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Iako najmanje uobičajeni oblik karcinoma kože melanom je njegov najsmrtonosniji oblik karakteriziran 
visokom invazivnošću i velikim metastatskim potencijalom. Metastatski potencijal melanoma pokazao se 
problemom u djelu bolesnika koji nemaju očito mjesto porijekla primarnog tumora, pokazano najjačeg  
prediktora ponašanja tumora. Novi pristupi temeljeni na metodama strojnog učenja bili su uspješni u 
identificiranju stanice porijekla u različitih vrsta karcinoma isključivo korištenjem karakterističnih profila 
putničkih mutacija i somatskih epigenomskih profila. Cilj ovog istraživanja bio je istražiti može li se stanica 
podrijetla melanoma odrediti s djelom genomskih regija koji su korišteni u prethodnim studijama. Istražili 
smo može li upotreba analize glavnih komponenti smanjiti broj regija koje modeli strojnog učenja trebaju 
koristiti da bi se uspješno predvidjelo stanično podrijetlo melanoma. Ovdje pokazujemo da je čak 10% 
veličine profila korištene u prethodnim istraživanjima dovoljno za predviđanje melanomne stanice 
podrijetla s velikom točnošću. Nadalje, otkrili smo da najinformativnije regije imaju veći proporcionalni 
udio prepisane sekvence i imaju relativno malo otkrivenih poznatih mutacija koje su povezane s razvojem 
melanoma. Ti nalazi otkrivaju potencijalni put do novih istraživanja dijagnostičkog potencijala metoda 
strojnog učenja ne samo za melanom, već i za druge vrste raka. 
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predictor of tumor behavior. Novel approaches based on machine learning methods have been successful 
in identifying different cancer types cells-of-origin solely by using cancer passenger mutation and somatic 
cell epigenomic regional profiles. The aim of this research was to investigate whether melanoma cell-of-
origin can be determined with a fraction of genomic regions used in previous studies. We investigated 
whether the use of principal component analysis can reduce the number of regions that machine learning 
models need to use to successfully predict melanoma cell-of-origin. Here we show that with even 10% of 
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1. Introduction 

1.1. Melanoma 
 

Skin cancer is the most common form of human malignancy with a global incidence rising at an 

alarming rate with an estimated two to three million new cases being reported each year. The 3 

most common forms of skin cancer are basal cell carcinoma, squamous cell carcinoma and 

melanoma. Melanoma is the least common of the three, nonetheless it is credited with the 

largest number of deaths of all skin cancers, so much in fact that most cancer statistics limit 

themselves to melanoma deaths being the representative number for all skin cancers [1]. 

Currently early detection and resection is the best method for curing melanoma, with a success 

rate of 80%. However, melanoma is a cancer type with a large metastatic potential and spreads 

very fast if not dealt with in appropriate time. In the case of metastatic melanoma prognosis 

becomes very poor very fast, with a large refractory rate, a median survival rate of 6 months after 

diagnoses of metastases in other tissues and a 5-year survival rate of less than 3% [2]. Melanoma 

arises from occurrence of genetic mutations in melanocytes, specialized pigmented cells that are 

found predominantly in the skin and eyes, where they produce melanins, the pigments 

responsible for skin and hair color, which serve to protect our skin from the harmful effects of 

UV radiation. Melanocytes originate from highly motile neural-crest progenitors that migrate to 

the skin during embryonic development. In the skin, melanocytes reside in the basal layer, and 

their homeostasis is regulated by epidermal keratinocytes which communicate intercellularly 

using a complex network of biochemical pathways. The main cause of mutations in melanocytes 

is UV radiation [3], the very thing melanocytes have evolved to protect us against. When those 

mutations happen in critical growth regulatory genes melanocytes lose their ability to control the 

production of autocrine growth factors, expression of adhesion receptors, as well the control 

over the internal mechanisms all cells use to stop uncontrolled proliferation the complex 

intercellular biochemical network is broken and melanocytes are no longer regulated in any 

meaningful way by keratinocytes. Once the regulatory network is broken the transformation 

from melanocytes to melanoma begins [4].  
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Traditionally melanoma detection and diagnosis has been based on pathology, which can be a 

problem in patients with the recurrent metastatic disease as well as patients with a susceptibility 

to highly invasive methods (e.g. tissue biopsy). Advent of new and ever cheaper and better 

sequencing technologies promises new prognostic and diagnostic opportunities.  

 

1.2. Cancer genomics 

1.2.1. Next-generation sequencing 
 

The term next-generation-sequencing (NGS) technologies represents a number of different 

platforms using different sequencing technologies all connected with the same basic principle: 

performing sequencing of millions of small fragments of DNA in parallel then use bioinformatics 

analyses to piece together these fragments by mapping the individual reads to the human 

reference genome.  

 

Figure 1. Comparison between Sanger and next generation sequencing basic procedures [5]. 
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As mentioned, and, as the name suggests, NGS technologies have revolutionized genomic 

research [6]. Using NGS, an entire human genome can be sequenced within a single day. This is 

even more remarkable when compared to the ten years that it took to complete the Human 

Genome Project using conventional Sanger sequencing [7]. The reason for such big difference in 

sequencing times can be explained using Figure 1. NGS requires the sequencing procedure to be 

massively parallelized with multiple different genomic fragments being sequenced at the same 

time, and that is not simply not possible with conventional Sanger sequencing. Additionally, each 

of the three billion bases in the human genome is sequenced multiple times. The number of times 

each base is sequenced is often referred to in bioinformatics as the coverage of the genome. That 

high coverage of NGS technologies has been able to provide highly accurate data and give insight 

into unexpected DNA variation.  

The fundamental premise of cancer development is that somatic cells over the course of their 

lifetime acquire different mutations in different regions of their genome. Acquired mutations 

slowly accumulate in the cell and eventually a trigger is pressed and a cell goes through 

transformation towards becoming a cancer cell.  Although capillary-based cancer sequencing has 

been able to give us a glimpse into this phenomenon it has been limited to only a selected number 

of genes and exons without the possibility of giving a full picture[8]. Combining the speed and 

the (relatively) low price of NGS technologies has allowed whole cancer genomes to be 

sequenced and mapped with high accuracy giving rise to large databases of known cancer 

genomes such as the Pan-Cancer Analysis of Whole Genomes (PCAWG) study [9].  

1.2.2. ChIP-seq 
 

The application of NGS sequencing to chromatin immunoprecipitation (ChIP) gave rise to ChIP-

seq (chromatin immunoprecipitation followed by sequencing), a key technology on the pathway 

to our better understanding the genomic background of cancer development. ChIP 

methodologies have been known for a long time [10], but have found very limited use in large 

sequencing experiments and projects because of their price and a lack of practicality on a large 

scale. The basic principle of ChIP is to use an antibody that recognizes a TF or histone modification 

to pull down attached DNA for identifying binding locations, and has been used traditionally as a 
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method for detecting selected promotor regions and histone binding sites. However, the rapid 

development of NGS technologies has allowed chromatin immunoprecipitation to be followed 

by sequencing of large genomic regions and even whole genomes giving rise to ChIP-seq 

technology (Figure 2). ChIP-seq has since become the most common and effective method to 

identify bound loci genome-wide in vitro and in vivo. The importance of finding and mapping 

certain DNA-protein interactions and epigenetic modifications lies in the link between DNA-

protein interactions and transcriptional regulation. Genome-wide profiling of transcription factor 

(TF)-binding sites and regions with covalently modified histones has been able to aid in the search 

for and even discover new cell- or tissue-, species- and disease specific- genomic regions. The 

RoadMap Epigenomics project focuses on analyzing and collecting ChIP-seq data from different 

human cell lines with a direct focus on delivering a collection of normal epigenomes that can be 

used for comparison and integration into number of different studies [11].  
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Figure 1. Basic workflow of a ChIP-seq experiment [12]. 

 

 

1.2.3. Current research in cancer genomics 
 

Given all aforementioned findings and technologies many researches have shifted the focus of 

their research towards discovering, annotating and describing the characteristics of the cancer 

genome and epigenome and using those results for bettering the diagnostic and prognostic tools 

available. Approaches to these problems have been numerous. Finding and identifying definitive 

unique patterns of somatic mutations which distinguish certain types of cancer. Based on the 
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large-scale exome and genome-sequencing studies we now have the somatic mutational 

patterns for many major cancer types including but not limited to: 

 chronic myelogenous leukaemia (CML) is characterized by a t(9;22) translocation 

commonly known as the “Philadelphia chromosome” leading to a BCR–ABL protein 

fusion, which is now used as a test for the disease [13]. 

 melanomas is characterized with high rates of C > T and G > A transition mutations due 

to UV damage which causes photodimerization and faulty repairs [14].  

 almost all diagnosed pancreatic ductal adenocarcinomas having mutations in the KRAS 

gene [15]. 

The aforementioned PCAWG project aims to expand on those findings by collecting and 

systematically analyzing  cancer genome sequences from more than 2,600 patients across 38 

cancer types, characterizing putative non-coding driver events that cannot be found using data 

from whole-exome sequencing or single-nucleotide polymorphism arrays, creating the largest 

database of known cancer mutations so far. In addition to those cancer-specific driver mutations 

on which the cancer is being selected for as they are often connected with an increase in 

cancerogenic potential, each individual cancer accumulates an order of magnitude larger number 

of passenger mutations which researchers first presumed are randomly distributed, as cancer is 

not undergoing any kind of selection involving those mutations and that they preserve sort of a 

“track record” for a mutagenic process the tumor has undergone [16]. However, detailed 

investigation has discovered that those passenger mutations do not accumulate at random, 

rather that the profile of those passenger mutations correlates heavily with a number of different 

epigenetic modifications [17,18].  

When approached with the problem of treating metastatic cancer the first and foremost issue is 

finding the primary tumor organ or cell-of-origin. The metastatic tumor’s cell-of-origin and 

histopathology are the strongest determinants of its clinical behavior and therefor a clear 

pathway to finding the best optimal route to cancer treatment, but in 3-5% of cases patients with 

a metastatic tumor do not have an obvious cell-of-origin [19]. Determination of the correct cell 
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of origin for a metastatic cancer is a key factor in cancer treatment. There have been several 

studies which have highlighted the importance of determining the correct cell of origin. For 

instance, it was shown that patients with the same driver mutation, but appearing in different 

cancer types (i.e. different cell of origin) will have a different response to treatment [20]. Another 

study, conducted in a mouse model of glioblastoma, showed that drug sensitivity differed 

according to the cell-of-origin [21]. Based on this problem a class of emerging approaches aims 

to classify cancers based on somatic passenger mutation profiles alone, without the need to find 

and identify all special cancer type identifying genes and regions, which is much more 

complicated and not reliably testable for all cancer types.  The machine-learning models so far 

have been able to accurately predict the tissue of origin given the epigenetic modifications of 

many different tissues. Those models use large genomic and epigenomic datasets in order to 

accurately predict the correct tissue of origin of a given somatic passenger mutational profile 

[18]. With highlighting the importance of determining correct cell of origin the question of the 

diagnostic potential for complex machine learning algorithms arises. The main issue in using 

these models for diagnostics and treatment is the need for whole cancer genome sequencing 

and assembly. Due to this it is necessary to improve on the existing methods for cell-of-origin 

determination and to simplify their interpretation in the context of biological systems. 

 

1.3. Research Goals 
 

The main goal of this research is to find the optimal genomic regions to use in the predictive 

models which determine the melanoma cell-of-origin with high accuracy. We will be looking for 

the regions on which the models trained on chromatin modification values from melanocytes 

(the correct tissue of origin for melanoma) have the biggest difference in prediction accuracy 

from other cell line chromatin modification values and to investigate the possible genomic 

background for the behavior of the model. To achieve those goals, the investigation will be split 

into 3 different parts: 

1. Using principal component analysis to identify the regions which contribute to principal 

components the most in order to find the optimal number of regions used for prediction. 
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2. Finding the optimal regions by using the results from 1. and compare the models trained 

on different subsets of regions.  

3. Analysis of known sequence features and known genomic elements located the selected 

regions. 
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2. Methods 

2.1. Data 
  

The data used in the research is split into two groups: predictor variables (genomic localization 

of histone modifications) and response variables (mutations profiles of melanoma cell lines). 

Histone modifications used are H3K4me1, H3K4me3, H3K9me3 and H3K36me3 from 83 different 

tissues/cell lines, included in ENCODE and RoadMap Epigenomics projects [28]. Mutation profiles 

of melanoma cell lines are obtained from Pan Cancer Analysis of Whole Genomes (PCAWG) 

project and publicly available [9]. The human genome is divided into 1 megabase (Mb) regions, 

excluding regions overlapping centromeres and telomeres, and regions where the fraction of 

uniquely mappable base pairs is lower than 0.92. In total, 2128 1Mb long genomic regions were 

used in the analysis. The histone modification data originating from the same cell types is 

combined and the RPKM value for each of the predefined regions is calculated. The melanoma 

mutation profile data is composed of 107 different patient samples, all of which are also divided 

into identical regions. All of this data has been previously processed and the data used in this 

research has been obtained from the research [18].  

Genomic coordinates of super-enhancers data were downloaded from the human super-

enhancer database (SEdb) [23]. SEdb is a publicly accessible database with a goal aimed to 

provide a large number of available resources on human super-enhancers. The database was 

annotated with potential functions of super-enhancers in the gene regulation. Melanoma super-

enhancer genomic positions are included in the database. 

In order to find the transcripts and exons located in the genomic regions of interest we used the 

“GenomicFeatures” package in R [29]. The package is used to retrieve known transcript-related 

features from the UCSC Genome Bioinformatics [30] and BioMart [31].   

Melanoma driver gene data is part of larger research data which focused on finding driver point 

mutation across 2,658 different genomes in non-coding regions from Pan-Cancer Analysis of 

Whole Genomes (PCAWG) Consortium5 of the International Cancer Genome but data from 
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protein coding point mutations is also included and can be publicly accessed at [32] (under 

“Supplementary tables”) . 

We retrieved the sequences of the human genome data from UCSC [30]. Via the “BSgenome” 

package for R [33]. “BSgenome” package retrieves the latest UCSC human genome and the 

version we used in our research was the human genome version hg19 (based on GRCh37.19.p13 

assembly). Genome data was used to calculate the percent of GC content for each of the 2128 

genomic regions analyzed in this study. 

 

2.2. Computational methods 

2.2.1. R statistical package 
 

All the analyses in this research were conducted in the R statistical environment, a freely available 

software and programming environment for statistical computing and graphics. R version used 

in this research is 3.6.2 [24].  Overlaps between genomic regions and drivers, super-enhancers 

were calculated using the “GRanges” package [25]. Granges uses formatted genome coordinate 

range tables to identify overlaps. Genome coordinate ranges are “addresses” of the selected 

regions or genes in the chromosome given in the format of i.e. [chrX; 1-100] (this means that the 

selected “gene” is located on the X chromosome, gene starts at the first base of the chromosome 

and ends at the 100th base of the chromosome). 

2.2.2. Principal component analysis  
 

Principal component analysis (PCA) is a classical tool to reduce the dimension of multi variate and 

high dimensional data, as often seen in gene expression analysis. PCA is often used in those cases 

to visualize the similarities between the biological samples, and to filter noise. The basic principle 

of PCA is it that projects highly dimensional data into a new space spanned by the principal 

components (PC) calculation is of which is based on the variance in the data, trying to use as little 

possible number of new PCs to explain as much variance as possible with the total number of PCs 

being equal to N-1 (number of dimensions in the data - 1). All calculated principal components 

are uncorrelated and orthogonal. The PCs can successfully extract most of the relevant 
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information in the data [26]. In this research the PCA method will be implemented via the 

“factoMineR” [27] package in R. The package is specifically designed for high-dimensional 

biological data and is easily manipulated. Main result of PCA which will be used are contributions 

of different dimension (or regions in this case) which describe how much of the resulting variance 

explained by PCs is attributed to certain dimensions (regions) in order to give a guided way to 

identify the most informative regions.  Contributions of variables to the principal components 

are given by the formula: 

𝑐𝑜𝑛𝑡𝑣𝑎𝑟(𝑖𝑛 %) =
𝑣𝑎𝑟𝑐𝑜𝑠2

𝑐𝑜𝑠𝑡𝑜𝑡𝑎𝑙
2

∗ 100 

Where cos2 is equal to the squared coordinates of the variable which are calculated by the PCA 

algorithm. Total cos2 value is equal to the sum of cos2 values of all variables in the component. 

2.2.3. Random Forest regression 
 

Random Forest regression is a non-parametric machine learning method developed in early 

2000’s which uses ensembles of simple decision trees to capture more complex feature patterns 

and reduces the chance of overfitting to training data when compared to simple decision trees. 

The basic principle of the method is to draw a random training set of size n, with replacement, 

which, when averaged out, on the many trees the algorithm draws ends up approximately 2/3 of 

the whole data. The remaining 1/3 of the data (often referred to as out-of-bag data) is used to 

compute the mean squared prediction error of the tree. To calculate the prediction for a given 

observation the algorithm takes the average of predictions over all trees for all out-of-bag data. 

The resulting diversity of trees can capture more complex feature patterns than a single decision 

tree and reduces the chance of overfitting to training data. In this way, the random forest 

improves predictive accuracy [28]. 

Here Random Forest algorithm is implemented via “ranger” package in R [28]. The package is 

designed for high dimensional biological data. We are using forests with 500 trees to predict the 

mutation densities in the previously constructed 1 Mb regions of melanoma patients. The 

individual patient samples were divided into ten non-overlapping sets and the total number of 
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mutations in each region was used for model predictions using tenfold cross-validation. 

Prediction accuracy of each model was measured as rooted mean squared error: 

𝑀𝑆𝐸 = √𝛴(𝑥𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 − 𝑥𝑓𝑖𝑡𝑡𝑒𝑑̇ )2 

 

Cross-validated prediction accuracies were calculated by the following procedure: 

1. Divide the patient data into training set data (9/10) and test set data (1/10). 

2. Determine the regions on which the random forest algorithm will be trained (i.e. selected 

200 regions). 

3. Train the model using the predictors of test set data for regions determined in 2. 

4. Use the model to predict the mutation density profiles for ALL regions in the test data 

given the predictor values of ALL regions from the test set data. 

5. Calculate the test MSE of the model by comparing the fitted values and the real values of 

mutation profile densities. 

6. Repeat the procedure 10 times, each time using different sets of training and test data 

(selected patients mutation profiles). 

7. Take the average of the MSE values across the cross-validation data sets and use that 

metric as a measure of the model accuracy. 

This way of calculation of cross-validated MSE has some drawbacks, i.e. the smaller the training 

set number of different regions the MSE will be higher, as the similarities between patients in 

genomic regions are greater than similarities between the mutation profiles of different genomic 

regions (regional profiles are independent of one another, whilst different samples have 

correlated mutational density profiles in the same genomic regions). Nonetheless this approach 

gives a glimpse on how the model will behave when tasked to classify unknown data (i.e. if we 

select 200 regions for training and then use the full set of 2128 regions for testing) which is a far 

more valuable metric for diagnostic purposes. 
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2.3. Statistical tests 

2.3.1. Pearson Product-Moment Correlation 
 

The Pearson product-moment correlation coefficient is a measure of the strength of a linear 

association between two variables and is denoted by r. The formula for the correlation is 

𝑟 =
∑(𝑥 − 𝑚𝑥)(𝑦 − 𝑚𝑦)

√∑(𝑥 − 𝑚𝑥)2∑(𝑦 − 𝑚𝑦)2
 

Where mx and my are the means of x and y variables. 

 

The formally used measure for prediction accuracy is r2, which is used and displayed on the 

graphs used in this research. 

 

2.3.2. Wilcoxon ranked sum test 
 

Wilcoxon ranked sum test is a standard non-parametric statistical test used when the 

distributions of the tested data are not known or does not have a defined expression. The 

implementation of the test I carried out in base R programming package under the function call 

“wilcox.test” and we use it to measure the p-value of an observation. The null hypothesis is that 

the distributions of x and y do not differ by a definitive location shift, and the p-value calculated 

is the probability of seeing that outcome, or to better put it to test whether set of observations 

x and a set of observations y, where x and y are two independent samples, come from the same 

distribution and what is the probability of seeing those observations if they do. 

2.3.3. Fisher exact sum test 
 

Fisher exact sum test, or Fisher’s test for short, is a statistical significance test used in the analysis of 

contingency tables. Unlike most statistical tests, Fisher's exact test does not use a mathematical function 

that estimates the probability of a value of a test statistic; instead, you calculate the probability of getting 
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the observed data, and all data sets with more extreme deviations, under the null hypothesis that the 

proportions are the same under a hypergeometric distribution. The test is implemented in R under the 

call “fisher.test()”. The result of the Fisher’s test is a p-value for observing the contingency table under the 

presumption that all of the proportions are conserved. 
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3. Results 

3.1. Principal component analysis results  
  

The first part of the research was to perform and exploratory analysis of the datasets by using 

principal component analysis on the both predictor and the response variables. The layout of 

original datasets had to be transposed in order for PCA to explore the variance between the 

regions and not between different predictors/patients. The results of the PCA for both the 

predictor and response variables are included in Figure 3. 

 

 

Figure 3. Scree and contribution plots of analyzed data sets. Figure 3.A is the scree plot of 

response variable PCA. On the Y axis is the percentage of total variance explained by the principal 

component, and on the X axis are principal components ordered by their relative percentage. 

Figure 3.B is also a scree plot but of predictor variable PCA. Figures 3.C and 3.D represent relative 

contributions of genomic regions to the variance explained by the first largest principal 

component from A and B respectively. 
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From the scree plots we can see that most of the response variable can be explained by only 2 

PCs, with up 87% of the variation in the mutation profile data explained in only one dimension 

and the rest of the PCs contributing only a fraction of that to the overall variance explained 

percentage. In the case of predictor variables, the variance in regions has to be explained in a 

bigger number of PCs with 3 different PCs totaling the percentage variance explained of ~90 %. 

The contribution of individual regions to variance in PCs in the case of response variables Figure 

3.C differs only very slightly between the ones that contribute most and the ones that contribute 

the least with maximal difference <10% of the mean value for the individual contributions. In the 

case of predictor variables (Figure 3.D) the difference is much more pronounced with a large drop 

in contributions throughout the different regions of the genome.  

 

Figure 4. PCA biplots of the predictor and response variables. Figure 4.A is a standard PC1/PC2 

loading vector biplot for PCA of response variables, with values on the X and Y axis corresponding 

to the value of the loading vector with different colors representing different relative 

contributions to the % of variance explained. Figure 4.B is the PC1/PC2 loading vector biplot for 

PCA of predictor variables, colored with regard to different relative contributions. Note that the 

contributions in this case are much more diverse as can be presumed from Figure 3.D where the 

slope is much more pronounced when compared to Figure 3.C  
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PCA biplots in both cases show that there no particular clustering of data in those dimensions 

with a highly pronounced ellipsoid shape in both cases. The conservation of the ellipsoid shape 

can be presumed as some fundamental property of the data, such as interconnectedness of all 

epigenetic variations and the relative bounds of the data and low variance regions in both the 

predictors and the response variables. The investigation of causes for this ellipsoid shape is 

beyond the scope of this research. 

 

 

 

Figure 5. Position vs. position dot-plot of ordered PCA contributions. The figure represents is a 

dot-plot of contribution ordered regions of response and predictor PCA results. Each dot 

represents a positional match e.g. region chr1.11 region is 100. in predictor contribution ordering 

and 600 in response variable ordering so the dot is placed on the (100,600) place on the graph. 

We then explored the relationship between the ordering of regions using the results of PCA of 

either predictor or response variables. From Figure 5. we can see that there are no particular 

regions which have any kind of clustering, rather that the positioning is pretty uniformly and 

randomly distributed throughout the graph. If the orderings were related, we would expect to 
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see particular clusters or diagonal elements existing on the graph. Having no clusters or diagonal 

elements in this case is a favorable option because it means that there are no region-specific 

biases between predictor and response variables which could mean possible biases in model 

training and testing. 

 

3.2. Identifying the optimal regions for model training 
 

Next part of the exploratory analysis was finding out how does the prediction accuracy behave 

in accordance to the number of regions used in modelling of the number of mutations in  specific 

regions of melanoma genomes, with the goal being finding the optimal number of different 

genomic regions with which to begin the search for the best ones, and the result of the search 

are included in Figure 6. 

 

Figure 6. Dependence of sample sizes used for model training on MSE. Regions used for model 

training and predictions are randomly sampled via the generic sample() function. The 2 lines 

below represent both melanocyte cell lines and are clearly separated from the rest of the cell 
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samples. Grouped lines above are randomly sampled are 20 different cell-of-origin. Here used in 

the calculation is a size increase step of 10, meaning that number of regions sampled increased 

by 10 in each calculation, which resulted in a 10-fold increase in speed, but the resulting MSE 

values became more unstable. It can be seen that y-values after the initial drop begin to stabilize 

around 200 regions being used. 

From the plot it is visible that the behavior of the prediction accuracy vs. total number of regions 

is predictable. We can see that the relative predictive power is lower when the total number of 

genomic regions is lower. When the number of regions reaches 200-220 the predictive power 

stabilizes and begins to linearly drop off, in the case of correct cell of origin being used for model 

training while the drop is less pronounced in other cell lines used. Using that number of regions 

in ordered search is therefore favored as any differences between models using the correct cell-

of-origin is maximized when using ~200 regions. 

After finding the proposed optimal number of regions to start our search for the best regions, 

the next step was starting the ordered search based on ordering from Figure 3.C and Figure 3.D. 

Using a sliding window of a size 200 as established from Figure 6., with a side-step of 10 regions, 

meaning that for each step of calculation the window is moved 10 regions down the ordered list, 

with 10-fold cross validated MSE the results from Figure 7. were obtained. 
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Figure 7. Optimal number of selected windows moved over ordered positions. Figure 7.A are 

response variable PCA contribution ordered regions; Figure 7.B are predictor variable PCA 

contribution ordered regions. On Y-axis is the MSE for a window which starts at the x-axis marked 

tick and continues for next 200 regions from the ordering. Bottom 2 lines on both graphs are 2 

samples from melanocyte cell lines used for model training, above lines are 30 randomly sampled 

cell samples from other tissues.  

Using response variable ordering results in a more divergent graph which has bigger differences 

between individual regions, while using predictor variable ordering results in a graph which is 

more uniform, with less pronounced differences between different regions, as well as a smaller 

total difference between melanocyte and other tissue samples. To quantify the difference 

between melanocyte and the other cell samples and to identify the regions with the biggest 

predictive power we calculated the difference between the average MSE values of the 

melanocyte cell samples and the average MSE values of the other cell samples. 
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Figure 8. Average difference between melanocyte contribution ordered MSEs and other cell 

lines MSEs using the same ordered contribution ordered lists. Figure 6.A represents the 

calculated differences as explained above for response variable PCA contribution orderings; 

Figure 6.B represents the calculated differences for predictor variables PCA contribution ordering. 

Y-axis represents the values of the calculated differences and x-axis representing the relative 

positioning in the respective orderings. 

As can be seen from the Figure 8.A, for the response variable orderings the differences are more 

pronounced with a pronounced peak in the beginning, although the mean calculated differences 

are approximately the same (for Figure 8.A the mean is 220.76, and for Figure 8.B the mean is 

219.06). Those regions which fall within the pronounced peak of the window which starts at the 

70th region of the ordering (meaning it includes regions from 70-270, z-score of the values 

obtained under the presumption of normal distribution is equal to 2.6705 which translates to a 

p-value = 0.00265) are those regions we hoped to identify, regions which enable us the biggest 

predictive power, or the biggest separation in model accuracy between the correct cell-of-origin 

and all the rest. The next step of the research is confirming that those regions separate between 

correct cell-of-origin equally effective as models which include all genomic regions. In the rest of 

the research we have used the results from response variable contribution orderings because the 

predictor variable contribution orderings provided no statistically significant difference (P<0.01) 

between different regions.  
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3.3. Exploring the predictive quality of the selected regions 
 

 

 

Figure 9. Prediction accuracies for models trained on the selected regions across different tissue 

samples. Figure 9.A represents relative MSE of models trained on full set of genomic regions with 

each bar representing different tissue sample. Figure 9.B represents relative MSE of models 
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trained on regions selected in Figure 8.A. On the x-axis are different tissue samples ordered by 

their size. Both figures have Wilcox rank sum test calculated p-values of the difference between 

melanocyte cell samples tested versus all other tissue samples. All MSE scores are 10-fold cross 

validated. 

From Figure 9. we can clearly conclude that models trained on selected regions, albeit having a 

larger total MSE than those trained on full data, can be used to differentiate the correct tissue of 

origin given the mutation profile of melanoma cancer cell with accuracy which is almost identical 

to full genomic region, since we have significant (P<0.01) difference of the melanocyte MSE using 

the Wilcox ranked tests. To further explore goodness of fit of the models, graphs of real vs. fitted 

values were constructed for both melanocyte cell lines and the second-best tissue in both full 

region models and selected regions models (“Psoas Muscle”, “Rectal Mucosa 31” and “Rectal 

Mucosa 29” samples respectively) and are contained in Figure 10. 

 

Figure 10.  Real (observed) vs. fitted value plots of selected region trained models of selected 

tissue samples. R2 values are calculated as Pearson correlations coefficients squared and 

displayed for each sample individually measured between observed and fitted values, with higher 

R2 meaning better fitted values. The line represents a generalized linear model fit to the data.  
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As shown above, the models trained on selected regions and correct cell-of-origin samples are 

more accurate and correlate much better to observed data in comparison to second-best tissue 

model fitted values. Biggest errors (or misclassifications) are focused on regions with higher 

mutation densities and from there stems the better accuracy of correct cell-of-origin as for Figure 

9.A and Figure 9.B the spread is in those regions is much lower and the values are closer to the 

diagonal. In contrast, all tissues are fairly accurate when it comes to predicting lower mutation 

density values.  

3.4. Exploring the genomic background of selected regions 
 

The next step of the research was to try and identify the underlying reasons for such 

observations, the reason why those selected regions give us better prediction accuracy when 

compared to the rest. For this it is crucial to first check the distribution of the mutation densities 

in those regions and compare them to the rest general distribution of the mutation densities 

across all regions. The reason for this is to determine GC – content of the selected regions 

because of the known bias of sequencing to produce high read values in GC high regions of the 

genome. 
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Figure 11. Distributions of mutations densities and GC content in selected regions. Figure 11.A 

represents the relative density plot of selected regions aggregated sample mutations (yellow) and 

all regions aggregated sample mutations (purple). Above displayed is the Wilcoxon rank sum test 

p-value for difference in distribution means. Figure 11.B represents the relative densities of all 

regions GC content in % (purple) and selected regions (yellow). Also, result of the Wilcoxon rank 

sum test is displayed on the graph. GC content was calculated from UCSC hg19 genome data using 

overlaps with genomic regions used, adding the total number of GC base pairs and dividing with 

total number of base pairs. 

From the Figure 11.A depicted results we conclude that there is a statistically (Wilcoxon rank sum 

test p-value<0.01) significant difference between the mutation density distribution in selected 

regions when compared to all genomic regions mutation density distribution. From Figure 11.B 

we can conclude that there is no statistically significant difference (Wilcoxon rank sum test p-

value=0.81) between the GC content of the selected regions and GC content of the full genomic 

regions used. This shows that the higher mutation density value obtained from mutation profiles 

does not stem from the known sequencing GC content bias and as such does not need to be 

corrected for.  
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Figure 12. Calculation of the representation of intraregional genomic elements and super 

enhancers. Figure 12.A is the result of overlapping selected and all genomic regions with known 

genomic annotation of known exons and transcripts from UCSC obtained via “GenomicFeatures” 

package. Y-axis values are percentages of Mb regions covered in known transcript/exon 

annotation calculated as: 

% = 
∑ 𝐼𝑛𝑡𝑟𝑎𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑡/𝑒𝑥𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑜𝑚𝑖𝑐 𝑟𝑒𝑔𝑖𝑜𝑛𝑠∗ 106 ∗ 100.  

Figure 12.B is the result of overlapping selected and total regions versus database of known 

melanoma linked super enhancers from the aforementioned SEdb. Y-values is the mean number 

of super enhancers per Mb resulting from the overlap. 

Exon content in both groups of selected regions is very close to the general exon content in all 

regions taken into consideration and in accordance with general experimental data which 

suggest that around 2% of the genome is made up of exons. Real difference is seen in both cases 

when examining relative percentage of transcribed regions. When examining the comparison 

between all regions and selected regions percentages of transcribed total sequence there is a 7% 

increase in transcription in the selected regions. There is no significant difference in super 
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enhancer densities between selected regions and all regions, with 79 super enhancers found in 

selected regions vs 662 super enhancers found in all used genomic regions out of total 882 super 

enhancers found by previous researchers. 

 

Table 1. Overlaps between know protein coding drivers and the selected genomic regions. Fisher 
exact test p-value = 0.6124. 

 OVERLAPS PROTEIN 

CODING DRIVER 

DOES NOT OVERLAP PROTEIN 

CODING DRIVER  

REGIONS IN SELECTED 

REGIONS 

0 200 

REGIONS NOT IN SELECTED 

REGIONS 

9 1919 

 

 

Table 2.  Overlaps between non-protein driver genes and selected genomic regions. Fisher exact 
test p-value = 0.8652. 

 

 

 OVERLAPS NON-PROTEIN 

CODING DRIVER 

DOES NOT OVERLAP NON-

PROTEIN CODING DRIVER  

REGIONS IN SELECTED 

REGIONS 

9 191 

REGIONS NOT IN SELECTED 

REGIONS 

96 1832 
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Table 3.  Combined overlaps for protein and non-protein coding melanoma driver genes in the 
selected regions. Fisher exact test p-value = 0.7415 

 

The overlap Fisher exact test results (Table 1., Table 2. and Table 3.) imply that there is no 

statistically significant difference between the presence of identified protein and non-protein 

coding driver mutations in the selected regions we used in the research.  

 

 

 

 

 OVERLAPS EITHER PROTEIN 

OR NON-PROTEIN CODING 

DRIVER 

OVERLAPS NEITHER PROTEIN 

NOR NON-PROTEIN CODING 

DRIVER  

REGIONS IN SELECTED 

REGIONS 

9 191 

REGIONS NOT IN SELECTED 

REGIONS 

106 1822 
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4. Discussion 

 

The results of PCA on both the response and predictor variable showed that there are potentials 

to reduce the number of regions used in the models to predict the correct cell-of origin. Both the 

response and predictor variables can have a large percentage of their variance explained by a 

relatively few number PCs. PC biplots showed that there were no definitive clustering patterns 

of the data in the main PCs analyzed, which is useful for downstream analysis as there were no 

biases toward certain clusters of regions or outliers which could interfere with the predictive 

power of the models. Contributions of regions to the response variable PCA showed a less 

pronounced overall difference, meaning that all regions contribute relatively uniformly to the PC. 

Contributions of the regions to the predictor variable PCA showed more promise because the 

difference between the most and least contributing regions was larger when compared to the 

response variable differences. 

We have also shown that there is little connection between the contribution orderings of the two 

PCAs, which means that there are no clusters of regions which contribute to both the predictor 

and response variables relative variances equally. This finding was important as it showed us that 

the two contribution-based orderings are mutually independent so if potentially more 

informative regions for model training were to be discovered we had to search both of orderings 

separately. Finding the optimal number of regions was an important step forward as it was shown 

that the melanocyte samples converge to a linear drop in prediction accuracy based on the 

number of regions used relatively fast. Also, it was shown that even a low number of regions 

were enough to successfully separate the correct cell-of-origin and there was a low absolute 

difference in prediction accuracy between the two melanocyte samples we had in our data sets.  

Although models of prediction of cell-of-origin based on various features of cancer genomes and 

normal cells were developed previously [18,34,35], to our knowledge this is the first study which 

uses epigenomic data of normal cells to perform unbiased selection of genomic regions needed 

for successful cell-of-origin prediction.  
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Although PCA results of predictor variables showed more promise in the beginning of the 

research, relative differences of melanocyte sample MSEs to other tissue sample MSEs across the 

ordered contributions were uniform with no particular regions which showed statistically 

(P<0.01) larger difference from the mean prediction accuracy of all windows. On the other hand, 

response variable PCA result based orderings of the regions have managed to produce 

statistically significant (P<0.01) difference from the mean of the differences under presumed 

normal distribution. 

The selected regions have managed to separate the melanocyte samples from other tissues with 

relative ease. More fascinating was the fact that the selected regions separate the tissue samples 

with accuracy almost identical to full genomic regions models meaning that even 10% of the 

whole genome can be used to successfully determine the correct cell of origin. 

Investigation into the genomic background of the results provided mixed results.  

On one hand we managed to show that there was no GC-content bias which is commonly 

associated with NGS experiments. Furthermore, the selected regions had a significantly larger 

proportion of regions with a high amount of passenger mutations. This result points to the fact 

that regions with a high number of mutations are more informative for model training than 

regions with a lower number of mutations. This is in agreement with previous studies which 

showed that the prediction power of such models depends on the number of mutations in a 

region [18]. We have also shown that the selected regions also have a higher percentage of their 

regions transcribed when compared to all regions. This is not surprising, considering that gene 

expression was previously shown to be related to mutational density [36], and shows that the  

influence of transcriptional rate of the selected regions on prediction accuracy should be 

investigated further.  

On the other hand, investigation into known melanoma super-enhancers and cancer drivers 

provided little results that could explain our findings. We found that there were no differences 

between super enhancer densities in selected regions when compared to the rest of the regions 

used. Adding to that we also found that there were no differences between the presences of 

protein and non-protein coding driver mutations in the selected regions when compared to the 
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rest of the regions used. An explanation for this potentially lies in the fact that we were using 

passenger mutations, which are independent mutations to driver and super-enhancer mutations 

and are shaped by epigenetic regulation [37].  
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5. Conclusion 

 

In conclusion, this research has been successful in its goal of finding the most informative regions 

to be used in melanoma-cell-of origin prediction. We have identified regions which comprise of 

only 10% of the genomic regions used in previous studies which can successfully identify the 

melanoma cell-of-origin with a degree of accuracy comparable to larger datasets previously used. 

Although failing to find the connection between passenger and driver mutations in melanoma 

this finding successfully opens the question of the diagnostic potential for complex machine 

learning models in metastatic melanoma cell-of-origin detection. The focus of future studies on 

this should be identifying the most informative regions of other malignant diseases which show 

the same potential in order to create a comprehensive guide for metastatic cell-of-origin 

discovery across multiple cancer types.  
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