(ω;SO(3))

∫
ω

wm(S,∇′ψ)
√
adx′ −

∫
ω

f ·ψ√adx′.

Then we use Proposition 5.4.7 and take Γ–limit of both sides of inequality to obtain

J̃2d,0
S,0 (ψ) ≤ Γ−

�
inf

S∈L2(ω;SO(3))
J2d,0

0 (ψ,S)

�
≤
∫
ω

QW0(∇′ψ)
√
adx′ −

∫
ω

f ·ψ√adx′.
(5.4.41)

Inequalities (5.4.40) and (5.4.41) complete the proof. �

Remark 5.4.8. Note that we have obtained the following

Γ

��
inf

S∈L2(ω;SO(3))
J2d,0
h (ψ,S)

�
h>0

�
= Γ

�
inf

S∈L2(ω;SO(3))
Γ(J2d,0

h (ψ,S))

�
= Γ−

�
inf

S∈L2(ω;SO(3))
Γ(J̃m(ψ,S))

�
= Γ−

�∫
ω

min
S∈SO(3)

wm(S,∇′ψ)
√
adx′ −

∫
ω

f ·ψ√adx′
�
.

The first equation implies that two limiting procedures, taking Γ-limit and taking infimum

over S ∈ L2(ω; SO(3)), commute. The second equation implies that the flexural energy

in the limit can be neglected, while the third equation implies that the same limit can be

obtained by taking pointwise infimum with respect to S in the energy density function

and then the Γ-limit (sequentially weakly lower semicontinuous envelope).

5.4.3. Membrane shell model – further properties

In this subsection we explore further properties of the limit membrane model, related

to the short maps and in the particular case of the St. Venant–Kirchhoff material.
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Let us consider deformation ψ̃ : θ(ω) → R3 on a referent configuration θ(ω). Such

map is called short map (or nonextending) if ∇′ψ̃T∇′ψ̃ ≤ I. This is equivalent to the

condition that all singular values of ∇′ψ̃ are less than 1. We first characterize short maps

in terms of the function ψ = ψ̃ ◦ θ using the following lemma.

Lemma 5.4.9. The singular values of (∇′ψ̃) ◦ θ are the same as singular values of

∇′ψ
√

Ac.

Proof. From ψ = ψ̃ ◦ θ we have

∇′ψ = ∇′ψ̃ ◦ θ∇′θ = ∇′ψ̃ ◦ θ
[
a1 a2

]
.

A simple calculation then shows that

∇′ψ

(a1)T

(a2)T

[a1 a2

]
= ∇′ψ = ∇′ψ̃ ◦ θ

[
a1 a2

]
and thus

∇′ψ

(a1)T

(a2)T

 = ∇′ψ̃ ◦ θ. (5.4.42)

On the other hand, singular values of the matrix ∇′ψ

(a1)T

(a2)T

 are square root of two

largest eigenvalues of the matrix�
∇′ψ

(a1)T

(a2)T

��∇′ψ (a1)T

(a2)T

�T

= ∇′ψ

(a1)T

(a2)T

[a1 a2

]
∇′ψT = ∇′ψAc∇′ψT

= ∇′ψ
√

Ac
�
∇′ψ
√

Ac
�T
.

Thus, matrices ∇′ψ

(a1)T

(a2)T

 = ∇′ψ̃ ◦ θ and ∇′ψ
√

Ac have the same singular values.

�

As a consequence we have that ψ is a short map if and only if singular values of

∇′ψ
√

Ac are less or equal 1.

117



A Naghdi type nonlinear shell model Convergence in regimes

In the next proposition we prove the property of the energy density function QW0 of

the limit membrane model, obtained as the limit of the problem (5.2.4) for energy density

functions given in (5.2.5), that it is zero on short maps. The same property is obtained

for the nonlinear membrane model in [52] and nonlinear membrane shell model in [51]

derived from three-dimensional elasticity. The additional assumption is that (I,∇′θ) is

the global minima of the energy which corresponds to θ(ω) being natural state of the

shell.

Proposition 5.4.10. Let wm be such that wm(I,∇′θ) = 0. Then QW0(F) = 0, for all F

such that σi(F
√

Ac) ≤ 1, i = 1, 2, where σi(F) denotes ith largest singular value of the

matrix F.

Proof. From N3) we have wm ≥ 0. From this and since wm(I,∇′θ) = 0 (i.e. the residual

stress is zero), we have W0(∇′θ) = 0 and W0(F) ≥ 0, and W0(SF) = W0(F) (due to the

infimum in the definition of W0 and the assumed structure of the strain).

Let us introduce the function Y0 such that

Y0(F
√

Ac) = W0(F). (5.4.43)

We will prove that QY0(F) = 0 whenever σi(F) ≤ 1, i = 1, 2.

Function Y0. satisfies: Y0(F) ≥ 0 and Y0(SF) = Y0(F). Also, since for matrix

B =
[
a1 a2

]√
Ac = ∇′θ

√
Ac we have

(
[
a1 a2

]√
Ac)T (

[
a1 a2

]√
Ac) =

√
AcAc

√
Ac = I2, (5.4.44)

there exists B ∈ SO(3) such that Beβ = Beβ . Then

0 = W0(∇′θ) = Y0(B) = Y0(B
T
B) = Y0

�
1 0

0 1

0 0


�

. (5.4.45)

Now we proceed by applying the same technique as in Theorem 10 from [51] to prove

that QY0(F) = 0, whenever σi(F) ≤ 1, i = 1, 2. Due to the QR decomposition and

the property Y0(SF) = Y0(F), it is sufficient to prove the claim only for matrices F that

satisfy eT3 F = 0. So, without change of notation from now on we observe Y0 as defined
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on 2× 2 matrices F:

Y0(F) := Y0

� F

0 0

� . (5.4.46)

Still, from (5.4.45) and Y0(SI) = Y0(I) we have that Y0(S) = 0 whenever S ∈ O(2, 2) :=

{X ∈M2×2 : XTX = I}.
Let us take any 2 × 2 matrix F with both singular values less or equal to 1, and take

its SVD decomposition

F = U

σ1(F) 0

0 σ2(F)

VT . (5.4.47)

Let us define functions ϑβ : R→ R, β = 1, 2, on [0, 1]

ϑβ(t) =

 (1− σβ(F)) t if 0 ≤ t ≤ 1+σβ(F)

2
,

(−1− σβ(F)) (t− 1) if 1+σβ(F)

2
≤ t ≤ 1,

(5.4.48)

and extend it by periodicity to R. Clearly, they belong to W 1,∞([0, 1]2;R2). Let us define

functions

φ0(VTy) =

σ1(F)y1

σ2(F)y2

 , ηn(VTy) =
1

n

ϑ1(ny1)

ϑ2(ny2)

 , (5.4.49)

and φn = φ0 + ηn, for n ≥ 1. We have ∇φ0 =

σ1(F) 0

0 σ2(F)

VT . By direct calcula-

tions we see that the value of∇φn(VTy′) for a.e. y′ is from the set
1 0

0 1

VT ,

1 0

0 −1

VT ,

−1 0

0 1

VT ,

−1 0

0 −1

VT

 , (5.4.50)

which is a subset of O(2, 2), so we have Y0(∇φn) = 0. Additionally, φn
∗
⇀ φ0 in

W 1,∞([0, 1]2;R2).

Since QY0 is quasiconvex, its integral is sequentially weak lower semicontinuous in

W 1,∞([0, 1]2;R2) so we have

0 = lim inf
n→∞

∫
[0,1]2

QY0(∇φn)dy′ ≥
∫

[0,1]2
QY0(∇φ0)dy′ = QY0(F) ≥ 0, (5.4.51)

thus QY0(F) = 0. The claim from the proposition is then consequence of Lemma 5.4.11

by which for any regular M we have that F 7→ f(F) is quasiconvex iff F 7→ f(FM) is

quasiconvex. �
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Lemma 5.4.11. Let M ∈ R3×3 be a regular matrix, and function F : R3×2 → R.

Function X 7→ F (X) is quasiconvex if and only if X 7→ F (XM) is quasiconvex.

Proof. Due to the regularity of M, it sufficient to prove only one implication. Let F be

quasiconvex, i.e. for each bounded D ⊂ R2, each X ∈ R3×2 and each ϕ ∈ W 1,∞
0 (D;R3)

we have

F (X) ≤ 1

|D|

∫
D

F (X +∇′ϕ(x′))dx′. (5.4.52)

Let us define G : R3×2 → R, G(X) = F (XM). We have to prove that G is qua-

siconvex, i.e. that the upper inequality holds for G, for a fixed set D and arbitrary ϕ.

Let E := [0, 1]2, and let ψ ∈ W 1,∞(E,R3) be arbitrary. Let A ∈ M2×2 be regular

and ϕ ∈ W 1,∞(A(E),R3) be function such that ψ(z′) := ϕ(Az′) for all z′ ∈ E. By

quasiconvexity of F in point XM and change of variables we have

F (XM) ≤ 1

|A(E)|

∫
A(E)

F (XM +∇′ϕ(x′))dx′

=

 x′ = Az′

dx′ = Adz′

 =
1

|A(E)|

∫
E

F (XM +∇′ϕ(Az′))| det A|dz′. (5.4.53)

Due to definition of ϕ, we have ∇′ψ(z′) = ∇′(Az′)A =⇒ ∇′ϕ(Az′) = ∇′ψ(z′)A−1.

Using this substitution and |A(E)| = | det A| · |E|, we have

F (XM) ≤ 1

| det A| · |E|

∫
E

F (XM +∇′ψ(z′)A−1)dz′| det A|

=
1

|E|

∫
E

F (XM +∇′ψ(z′)A−1)dz′. (5.4.54)

If we put A := M−1, we finally get

G(X) ≤ 1

|E|

∫
E

F (X +∇′ψ(z′))dz′. (5.4.55)

Since ψ was arbitrary, G is quasiconvex. �

In the sequel we determine the function QW0 for the St. Venant–Kirchhoff material.

Lemma 5.4.12. Let X̂ =

X

xT

 ∈ R3×2, and let Xsym,Xskew be the symmetric and

skew-symmetric parts of the matrix X. Then it holds

C2
m

�AcX

xT

� =
2λµ

λ+ 2µ
(tr(
√

AcXsym

√
Ac))2 + 2µ

∥∥∥√AcXsym

√
Ac

∥∥∥2

F

+ 2µ
∥∥∥√AcXskew

√
Ac

∥∥∥2

F
+ µAcx · x.
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Proof. From the definition of the function C2
m from Remark 5.2.2 we have C2

m(Ŷ) =

Cm(Ŷ) · Ŷ, where

Cm(Ŷ) · Ŷ =
2λµ

λ+ 2µ
tr(Y)2 + 2µ tr(AcYTAcY) + µAcy · y,

for each Ŷ =

Y

yT

 ∈ R3×2. For Y = AcX we calculate

tr(AcX) = tr(
√

AcX
√

Ac)

= tr(
√

AcXsym

√
Ac) + tr(

√
AcXskew

√
Ac) = tr(

√
AcXsym

√
Ac),

where we have used the fact that if Y is (skew-)symmetric, than such is
√

AcY
√

Ac as

well, and that the trace of skew-symmetric matrices are zero. Secondly, we have

tr(AcXTAcAcA
cX) = tr((

√
AcX

√
Ac)T (

√
AcX

√
Ac)) = ‖

√
AcX

√
Ac‖2

F .

Here we again use that matrices
√

AcXsym

√
Ac and

√
AcXskew

√
Ac are symmetric and

skew-symmetric respectively, and consequently orthogonal, so we have

tr(AcXTAcAcA
cX) = ‖

√
AcXsym

√
Ac‖2

F + ‖
√

AcXskew

√
Ac‖2

F .

This is enough to conclude the claim of the lemma. �

Lemma 5.4.13. It holds

W0(F) =
λµ

4(λ+ 2µ)
(tr(
√

Ac(FTF−∇′θT∇′θ)
√

Ac))2

+
µ

4

∥∥∥√Ac(FTF−∇′θT∇′θ)
√

Ac

∥∥∥2

F
. (5.4.56)

Proof. In the view of Lemma 5.3.2 (F = ∇′ψ), we use Lemma 5.4.12 with matrices

Xsym =
1

2
(FTF−∇′θT∇′θ), Xskew =

1

2
(FTS∇′θ −∇′θTSTF), x = FTSa3

to obtain

wSTV Km (S,F) =
1

2
C2
m

�Ac(Xsym + Xskew)

xT

�
=

λµ

λ+ 2µ
(tr(
√

AcXsym

√
Ac))2 + µ

∥∥∥√AcXsym

√
Ac

∥∥∥2

F

+ µ
∥∥∥√AcXskew

√
Ac

∥∥∥2

F
+
µ

2
Acx · x.
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To calculate W0(F) we have to minimize wSTV Km in terms of S, which appears only in

Xskew and x. Those terms

µ
∥∥∥√AcXskew

√
Ac

∥∥∥2

F
and

µ

2
Acx · x (5.4.57)

are nonnegative, so they are bounded from below by zero. However, by Lemma 5.5.4 for

any F there exists a choice S such that these terms are zero. Thus we have

W0(F) = inf
S∈SO(3)

wSTV Km (S,F)

=
λµ

λ+ 2µ
(tr(
√

AcXsym

√
Ac))2 + µ

∥∥∥√AcXsym

√
Ac

∥∥∥2

F
,

which gives the statement after inserting Xsym. �

Since we have that∇′θT∇′θ = Ac, we have
√

AcAc

√
Ac = I, and

√
Ac(FTF−∇′θT∇′θ)

√
Ac = (F

√
Ac)T (F

√
Ac)− I. (5.4.58)

So it is natural to define function Y0 as Y0(F
√

Ac) = W0(F). As we already used, seeking

the quasiconvex envelope of function Y0 is equivalent to seeking quasiconvex envelope of

function W0 by Lemma 5.4.11.

Proposition 5.4.14. For wm = wSTV Km , we have

QW0(F) =



0 σ2(F
√

Ac) ≤ σ1(F
√

Ac) ≤ 1,

E
4

(σ1(F
√

Ac)− 1)2
σ1(F

√
Ac) ≥ 1 and

σ2(F
√

Ac) + νσ1(F
√

Ac) ≤ 1 + ν,

W0(F) otherwise.

(5.4.59)

Proof. As said before the lemma, we observe Y0 such that Y0(F
√

Ac) = W0(F), or in

other words

Y0(F) =
λµ

4(λ+ 2µ)
(tr(FTF− I))2 +

µ

4

∥∥FTF− I
∥∥2

F
. (5.4.60)

By denoting by WLD−R
0 and QWLD−R

0 functions from Proposition 16 from [51], we have

QWLD−R
0 (F) ≤ Y0(F) ≤ WLD−R

0 (F). (5.4.61)
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from where we have

QY0(F) = QWLD−R
0 (F) =



0 σ2(F) ≤ σ1(F) ≤ 1,

E
4

(σ1(F)− 1)2
σ1(F) ≥ 1 and

σ2(F) + νσ1(F) ≤ 1 + ν,

Y0(F) otherwise.
(5.4.62)

Then due to Y0(F
√

Ac) = W0(F) we have QY0(F
√

Ac) = QW0(F), which completes

the proof. �

Remark 5.4.15. Thus we have QW0(F) = QY0(F
√

Ac) and further QY0 actually de-

pends on singular values of F
√

Ac. In the proof of Lemma 5.4.9 we actually proved that

for matrices X and Y such that X = Y
[
a1 a2

]
the two largest singular values of Y

are singular values of X
√

Ac. Thus, we obtain that in the case of St. Venant–Kirchhoff

material obtained limit model in the membrane case coincides with the membrane shell

model from [51].

5.4.4. Flexural shell model - convergence for the case α = 2

In this subsection we prove the claims of Theorem 5.4.1.c) and Theorem 5.4.2.d). The

goal is to obtain a limit and compare the result with the flexural shell model obtained as

the Γ–limit of the three-dimensional elastic energy in [40]. It is a generalization of result

for the planar middle surface geometry presented in Theorem 3.2.1.d).

In order to prove this result we use a result from [40] in which the authors state that

if the measure of distance of deformation gradient to set SO(3) tends to zero sufficiently

fast (with respect to the thickness h), then the deformation gradient tends to a function

with values in SO(3). Since our functions are defined on ω, domain in R2, we associate

with them functions on the 3d domain Ω = ω × [−1/2, 1/2]. For a family (ψh,Sh)h>0

we define functions

Θh : Ω→ R3, Θh(x1, x2, x3) = θ(x1, x2) + hx3a3,

Ψh : Ω→ R3, Ψh(x1, x2, x3) = ψh(x1, x2) + hx3Sh(x1, x2)a3,

uh : Θh(Ω)→ R3, uh = Ψh ◦Θ−1
h .

(5.4.63)
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Note that

∇uh ◦Θh =
[
∇′ψh + hx3∇′(Sha3) hSha3

] [
∇′θ + hx3∇′a3 ha3

]−1

=
[
∇′ψh + hx3∇′(Sha3) Sha3

]
D
([
∇′θ + hx3∇′a3 a3

]
D
)−1

=
[
∇′ψh + hx3∇′(Sha3) Sha3

] [
∇′θ + hx3∇′a3 a3

]−1

,

(5.4.64)

where D = diag (1, 1, h). From our assumptions: Θ ∈ C2(ω;R3), Ψh ∈ W 1,2(ω;R3),

uh ∈ W 1,2(ω;R3).

Directly from Lemma 5.4.3 we have the following result.

Corollary 5.4.16. Let α > 0. Then there are constants c > 0 and C, such that for all

ψ,S ∈ AN for all h > 0 small enough we have the estimate

‖ψ‖4
L4(ω;R3) + ‖S‖2

L2(ω;SO(3)) + J2d,α
h (ψ,S) ≥

c

hα

(
‖∇′ψT∇′ψ −∇′θT∇′θ‖2

L2(ω;R2×2)

+ ‖∇′ψTS∇′θ −∇′θTST∇′ψ‖2
L2(ω;R2×2) + ‖Sa3 · ∂βψ‖2

L2(ω;R3×2)

)
+ c
�
‖ψ‖4

W 1,4(ω;R3) + ‖S‖2
L2(ω;SO(3)) + χ{α≥2}‖∇′S‖2

L2(ω;R3×6)

�
− C.

(5.4.65)

Next we prove the lower semicontinuity property of the flexural energy.

Lemma 5.4.17. Let Sn ⇀ S0 in W 1,2(ω;R3×3), with Sn,S0 ∈ W 1,2(ω;R3×3), for all

n ≥ 1. Then

lim inf
n→∞

∫
ω

qf (Sn,∇′Sn)
√
adx′ ≥

∫
ω

qf (S0,∇′S0)
√
adx′. (5.4.66)

Proof. Let us define F : ω × R3×3 × R3×6 → R, F (x′,R,Σ) = qf (x
′)(R,Σ)

√
a(x′).

From the growth condition given in assumption N2) we have

0 ≤ F (x′,R,Σ) ≤ C(1 + ‖RTΣ‖2
F ) ≤ C(1 + ‖R‖2

F )(1 + ‖Σ‖2
F ). (5.4.67)

Since Qf is convex function, function F is trivially quasiconvex in the last variable. Ac-

cording to [32], Theorem 8.11.,

S 7→
∫
ω

qf (S,∇′S)
√
adx′ (5.4.68)

is weakly lower semicontinuous in W 1,2(ω;R3×3), which completes the proof. �
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Lemma 5.4.18. Let α ∈ 〈0, 2], and let (ψh,Sh)h>0 ⊂ AN satisfy bounds

‖∇′ψh‖W 1,4(ω;R3) ≤M, h‖∇′Sh‖L2(ω;R3×6) ≤Mhα/2 (5.4.69)

for a real M > 0. Let

I1 := ‖∇′ψT
h∇′ψh−∇′θT∇′θ‖2

L2(ω;R2×2) +‖Sha3 ·∂1ψh‖2
L2(ω;R) +‖Sha3 ·∂2ψh‖2

L2(ω;R),

(5.4.70)

and

I2 :=
1

h

∫
Θh(Ω)

dist2(∇uh, SO(3))dx, (5.4.71)

where uh is defined in (5.4.63). Then there exist positive constants c, C (depending only

on M , α and properties of θ) such that

cI2 −O(hα) ≤ I1 ≤ CI2 +O(hα). (5.4.72)

Proof. Let us start the proof with a claim we will often use in several following proofs.

Since rotations SO(3) is a bounded set in M3×3 and Sh are measurable functions with

Sh(x
′) ∈ SO(3) a.e., (Sh)h>0 are uniformly bounded in L∞(ω;R3×3), and consequently

there is a constant M ′ > 0 such that

‖Sh‖L2(ω;SO(3)) ≤M ′ (5.4.73)

for all h > 0 (actually the constant M ′ depends only on the domain ω). Also, note that

(5.4.69) implies uniform boundedness of (∇′ψh)h>0 in L2(ω;R3×2).

We apply Lemma 5.5.7 for matrices Ph =
[
∇′ψh a

ψh
3

]
, Mh =

[
a1 a2 a3

]
,

Qh = Sh, Th =
[
∂1ψh ∂2ψh Sha3

]
and Nh = Sh

[
a1 a2 a3

]
. Bounds in the

lemma for our matrices depend on uniform bounds for matrices

Th =
[
∂1ψh ∂2ψh Sha3

]
, Nh = Sh

[
a1 a2 a3

]
and N−1

h =
[
a1 a2 a3

]T
STh .

(5.4.74)

Matrices
[
a1 a2 a3

]
and

[
a1 a2 a3

]T
depend only on the geometry of undeformed

shell. Since we assumed θ ∈ C2(ω;R3), those matrices are bounded in L∞(ω;R3×3). So,

by using (5.4.73) we obtain uniform bounds

‖Nh‖L2(ω;R3×3), ‖N−1
h ‖L2(ω;R3×3) ≤M ′′.
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On the other hand, matrices Th =
[
∂1ψh ∂2ψh Sha3

]
have positive determinant (due

to (ψh,Sh) ∈ AN ) and are uniformly bounded in L2(ω;R3×3) (due to (5.4.69) and

(5.4.73)). Thus we are indeed able to apply Lemma 5.5.7, integrated over ω, and we

obtain that both bounds with constants independent on (ψh,Sh)h>0. Thus we conclude

that I1 can be bounded from below and above by constants multiplying

I3 :=

∫
ω

dist2

�[
∇′ψh Sha3

] [
Sha1 Sha2 Sha3

]−1

, SO(3)

�√
adx′

=

∫
Ω

dist2

�[
∇′ψh Sha3

] [
a1 a2 a3

]−1

, SO(3)

�√
adx.

(5.4.75)

We will now apply Lemma 5.5.2 for matrices

[
∇′ψh Sha3

] [
a1 a2 a3

]−1

and
[
∇′ψh + hx3∇′(Sha3) Sha3

] [
∇′θ + hx3∇′a3 a3

]−1

. (5.4.76)

Since matrices
[
a1 a2 a3

]−1

and
[
x3∇′a3 0

]−1

are only undeformed geometry de-

pendant, by similar arguments as before they are bounded in L∞(ω;R3×3) by a constant

Cgeo. We proved that matrices
[
∂1ψh ∂2ψh Sha3

]
(denoted by Th in application of the

previous lemma) are uniformly bounded in L2(ω;R3×3). We finally apply Lemma 5.5.2

for matrices in (5.4.76) and obtain that L2(ω;R3×3) norm of their difference is bounded

by

C

�∥∥∥[∇′ψh Sha3

]∥∥∥2

L2(ω;R3×3)
C6

geoh
2 +

∥∥∥[hx3∇′(Sha3) 0
]∥∥∥2

L2(ω;R3×3)
C2

geo

�
.

(5.4.77)

Also, we note that ∂β(Sha3) = ∂βSha3 + Sh∂βa3. Derivatives of a3 are also bounded by

Cgeo, while for derivatives of Sh we use bound (5.4.69) to conclude that the expression in

(5.4.77) is bounded from above by O(hα). After the change of variables we further have

that I3 and

I4 :=∫
Ω

dist2

�[
∇′ψh + hx3∇′(Sha3) Sha3

] [
∇′θ + hx3∇′a3 a3

]−1

, SO(3)

�√
adx

=

∫
Θh(Ω)

det∇Θ−1
h dist2(∇uh, SO(3))dz

(5.4.78)
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also differ by O(hα). Finally, since

det∇Θ−1
h = det

[
∇′θ + hx3∇′a3 ha3

]−1

=
1

h det
[
∇′θ + hx3∇′a3 a3

]
can be bounded from above and below by a constant multiplying h−1, we obtain the claim

by comparing I1, I3, I4 and I2. �

Proof of Theorem 5.4.1.c). We prove the theorem by the definition od Γ–limit. It is clear

that the ”lim sup” part is obtained for the constant sequence (ψ,S) in the set of admissible

functions.

Let us prove the ”lim inf” part: let us take any (ψh,Sh) → (ψ0,S0) in L4(ω;R3) ×
L2(ω; SO(3)) with lim inf J2d,2

h (ψh,Sh) < +∞. From coercivity estimate from Corol-

lary 5.4.16 we have

‖Sh‖W 1,2(ω;SO(3)), ‖ψh‖W 1,4(ω;R3) ≤ C (5.4.79)

and

‖∇′ψT
h∇′ψh −∇′θT∇′θ‖2

L2(ω;R3) + ‖∇′ψT
hSh∇′θ −∇′θTSTh∇′ψh‖2

L2(ω;R3)

+ ‖Sha3 · ∂1ψh‖2
L2(ω;R3) + ‖Sha3 · ∂2ψh‖2

L2(ω;R3) ≤ Ch2.
(5.4.80)

Thus there is a subsequence of (ψh,Sh) that converges weakly to (ψ0,S0) inW 1,4(ω;R3)

×W 1,2(ω; SO(3)). Due to the uniqueness of limits (weak W 1,4(ω;R3)×W 1,2(ω; SO(3))

and strong L4(ω;R3) × L2(ω; SO(3)) limit), the whole sequence (ψh,Sh) converges

weakly to (ψ0,S0) in W 1,4(ω;R3)×W 1,2(ω; SO(3)).

If we prove that (ψ0,S0) ∈ A±F (AF , if we have Dirichlet boundary conditions pre-

scribed on a set of positive capacity), we will be done. Namely, since wm is nonnegative

and qf is sequentially weakly lower semicontinuous by Lemma 5.4.17, we will indeed

have lim infh→0 J
2d,2
h (ψh,Sh) ≥ J2d,2

0 (ψ0,S0).

From the last three terms in (5.4.80) and Lemma 5.4.5 we conclude that

∂1ψ0 · S0a2 − S0a1 · ∂2ψ0 = 0, S0a3 · ∂βψ0 = 0, β ∈ {1, 2}. (5.4.81)

By Lemma 5.4.18 (for α = 2, from (5.4.79) and (5.4.80)) we obtain∫
Θh(Ω)

dist2(∇uh, SO(3))dx ≤ Ch3. (5.4.82)
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Now we are in the assumptions of Theorem 1 from [40] and conclude that there is R ∈
W 1,2(Ω, SO(3)) such that ∂3R = 0 and

∇uh ◦Θh =
[
∇′ψh + hx3∇′(Sha3) Sha3

] [
∇′θ + hx3∇′a3 a3

]−1

→ R (5.4.83)

in L2(Ω,R3). By same reasoning as in the proof of Lemma 5.4.18, from Lemma 5.5.2 we

have that the difference[
∇′ψh Sha3

] [
a1 a2 a3

]−1

−
[
∇′ψh + hx3∇′(Sha3) Sha3

] [
∇′θ + hx3∇′a3 a3

]−1

(5.4.84)

tends to 0 in L2(ω;R3×3) as h → 0. The weak convergence (ψh,Sh) ⇀ (ψ0,S0) in

W 1,4(ω;R3) × W 1,2(ω; SO(3)) implies that the first term in the difference from above

converges to
[
∇′ψ0 S0a3

] [
a1 a2 a3

]−1

. By (5.4.83) the second term tends to R.

Therefore, by the uniqueness of the limits we conclude that

R =
[
∇′ψ0 S0a3

] [
a1 a2 a3

]−1

∈ W 1,2(Ω, SO(3)). (5.4.85)

Since any two functions Q1,Q2 from W 1,2(Ω, SO(3)) specially belong to L∞(Ω;R3×3)

(due to boundedness of SO(3) in M3×3), we have

‖∂β(Q1Q2)‖L2(Ω;R3×3)

≤ C
(
‖∂βQ1‖L∞(Ω;R3×3)‖Q2‖L2(Ω;R3×3) + ‖Q1‖L∞(Ω;R3×3)‖∂βQ2‖L2(Ω;R3×3)

)
,

so their product is also in W 1,2(Ω, SO(3)). Thus we conclude

RST0 =
[
∇′ψ0 S0a3

] [
S0a1 S0a2 S0a3

]−1

∈ W 1,2(Ω, SO(3)), (5.4.86)

Since RST0 ∈ SO(3) a.e., we conclude that both matrices in the product from above are

regular a.e. Specially, ∇′ψ0 has a full rank and aψ0
3 exists a.e. By Lemma 5.5.3 for

P =
[
∇′ψ0 a

ψ0
3

]
, Q = S0, M =

[
a1 a2 a3

]
, from by (5.4.81) we obtain that

S0a3 = a
ψ0
3 . Again by using (5.4.81) we can apply Lemma 5.5.6 for matrices Q = S0,

M =
[
a1 a2 a3

]
, P =

[
∇′ψ0 a

ψ0
3

]
and T =

[
∇′ψ0 S0a3

]
to obtain that either

RST0 = I or RST0 = diag (−1,−1, 1), pointwise. Since RST0 ∈ W 1,2(Ω, SO(3)) there

are only two possibilities: the plus sign over the whole domain ω or the minus sign over

the whole domain ω, thus (ψ,S) ∈ A±F .
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In the case of prescribed Dirichlet boundary condition, since on the boundary we have

the plus sign this implies ∇′ψ = S∇′θ, so we have (ψ0,S0) ∈ AF , and the proof is

complete. �

Proposition 5.4.19. Let us assume γ0 = ∅, i.e. there is no Dirichlet condition.

a) Let S ∈ W 1,2(ω; SO(3)). Then there exists ψ ∈ W 2,2(ω;R3) such that (ψ,S) ∈
A±F if and only if S satisfies

∂1Sa2 = ∂2Sa1. (5.4.87)

In that case all such functionsψ are of the formψ1+c orψ2+c, whereψ1 = −ψ2,

and c ∈ R3 is an arbitrary constant vector.

b) Let ψ ∈ W 2,2(ω;R3). Then there exists S ∈ W 1,2(ω; SO(3)) such that (ψ,S) ∈
A±F if and only if ψ satisfies

∇ψT∇ψ = ∇θT∇θ. (5.4.88)

In that case there are exactly two options for such functions S1, S2. They satisfy

S1∇θ = −S2∇θ.

c) For any two pairs (ψ1,S1), (ψ2,S2) ∈ A±F satisfying either ψ1 = ψ2 or S1 = S2,

the values

qf (Si,∇′Si) = q̃f (b(ψ)− b(θ)),

for i = 1, 2 and j = 1, 2 are the same, where q̃f is defined in (5.3.8).

Proof. In the case a), there is ψ ∈ W 2,2(ω;R3) such that (ψ,S) ∈ A±F iff either ∇ψ =

+S∇θ or ∇ψ = −S∇θ. The compatibility condition for these PDEs in terms of ψ

is that the rot of the right hand side is equal to 0, i.e. ∂2(S∂1θ) = ∂1(S∂2θ). Since

θ ∈ C2(ω;R3) and ∂12θ = ∂21θ, we obtain the first part of the claim a).

In case that compatibility condition is satisfied, each of two PDE systems ∇ψ =

±S∇θ (regarding the sign ±) admits one solution up to an additive constant vector. It is

clear that the sum of two solutions ψ1 +ψ2 of different PDEs has gradient equal to 0, so

the claim a) is proved.
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In the case b), we again start with (ψ,S) ∈ A±F iff ∇ψ = ±S∇θ. From this we

obtain that

∇ψT∇ψ = (±S∇θ)T (±S∇θ) = ∇θT∇θ.

Let us prove the other direction: let∇ψT∇ψ = ∇θT∇θ is satisfied. Consequently,

[
∇ψ aψ3

]T [
∇ψ aψ3

]
=

∇ψT∇ψ 0

0 1


=

∇θT∇θ 0

0 1

 =
[
∇θ a3

]T [
∇θ a3

]
.

That implies that all angles and vector lengths in the basis {a1,a2,a3} are the same as in

the basis {∂1ψ, ∂2ψ,a
ψ
3 }. For a.e. points x′ ∈ ω let us define a linear operator S such

that S
[
∇θ a3

]
=
[
∇ψ aψ3

]
. It is well defined and regular since it maps a basis to a

basis. Since all angles and vector lengths are preserved, S satisfies

S
[
a1

‖a1‖
a2−(a2·a1)a1

‖a2−(a2·a1)a1‖ a3

]
=
[

∂1ψ
‖∂1ψ‖

∂2ψ−(∂2ψ·∂1ψ)∂1ψ
‖∂2ψ−(∂2ψ·∂1ψ)∂1ψ‖ aψ3

]
meaning that S maps an orthonormal basis to another one. Since both basis are right ones,

we have S ∈ SO(3) a.e. The regularity of S is a consequence of regularities of ψ and θ.

Also, note that there is exactly one such S1 satisfying ∇ψ = S1∇θ (since it is

uniquely defined on the basis). In the same manner, there is exactly one such S2 sat-

isfying∇ψ = −S∇θ. The rest of the part b) is clear.

In the case c), we have two options. If ψ1 = ψ2, we are in the case b) of this

proposition. By Remark 5.3.3 all calculations in Subsection 5.3.2 are same for S1 and

S2 satisfying ∇′ψ = S∇′θ. On the other hand, if S1 = S2, we are in the case a). We

firstly see that q̃f depends only on gradients of ψ, so an additive constant vector c does

not change the value of q̃f . Secondly, q̃f is a quadratic form in ∇′ψ, so the ± sign does

not change its value either. �

Due to the reasons explained in Subsection 5.3.2 and due to Proposition 5.4.19, in

Theorem 5.4.1.c) we obtained the limit which is of the same form as the flexurall shell

model appearing in the literature in [40]. In the next proof this is even more clear.

Proof of Theorem 5.4.2.d). Let us prove that any ψ ∈ W 2,2(ω; SO(3)) with the property

that there exists S0 ∈ W 1,2(ω; SO(3)) such that (ψ,S0) ∈ A±F is necessarily in the set
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of admissible functions for Γ
�
(J2d,2

S,h )h>0

�
. After applying Γ–limit to the inequality

J2d,2
S,h (ψ1) ≤ J2d,2

h (ψ1,S1) (5.4.89)

to an arbitrary pair (ψ1,S1) ∈ AN , we obtain

Γ
�
(J2d,2

S,h )h>0

�
(ψ1) ≤ J2d,2

0 (ψ1,S1). (5.4.90)

We plug in (ψ,S0) in last inequality and obtain

Γ
�
(J2d,2

S,h )h>0

�
(ψ) ≤ J2d,2

0 (ψ,S0) < +∞. (5.4.91)

This proves the claim from the beginning, and also an inequality we are going to use soon.

Let us now take any admissible ψ for Γ
�
(J2d,2

S,h )h>0

�
. We will prove that neces-

sarily there exists S0 ∈ L2(ω; SO(3)) such that (ψ,S0) ∈ A±F . Since ψ is admissi-

ble, by the definition of Γ–limit (and after taking subsequence if necessary), there exists

(ψh)h>0 ⊂ W 1,4(ω;R3) which converges to ψ in L4(ω;R3) and such that J2d,2
S,h (ψh) →

Γ
�
(J2d,2

S,h )h>0

�
(ψ) and such that for all h we have uniform bound J2d,2

S,h (ψh) < C. By the

relation of functionals J2d,2
S,h and J2d,2

h (through the infimum over S ∈ L2(ω; SO(3))), there

exists (Sh)h>0 ⊂ L2(ω; SO(3)) such that J2d,2
h (ψh,Sh) ≤ J2d,2

S,h (ψh) +h. Since the range

of functions in this sequence (Sh)h>0 are rotations, the sequence is trivially uniformly

bounded in L2(ω; SO(3)). Due to Corollary 5.4.16, we obtain that ‖Sh‖W 1,2(ω;SO(3)) is

uniformly bounded, thus there is a subsequence (still denoted by h) such that Sh ⇀ S0

in W 1,2(ω; SO(3)), for some accumulation point S0 ∈ W 1,2(ω; SO(3)). From the com-

pactness theorem, we also have Sh → S0 in L2(ω; SO(3)). By applying the lim inf to

the inequality J2d,2
h (ψh,Sh) ≤ J2d,2

S,h (ψh) + h and by using the Γ–limit of the family

(J2d,2
h )h>0 we obtain

J2d,2
0 (ψ,S0) ≤ lim inf

h→0
J2d,2

0 (ψh,Sh) ≤ lim inf
h→0

J2d,2
S,0 (ψh)

= lim
h→0

J2d,2
S,h (ψh) = Γ

�
(J2d,2

S,h )h>0

�
(ψ) < +∞. (5.4.92)

Since J2d,2
0 (ψ,S0) < +∞, this proves that (ψ,S0) ∈ A±F .

We now have both implications of the claim: ψ is admissible for Γ
�
(J2d,2

S,h )h>0

�
iff

there exists S0 such that (ψ,S0) ∈ A±F . From Proposition 5.4.19.b) we obtain that this is

equivalent to∇ψT∇ψ = ∇θT∇θ. Hence we proved that the set of admissible functions
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for Γ
�
(J2d,2

S,h )h>0

�
is exactly B2d,2

S,0 . Also, from inequalities (5.4.91) and (5.4.92) we obtain

that for any ψ ∈ B2d,2
S,0 and its appropriate S0 (such that (ψ,S) ∈ A±F ) we have

Γ
�
(J2d,2

S,h )h>0

�
(ψ) = J2d,2

0 (ψ,S0) =
1

12

∫
ω

qf (S0,∇′S0)
√
adx′ −

∫
ω

f ·ψ√adx′.
(5.4.93)

From the definition of q̃f in (5.3.8) and its property (5.3.9) we get that we can write

Γ
�
(J2d,2

S,h )h>0

�
(ψ) =

1

12

∫
ω

q̃f (b(ψ)− b(θ))
√
adx′ −

∫
ω

f ·ψ√adx′ = J2d,2
S,0 (ψ),

(5.4.94)

which concludes the proof. �

5.4.5. Constrained membrane plate model - convergence for the case α ∈
〈0, 5/3〉

In this subsection we prove the claims of Theorem 5.4.2.c). The goal is to obtain a limit

and compare the result with the constrained membrane plate model obtained as the Γ–

limit of the three-dimensional elastic energy in [30], presented in Theorem 3.2.1.c).

Note that there are some additional assumptions:

• the undeformed geometry is flat, i.e. we have θ(x′) = (x′, 0);

• γ0 = ∅, i.e. there is no Dirichlet condition;

• the function Wm(Y) from the definition of wm satisfies

Wm(Y) ≤ C‖Y‖2
F . (5.4.95)

Due to simple geometry assumptions we have ai = ei and ∇θ = I3,2, where

I3,2 =


1 0

0 1

0 0

 .
We will again use functions Θh, Ψh and uh as in Subsection 5.4.4. However, those
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definitions and properties are now simpler:

Θh(x1, x2, x3) = (x1, x2, hx3),

Ψh(x1, x2, x3) = ψh(x1, x2) + hx3Sh(x1, x2)e3,

uh(x1, x2, x3) = ψh(x1, x2) + x3Sh(x1, x2)e3,

∇uh ◦Θh =
[
∇′ψh + x3∇′She3 She3

]
. (5.4.96)

Also, we have Θ(Ω) = ω × [−h/2, h/2]

We will use a lot of results and ideas from [30]. Firstly, we will use the notation

O(2, 3) from the same paper denoting 3 × 2 matrices with orthornormal columns. After

that, we need the following definition.

Definition 5.4.20 ([30]). An origami map on a bounded open set ω ⊂ R2 is a pair (T , v)

where

• T = {Tj}j is a finite family of (closed, nondegenerate) triangles with disjoint

interiors such that ω is contained in ωT := ∪Tj∈T Tj; each pair (Ti, Tj) is either

disjoint, or shares a corner or shares a side;

• v ∈ W 1,∞(ωT ;R) is affine on each Tj , and ∇′v ∈ O(2, 3) a.e.

Following this definition, for each origami map (T , v) authors define degeneracy fac-

tor Γ(T ), cardinality |T | and maximum jump ϕ of ∇′v. Their precise definitions are not

important for further proofs.

They also prove following theorems:

Theorem 5.4.21 ([30], Theorem 1.8.). Let u be a short map on a bounded Lipschitz set

ω ⊂ R2. Then for every δ > 0 we can find an origami map (Tδ, vδ) on ω such that

‖u− vδ‖L∞(ω;R3) ≤ δ, |ϕδ| ≤ δ, (5.4.97)

where ϕδ is the maximum jump of∇′vδ in ω. Furthermore, Γ(Tδ) ≤ Cω.

Theorem 5.4.22 ( [30], Theorem 1.6.). Let (T , v) be an origami map on a bounded

Lipschitz set ω ⊂ R2, and let ϕ be the maximum jump of ∇′v. Then for every h > 0
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small enough (depending only on ω and T ), there is a function vh ∈ C2(ω;R3) such that

‖v − vh‖L∞(ω;R3) ≤ CΓ(T )ϕh
1/3,

‖∇′vTh∇′vh − I‖2
L2(ω;R2×2) + h2‖D2vh‖2

L2(ω;R3×2×2) ≤ CΓ(T )|T |ϕ2h5/3,

‖ dist(∇′vh, O(2, 3))‖L∞(ω;R) + h‖D2vh‖L∞(ω;R3×2×2) ≤ CΓ(T )ϕ,

(5.4.98)

where CΓ(T ) is a non-decreasing function in Γ(T ).

Before proving the main result, we need to prove a lemma on our own.

Lemma 5.4.23. There exists m > 0 such that columns X1, X2 of all matrices X from

the set

Sm := {X ∈M3×2 : dist(X, O(2, 3)) ≤ m}

satisfy ‖X1‖ > 0, ‖X2‖ > 0, ‖X1 ×X2‖ ≥ 1
2
.

Proof. It is clear that Sm is compact in M3×2. We note that there is am0 > 0 small enough

such that for all m ≤ m0 in Sm all matrices have full rank. Otherwise, as m→ 0, there is

a sequence (Xm)m>0 from a compact set whose matrix columns satisfy Xm
1 ×Xm

2 = 0.

Their accumulation point X0 also satisfies X0
1 ×X0

2 = 0, which gives contradiction since

dist(Xm, O(2, 3))→ 0 implies X0 ∈ O(2, 3).

Let us take such m0 and any m ≤ m0. Since Sm is compact and does not contain

matrices which are not full rank, the values ‖X1‖, ‖X2‖ and ‖X1 × X2‖ are strictly

greater than zero. Moreover, the function

Φ1(X) := ‖X1 ×X2‖ (5.4.99)

is a smooth function on the compact set Sm, so it is Lipschitz function with constant LΦ1 .

Thus for all X ∈ Sm and its closest O(2, 3) matrix RX we have∣∣∣‖X1 ×X2‖ − 1
∣∣∣ =

∣∣∣‖X1 ×X2‖ − ‖R1 ×R2‖
∣∣∣ ≤ LΦ1‖X−R‖ ≤ LΦ1m. (5.4.100)

Thus, with taking m even smaller if necessary, we can make that for all X ∈ Sm we have

Φ1(X) ≥ 1/2. �

We are now ready to prove the claim from Theorem 5.4.2.c), by editing proofs of

Theorems 1.1. and 1.2. and Lemma 5.1. from the same paper [30].
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Proof of Theorem 5.4.2.c). Due to nonnegativity of wm and qf and linearity of the force

term, the only thing left to prove in the ”lim inf” part is that the only admissible ψ are the

short ones.

Let us take any ψ ∈ L4(ω;R3) and any (ψh)h>0 ⊂ L4(ω;R3) converging strongly to

ψ in L4(ω;R3) with lim infh→0 J
2d,〈0,5/3〉
S,h (ψh) < +∞. Specially we may conclude (with

taking subsequence if necessary) that J2d,〈0,5/3〉
S,h (ψh) < C. Consequently, (ψh)h>0 ⊂

W 1,4(ω;R3). Let for all h > 0 function Sh ∈ L2(ω; SO(3)) denote one for which

J
2d,〈0,5/3〉
h (ψh,Sh) ≤ J

2d,〈0,5/3〉
S,h (ψh) + h. Since this implies J2d,〈0,5/3〉

h (ψh,Sh) < +∞,

we conclude Sh ∈ W 1,2(ω; SO(3)) for all h > 0.

We again use the argument we already used: since rotations SO(3) is a bounded set in

M3×3 and Sh are measurable functions with Sh(x
′) ∈ SO(3) a.e., we get the bound

‖Sh‖L2(ω;SO(3)) ≤M ′ (5.4.101)

for all h > 0 with a constant M ′ > 0 depending only on the domain ω. From coercivity

estimate from Corollary 5.4.16 we have

h‖∇′Sh‖L2(ω;R3×6) ≤Mhα/2, ‖∇′ψh‖L4(ω;R3×2) ≤M (5.4.102)

and

‖∇′ψT
h∇′ψh − I‖2

L2(ω;R3) + ‖She3 · ∂1ψh‖2
L2(ω;R3) + ‖She3 · ∂2ψh‖2

L2(ω;R3) ≤ Chα.

(5.4.103)

From these bounds, from Lemma 5.4.18 we have that

1

h

∫
ω×[−h/2,h/2]

dist2(∇uh, SO(3))dx ≤ C ′hα, (5.4.104)

and ∫
ω×[−1/2,1/2]

dist2(∇hΨh, SO(3))dx ≤ C ′hα, (5.4.105)

by change of variables, with uh and Ψh defined in (5.4.96). Moreover, due to definition

of Ψh and uniform bounds (5.4.101) and (5.4.102) we have

‖∇Ψh‖2
L2(ω×[−1/2,1/2];R3×3) =

∥∥∥[∇′ψh + hx3∇′She3 She3

]∥∥∥2

L2(ω×[−1/2,1/2];R3×3)

≤ c
�
‖∇′ψh‖2

L2(ω;R3×2) + h2‖∇′Sh‖2
L2(ω;R3×6) + ‖Sh‖2

L2(ω;SO(3))

�
≤ M̃. (5.4.106)
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Thus, the family (Ψh)h>0 is uniformly bounded in W 1,2(ω × [−1/2, 1/2];R3), so there

is a convergent subsequence. Let us take any such subsequence (still denoted by h) and

its limit Ψ0.

From (5.4.105) for α′ = 1
2
(α + 5/3) we obtain

1

hα′

∫
ω×[−1/2,1/2]

dist2(∇hΨh, SO(3))dx→ 0. (5.4.107)

On the other hand, by Theorem 3.2.1.c) (forW 1
α(X) = dist2(X, SO(3)), α′ = 1

2
(α+5/3),

and forcing equal to 0) and by the ”lim inf” part of the definition of Γ–limit for such

(J
3d,〈0,5/3〉
h )h>0 we see that the expression from (5.4.107) tends to 0 if and only if the limit

Ψ0 is a short map. More precisely, we obtain that ∂3Ψ0 = 0,∇Ψ̃
T

0∇Ψ̃0 ≤ I.

Again due to bound for (Sh)h>0 in (5.4.102) we conclude that

hx3∇′She3 → 0 in L2(ω × [−1/2, 1/2];R3)

Due to∇′ψh ⇀ ∇′ψ in L4(ω;R3) (from compactness and uniform bound (5.4.102)), we

have

∂βΨh =
[
∇′ψh + hx3∇′She3 She3

]
eβ ⇀ ∂βψ in L2(Ω1;R3). (5.4.108)

By using uniqueness of limits in distributions we get ∇′Ψ̃0 = ∇′ψ and ∇′ψT∇′ψ ≤ I,

which concludes the proof for the ”lim inf” part of Theorem 5.4.2.c).

Let us now proceed to the more complicated part of the proof of the proposition: the

”lim sup” part. Without loss of generality we can assume that f = 0 since it is a linear

part of the functional. Let us start from the end of the proof, let us assume that we have

obtained a family (ψh,Sh) ⊂ AN for which bounds

h‖∇′Sh‖L2(ω;R3×6) ≤Mhα/2, ‖∇′ψh‖L4(ω;R3×2) ≤M (5.4.109)

hold. According to assumptions on wm and qf (including (5.4.95)) we have

h−α
∫
ω

wm(Sh,∇′ψh)dx
′ + h−α+2 1

12

∫
ω

qf (Sh,∇′Sh)dx′

≤ C1h
−α
(
‖∇′ψT

h∇′ψh − I‖2
L2(ω;R2×2) + ‖∇′ψT

hShI3,2 − I3,2
TSTh∇′ψh‖2

L2(ω;R2×2)

+ ‖She3 · ∂1ψh‖2
L2(ω;R) + ‖She3 · ∂2ψh‖2

L2(ω;R)

)
+ C2h

−α+2(1 + ‖∇′Sh‖2
L2(ω;R3×6))
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Using Lemma 5.4.18 (due to (5.4.109)) we obtain

h−α
∫
ω

wm(Sh,∇′ψh)dx
′ + h−α+2 1

12

∫
ω

qf (Sh,∇′Sh)dx′

≤ C3 · D(h;ψh,Sh) +O(h5/3−α) (5.4.110)

with

D(h;ψh,Sh) := h−α−1

∫
ω×[h/2,−h/2]

dist2(∇uh, SO(3))

+ h−α‖∇′ψT
hShI3,2 − I3,2

TSTh∇′ψh‖2
L2(ω;R2×2) + h−α+2‖∇′Sh‖2

L2(ω;R×6) (5.4.111)

and uh : ω× [−h
2
, h

2
], uh(x) := ψ(x′) +x3S(x′)e3. We will prove that for arbitrary short

ψ ∈ W 1,4(ω;R3) there exists (ψn(h),Sn(h))h>0 such that ψn(h) → ψ in L4(ω;R3) and

D(h;ψn(h),Sn(h))→ 0 as h→ 0.

So, let us take any short ψ ∈ W 1,4(ω;R3). Note that this implies ψ ∈ W 1,∞(ω;R3).

For ψ due to Theorem 5.4.21 for every δ > 0 there is an origami map (Tδ,ψδ) which is δ

close to ψ in L∞(ω;R3) with |ϕδ| ≤ δ. Let us take sequence hk → 0. For k ≥ k0(δ) big

enough we can apply Theorem 5.4.22 to find ψδ,k ∈ C2(ω;R3) satisfying bounds

‖ψδ −ψδ,k‖L∞(ω;R3) ≤ CΓ(Tδ)ϕδh
1/3
k ,

‖∇′ψT
δ,k∇′ψδ,k − I‖2

L2(ω;R2×2) + h2
k‖D2ψδ,k‖2

L2(ω;R3×2×2) ≤ CΓ(Tδ)|Tδ|ϕ2
δh

5/3
k ,

‖ dist(∇′ψδ,k, O(2, 3))‖L∞(ω;R) + hk‖D2ψδ,k‖L∞(ω;R3×2×2) ≤ CΓ(Tδ)ϕδ,

(5.4.112)

Since constant CΓ(Tδ) is a non-decreasing function in Γ(Tδ), and Γ(Tδ) ≤ Cω, we have

CΓ(Tδ) ≤ C ′ω. Let us focus only on deltas that are so small such that δC ′ω ≤ m, where m

is from Lemma 5.4.23. Specially, we have that

‖ dist(∇′ψδ,k, O(2, 3))‖L∞(ω;R) ≤ CΓ(Tδ)ϕδ ≤ δC ′ω ≤ m, (5.4.113)

so ∇′ψδ,k ∈ Sm. Also note that from the triangle inequality together with the first bound

in (5.4.112) we have

‖ψδ,k −ψ‖L∞(ω;R3) ≤ ‖ψδ,k −ψδ‖L∞(ω;R3) + ‖ψδ −ψ‖L∞(ω;R3) ≤ CΓ(Tδ)ϕδh
1/3
k + δ.

(5.4.114)

Let us define

Φ2(X) =
[

X1

‖X1‖
X1×X2

‖X1×X2‖ ×
X1

‖X1‖
X1×X2

‖X1×X2‖

]
(5.4.115)
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and Sδ,k := Φ2(∇′ψδ,k). Note that Φ2(X) ∈ SO(3) for all X for which the function Φ2

is defined. On the domain Sm the function Φ2 is well-defined, and moreover it is smooth.

Sinceψδ,k areC2 functions, and∇′ψδ,k ∈ Sm, we conclude that Sδ,k are inC1(ω; SO(3)).

Note that ∇′Sδ,k = ∇Φ2(∇′ψδ,k) (D2ψδ,k). Since Φ2 is smooth on the compact set

Sm, its derivative is bounded from above with a constant MΦ′2
, thus for all x′ ∈ ω we

obtain

‖∇′Sδ,k(x′)‖2
F ≤M ′2

Φ′2
‖D2ψδ,k(x

′)‖2
F (5.4.116)

(the Frobenius matrix norm is submultiplicative with a constant depending on the dimen-

sions of matrices). From here and from second bound in (5.4.112) we obtain that there is

a constant CS such that

‖∇′Sδ,k‖2
L2(ω;R3×6) ≤ CS · CΓ(Tδ)|Tδ|ϕ2

δh
5/3
k . (5.4.117)

By noting that in each x′ ∈ ω the matrix ∇′ψT
δ,kSδ,kI3,2 − I3,2

TSTδ,k∇′ψδ,k is a skew-

symmetric 2× 2 matrix, we obtain that

‖∇′ψT
δ,kSδ,kI3,2 − I3,2

TSTδ,k∇′ψδ,k‖2
F = 2

∣∣∣∂1ψδ,k · Sδ,ke2 − ∂2ψδ,k · Sδ,ke1

∣∣∣2. (5.4.118)

Let us define

Φ3(X) =
∣∣∣X1 · Φ2(X)e2 −X2 · Φ2(X)e1

∣∣∣. (5.4.119)

We note that Φ3(∇′ψδ,k) =
∣∣∣∂1ψδ,k · Sδ,ke2 − ∂2ψδ,k · Sδ,ke1

∣∣∣2. Also, Φ3 is a smooth

function on a compact set Sm, so specially it is a Lipschitz function with a constant LΦ3 .

Let X ∈ Sm and RX from O(2, 3) be its closest matrix. Since Φ3 = 0 on O(2, 3) we have

Φ3(X)2 = |Φ3(X)− Φ3(RX)|2 ≤ L2
Φ3

dist2(X, O(2, 3)) (5.4.120)

and consequently

‖∇′ψT
δ,kSδ,kI3,2 − I3,2

TSTδ,k∇′ψδ,k‖2
F ≤ 2L2

Φ3
dist2(∇′ψδ,k, O(2, 3)). (5.4.121)

Let us define uδ,k : ω × [−hk
2
, hk

2
], uδ,k(x) := ψδ,k(x

′) + x3Sδ,k(x
′)e3. Let us fix

x′ ∈ ω, and let
[
R1 R2

]
be a O(2, 3) matrix which is the closest to∇′ψδ,k(x

′). Let R ∈
SO(3) be with first two columns equal to R1, R2. In other words, R3 := Re3 = R1×R2

‖R1×R2‖ .

Since∇uδ,k =
[
∇′ψδ,k + x3∇′Sδ,ke3 Sδ,ke3

]
, we can bound

dist2(∇uδ,k, SO(3)) ≤ ‖∇uδ,k −R‖2
F

≤ 2
(
‖∇′ψδ,k −

[
R1 R2

]
‖2
F + |x3|2‖∇′Sδ,k‖2

F + ‖Sδ,ke3 −R3‖2
F

)
. (5.4.122)
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Due to (5.4.116), |x3|2‖∇′Sδ,k‖2
F ≤ h2

kM
′2
Φ′2
‖D2ψδ,k‖F . Since Φ1(X) = ‖X1×X2‖ is

a Lipschitz function on Sm with the constant LΦ1 , the last term in (5.4.122) can be bound

by L2
Φ1
‖∇′ψδ,k −

[
R1 R2

]
‖2
F . Altogether, there is a constant Cu such that

dist2(∇uδ,k, SO(3)) ≤ Cu(dist2(∇′ψδ,k, O(2, 3)) + h2
k‖D2ψδ,k‖F ). (5.4.123)

Note that now we have bounded all expressions in D(h;ψδ,k,Sδ,k) from (5.4.111).

Indeed, by using (5.4.123), (5.4.121), and (5.4.117) we obtain

D(hk;ψδ,k,Sδ,k) ≤ Ch−αk

(∫
ω

dist2(∇′ψδ,k, O(2, 3)) + h2
k‖D2ψδ,k‖2

L2(ω;R3×2×2)

)
.

(5.4.124)

where C is independent of δ and k. By second inequality in (5.4.112) and Lemma 5.5.9

we bound

D(hk;ψδ,k,Sδ,k) ≤ C · CΓTδ
|Tδ|ϕ2

δh
5/3−α
k . (5.4.125)

To finish the proof, we have to perform carefully the diagonalisation procedure for the

family (ψδ,k,Sδ,k)(δ,k) such that we can use the last bound in the inequality (5.4.110). Let

us for arbitrary small δ > 0 define k(δ) sufficiently large such that

CΓTδ
|Tδ|ϕ2

δh
5/3−α
k(δ) ≤ δ and CΓ(Tδ)ϕδh

1/3
k(δ) ≤ δ, (5.4.126)

(which is possible since (hk)k>0 are independent of δ and converge to 0) and let us define

family (ψδ,Sδ)δ>0 by (ψδ,Sδ) = (ψδ,k(δ),Sδ,k(δ)).

By combining (5.4.126) and (5.4.117), we conclude that we have uniform bound (in

terms of δ) of the form hk(δ)‖∇′Sδ‖L2(ω;R3×6) ≤ C
1/2
S h

α/2
k(δ). Since we already concluded

that for all δ and k we have ∇′ψδ,k ∈ Sm, which is a compact set in M3×2, we trivially

have a uniform bound for ‖∇′ψδ‖L4(ω;R3×2). That means that (5.4.109) is satisfied and we

are allowed to use (5.4.110) to obtain

h−αk(δ)

∫
ω

wm(Sδ,∇′ψδ)dx
′ + h−α+2

k(δ)

1

12

∫
ω

qf (Sδ,∇′Sδ)dx′

≤ C3 · D(hk(δ);ψδ,Sδ) +O(h
5/3−α
k(δ) ). (5.4.127)

By (5.4.125) and first assumption from (5.4.126), we get

h−αk(δ)

∫
ω

wm(Sδ,∇′ψδ)dx
′ + h−α+2

k(δ)

1

12

∫
ω

qf (Sδ,∇′Sδ)dx′ ≤ C ′δ +O(h
5/3−α
k(δ) )→ 0

(5.4.128)
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as δ → 0. Finally, from the second assumption in (5.4.126) and (5.4.114), we obtain that

ψδ converges to ψ in L∞(ω;R3), and consequently in L4(ω;R3) as well, so this finally

completes the ”lim sup” part of the proof. �

5.4.6. Convergence for cases α ∈ 〈−1, 0〉 and α ∈ 〈2,+∞〉

For completeness of the analysis, we will establish the Γ–limit of the family of func-

tionals (J2d,α
h )h>0 in two simpler cases: α ∈ 〈−1, 0〉 and α ∈ 〈2,+∞〉. After this analysis

the only case for which we didn’t find the Γ–limit is α ∈ [5/3, 2〉, which does not exists

in the analysis of 3d equations as well.

We start with a lemma for the case α ∈ 〈−1, 0〉.

Lemma 5.4.24. Let ω be a polygonal domain and γ0 = ∅ (i.e. there is no Dirich-

let boundary condition). Let (ψ,S) ∈ L4(ω;R3) × L2(ω; SO(3)). Then there exists

a sequence (ψn,Sn)n≥1 ⊂ AN such that (ψn,Sn) → (ψ,S) strongly in L4(ω;R3) ×
L2(ω; SO(3)).

Proof. In the view of Lemma A.1 with Remark A.2 (and the diagonalization argument),

it is sufficient to prove that there is a sequence (ψn,Sn)n≥1 ⊂ AM such that (ψn,Sn)→
(ψ,S) strongly in L4(ω;R3)×L2(ω; SO(3)), whereAM is defined in (5.4.6). Let us take

arbitrary n ≥ 1. Due to Theorem 4.4.20. from [17] (with taking smooth approximation

before if necessary), there is a triangulation Tn of ω and piecewise constant functions

φn (with respect to Tn) such that ‖φn − ψ‖L4(ω;R3) <
1
n

. On each triangle T of the

triangulation we take a smaller triangle T ′ similar to T with the incenter of T as center of

homothety and coefficient of homothety equal to 1−δ. Now we defineψn on each triangle

in the following manner: ψn = φn in T ′, ψn = 0 on the boundary of T , and piecewise

affine on T \T ′ (with respect to three trapezoids in T \T ′). It is clear that as δ → 0 we have

ψn → φn in L4(ω;R3), so we can choose δ = δ(n) such that ‖φn − ψn‖L4(ω;R3) <
1
n

.

By the triangle inequality, ψn → ψ in L4(ω;R3). Also, ψn ∈ W 1,4(ω;R3) since it

is piecewise affine. Also note that on T ′ the function ψn is constant and on T \ T ′ is

constant along one direction (parallel to sides of T ). This is why ∂1ψn × ∂2ψn = 0,

so for the choice Sn := S we will have det
[
Sna3 ∂1ψn ∂2ψn

]
= 0. Thus the pair

(ψn,Sn) ∈ AM is arbitrarily close to (ψ,S), which completes the proof. �
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Remark 5.4.25. Note that if ψ is more regular (ψ ∈ W 1,4(ω;R3)), we don’t need the

construction of the sequence from the main part of Lemma 5.4.24, we can use only the

sequence from Lemma A.1.

Proof of Theorem 5.4.1.a). Since the first two integrals in the definition of functional

J
2d,〈−1,0〉
h (ψ,S) are nonnegative and the last is linear, the ”lim inf” part is clear.

For the ”lim sup” part, we can neglect the force term since it is linear. Let us take

any (ψ,S) ∈ L4(ω;R3) × L2(ω; SO(3)). Let us take any sequence (ψn,Sn) from

Lemma 5.4.24 that converges strongly to (ψ,S) in L4(ω;R3) × L2(ω; SO(3)) and let

us define

n(h) := arg max
n≥1

{‖∇′ψn‖4
L4(ω;R3×3) + ‖∇′Sn‖2

L2(ω;R3×6) < hα/2}, (5.4.129)

in case that (sn)n≥1,

sn := ‖∇′ψn‖4
L4(ω;R3×3) + ‖∇′Sn‖2

L2(ω;R3×6),

is not uniformly bounded (note that hα/2 → +∞ as h→ 0, so the mapping is well defined

for all sufficiently small values of h), and n(h) = d1/he if (sn)n≥1 is uniformly bounded.

If (sn)n≥1 is uniformly bounded, then clearly n(h)→ +∞ and due to hα/2 → +∞ the

bound sn < hα/2 is satisfied for sufficiently small values of h. If (sn)n≥1 is not uniformly

bounded, as h → 0, due to hα/2 → +∞ we have n(h) → +∞. In both cases we have

that (ψh,Sh)h>0, defined as (ψh,Sh) := (ψn(h),Sn(h)), converges to (ψ,S) strongly in

L4(ω;R3)× L2(ω; SO(3)).

Due to the growth property in Lemma 5.4.4 for sufficiently small h we have

J
2d,〈−1,0〉
h (ψh,Sh) ≤ h−αC(1 + ‖∇′ψh‖4

L4(ω;R3×3)) + h−α+2C(1 + ‖∇′Sh‖2
L2(ω;R3×6))

≤ C(h−α + h−α/2 + h−α/2+2)→ 0.

This proves that lim sup J
2d,〈−1,0〉
h (ψh,Sh) = 0 = J

2d,〈−1,0〉
0 (ψ,S). �

Proof of Theorem 5.4.2.a). Directly from the inequality

−
∫
ω

f ·ψ√adx′ ≤ J
2d,〈−1,0〉
S,h (ψ) ≤ J

2d,〈−1,0〉
h (ψ,S)

and applying the Γ–limit. �
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Let us now prove the results for the case α ∈ 〈2,+∞〉.

Proof of Theorem 5.4.1.d). Let us prove the conditions in the set of admissible deforma-

tions. Let (J2d,2
h )h>0, J2d,2

0 , and A±F be the energy functionals for h > 0, its Γ–limit

and the set of admissible functions from Theorem 5.4.1.c). Since now α > 2, we have

J
2d,〈2,+∞〉
h (ψ,S) ≥ J2d,2

h (ψ,S), so the same holds for their Γ–limits and the set of admis-

sible functions of Γ–limit of (J
2d,〈2,+∞〉
h )h>0 in necessarily a subset ofA±F . Now, without

the loss of generality let f = 0 (since the linear part will not affect the Γ–limit). Note that

now all functionals are nonnegative.

Let us take any (ψ,S) ∈ A±F and any (ψh,Sh)h>0 ⊂ W 1,4(ω;R3)×W 1,2(ω; SO(3))

that strongly converges to (ψ,S) in L4(ω;R3) × L2(ω; SO(3)) and such that the family

J
2d,〈2,+∞〉
h (ψh,Sh) is uniformly bounded by C > 0. If there does not exists such se-

quence, there is nothing to prove, the ”lim inf” inequality is trivially satisfied. For those

functions we have lim infh→0 J
2d,2
h (ψh,Sh) ≥ J2d,2

0 (ψ,S), so there exists a subsequence

of (ψh,Sh)h>0) (still denoted the same) such that

(∀δ > 0) (∃h0 > 0) (∀h ∈ 〈0, h0〉) J2d,2
h (ψh,Sh) ≥ J2d,2

0 (ψ,S)− δ. (5.4.130)

Let us take δ = 1
2
J2d,2

0 (ψ,S) and multiply the last inequality by h2−α. Then we have

C ≥ J
2d,〈2,+∞〉
h (ψh,Sh) ≥

1

2hα−2
J2d,2

0 (ψ,S), (5.4.131)

so when h → 0 we obtain that necessarily J2d,2
0 (ψ,S) = 0. From coercivity of qf we

obtain ∇′S = 0, thus S is a constant SO(3) matrix. Now the conditions in the set of

admissible functions B2d,2
0 is a consequence of S being a constant matrix and conditions

in A±F .

If the Dirichlet boundary condition is prescribed on γ0 (with postive capacity), then

firstly from boundary condition for S we obtain S = I. Secondly, fromA±F = AF (from

Theorem 5.4.1.c)) we obtain ψ = θ + d. Thirdly, from the boundary condition for ψ we

obtain that it is necessarily d = 0, i.e. ψ = θ.

For the ”lim sup” part of the proof, for arbitrary (ψ,S) ∈ B2d,〈2,+∞〉
0 we take the con-

stant sequence (ψh,Sh)h>0, (ψh,Sh) = (ψ,S). Since for such functions wm(S,∇′ψ) =

qf (S,∇′S) = 0, the proof is finished. �
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Proof of Theorem 5.4.2.e). We approach the same as in the proof of of Theorem 5.4.2.d).

Let us prove that any ψ ∈ C(ω;R3) with the property that there exists S0 ∈ SO(3)

such that (ψ,S0) ∈ B2d,〈2,+∞〉
0 is necessarily in the set of admissible functions for the

functional Γ
�
(J

2d,〈2,+∞〉
S,h )h>0

�
. After applying Γ–limit to the inequality

J
2d,〈2,+∞〉
S,h (ψ1) ≤ J

2d,〈2,+∞〉
h (ψ1,S1) (5.4.132)

to an arbitrary pair (ψ1,S1) ∈ AN , we obtain

Γ
�
(J

2d,〈2,+∞〉
S,h )h>0

�
(ψ1) ≤ J

2d,〈2,+∞〉
0 (ψ1,S1). (5.4.133)

We plug in (ψ,S0) in last inequality and obtain

Γ
�
(J

2d,〈2,+∞〉
S,h )h>0

�
(ψ) ≤ J

2d,〈2,+∞〉
0 (ψ,S0) < +∞. (5.4.134)

This proves the claim from the beginning, and also an inequality we are going to use soon.

Let us now take any ψ admissible for Γ
�
(J

2d,〈2,+∞〉
S,h )h>0

�
. We will prove that nec-

essarily there exists S0 ∈ SO(3) such that (ψ,S0) ∈ B2d,〈2,+∞〉
0 . Since ψ is admissi-

ble, by the definition of Γ–limit (and after taking subsequence if necessary), there ex-

ists (ψh)h>0 ⊂ W 1,4(ω;R3) which converges to ψ in L4(ω;R3) and such that we have

J
2d,〈2,+∞〉
S,h (ψh)→ Γ

�
(J

2d,〈2,+∞〉
S,h )h>0

�
(ψ) and such that for all h we have uniform bound

J
2d,〈2,+∞〉
S,h (ψh) < C. By the relation of functionals J2d,〈2,+∞〉

S,h and J2d,〈2,+∞〉
h (through

the infimum over S ∈ L2(ω; SO(3))), there exists (Sh)h>0 ⊂ L2(ω; SO(3)) such that

J
2d,〈2,+∞〉
h (ψh,Sh) ≤ J

2d,〈2,+∞〉
S,h (ψh) + h. Since the range of functions in this sequence

(Sh)h>0 are rotations, the sequence is trivially uniformly bounded in L2(ω; SO(3)). Due

to Corollary 5.4.16 for α > 2, we obtain that ‖Sh‖W 1,2(ω;SO(3)) is uniformly bounded, thus

there is a subsequence (still denoted by h) such that Sh ⇀ S0 inW 1,2(ω; SO(3)), for some

accumulation point S0 ∈ W 1,2(ω; SO(3)). From the compactness theorem, we also have

Sh → S0 in L2(ω; SO(3)). By applying the lim inf to the inequality J2d,〈2,+∞〉
h (ψh,Sh) ≤

J
2d,〈2,+∞〉
S,h (ψh) + h and by using the Γ–limit of the family (J

2d,〈2,+∞〉
h )h>0 we obtain

J
2d,〈2,+∞〉
0 (ψ,S0) ≤ lim inf

h→0
J

2d,〈2,+∞〉
0 (ψh,Sh) ≤ lim inf

h→0
J

2d,〈2,+∞〉
S,0 (ψh)

= lim
h→0

J
2d,〈2,+∞〉
S,h (ψh) = Γ

�
(J

2d,〈2,+∞〉
S,h )h>0

�
(ψ) < +∞. (5.4.135)

Now we have proved both implications of the claim: ψ is admissible for the func-

tional Γ
�
(J

2d,〈2,+∞〉
S,h )h>0

�
iff there exists S0 such that (ψ,S0) ∈ B2d,〈2,+∞〉

0 . Clearly
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this is equivalent to the definition of the set B2d,〈2,+∞〉
S,0 . From inequalities (5.4.134)

and (5.4.135) we obtain that for any ψ ∈ B2d,〈2,+∞〉
S,0 and its appropriate S0 (such that

(ψ,S) ∈ B2d,〈2,+∞〉
0 ) we have

Γ
�
(J

2d,〈2,+∞〉
S,h )h>0

�
(ψ) = J

2d,〈2,+∞〉
0 (ψ,S0) = −

∫
ω

f ·ψ√adx′ = J
2d,〈2,+∞〉
S,0 (ψ),

(5.4.136)

which completes the proof. �
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5.5. TECHNICAL LEMMAS FOR MATRICES

Lemma 5.5.1. Let there be matrix functions A,Ah = A + hX ∈ M3×3, and let A be

invertible on its domain. Then

‖A−1 −A−1
h ‖F ≤ Ch(1− Ch‖X‖F‖A−1‖F )−1‖X‖F‖A−1‖2

F , (5.5.1)

where C is independent of h,A and X.

Proof. If A is invertible, then for sufficiently small h the matrix Ah is invertible as well

since GL(3) is open in the set of matrices. Using submultiplicativity of the 2-norm,

equivalence of the matrix norms, and identity A−1
h −A−1 = −hA−1

h XA−1, we obtain

‖A−1
h ‖F − ‖A−1‖F ≤ ‖A−1 −A−1

h ‖F ≤ Ch‖X‖F‖A−1‖F‖A−1
h ‖F ,

for C > 1 coming from the norm equivalence. From here we obtain bound

‖A−1
h ‖F ≤ ‖A−1‖F (1− Ch‖X‖F‖A−1‖F )−1, (5.5.2)

which we plug in again in the same inequality to obtain bound on ‖A−1 −A−1
h ‖F . �

Lemma 5.5.2. Let A,B,Ah = A + hX,Bh = B + hY be matrix functions, such that

A,X ∈ L2(ω; SO(3)), B,Y ∈ L∞(ω; SO(3)), B invertible a.e. Then

‖AhB
−1
h −AB−1‖2

L2(ω;R3×3) ≤

C
(
‖A‖2

L2(ω;R3×3)‖Bh −B‖2
L∞(ω;R3×3)‖B−1‖4

L∞(ω;R3×3)

+ ‖Ah −A‖2
L2(ω;R3×3)‖B−1‖2

L∞(ω;R3×3)

)
.

(5.5.3)

Proof. For h small enough we have

‖AhB
−1
h −AB−1‖2

L2(ω;R3×3) ≤

C
�
‖A‖2

L2(ω;R3×3)‖B−1
h −B−1‖2

L∞(ω;R3×3) + ‖B−1
h ‖2

L∞(ω;R3×3)‖Ah −A‖2
L2(ω;R3×3)

�
.

For ‖B−1
h ‖ we use the estimate (5.5.2) and for the difference of matrix inverses we use

Lemma 5.5.1. �
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In the sequel we give a series of lemmas for vectors P1, P2 ∈ R3, matrix Q ∈ SO(3)

and regular matrix M ∈ M3×3 such that M3 = M1×M2

‖M1×M2‖ (with notation Xi := Xei). If

matrix
[
P1 P2

]
has full rank, we introduce vector P3 := P1×P2

‖P1×P2‖ . We will also use the

notation

T :=
[
P1 P2 QM3

]
and N = QM. (5.5.4)

These matrices will play role for (a.e. x′ ∈ ω): P1 = ∂1ψ(x′), P2 = ∂2ψ(x′), P3 =

a
ψ(x′)
3 (if exists), Q = S(x′), M =

[
a1(x′) a2(x′) a3(x′)

]
.

Lemma 5.5.3. Let there be regular P =
[
P1 P2 P3

]
∈M3×3, Q ∈ SO(3) and regular

M ∈M3×3 with P3 = P1×P2

‖P1×P2‖ , M3 = M1×M2

‖M1×M2‖ . Then we have following equivalences:

QM3 · Pβ = 0, β = 1, 2 ⇐⇒ QMβ · P3 = 0, β = 1, 2 ⇐⇒ QM3 = P3.

(5.5.5)

Proof. The last condition implies the first two since P3 ⊥ Pβ , M3 ⊥ Mβ for β = 1, 2

from the definition of M. Again since P3 ⊥ Pβ , M3 ⊥ Mβ , the first two conditions

(independently) imply P3 ‖ QM3. Since det
[
P1 P2 QM3

]
≥ 0 and vectors P3 and

QM3 are unit vectors, we must have P3 = QM3. �

Lemma 5.5.4. Let there be P1, P2 ∈ R3 and M ∈ M3×3 regular with M3 = M1×M2

‖M1×M2‖ .

Then there exists Q ∈ SO(3) such that

P1 ·QM2 = P2 ·QM1, Pβ ·QM3 = 0, β = 1, 2.

Proof. If P :=
[
P1 P2

]
is zero matrix, every Q satisfies the condition. Let matrices

QP ∈M3×2 and RP ∈M2×2 be from QR–decompositions of matrix P. Additionally, let

diagonal elements of RP be nonnegative. Let us define

QP =
[
QP v

]
, RP =

RP 0

0 1

 , (5.5.6)

where v is such that QP ∈ SO(3). Now we define P := QPRP . We can see that

P3 ⊥ Pβ , ‖P3‖ = 1 and that P has nonegative determinant. Specially, if matrix P is full

rank, then the last column of the matrix P is

P3 =
P1 × P2

‖P1 × P2‖
. (5.5.7)
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Let us define QM ∈ SO(3), RM ∈ R3×3 from QR-decomposition of the matrix M

(with nonnegative diagonal elements in RM ). Similarly as in the case of the full-rank

matrix P, matrix RM is block diagonal, with down right element equal to 1. Let QM

denote the first two columns of QM and RM first 2× 2 block of the matrix RM .

The condition P1 ·QM2 = P2 ·QM1 can be written equivalently as

R
T

PQ
T

PQQMRM = R
T

MQ
T

MQTQPRP . (5.5.8)

Let us define Q̃ := Q
T

PQQM . We further have

R
T

P Q̃RM = R
T

MQ̃
T

RP . (5.5.9)

We take SVD–decomposition of the matrix RPR
−1

M . Note that we can assume that unitary

matrices in the decomposition have determinant equal to 1. We now have

VΣUT Q̃ = Q̃
T

UΣVT , (5.5.10)

which implies

ΣR = RTΣ. (5.5.11)

for R = UT Q̃V. By using that all unitary 2 × 2 matrices with positive determinant can

be written in the form cosϕ − sinϕ

sinϕ cosϕ


for ϕ ∈ [0, 2π], the equation ΣR = RTΣ componentwise implies that necessarily we

have tr(Σ) sinϕ = 0. Since P 6= 0, as consequence Σ 6= 0, so we necessarily have

sinϕ = 0 =⇒ cosϕ = ±1. Thus it is necessarily R = I or R = −I.

From that we have Q̃ = ±UVT . Let us define

Q̃± =

±UVT 0

0 1

 , (5.5.12)

and Q± := QP Q̃±QM . We claim that both those matrices satisfy conditions of the

lemma. For first condition we see by direct calculations as above. For the third equation,

we observe the (3, 3) element in the equation

PTQ±M = RT
PQT

PQ±QMRM = RT
P Q̃±RM , (5.5.13)
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and conclude that P3 · Q±M3 = 1, which implies P3 = Q±M3 (since both vectors are

unit vectors). Since P3 ⊥ Pβ , the proof is done. �

Remark 5.5.5. From the proof we see that there are actually at least two choices for

such Q. If P is regular, one can see that there are only two choices Q±, and that they

satisfy Q+Mβ = −Q−Mβ , β = 1, 2, Q+M3 = Q−M3.

Lemma 5.5.6. Let P1, P2, Q and M satisfy the statement of Lemma 5.5.4. Additionally,

let TM−1 ∈ SO(3), where T =
[
P1 P2 QM3

]
. Then we have

P = QM or P =


−1 0 0

0 −1 0

0 0 1

QM. (5.5.14)

Proof. Since TM−1 ∈ SO(3) the matrix T is regular and thus P3 = P1×P2

‖P1×P2‖ is well

defined. Then note that from Lemma 5.5.3 we have P3 = QM3, which implies that

T = P. Thus we have that PM−1 ∈ SO(3). Then U := PM−1Q−1 is obviously an

element of SO(3). We also have

UQM3 = PM−1Q−1QM3 = PM−1M3 = Pe3 = P3 = QM3.

Also note that since PM−1 ∈ SO(3) we have PTP = MTM. Furthermore, by the

assumptions on Pi and Mj , we have

UQM1 ·QM2 = P1 ·QM2 = P2 ·QM1 = UQM2 ·QM1,

UQMβ ·QM3 = Pβ ·QM3 = Pβ · P3 = 0,

UQM3 ·QMβ = P3 ·QMβ = QM3 ·QMβ = M3 ·Mβ = 0.

Thus we conclude that assumptions imply U ∈ SO(3), UT = U, U(QM3) = (QM3).

First two conditions imply U2 = I, so all eigenvalues of U are ±1. Since QM3 is

an eigenvector of U for eigenvalue 1 and since det U = 1, the only possibilities are that

both other eigenvalues (for eigenspace span{QM1,QM2}) are either 1 or −1, leading to

the only solutions as in (5.5.14). �

Lemma 5.5.7. Let there be vectors P1, P2 ∈ R3 and matrices Q ∈ SO(3) and regular

M ∈ M3×3 with M3 = M1×M2

‖M1×M2‖ . Additionally let T and N be defined as in (5.5.4). Let
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det T > 0. For a general matrix X ∈M3×3 let X ∈M3×2 denotes matrix made up of the

first two columns. Then there are positive constants c, C independent of P1, P2, Q and M

such that

‖TT
T−N

T
N‖2

F + ‖TT
QM3‖2

F ≥ c‖N−1‖−4
F dist2(TN−1, SO(3)) (5.5.15)

and

‖TT
T−N

T
N‖2

F + ‖TT
QM3‖2

F ≤ C(‖T‖2
F‖N−1‖2

F + 1)‖N‖4
F dist2(TN−1, SO(3)).

(5.5.16)

Proof. From definitions of T and N we have

TTT−NTN =

 T
T
T T

T
QM3

(QM3)TT 1

−
N

T
N 0

0 1

 =

T
T
T−N

T
N T

T
QM3

(QM3)TT 0


Thus it is sufficient to prove

C‖N‖4
F dist2(TN−1, SO(3)) ≥ ‖TTT−NTN‖2

F ≥ c‖N−1‖−4
F dist2(TN−1, SO(3)).

The inequality ‖AB‖2 ≤ ‖A‖2‖B‖2 holds for any general matrices, so due to equiva-

lence of the norms we have that ‖AB‖F ≤ c1‖A‖F‖B‖F . Thus from Lemma 5.5.9 we

have
‖TTT−NTN‖2

F =‖NT (N−TTTTN−1 − I3)N‖2
F

≥c‖N−1‖−4
F ‖N−TTTTN−1 − I3‖2

F

≥c′‖N−1‖−4
F dist2(TN−1, SO(3)).

(5.5.17)

The other inequality is obtained similarily, again using equality ‖TTT − NTN‖2
F =

‖NT (N−TTTTN−1 − I3)N‖2
F , using the submultiplicativity

‖TTT−NTN‖2
F = ‖NT (N−TTTTN−1 − I3)N‖2

F

≤ c
(
‖NT‖4

F‖N−TTTTN−1 − I3‖2
F

)
and the other bound from Lemma 5.5.9. �

Remark 5.5.8. In our case, N = S(x′)
[
a1(x′) a2(x′) a3(x′)

]
, so we conclude

‖N−1‖2 = max{1,
√
ρ(Ac)} and ‖N‖2 = max{1,

√
ρ(Ac)}, where ρ(X) denotes the

spectral radius of the matrix X (the largest absolute eigenvalue). In other words, the

constant is bounded only by the properties of the undeformed geometry.
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Lemma 5.5.9. Let m,n ∈ N, m ≤ n ≤ 3. Let O(m,n) denote the set of matrices in

Mn×m with orthornormal columns. Then for all X ∈Mn×m bounds

C(‖X‖2
F + 1) dist2(X, O(m,n)) ≥ ‖XTX− I‖2

F ≥ dist2(X, O(m,n)) (5.5.18)

hold with a positive constant C independent of X. If m = n = 3 and det X ≥ 0, the set

O(m,n) can be substituted by SO(3).

Proof. Let X = UΣVT be a SVD decomposition of X, and σi i = 1, . . . ,m its singular

values. If X is quadratic and its determinant is nonnegative, then U and V can be chosen

to have positive determinant. From the properties of Frobenius norm we have

dist2(X, SO(3)) = dist2(Σ, SO(3)) = ‖Σ− I‖2
F =

m∑
i=1

(σi − 1)2, (5.5.19)

and

‖XTX− I‖2
F = ‖VTΣTΣV − I‖2

F = ‖ΣTΣ− I‖2
F

=
m∑
i=1

(σ2
i − 1)2 =

m∑
i=1

(σi − 1)2(σi + 1)2. (5.5.20)

Since for all i = 1, . . . ,m we have 0 ≤ σi ≤ σmax = ‖X‖2, and since all matrix norms

are equivalent, we have

m∑
i=1

(σi− 1)2 ≤
m∑
i=1

(σ2
i − 1)2 ≤ (σmax + 1)2

m∑
i=1

(σi− 1)2 ≤ C(‖X‖2
F + 1)

m∑
i=1

(σi− 1)2.

(5.5.21)

Together with (5.5.19) and (5.5.20), we obtain the desired bounds. In the case of X with

nonnegative determinant, since U and V have positive determinant, all calculations stay

the same. �
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6. NONLINEAR 3D–2D MODEL

6.1. PROBLEM SETUP

After defining a Naghdi type nonlinear shell model in Chapter 5, our goal in this

chapter is to define a nonlinear 3d–2d interaction model for which, as we did in the Part I

of the thesis, we will prove the same asymptotic properties for the structure made of the

3d body and a thin 3d body described in the Chapter 4. and proved in the Theorem 4.2.1.

As before, let us define ω = 〈0, 1〉2, Ω0 = ω × 〈−1, 0〉, and Γ0 = ω × {0}. Let

us take p ∈ 〈1, 4]. For arbitrary h > 0 and α > −1 we define a functional K2d,α
h :

Lp(Ω0;R3) × L4(ω;R3) × L2(ω; SO(3)) → R as a sum of functionals W0 defined in

(4.1.3) and J2d,α
h defined in (5.4.1) with appropriate set of admissible functions. More

precisely,

K2d,α
h (ψ, ψ̃, S̃) =



∫
Ω0

W 0(∇ψ) + h−α
∫
ω

wm(S̃,∇′ψ̃)dx′

+ h−α+2 1

12

∫
ω

qf (S̃,∇′S̃)dx′ −
∫
ω

f · ψ̃dx′
(ψ, ψ̃, S̃) ∈ A2d,

+∞ otherwise,
(6.1.1)

where

A2d := {(ψ, ψ̃, S̃) ∈W 1,p(Ω0;R3)×W 1,4(ω;R3)×W 1,2(ω; SO(3)) :

ψ|x3=0 = ψ̃, ψx3=−1 = id, det
[
S̃e3 ∂1ψ̃ ∂2ψ̃

]
≥ 0}.

(6.1.2)

The parameter α > −1 again serves to measure the order of magnitude of Lamé coeffi-

cients for the thin part of the structure, as it was explained in the definition of functionals

J2d,α
h in (5.4.1).
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The functions wm and qf are the ones defined in Chapter 5 for the simple parametriza-

tion of the middle surface of the undeformed geometry of the shell: θ(x′) = (x′, 0). More

precisely:

wm(S̃,∇′ψ̃) = Wm

�(S̃T∇′ψ̃ + I3,2)T (S̃T∇′ψ̃ − I3,2)

(S̃e3)T∇′ψ̃

� ,

qf (S̃,∇′S̃) = Qf

�
S̃T∇′S̃

�
(6.1.3)

for some continuous functionsQf : R3×2 → R andWm : R3×2 → R satisfying conditions

N1), N2) and N3). For W 0 we assume W0.2),W0.3) and W0.4), and for the forcing term

we assume f ∈ L4/3(ω;R3). We are interested in the Γ–limit of the family of functionals

(K2d,α
h )h>0 as h→ 0, for various cases of α.

To make results more convenient to compare with results of the Theorem 4.2.1, and

since some results will not be proven in this form, we will also observe family of func-

tionals (K2d,α
S,h )h>0 for which K2d,α

S,h (ψ̃) = infS∈L2(ω;SO(3))K
2d,α
h (ψ̃, S̃). More precisely,

for h > 0 and α > −1 we define K2d,α
S,h : Lp(Ω0;R3)× L4(ω;R3)→ R by

K2d,α
S,h (ψ, ψ̃) =



∫
Ω0

W 0(∇ψ) + inf
S∈L2(ω;SO(3))

[
h−α

∫
ω

wm(S̃,∇′ψ̃)dx′

+ h−α+2 1

12

∫
ω

qf (S̃,∇′S̃)dx′
]
−
∫
ω

f · ψ̃dx′
(ψ, ψ̃) ∈ A2d

S ,

+∞ otherwise,
(6.1.4)

where

A2d
S := {(ψ, ψ̃) ∈ W 1,p(Ω0;R3)×W 1,4(ω;R3) :

∃S̃ ∈ W 1,2(ω; SO(3)) s.t. (ψ, ψ̃, S̃) ∈ A2d}. (6.1.5)

We will also determine the Γ–limit of the family of functionals (K2d,α
S,h )h>0 as h→ 0, for

various cases of α.
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6.2. THE MAIN RESULT

In this section we are going to determine the Γ–limit of families of (K2d,α
h )h>0 and

(K2d,α
S,h )h>0 for different values of α > −1.

Theorem 6.2.1. Let the family of functionals (K2d,α
h )h>0 be as defined in (6.1.1). Let us

assume that conditions N1), N2), N3), W0.2), W0.3) and W0.4) are satisfied.

a) Let α ∈ 〈−1, 0〉. Then the Γ–limit of the family of functionals (K
2d,〈−1,0〉
h )h>0 when

h→ 0 in the strong Lp(Ω0;R3)× L4(ω;R3)× L2(ω; SO(3)) topology is

K
2d,〈−1,0〉
0 (ψ, ψ̃, S̃)

=


∫

Ω0

QW 0(∇ψ)dx−
∫
ω

f · ψ̃dx′ (ψ, ψ̃, S̃) ∈ A2d,〈−1,0〉
0 ,

+∞ otherwise,
(6.2.1)

where

A2d,〈−1,0〉
0 := {(ψ, ψ̃, S̃) ∈ W 1,p(Ω0;R3)× L4(ω;R3)× L2(ω; SO(3)) :

ψ|x3=−1 = id, ψ|x3=0 = ψ̃}. (6.2.2)

b) Let α = 0. Then the Γ–limit of the family of functionals (K2d,0
h )h>0 when h → 0

in the strong Lp(Ω0;R3)× L4(ω;R3)× L2(ω; SO(3)) topology is

K2d,0
0 (ψ, ψ̃, S̃)

=



∫
Ω0

QW 0(∇ψ)dx

+Γ−
�∫

ω

wm(S̃,∇′ψ̃)dx′
�
−
∫
ω

f · ψ̃dx′
(ψ, ψ̃, S̃) ∈ A2d,0

0 ,

+∞ otherwise,

(6.2.3)

where

A2d,0
0 = {(ψ, ψ̃, S̃) ∈ W 1,p(Ω0;R3)×W 1,4(ω;R3)× L2(ω; SO(3)) :

ψ|x3=0 = ψ̃, ψ|x3=−1 = id, det
[
S̃e3 ∂1ψ̃ ∂2ψ̃

]
≥ 0}. (6.2.4)
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c) Let α = 2. Then the Γ–limit of the family of functionals (K2d,2
h )h>0 when h → 0

in the strong Lp(Ω0;R3)× L4(ω;R3)× L2(ω; SO(3)) topology is

K2d,2
0 (ψ, ψ̃, S̃)

=



∫
Ω0

QW 0(∇ψ)dx

+
1

12

∫
ω

qf (S̃,∇′S̃)dx′ −
∫
ω

f · ψ̃dx′
(ψ, ψ̃, S̃) ∈ A2d,2

0 ,

+∞ otherwise,

(6.2.5)

where

A2d,2
0 := {(ψ, ψ̃, S̃) ∈ W 1,p(Ω0;R3)×W 2,2(ω;R3)×W 1,2(ω; SO(3)) :

ψ|x3=−1 = id, ψ|x3=0 = ψ̃,

Saβ = ∂βψ, β = 1, 2 or Saβ = −∂βψ, β = 1, 2}.

(6.2.6)

d) Let α ∈ 〈2,+∞〉. Then the Γ–limit of the family of functionals (K
2d,〈2,+∞〉
h )h>0

when h→ 0 in the strong Lp(Ω0;R3)× L4(ω;R3)× L2(ω; SO(3)) topology is

K
2d,〈2,+∞〉
0 (ψ, ψ̃, S̃)

=


∫

Ω0

QW 0(∇ψ)dx−
∫
ω

f · ψ̃dx′ (ψ, ψ̃, S̃) ∈ A2d,〈2,+∞〉
0 ,

+∞ otherwise,
(6.2.7)

where

A2d,〈2,+∞〉
0 := {(ψ, ψ̃, S̃) ∈ W 1,p(Ω0;R3)× C(ω;R3)× SO(3) :

ψ|x3=−1 = id, ψ|x3=0 = ψ̃, ψ̃(x′) = S̃
[
x′ 0

]T
+ d, d ∈ R3

or ψ̃(x′) = −S̃
[
x′ 0

]T
+ d, d ∈ R3}.

(6.2.8)

Note that we lack a result for α ∈ 〈0, 5/3〉. This is due to the fact we lack an analogous

result in the case of the Γ–limit of family (J2d,α
h )h>0. However, we do have determined

the Γ–limit of family (J2d,α
S,h )h>0 in the same regime α ∈ 〈0, 5/3〉, and all other regimes as

well, so in the next theorem we will again have a result in all five regimes. Also, results

in parts b), c) and d) of the previous theorem are not so easy to read due to definitions

of functionals or the set of admissible functions. For this reasons we give the following

theorem.
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Theorem 6.2.2. Let the family of functionals (K2d,α
S,h )h>0 be as defined in (6.1.4). Let us

assume that conditions N1), N2), N3), W0.2), W0.3) and W0.4) are satisfied.

a) Let α ∈ 〈−1, 0〉. Then the Γ–limit of the family of functionals (K
2d,〈−1,0〉
S,h )h>0 when

h→ 0 in the strong Lp(Ω0;R3)× L4(ω;R3) topology is

K
2d,〈−1,0〉
S,0 (ψ, ψ̃) =


∫

Ω0

QW 0(∇ψ)dx−
∫
ω

f · ψ̃dx′ (ψ, ψ̃) ∈ A2d,〈−1,0〉
S,0 ,

+∞ otherwise,

(6.2.9)

where

A2d,〈−1,0〉
S,0 := {(ψ, ψ̃) ∈ W 1,p(Ω0;R3)×L4(ω;R3) : ψ|x3=−1 = id, ψ|x3=0 = ψ̃}.

(6.2.10)

b) Let α = 0. Then the Γ–limit of the family of functionals (K2d,0
S,h )h>0 when h → 0

in the strong Lp(Ω0;R3)× L4(ω;R3) topology is

K2d,0
S,0 (ψ, ψ̃) =



∫
Ω0

QW 0(∇ψ)dx

+

∫
ω

Qw0
m(∇′ψ̃)dx′ −

∫
ω

f · ψ̃dx′
(ψ, ψ̃) ∈ A2d,0

S,0 ,

+∞ otherwise,
(6.2.11)

where

A2d,0
S,0 = {(ψ, ψ̃) ∈ W 1,p(Ω0;R3)×W 1,4(ω;R3) :

ψ|x3=0 = ψ̃, ψ|x3=−1 = id}, (6.2.12)

and

w0
m(F) := min

S∈SO(3)
wm(S,F). (6.2.13)

c) Let α ∈ 〈0, 5/3〉. Let additionally Wm satisfy Wm(Y) ≤ C‖Y‖2
F for some C > 0.

Then the Γ–limit of the family of functionals (K
2d,〈0,5/3〉
S,h )h>0 when h → 0 in the

strong Lp(Ω0;R3)× L4(ω;R3) topology is

K
2d,〈0,5/3〉
S,0 (ψ, ψ̃) =


∫

Ω0

QW 0(∇ψ)dx−
∫
ω

f · ψ̃dx′ (ψ, ψ̃) ∈ A2d,〈0,5/3〉
S,0 ,

+∞ otherwise,

(6.2.14)
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where

A2d,〈0,5/3〉
S,0 := {(ψ, ψ̃) ∈ W 1,p(Ω0;R3)×W 1,∞(ω;R3) :

ψ|x3=−1 = id, ψ|x3=0 = ψ̃, ∇′ψ̃T∇′ψ̃ ≤ I a.e.}.
(6.2.15)

d) Let α = 2. Then the Γ–limit of the family of functionals (K2d,2
S,h )h>0 when h → 0

in the strong Lp(Ω0;R3)× L4(ω;R3) topology is

K2d,2
S,0 (ψ, ψ̃) =



∫
Ω0

QW 0(∇ψ)dx

+
1

12

∫
ω

q̃f (b(ψ̃))dx′ −
∫
ω

f · ψ̃dx′
(ψ, ψ̃) ∈ A2d,2

S,0 ,

+∞ otherwise,
(6.2.16)

where
A2d,2

S,0 := {(ψ, ψ̃) ∈ W 1,p(Ω0;R3)×W 2,2(ω;R3) :

ψ|x3=−1 = id, ψ|x3=0 = ψ̃, ∇ψ̃T∇ψ̃ = I},
(6.2.17)

b(ψ̃) = (bβ1,β2(ψ̃))β1,β2 is the curvature tensor and q̃f is defined in (5.3.8).

e) Let α ∈ 〈2,+∞〉. Then the Γ–limit of the family of functionals (K
2d,〈2,+∞〉
S,h )h>0

when h→ 0 in the strong Lp(Ω0;R3)× L4(ω;R3) topology is

K
2d,〈2,+∞〉
S,0 (ψ, ψ̃) =


∫

Ω0

QW 0(∇ψ)dx−
∫
ω

f · ψ̃dx′ (ψ, ψ̃) ∈ A2d,〈2,+∞〉
S,0 ,

+∞ otherwise,

(6.2.18)

where

A2d,〈2,+∞〉
S,0 := {(ψ, ψ̃) ∈ W 1,p(Ω0;R3)× C(ω;R3) :

ψ|x3=−1 = id, ψ|x3=0 = ψ̃,

∃R ∈ SO(3),d ∈ R3 s.t. ψ̃(x′) = R
[
x′ 0

]T
+ d}.

(6.2.19)

Before proofs, we need one technical result.

Corollary 6.2.3. Let S̃ ∈ W 1,2(ω; SO(3)). Then there are constants c > 0 and C ∈ R

such that for all ψ̃ ∈ W 1,4(ω;R3), h ∈ 〈0, 1] and all α > −1 we have

‖ψ̃‖4
L4(ω;R3) + J2d,α

h (ψ̃, S̃) ≥ c
�
‖ψ̃‖4

L4(ω;R3) + χα≥0‖ψ̃‖4
W 1,4(ω;R3)

�
− C,

where C is the undeformed geometry dependent.
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Proof. For α ≥ 0 the claim is a direct consequence of Lemma 5.4.3, nonnegativity of qf

and the fact that h−α ≥ 1 for h ≤ 1 and α ≥ 0. For α ∈ 〈−1, 0〉 due to nonnegativity of

wm and qf and and Hölder inequality on the source term in (5.4.1) we have

‖ψ̃‖4
L4(ω;R3) + J2d,α

h (ψ̃, S̃) ≥ ‖ψ̃‖4
L4(ω;R3) −M‖ψ̃‖L4(ω;R3) ≥

1

2
‖ψ̃‖4

L4(ω;R3) − C,

by again using that x 7→ ax4 + bx (for x ≥ 0) is bounded from below. �
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6.3. PROOF OF THEOREMS 6.2.1 AND 6.2.2

Proof of Theorem 6.2.1. We prove the theorem by using Proposition 4.3.1 for each part

of the theorem separately.

Let us take any α ∈ 〈−1, 0] ∪ [2,+∞〉. Let us define family of functionals (Jh)h>0

by Jh(φ) = J2d,α
h (ψ̃, S̃) (defined in (5.4.1)), for all (ψ̃, S̃) ∈ AN (in the view of Re-

mark 4.3.3, part 2◦, each functional Jh is defined for functions ψ̃ independent of the third

variable and functions S̃ ∈ L2(ω; SO(3))), and its set of admissible functions is AN .

According to the Theorem 3.2.1, the Γ–limit of the family (Jh)h>0 is J0 = J2d,α
0 , depend-

ing on the value of α. Due to Corollary 6.2.3, the family (Jh)h>0 satisfies the condition

(4.3.2).

Let us define g(X) = W 0(X), for all X ∈ M3×3. Then we have G(ψ) = W0(ψ),

whereW0 is defined in (4.1.3), and

G0(ψ) = Γ−W0(ψ) =


∫

Ω0

QW 0(∇ψ)dx ψ ∈ W 1,p(Ω0;R3), ψ|x3=−1 = id,

+∞ otherwise.

(6.3.1)

Due to assumptions W0.2) and W0.4), g satisfies the nonnegativity conditions and the

growth condition. Due to Lemma 4.3.6, G satisfies the condition (4.3.4).

Since for all α and h > 0 the functional K2d,α
h from (6.1.1) can be written as

K2d,α
h (ψ, ψ̃, S̃)=

W
0(ψ) + J2d,α

h (ψ̃, S̃) ψ|x3=0 = ψ̃, ψ|x3=−1 = id, (ψ̃, S̃) ∈ AN ,

+∞ otherwise,

which is of the form (4.3.5), we conclude that we have Kh = K2d,α
h for all h > 0 and

A = A2d,α. Also, functionals K2d,α
0 from all parts of Theorem 6.2.1 are obtained as

K2d,α
0 (ψ, ψ̃, S̃) =


Γ−W0(ψ) + J2d,α

0 (ψ̃, S̃)
ψ|x3=0 = ψ̃|x3=0, ψ|x3=−1 = id,

(ψ̃, S̃) admissible forJ2d,α
0 ,

+∞ otherwise,

(with J2d,α
0 is from particular parts of Theorem 5.4.1). This is of the form (4.3.7), so we

conclude that K0 = K2d,α
0 .
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Since all assumptions of Proposition 4.3.1 on (Kh)h>0 are fulfilled, we can apply it

and conclude that for each for all (ψ, ψ̃, S̃) ∈ Lp(Ω0;R3)×L4(ω;R3)×L2(ω; SO(3)) and

for all (ψh, ψ̃h, S̃h)h>0 ⊂ Lp(Ω0;R3) × L4(ω;R3) × L2(ω; SO(3)) converging strongly

to (ψ, ψ̃, S̃) in Lp(Ω0;R3)× L4(ω;R3)× L2(ω; SO(3)) we have

lim inf
h→0

Kh(ψh, ψ̃h, S̃h) ≥ K0(ψ, ψ̃, S̃). (6.3.2)

By taking into account that Kh = K2d,α
h and K0 = K2d,α

0 , we conclude that each of four

parts of Theorem 6.2.1 the particular functional K2d,α
0 satisfies the ”lim inf” part of the

definition of the Γ–convergence for the family (K2d,α
h )h>0.

For the ”lim sup” part we now have to check if for arbitrary (ψ̃, S̃) ∈ B2d,α
0 there exists

(ψ̃h, S̃h)h>0 ⊂ AN converging strongly to (ψ̃, S̃) in L4(ω;R3)× L2(ω; SO(3)) such that

J2d,α
h (ψ̃h, S̃h) → J2d,α

0 (ψ̃, S̃) and that the additional condition (4.3.10) is satisfied (in

Remark 4.3.2 we established that such sequence, up to the additional condition, exists by

the definition of the Γ–convergence of the family (Jh)h>0 ).

Since any such family (ψ̃h, S̃h)h>0 converges strongly in L4(ω;R3)× L2(ω; SO(3)),

it is uniformly bounded in the same topology. Also, since it satisfies J2d,α
h (ψ̃h, S̃h) →

J2d,α
0 (ψ̃, S̃), we conclude that values J2d,α

h (ψ̃h, S̃h) are uniformly bounded as well. Thus,

from Corollary 6.2.3 we see that this additional condition (4.3.10) is satisfied for all α > 0.

However, for α ∈ 〈−1, 0〉 admissible functions ψ̃ are in L4(ω;R3), so there is no

guarantee that a strongly convergent sequence (ψ̃n, S̃n)h>0 ⊂ AN (converging to (ψ̃, S̃)

in L4(ω;R3) × L2(ω; SO(3))) satisfies the condition (4.3.10). Thus the part a) of Theo-

rem 6.2.1 is proved in a different way.

Let us take arbitrary (ψ, ψ̃, S̃) ∈ A2d,〈−1,0〉
0 . We prove that for all ε > 0 there exists

h∗ > 0 and (ψ∗, ψ̃
∗
, S̃∗) ∈ A2d,〈−1,0〉 such that

‖ψ∗ −ψ‖Lp(Ω0;R3) ≤ ε, ‖ψ̃∗ − ψ̃‖L4(ω;R3) ≤ ε, ‖S̃∗ − S̃‖L2(ω;SO(3)) < ε

and K2d,〈−1,0〉
h∗ (ψ∗, ψ̃

∗
, S̃∗)−K2d,〈−1,0〉

0 (ψ, ψ̃, S̃) ≤ ε. (6.3.3)

Note that without loss of generality assume that f = 0, since the source term is linear

and does not affect the convergence. Now we have that J2d,〈−1,0〉
0 (ψ̃, S̃) = 0 for all

(ψ̃, S̃) ∈ L4(ω;R3)× L2(ω; SO(3)).

Let us take arbitrary ε > 0. Firstly, let (ψm)m≥1 ⊂ C∞(Ω1;R3) with ψm|x3=−1 = id

be smooth W 1,p(Ω0;R3) approximations of ψ, i.e. ψm → ψ in W 1,p(Ω0;R3). Since W 0
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satisfies the growth condition W0.4) (and so does QW 0), due to the Lebesgue dominated

convergence theorem (dominated by x 7→ C(1 + ‖∇ψ(x)‖pF )) we get

Γ−W0(ψm) =

∫
Ω0

QW 0(∇ψm)dx→
∫

Ω0

QW 0(∇ψ)dx = Γ−W0(ψ). (6.3.4)

So there is m ∈ N and ψ∞ := ψm such that

‖ψ∞ −ψ‖W 1,p(Ω0;R3) <
ε

2
and

∣∣(Γ−W0(ψ∞)
)
−
(
Γ−W0(ψ)

)∣∣ < ε

3
. (6.3.5)

Due to the trace theorem, we additionally demand that∥∥∥ψ̃∞ − ψ̃∥∥∥
L4(ω;R3)

= ‖ψ∞ −ψ‖L4(Γ0;R3) < ε, (6.3.6)

where ψ̃∞ := ψ∞|x3=0.

As it was announced in Remark 5.4.25, we use Lemma A.1 (instead of Proposi-

tion 5.4.24) which claims that there is a sequence (ψ̃n, S̃n)n≥1 that converges strongly to

(ψ̃∞, S̃) in W 1,4(ω;R3)× L2(ω; SO(3)) so that J2d,〈−1,0〉
1/n (ψ̃n, S̃n) → J

2d,〈−1,0〉
0 (ψ̃, S̃) =

0. Due to strong convergence in W 1,4(ω;R3), functions (ψ̃n)n≥1 are uniformly bounded

in the same space. Due to the definition of weakly lower semicontinuous envelope, there

exists a sequence (ψn)n≥1 such that ψn ⇀ ψ∞ in W 1,p(Ω0;R3) and W0(ψn)dx →
Γ − W0(ψ∞). Let us apply Lemma 4.3.4 for sequence ψn → ψ∞ and the sequence

ψ̃n → ψ∞|x3=0. We conclude that there exists (ψn)n≥1 ⊂ W 1,p(Ω0;R3) such that

ψn → ψ∞ in Lp(Ω0;R3),ψn|x3=0 = ψ̃n and lim sup
n→+∞

W0(ψn) ≤ Γ−W0(ψ∞).

(6.3.7)

We can conclude that there is n ∈ N large enough such that:

‖S̃n − S̃‖L2(ω;SO(3)) < ε (due to the definition of the sequence (ψ̃n, S̃n)n≥1),

‖ψn −ψ∞‖Lp(Ω0;R3) <
ε

2
(due to (6.3.7)),

‖ψ̃n − ψ̃∞‖L4(ω;R3) <
ε

2
(due to the definition of the sequence (ψ̃n, S̃n)n≥1),

J
2d,〈−1,0〉
1/n (ψ̃n, S̃n) ≤ ε

3
(due to the definition of the sequence

(ψ̃n, S̃n)n≥1 and J2d,〈−1,0〉
0 ≡ 0),

W0(ψn)−
(
Γ−W0(ψ∞)

)
<
ε

3
(due to (6.3.7)).

(6.3.8)

Together with (6.3.5) and (6.3.6), from triangle inequalities we conclude that h∗ = 1/n

and (ψ∗, ψ̃
∗
, S̃∗) := (ψn, ψ̃n, S̃n) satisfy (6.3.3) and conclude the proof for the a) part of

Theorem 6.2.1, and the proof for the whole Theorem 6.2.1. �
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Proof of Theorem 6.2.2. The proof is done analogously as the proof of Theorem 6.2.1.

We use Proposition 4.3.1 in terms of Remark 4.3.3 (both parts 1◦ and 2◦). In the same

way all assumptions of the a) part of Proposition 4.3.1 are satisfied. Also, in the same

way we conclude that for all α ≥ 0 we can apply the b) part of Proposition 4.3.1 (again

by Corollary 6.2.3). For the claim of Theorem 6.2.2.a) we can adjust the particular part

of proof of Theorem 6.2.1, or we can apply Γ–limit to the inequality

K
2d,〈−1,0〉
0 (ψ, ψ̃, S̃) ≤ K

2d,〈−1,0〉
S,h (ψ, ψ̃) ≤ K

2d,〈−1,0〉
h (ψ, ψ̃, S̃), (6.3.9)

(which clearly holds for all (ψ, ψ̃, S̃) ∈ A2d) and conclude the claim. �

161



Nonlinear 3d–2d model Comparison with the 3d–thin 3d model

6.4. COMPARISON WITH THE 3D–THIN 3D

MODEL

At the end, let us compare results from this chapter with results from Chapter 4. Even

though some analysis can be done by observing the results from Theorem 6.2.1, we will

compare results from Theorem 6.2.2 to the ones from Theorem 4.2.1.

Firstly, we see that in both theorems we have different behaviour of the Γ–limit of

particular family of functionals in same distribution of cases: α ∈ 〈−1, 0〉, α = 0, α ∈
〈0, 5/3〉, α = 2 and α ∈ 〈2,+∞〉. Also, in all cases the sets of admissible functions

coincide, and the fact that in the parts a), c) and e) their is no contribution of the thin part

to the energy functional in the limit.

The only possible differences are in the energy contributions in cases for α = 0 and

α = 2 (i.e. the membrane regime and the flexural regime). However, in those cases

firstly, as already said, the sets of admissible functions coincide, and secondly, storage

energy functions appearing in those cases (QW̃ 1
0 (∇′φ̃) and Qw0

m(∇′ψ̃) for α = 0, and
1
24
Q2(b(φ̃)) and 1

12
q̃f (b(ψ̃)) for α = 2) have the same form. For α = 0 this is clear, and

for α = 2 this is commented in Subsection 5.3.2.

From this we can conclude that there is a possibility that for a particular function W 1
α

one can find functions wm and qf (satisfying conditions N1), N2) and N3)) such that Γ–

limits of functionals (K3d,α
h )h>0 and (K2d,α

S,h )h>0 not only have the same form, but also

coincide, for all α ∈ 〈−1, 5/3〉 ∪ [2,+∞〉. We present this in the example of St. Venant–

Kirchoff material.

In the literature there are multiple options to define a stored energy functional in the

case of St. Venant–Kirchoff material. We present two of them (citeLDRplate, [38]):

WSTV K,1(X) =
µ

4
tr
(
(XTX− I)2

)
+
λ

8

(
tr(XTX− I)

)2
,

WSTV K,2(X) =

µ tr
�
(
√

XTX− I)2
�

+
λ

2

�
tr(
√

XTX− I)
�2
, det X > 0,

+∞ otherwise.
(6.4.1)

Key reason why we present two options for a stored energy functional is since neither
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one of those two functionals satisfy all assumptions W1.1) – W1.3), W2.1) – W2.6) (all

assumptions from all cases of Theorem 4.2.1), so there is no one uniform choice for stored

energy functional W 1
α in the case of St. Venant–Kirchoff material. In particular, Le Dret

and Raoult in [52] asymptotically found the membrane plate model (Theorem 3.2.1.b))

for the stored energy functional WSTV K,1, and Friesecke, James and Müller asymptoti-

cally found the flexural plate model (Theorem 3.2.1.d)) for the stored energy functional

WSTV K,2 in the case of St. Venant–Kirchoff material.

Thus, to have W 1
α that satisfies all needed assumptions in Theorem 4.2.1, we will

define stored energy function W 1,STV K
α (dependent on α) by

W 1,STV K
α (X) =

WSTV K,1(X) α ∈ 〈−1, 0],

WSTV K,2(X) α ∈ 〈0, 5/3〉 ∪ [2,+∞〉.
(6.4.2)

Theorem 6.4.1. LetW 0 be a stored energy function satisfying conditions W0.1)–W0.4).

LetW 1
α = W 1,STV K

α defined in (6.4.2), andwm = wSTV Km , qf = qSTV Kf defined in (5.2.6).

Let those functions define families of functionals (K3d,α
h )h>0 and (K2d,α

S,h )h>0 by (4.1.4)

and (6.1.4), respectively.

Then the Γ–limits of families of functionals (K3d,α
h )h>0 and (K2d,α

S,h )h>0 coincide, for

all α ∈ 〈−1, 5/3〉 ∪ [2,+∞〉. Consequently, all minimizers of Γ–limits of families of

functionals (K3d,α
h )h>0 and (K2d,α

S,h )h>0 coincide

Proof. From our reasoning from the beginning of this section, the only thing we have to

check is that energy contributions in cases α = 0 and α = 2 in the thin part concide in

Γ–limits K3d,α
0 and K2d,α

S,0 from Theorem 4.2.1 and Theorem 6.2.2. This is already done

in Proposition 5.4.14 and Remark 5.3.4. �

Remark 6.4.2. Those Γ–limits in this theorem can be written exactly, by using same

results we used in the proof above (Theorem 6.2.2, Proposition 5.4.14 and Remark 5.3.4).

However, even though we know explicitly Γ–limits in all cases with respect to α ∈
〈−1, 5/3〉 ∪ [2,+∞〉, we would like to emphasise that the key point of this theorem is

that in all cases those limits coincide. This implies that, for sufficiently small h > 0,

finding minimizers of a functional (K3d,α
h )h>0 can be substituted by finding minimizers

of (K2d,α
S,h )h>0 (or even minimizers of (K2d,α

h )h>0). Thus, instead of solving a problem
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defined on a domain that includes a ”thin” subset of R3 which can be numerically chal-

lenging, we can solve a problem defined on a simpler domain, in all cases for α, meaning

that we don’t have to choose the parameter α in advance. This is quite useful since in a

real life situation it is unnatural to choose α (i.e. the magnitude of the energy contribution

in the thin part with respect to the thickness of the thin part) in advance, and by this result

we can escape that problem.
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CONCLUSION

In this thesis we achieved all goals we announced in the Introduction.

• We rigorously derived limit models for problems describing structures made of the

three–dimensional body and the thin layer, with respect to the thickness of the thin

layer h tending to zero, in linear case. We obtained and characterized limits of

solutions for all regimes α ≥ −1 (Theorem 2.3.4).

• We proposed a linear 3d–2d model which describes the behaviour of the same struc-

ture made of two bodies and analysed the asymptotics of that model (when the pa-

rameter describing the thickness of the thin layer h tends to zero). We obtained and

characterized limits of solutions for all regimes α ≥ −1 (Theorem 2.4.5).

• We compared asymptotics of those two linear models (rigorously derived and our

proposed one). We obtained that when the thickness of the layer goes to zero, the

solutions of problems characterized by those two models tend to the same limit, in

all regimes α ≥ −1 (Theorem 2.2.1).

• We proposed a new nonlinear shell model of Naghdi type (in Chapter 5), as a non-

linear generalisation of the linear shell model of Naghdi type from [87]. We investi-

gated and proved some of its properties (full list is in Section 5.1). The most impor-

tant are that the model is well defined for shells with little regularity (W 1,∞(ω;R3)

parametrisations of the middle surface) and that when h → 0, in certain regimes

it tends to rigorously derived membrane [51] and flexural shell model [40] and the

constrained membrane plate model [30]. As a matter of fact, we described the

asymptotic behavior of the shell in all regimes for α ∈ 〈−1, 5/3〉 ∪ [2,+∞〉, see

Theorem 5.4.1 and Theorem 5.4.2.
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Conclusion

• We rigorously derived limit models for problems describing structures made of the

three–dimensional body and the thin layer, with respect to the thickness of the thin

layer h tending to zero, in nonlinear case as well. We obtained and characterized

limit models for all regimes α ∈ 〈−1, 5/3〉 ∪ [2,+∞〉 (Theorem 4.2.1).

• We proposed a nonlinear 3d–2d model which describes the behaviour of the same

structure made of two bodies and analysed the asymptotics of that model (when

the parameter describing the thickness of the thin layer h tends to zero). We ob-

tained and characterized limit models for all regimes α ∈ 〈−1, 5/3〉 ∪ [2,+∞〉
(Theorem 6.2.1 and Theorem 6.2.2).

• We compared asymptotics of those two nonlinear models (rigorously derived and

our proposed one). We obtained that when the thickness of the layer goes to zero,

the energy functionals characterized by those two models tend to limit models that

have the same structure, in all regimes α ∈ 〈−1, 5/3〉 ∪ [2,+∞〉 (Chapter 6). More

precisely, in the case of the St. Venant–Kirchhoff material, limit models of both

nonlinear models coincide in all mentioned regimes, see Theorem 6.4.1.

The analysis in the nonlinear case lacks results in case α ∈ [5/3, 2〉. However, even

simpler problem of rigorous derivation of the plate model in that regime is still an open

problem (see [39], [60]), so we can say that our analysis is complete up to today’s knowl-

edge.

166



APPENDIX

A. THE MAIN TECHNICAL LEMMA

Lemma A.1. Let ω be a polygonal domain, θ ∈ C2(ω;R3) such that γ0 = ∂ω (i.e. the

boundary conditionψ|γ0 = θ|γ0 holds on the entire boundary). Let there be (ψ,S) ∈ AM

(the set defined in (5.4.6)). Then there exists sequence (ψn,Sn)n≥1 ⊂ AN (the set defined

in (5.2.2)) with (ψn,Sn)→ (ψ,S) in W 1,4(ω;R3)× L2(ω; SO(3)) strongly.

Proof. The proof is quite technical and is written in several steps.

The functions (ψn,Sn)n≥1 will be defined on a triangular subdivision of the domain ω

(up to the thin zone near the boundary to adjust the boundary condition forψn, with which

we deal in the last step of the proof). Function ψn will be defined as a piecewise affine

function, and Sn as a piecewise constant function on a large set, and as a smooth function

on a remainder. In this way the value of det
[
Sna3 ∂1ψn ∂2ψn

]
will be piecewise

constant on a large set and thus easy to control. In the rest of the proof, the pair of

functions (ψε,Sε), where ψε is piecewise affine and Sε is piecewise constant we will

shortly call piecewise functions.

Also, to make the proof easier to read, we will state the equivalent claim which we will

prove: for each ε > 0 there exists (ψn(ε),Sn(ε)) ∈ AN such that ‖ψn(ε) −ψ‖4
W 1,4(ω;R3) +

‖Sn(ε) − S‖2
L2(ω;SO(3)) < Cε, with C > 0 independent of ε.

Often in the proof we will use that a matrix S ∈ L2(ω; SO(3)) can be approximated

by S1 coming from a smaller set. In general there is no guarantee that for (almost) every

y′ ∈ ω we have S1(y′) ∈ SO(3) (for example when S1 is a C∞ approximation of S).

In that cases we use representation of SO(3) matrices via its axial vector w ∈ R3: S =

exp(Aw), where A ∈ R3×3 is skew-symmetric matrix defined as Awx = w × x, for all
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x ∈ R3. The map w 7→ exp(Aw) is infinitely smooth, which can be seen from the the

Rodrigues’ rotation formula (see [76]):

exp(θAw) = I + (sin θ)Aw + (1− cos θ)A2
w, (0.1.1)

for any unit vector w and scalar θ. On the other hand, if S ∈ L2(ω; SO(3)), then we can

choose (almost pointwise) w ∈ L2(ω;B(0, 2π)).

STEP 1. EXISTENCE OF PIECEWISE APPROXIMATIONS ON REGULAR FAMILY OF

SUBDIVISIONS. Here we prove the following: there exists a regular family of subdivi-

sions (Tε)ε>0 of the domain ω such that for each ε > 0 there is Tε ∈ (Tε)ε>0 and piecewise

functions (ψε,Sε) (with respect to the subdivision Tε) such that

‖ψε −ψ‖4
W 1,4(ω;R3) + ‖Sε − S‖2

L2(ω;SO(3)) < ε. (0.1.2)

The proof is a direct consequence of well-known results used in the FEM theory. Let

(ψ∞,S∞) ∈ C∞(ω;R3) × C∞(ω; SO(3)) be ε/2-close smooth approximation of func-

tions (ψ,S) (in W 1,4(ω;R3) × L2(ω; SO(3)) norm). From Theorem 4.4.20. from [17]

we have that there exist regular family of subdivisions (Th)h>0 and piecewise functions

(ψh,Sh)h>0 approximating (ψ∞,S∞):

‖ψh −ψ∞‖4
W 1,4(ω;R3) + ‖Sh − S∞‖2

L2(ω;SO(3))

≤ Ch2
�
‖ψ∞‖2

W 2,4(ω;R3) + ‖S∞‖2
W 1,2(ω;SO(3))

�
. (0.1.3)

For rotations we actually do as follows. For S ∈ L2(ω; SO(3)) we first determine axial

vector w ∈ L2(ω;B(0, 2π)), then make smooth approximation w∞ ∈ C∞(ω;B(0, 2π))

and then piecewise constant approximation wh. In this way we are sure that Sh :=

exp(Awh) are indeed in SO(3) for all y′ ∈ ω. For h small enough, the right hand side

is smaller than ε/2, so we obtain desired inequality after applying the triangle inequality

for the subdivision Tε = Th and functions ψε = ψh, Sε = Sh. Note that the family of

subdivisions (Tε)ε>0 is a subfamily of (Th)h>0, hence it is a regular family.

In the same manner, again by Theorem 4.4.20. from [17], we can find piecewise

constant approximation aε3 on possibly refined Tε of the function a3 ∈ C1(ω;R3) such

that

‖a3 − aε3‖L∞(ω;R3) ≤ ε.
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On refined Tε the statement (0.1.2) also holds.

STEP 2. INVESTIGATION OF
(

det
[
Sεa

ε
3 ∂1ψε ∂2ψε

])
ε>0

.

Let us take the family of subdivisions (Tε)ε>0 and the sequence (ψε,Sε)ε>0 of piece-

wise functions from the last step. Since we have ψε → ψ in W 1,4(ω;R3) and Sε → S in

L2(ω; SO(3)), we have that

det
[
Sεa

ε
3 ∂1ψε ∂2ψε

]
→ det

[
Saε3 ∂1ψ ∂2ψ

]
in L1(ω;R). (0.1.4)

According to Egorov’s theorem, there exists a measurable set A ⊂ ω such that the mea-

sure |(ω \A)| is arbitrarily small and such that the upper convergence is uniform on A a.e.

As a consequence of the uniform convergence we have that even if in some point y′ ∈ A
we have that det

[
Sε(y

′)aε3 ∂1ψε(y
′) ∂2ψε(y

′)
]
< 0, this value does not differ by

more than some uniform constant m from det
[
S(y′)aε3 ∂1ψ(y′) ∂2ψ(y′)

]
≥ 0, and

thus it is larger than −m. Also, note that the function
[
Sεa

ε
3 ∂1ψε ∂2ψε

]
is piecewise

constant on Tε for each ε > 0 .

From all this, we can conclude: for each ε > 0 there exist a subdivision Tε, piecewise

constant (ψε,Sε) and a set A ⊂ ω with |(ω \ A)| < ε such that for each triangle Tε ∈ Tε
we are in one of the cases:

1. det
[
Sεa

ε
3 ∂1ψε ∂2ψε

]
≥ 0 on Tε;

2. det
[
Sεa

ε
3 ∂1ψε ∂2ψε

]
< 0, and Tε\(ω \ A) is of measure zero;

3. det
[
Sεa

ε
3 ∂1ψε ∂2ψε

]
< 0, but there exists y′ ∈ Tε such that∣∣∣det

[
Sε(y

′)aε3 ∂1ψε(y
′) ∂2ψε(y

′)
]∣∣∣ < m := ε5. (0.1.5)

Since we have

‖ det
[
Sεa

ε
3 ∂1ψε ∂2ψε

]
‖ = ‖Sεaε3 · (∂1ψε × ∂2ψε)‖

= ‖Sεaε3‖ · | cos∠(Sεa
ε
3,a

ψε
3 )| · ‖∂1ψε × ∂2ψε‖,

and since ‖Sεaε3‖ = 1, the third case is in the union of the following two:

3.1. det
[
Sεa

ε
3 ∂1ψε ∂2ψε

]
< 0, but there exists y′ ∈ Tε for which we have the

bound | cos∠(Sε(y
′)aε3,a

ψε(y
′)

3 )| < ε;
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3.2. det
[
Sεa

ε
3 ∂1ψε ∂2ψε

]
< 0, but there exists y′ ∈ Tε for which we have the

bound ‖∂1ψε(y
′)× ∂2ψε(y

′)‖ < ε4.

STEP 3. EXISTENCE OF PIECEWISE APPROXIMATIONS WITH NONNEGATIVE DE-

TERMINANT. Here we prove the following: for each ε > 0 there exist a triangular subdi-

vision T ε (not necessarily from the regular family of subdivisions) of the domain ω and

piecewise functions (ψε,Sε) (with respect to the subdivision T ε) such that

‖ψε −ψ‖4
W 1,4(ω;R3) + ‖Sε − S‖2

L2(ω;SO(3)) < Cε (0.1.6)

(with C > 0 independent on ε) and

det
[
Sεa

ε
3 ∂1ψε ∂2ψε

]
≥ 0. (0.1.7)

Let us take subdivision Tε and pair (ψε,Sε) from the end of the last step. We will find

subdivision T ε of the subdivision Tε and piecewise functions (ψε,Sε) (with respect to the

subdivision T ε) close to (ψε,Sε) with properties described above.

If a triangle Tε satisfies the case 1 we do not make any changes, i.e. Tε ∈ T ε,
(ψε,Sε) := (ψε,Sε), and no error is made.

If a triangle Tε satisfies the case 2 we make change only on Sε, i.e. Tε ∈ T ε, ψε = ψε

and Sε = −Sε on Tε. The error we make on such triangles is only in rotations and it is

bounded by

‖Sε − Sε‖2
L2(ω;SO(3)) ≤ 2|(ω \ A)| max

R∈SO(3)
‖R‖F ≤ Cε. (0.1.8)

a
ψε
3

v

Sεa
ε
3

< 2ε

Figure A.1: Sketch for the case 3.1. Vector v is the unit vector in the plane spanned by

a
ψε
3 and Saε3 perpendicular on aψε3 . The matrix R rotates Sεa

ε
3 to v about vector Sεa

ε
3×v.

Let now triangle Tε belongs to the case 3.1 and not the case 3.2. Since we are not

in the case 3.2 aψε3 exists. The idea is to rotate Sεa
ε
3 such that it becomes orthogonal
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to aψε3 and thus the determinant will become zero. This rotation will be denoted by R.

Since det
[
Sεa

ε
3 ∂1ψε ∂2ψε

]
< 0 we actually have −ε < cos∠(Sεa

ε
3,a

ψ
3 ) < 0. Thus

∠(Sεa
ε
3,a

ψ
3 ) > π/2 and

−ε < cos∠(Sεa
ε
3,a

ψ
3 ) = sin

(π
2
− ∠(Sεa

ε
3,a

ψ
3 )
)

= − sin
(
∠(Sεa

ε
3,a

ψ
3 )− π

2

)
.

From sin t ≈ t near t = 0, we can bound sin t > t/2 for sufficiently small t > 0. Using

that bound in above inequality, we obtain

ε > sin
(
∠(Sεa

ε
3,a

ψ
3 )− π

2

)
>

1

2

(
∠(Sεa

ε
3,a

ψ
3 )− π

2

)
,

so we conclude π/2 < ∠(Sεa
ε
3,a

ψε
3 ) < π/2 + 2ε.

Let us now define vector v ∈ R3 as v = a
ψε
3 × (Sεa

ε
3 × aψε3 ) (see Figure A.1). It is

the unit vector that lies in the plane spanned by aψε3 and Sεa
ε
3 and it is perpendicular to

a
ψε
3 . Also, we have α := ∠(Sεa

ε
3,v) < 2ε. Let us define R = exp(αASεaε3×v). Now we

can define T ε = Tε, ψε = ψε and Sε = RSε. From geometrical properties, we have that

Sεa
ε
3 = v and hence perpendicular to aψε3 , so we have det

[
Sεa

ε
3 ∂1ψε ∂2ψε

]
= 0.

The approximation error is made only in rotation matrices and it is estimated pointwise

by

‖Sε − Sε‖F ≤ ‖Sε‖F · ‖I−R‖F ≤ Cε (0.1.9)

since R is a rotation for an angle less than ε by Rodrigues’ formula (0.1.1). The whole

error is then bounded by∑
T εin case 3.1 and not in 3.2

‖Sε − Sε‖2
L2(T ε;SO(3))

≤ Cε|ω| ≤ Cε. (0.1.10)

Lastly, let us take the most complicated case 3.2. Let us firstly prove that condition

‖∂1ψε × ∂2ψε‖ < ε4 implies that there is unit w ∈ R2 such that ‖Dwψε‖ < ε2. Since

ψε is affine function on Tε we can define φ as the same affine function defined on the unit

square [0, 1]2, see Figure A.2.

Since φ is affine, its image is parallelogram with sides of length ‖∂1φ‖ and ‖∂2φ‖
and area ‖∂1φ × ∂2φ‖ < ε4. If any of its sides ‖∂1φ‖, ‖∂2φ‖ is less than ε2, the proof

is done (w = e1 or w = e2). Otherwise, the length of height h of the parallelogram

satisfies

‖h‖ =
A

‖∂1φ‖
=
‖∂1φ× ∂2φ‖
‖∂1φ‖

< ε2. (0.1.11)
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The inverse image of any height φ−1(h) is a line in unit square with the length greater

than 1. The derivative of φ in the direction along this line is the ratio of the length of the

height h and the length of preimage of the height φ−1(h), and it is less than ε2. Thus w

is the unit vector determined by φ−1(h).

We will construct T ε as a subdivision of Tε. To be more precise we will split it into

seven triangles. Let us take that Tε. It is a triangle with vertices A, B and C. Let

the triangle A′B′C ′ be obtained by the homothety of the triangle ABC in respect of the

incenter of the triangle ABC (which we denote by I) with the coefficient (1 − ε) (see

Figure A.3). New subdivision in Tε, instead Tε ≡ ABC, form triangles A′B′C ′, AA′C,

A′CC ′, BA′B′, ABA′, C ′CB′ and BB′C.

Let us take unit vector w ∈ R2 such that ‖Dwψε‖ < ε2 (which exists by the above

argument). Let us take a line parallel to this vector such that it passes through one of the

vertices A′, B′ or C ′ and intersects the closed triangle A′B′C ′. Without loss of generality

it passes through A′. Let us introduce D′ as the intersection of that line and side B′C ′.

Note that in the case that w is parallel to a side of the triangle, D′ coincides with one of

the points B′, C ′.

Let us define piecewise affine function η on the triangle Tε (with respect to the de-

scribed subdivision of the triangle) such that η is equal to zero in verticesA, B, C, B′ and

C ′, and such that η(A′) = ψε(D
′)−ψε(A

′). Then we define ψε on T ε by ψε = ψε + η

φ−1(h)

φ

h

1

1

‖∂1φ‖

‖∂2φ‖

Figure A.2: Sketch for the proof of existence of vector w.
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A′ B′

C ′

A B

C

I

D′

Figure A.3: Triangulation of the triangle ABC. Needed in case 3.2, and in Step 4.

and

Sε =

Sε y′ ∈ A′B′C ′,

”anything allowed” otherwise.
(0.1.12)

More precisely, on each triangle from the subdivision except A′B′C ′ we define Sε to

take any value such that det
[
Sεa

ε
3 ∂1ψε ∂2ψε

]
≥ 0 on each triangle. Since (from the

construction) Dwψε = ψε(D
′)−ψε(A′)
|D′A′| = 0, vectors ∂1ψε and ∂2ψε are linear dependent,

and thus ‖∂1ψε×∂2ψε‖ = 0 and det
[
Sεa

ε
3 ∂1ψε ∂2ψε

]
= 0 on triangleA′B′C ′. Thus

for this choice for (ψε,Sε) we have that det
[
Sεa

ε
3 ∂1ψε ∂2ψε

]
≥ 0 on the whole Tε.

Since Sε 6= Sε only on ABC \ A′B′C ′, and since the coefficient of the homothety is

(1− ε), the area on which error is made is of order of ε and we bound the error as in case

2, i.e. (0.1.10)

Before we proceed, let us recall that the family of subdivisions (Tε)ε>0 is a regular

family, which can be stated as following statement: there exist 0 < θ1 < θ2 (independent

of ε) such that all angles in triangles Tε are bounded from below and above by θ1 and θ2,

respectively. From the formula of the area of the triangle ATε = 1
2
ab sin γ, we can also

prove the following: there exist constants c1, c2 independent of ε such that the length of

each side of the triangle Tε is in the interval [c1

√
ATε , c2

√
ATε ].

The error for ψε depends entirely on the function η. From the definition of the func-
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tion, we have

‖η(A′)‖ = ‖ψε(D
′)−ψε(A

′)‖ ≤ ‖Dwψε‖ · |D′A′|. (0.1.13)

For |D′A′| we have

|D′A′| ≤ max{|A′C ′|, |A′B′|} = (1− ε) max{|AC|, |AB|} ≤ c2

√
ATε , (0.1.14)

so we can bound

‖η(A′)‖ ≤ c2

√
ATεε

2. (0.1.15)

From that we firstly have∑
T εin case 3.2

‖ψε −ψε‖4
L2(T ε;R3)

≤
∑
Tε∈Tε

ATεc
4
2A

2
Tεε

8 ≤ c4
2|ω|2ε8

∑
Tε∈Tε

ATε ≤ Cε8.

(0.1.16)

Now we estimate the derivatives. Function η has derivative equal to zero on all triangles

which do not contain A′ as a vertex. Additionally, on those triangles in which A′ is a

vertex, the value of η is equal to 0 in two other vertices, so the derivative in the direction

parallel to the side determined by those two vertices is zero. To bound ∇′η, we have to

determine the derivative in the direction perpendicular to that side. Since the function is

affine, for all triangles of the form A′XY this derivative is of the form

η(A′)− 0

dist(A′, XY )
. (0.1.17)

Let us bound the denominator from below for our 5 triangles in Tε containing A′:

• A′XY ≡ A′AC (for A′AB similarly):

dist(A′, AC) = ε dist(I, AC) = ε
1

2
|AC| tanα/2

≥ ε
1

2
c1

√
ATε tan θ1/2 = cε

√
ATε , (0.1.18)

where c is independent of ε and the triangle Tε.

• A′XY ≡ A′CC ′ (for A′BB′ similarly):

dist(A′, CC ′) = (1− ε) dist(A,CI) = (1− ε)|AC| sin γ/2

≥ 1

2
c1

√
ATε sin θ1/2 = c

√
ATε , (0.1.19)

where we additionally used that without loss of generality ε ≤ 1/2.
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• A′XY ≡ A′BC ′:

dist(A′, B′C ′) = (1− ε) dist(A,BC) = (1− ε) 2ATε
|BC| ≥

2ATε
c2

√
ATε

= c
√
ATε .

(0.1.20)

In worst case scenario, the bound is of the form cε
√
ATε . Now we can calculate for

each triangle of the form A′XY using (0.1.15)

‖∇′ψε −∇′ψε‖4
L4(A′XY ;R3×2) = ‖∇′η‖4

L4(A′XY ;R3×2) = ‖η(A′)‖4dist(A′, XY )
−4
AA′XY

≤
�
c2

√
ATεε

2

cε
√
ATε

�4

AA′XY ≤ Cε4AA′XY .

(0.1.21)

After summing up over all 7 triangles in Tε we obtain that for T ε from the case 3.2 we

have

‖ψε −ψε‖4
W 1,4(T ε;R3)

≤ Cε4.

After summing estimates over all triangles in Tε, we obtain

‖∇′ψε −∇′ψε‖4
L4(ω;R3×2) ≤ Cε4|ω| ≤ Cε4, (0.1.22)

so, specially, the W 1,4(ω;R3) error between ψε and ψε is bounded by Cε.

Since in the all possibilities described in the end of the Step 2. we have that error

between pair of functions (ψε,Sε) and (ψε,Sε) is bounded by Cε, we obtain that the

claim for this step is proven.

STEP 4. CHANGE aε3 BY a3. Until now we have proved that on each triangle T ε

the inequality det
[
Sεa

ε
3 ∂1ψε ∂2ψε

]
≥ 0 holds. We want to replace aε3 by a3 and if

necessary we will also change values of Sε so that we obtain inequality

det
[
Sεa3(y′) ∂1ψε ∂2ψε

]
≥ 0,

for each y′ ∈ ω. This step will be similar to the case 3.1. of the previous step.

Let us take a triangle T ε for which there exists a point y′ ∈ T ε having property

det
[
Sεa3(y′) ∂1ψε ∂2ψε

]
< 0. Specially, vectors ∂1ψε and ∂2ψε are linearly inde-

pendent and thus aψε3 exists. Note that for such (fixed) ∂1ψε and ∂2ψε the set of unit vec-

tors v ∈ R3 such that the inequality det
[
v ∂1ψε ∂2ψε

]
≥ 0 is satisfied is a hemisphere

with a pole at vector aψε3 . Conditions from this step then imply that ∠(a
ψε
3 ,Sεa

ε
3) ≤ π/2
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and∠(a
ψε
3 ,Sεa3(y′)) > π/2. Since ‖a3(y′)−aε3‖ ≤ ε, similarly to the case 3.1. from the

last step (due to sin t ≈ t) we can conclude that ∠(Sεa3(y′),Sεaε3) = ∠(a3(y′),aε3) ≤
2ε.

a
ψ̄ε
3 S̄εa

ε
3

<2ε

<2ε

a
ψ̄ε
3

S̄
new
ε aε

3

<2ε
<2ε

Figure A.4: The idea behind the Step 4. The hemisphere with allowed vectors v such that

det
[
v ∂1ψε ∂2ψε

]
≥ 0 is dotted, only in the plane spanned by aψε3 and Sεa

ε
3. All vectors

Sεa3(y′) are 2ε–close to Sεa
ε
3 (note that they don’t have to be in the same plane as the

described one), and are plotted dashed. By rotating the vector Sεa
ε
3 for an angle of 2ε

closer to aψε3 , all vectors S
new
ε a3(y′) are now in the allowed hemisphere.

Now we change the value of Sε on T ε to the value S
new
ε := RSε, where R :=

exp(2εA
Sεaε3×a

ψε
3

), see Figure A.4. The matrix R rotates Sεa
ε
3 closer to aψε3 , such that

∠(a
ψε
3 ,RSεa

ε
3) ≤ π/2− 2ε. That implies that for all y′ ∈ T ε

∠(a
ψε
3 ,RSεa3(y′)) ≤ ∠(a

ψε
3 ,RSεa

ε
3) + ∠(RSεa3(y′),RSεa

ε
3) ≤ π/2, (0.1.23)

so as the consequence we have that det
[
S

new
ε aε3 ∂1ψε ∂2ψε

]
≥ 0. The error ‖Snew

ε −
Sε‖2

L2(ω;SO(3)) is again bounded by Cε, since the matrix R is a rotation for an angle of

order ε. The same rotation holds for all y′ ∈ T ε.
To simplify the notation in the rest of the proof we use the notation Sε for S

new
ε .

STEP 5. SMOOTHENING Sε. The only criteria that is not satisfied to conclude the

proof apart from the boundary conditions is the regularity of Sε: our approximations Sε

are piecewise constant, which is not in W 1,2(ω; SO(3)). For that we proceed with one

more step.
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Let us take piecewise functions (ψε,Sε) and their triangular subdivision T ε from the

last step. We will construct (ψε,Sε) and T ε with ψε being piecewise affine arbitrarily

close to ψε in W 1,4(ω;R3) norm and Sε being continuous and arbitrarily close to Sε in

L2(ω; SO(3)) norm. The subdivision T ε will be subdivision of T ε. This will conclude

the proof.

Let us take any δ > 0 and any triangle Tε ∈ T ε. Let us perform the same subdivi-

sion of the triangle Tε as in the last case of previous step (see Figure A.3): for triangle

Tε ≡ ABC we will find its homothety image A′B′C ′ with respect to its incenter I with

coefficient (1 − δ), and then in subdivision T ε we take triangles A′B′C ′, AA′C, A′CC ′,

BAB′, ABA′, C ′CB′ and BB′C.

On this subdivision we define ψε as piecewise affine function (with respect to the

described subdivision) with values ψε(A) = ψε(A
′) = ψε(A), ψε(B) = ψε(B

′) =

ψε(B) and ψε(C) = ψε(C
′) = ψε(C). For the rotation we define Sε = exp(ξAw),

where w is the axial vector of the matrix Sε, and ξ smooth function with values in [0, 1]

such that it is equal to 1 on A′B′C ′ and 0 on the boundary of the triangle ABC. Due to

Rodrigues’ formula (0.1.1), function Sε is smooth on T ε.

By the definition, ψε is piecewise affine, Sε is continuous on the whole domain ω

(since on the boundary of all triangles from T ε its value is I).

We still have the condition det
[
Sεa3 ∂1ψε ∂2ψε

]
≥ 0 is satisfied: on the trian-

gle A′B′C ′ due to properties of functions ψε and Sε, on other triangles due to fact that

‖∂1ψε × ∂2ψε‖ = 0 (along lines AA′, BB′, CC ′ function ψε is constant). Thus we have

(ψε,Sε) ∈ AM . On the other hand, due to construction, the error

‖ψε −ψε‖2
W 1,4(ω;R3) + ‖Sε − Sε‖2

L2(ω;SO(3)) (0.1.24)

goes to zero as δ → 0, so it can be arbitrarily small.

STEP 6. BOUNDARY CONDITIONS. First note that the Dirichlet boundary condition

for Sε is trivially satisfied since Sε = I near the boundary of each triangle.

Also note that if θ|γ0 is piecewise affine function (with respect to the boundary of

polygonal domain ω), that the Dirichlet boundary condition for ψε is satisfied as well:

they are satisfied in the Step 1 of the proof (when the FEM approximation is made) and

all steps that came after did not change value of ψε / ψε / ψε on the boundary. If this is
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not the case, we have to make one additional approximation.

Let us firstly take ψ∞, a smooth approximation of ψ on ω in W 1,4(ω;R3) norm that

satisfies the Dirichlet boundary conditions from AN . The value of ψ∞ and its derivatives

are bounded in L∞(ω;R) norm.

Let δ > 0 be a small parameter. Let us find polygonal lines in ω with sides parallel to

sides of ∂ω which are exactly δ and 2δ close to the boundary. The line closer to `0 := ∂ω

we will call `1 and the other one `2. The interior of `2 will be ω′. Buffer zones between

lines `i and `j , i, j ∈ {0, 1, 2} will be denoted by [`i, `j]. See Figure A.5.

ω

ω′

`0 ≡ ∂ω
`1
`2

Figure A.5: The sketch of the partition of the domain ω in Step 6.

Lines `0, `1, `2 are made of sides (the ones that are parallel to each other) and cor-

responding vertices (those which are ending points of corresponding sides). Two corre-

sponding (parallel) sides in `0 and `1 (and in `1 and `2 as well) together with their four

endpoints define a thin and long trapezoid with height δ. Angles in those trapezoids de-

pend only on the geometry of ∂ω and do not depend on δ (vertices on `1 and `2 lie on

the angle bisectors of angles of ∂ω). This implies that the lengths of the legs of those

trapezoids are bounded from below and above by cδ and Cδ, for some real constants

C, c > 0.

Let us make the set of vertices denser if necessary (by introducing more vertices along

all sides, uniformly on each side, and dividing zones in more trapezoids) such that the
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length of all new sides are less than δ, but not less than δ/2. This denser sets of vertices

define large number of smaller trapezoids. One can easily see that the lengths of legs

are not greater than the largest leg of original thin and long trapezoids, nor less than the

smallest leg of original thin and long trapezoids. Thus all sides of small trapezoids are

bounded from below and above by cδ and Cδ, for some real constants C, c > 0. Note

that even diagonals of small trapezoids are bounded in the same way (with adjusting the

constants if necessary: they are bounded from below by height of length δ, and above by

sum of lengths of two sides of the trapezoid).

The idea of the algorithm is to build approximation functions (ψδ,Sδ) with following

properties:

• along the line `0 = ∂ω functions ψδ take the value of θ;

• along the line `1 functions ψδ are linear approximations of the function θ;

• along the line `2 functions ψδ are linear approximations of the function ψ∞;

• in ω′ we perform first 5 steps of the proof (as if we are taking in consideration only

ω′), with piecewise affine approximation of ψ∞ at `2 = ∂ω′ - we know that such

ψδ|ω′ is arbitrarily close approximation of ψ∞, and the same for Sδ;

• in the zone [`1, `2] we first take the triangulation with given vertices from `1 and `2.

For ψδ we take the linear approximation with respect to the linear approximations

on the lines `2 (of ψ∞) and `1 (of θ) and for Sδ we take any (piecewise on the

triangulation) constant value for which the determinant condition is satisfied;

• in the zone [`0, `1] for ψδ we are more careful (we will be more precise later) - the

idea is to have ∇′ψδ ≈ ∇′θ, and thus the choice Sδ = I satisfies the determinant

condition;

• thus Sδ is either continuous with the value I at the boundary of particular area or

just piecewise constant - in that case we perform the trick from the Step 5 to make

Sδ continuous (in particular this is important in the zone [`1, `2]).

We still need to define ψδ in the buffer zone [`0, `1] and prove that when δ → 0 the

error ‖ψδ−ψ∞‖4
W 1,4([`0,`2];R3) goes to zero and that det

[
a3 ∂1ψδ ∂2ψδ

]
≥ 0 in [`0, `1].
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Then the proof will be over since the part of the error ‖ψδ −ψ∞‖4
W 1,4(ω′;R3) is arbitrarily

close to zero due to first 5 steps of the proof and the error ‖Sδ − S∞‖L2(ω;SO(3)) is close

to zero due to first 5 steps of the proof (for ω′) and the small area of the buffer zone

[`0, `2]. The construction makes the condition det
[
Sδa3 ∂1ψδ ∂2ψδ

]
≥ 0 satisfied

and Dirichlet boundary conditions are trivially satisfied as well.

Let us now focus on ψδ in [`0, `1]. Let us take a trapezoid A0B0B1A1 in [`0, `1] such

that its vertices A0, B0 ∈ `0 and A1, B1 ∈ `1 are ending points of sides of polygonal lines

`0 and `1 respectively. Let us firstly construct function ξ on that trapezoid (and analo-

gously on the zone [`0, `1]). Let ξ = 0 on sides A0B0, A0A1 and B1B0. On the side A1B1

let it be the difference between the function θ and linear approximation of that function

(with respect to pointsA1 andB1). One can easily see that the value of ξ and its derivative

along A1B1 can be bounded by ‖∇′θ‖L∞(ω;R3×2)|A1B1| and ‖D2θ‖L∞(ω;R3×2×2)|A1B1|,
respectively. Since θ ∈ C2(ω;R3) and all sides in `1 are of length which is less than

delta, those values are bounded by Cδ, with C > 0 some real constant. One can simply

define ξ with the same bound on its value and derivatives inside the trapezoid A0B0B1A1

as well (by linear functions on properly chosen lines connecting points on `0 (value there

is 0) and `1 (value there is prescribed difference of θ and its linear approximation using

points A1 and B1)). Now we define ψδ on that trapezoid (and the whole zone [`0, `1] as

well) asψδ = θ−ξ. Since ‖∇′ξ‖L∞(ω;R3×2) ≤ Cδ, we have that in each point y′ ∈ [`0, `1]

it holds ‖∂αψδ − aα‖L∞(ω;R3) ≤ Cδ, α = 1, 2. Since det
[
a3 a1 a2

]
=
√
a > 0 in

all points y′ ∈ ω (moreover, the determinant is bounded from below by a positive con-

stant because of (5.2.1)), due to continuity of the determinant for δ small enough we have

det
[
a3 ∂1ψδ ∂1ψδ

]
> 0 on [`0, `1]. Thus on this zone the choice Sδ = I fulfils the

determinant condition.

Finally, let us prove that the error ‖ψδ − ψ∞‖4
W 1,4([`0,`2];R3) goes to zero as δ → 0.

For this it is sufficient to prove claim only for the zone [`1, `2], since in the zone [`0, `1] it

is controlled by the∞–norm of the function ξ and the measure of the set [`0, `1]. In the

zone [`1, `2] we approach similarly, we will prove that the values ‖ψδ‖L∞([`1,`2];R3) and

‖∇′ψδ‖L∞([`1,`2];R3×2) are bounded independently of δ - then the claim is a consequence

of the measure of the set [`1, `2] being of order δ.

For the values ψδ the estimate is trivial, since in that zone all values are convex com-
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binations of the values of functions ψ∞ and θ which are uniformly bounded.

For derivatives, we have to bound the value ‖∇′ψδ(y
′)‖F on each triangle, uniformly

on all triangles and independently of δ. Since ψδ is piecewise affine function, ∇′ψδ(y
′)

is piecewise constant. We firstly note that since all triangles in [`1, `2] have sides bounded

from above and below by Cδ and cδ (since the sides and the diagonals of trapezoids

have the same property), the angles in those triangles are uniformly (independently of δ)

bounded from above and below by constants distinct from 0 and π. This allows us to

bound ‖∇′ψδ(y
′)‖F by derivatives of ψδ along any two sides of the triangle on which

they are defined.

All derivatives along sides can be found by quotients of the form ψδ(A
′)−ψδ(B′)
|A′B′| , where

A′, B′ belong to `1∪ `2. Let us choose a fixed point P on ∂ω (depending on A′ and B′). It

is possible to do it in such way that the uniform bounds |A′P |, |B′P | ≤ C ′δ still hold (for

some constant C ′ > 0). The denominator |A′B′| in the derivative is bounded from below

by cδ. The value of ψδ(A
′) has either value ψ∞(A′) or value θ(A′). Since both functions

ψ∞ and θ have uniformly bounded first derivatives and since they both are equal to θ on

∂ω by the Dirichlet boundary condition, we have ‖ψδ(A
′)− θ(P )‖ ≤ C ′′|A′P | ≤ C ′′′δ,

i.e. ψδ(A
′) = θ(P ) +O(δ). Since all can be done for B′ as well, we have that∥∥∥∥ψδ(A

′)−ψδ(B
′)

|A′B′|

∥∥∥∥ =
‖θ(P )− θ(P ) +O(δ)‖

|A′B′| ≤ O(δ)

cδ
≤ O(1),

which proves that the derivatives of ψδ are bounded in [`1, `2].

This finally completes the proof. �

Remark A.2. As already noted in the beginning of the Step 6 of the proof the statement

of Lemma A.1 holds also in the case γ0 6= ∂ω, but for θ which is piecewise affine at the

boundary at γ0, including the trivial case γ0 = ∅.
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(2) M. Ljulj, J. Tambača, Iterative methods for solving a poroelastic shell model of

191



Curriculum Vitae

Naghdi’s type, M2AS 40 (2017), 12; 4425-4435.
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