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1. Introduction

1.1. Melanoma

Skin cancer is the most common form of human malignancy with a global incidence rising at an
alarming rate with an estimatetivo to three million new cases being reported each year. The 3
most common forms of skin cancer are basal cell carcinoma, squamous cell carcinoma and
melanoma. Melanoma is the least common of the three, nonetheless it is eckdiith the
largest number of deaths ofllaskin cancers, so much in fact that most cancer statistics limit
themselves to melanoma deaths being the representative number for all skin cafiders
Currentlyearly detection and resection is the best method for curing melanoma, with a success
rate of 80%. However, melanoma is a cancer type with a large metastatic potential and spreads
very fast if not dealt with in appropriate time. In the case of metastatidamema prognosis
becomes very poor very fast, with a large refractory rate, a median survival rate of 6 months after
diagnoses of metastases in other tissues andyadr survival rate of less than 3%. Melanoma

arises from occurrence of genetic mutations in melanocytes, specialized pigmented cells that are
found predominantly in the skin and eyes, where they produce melanins, the pigments
responsible for skin andalr color, which serve to protect our skin from the harmful effects of
UV radiation. Melanocytes originate from highly motile newmadst progenitors that migrate to

the skin during embryonic development. In the skin, melanocytes reside in the basaldagler
their homeostasis is regulated by epidermal keratinocytes which communicate intercellularly
using a complex network of biochemical pathwalise main cause of mations in melanocytes

is UV radiation[3], the very thing melanocytes have evolved to protect us against. When those
mutations happen in critical growth regulatory genes melanocytes lose their ability to control the
production of autocrine growth factsr expression of adhesion receptpes well the control

over the internal mechanisms all cells use to stop uncontrolled proliferation the complex
intercellular biochemical network is broken and melanocytes are no longer regulated in any
meaningful way bykeratinocytes. Once the regulatory network is broken the transformation

from melanocytes to melanomaegins [4]
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Traditionally melanoma detection and diagnosis has been based on pathology, which can be a
problem in patients with the recurrent metastatics@ase as well as patients with a susceptibility
to highly invasive methods (e.g. tissue biopsy). Advent of new and ever cheaper and better

sequencing technologies promises new prognostic and diagnostic opportunities.

1.2.Cancer genomics
1.2.1. Nextgenerationseqencing

The term nextgenerationsequencing (NGS) technologies represents a number of different
platforms using different sequencing technologies all connected with the same basic principle:
performing sequencing of millions of small fragments of DNganallel then use bioinformatics
analyses to piece together these fragments by mapping the individual reads to the human

reference genome.

Figurel. Comparison between Sanger and next generation sequencing basic procefhjres
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As mentioned, and, as the name suggests, NGS technologies have revolutigeimsdic
research6]. Using NG&n entire human genome can be sequenced within a singleTay is

even more remarkable when compared to the ten years that it took to complete the Human
Genome Project using ngentional Sanger sequencififj. The reason for such big difference in
sequencing times can be explained using Figure 1.rBiaes the sequencing procedure to be
massively parallelized with multiple different genomic fragments being sequenced at the same
time, and thatis notsimply notpossible with conventional Sanger sequenciddtionally,each

of the three billion bases in the human genome is sequenced pheitiimes The number of times
each basés sequenceds often referredo in bioinformatics as the coverage of the genome. That
high coverage of NGS technologies has been able to prhigtié/accurate data andiveinsight

into unexpected DNA variation.

The fundamental premise of cancer development is that somatic cells over the course of their
lifetime acquire different mutations in different regions of their genome. Acquired mutations
slowly accumulate in the cell and eventually a trigger is pressedaaweéll goes through
transformation towards becoming a cancer cell. Although capilased cancer sequencing has
been able to give us a glimpse into this phenomenon it has been limited to only a selected number
of genes and exons without the possibildf giving a full picturg8]. Combining the speed and

the (relatively) low price of NGS technologies has allowed whole cancer genomes to be
sequenced and mapped withigh accuracy giving rise to large databases of known cancer

genomes such as the P&ancer Analysis of Whole Genomes (PCAWG) Flidy

1.2.2. ChiPseq

The applicatiorof NGS sequencing to chromatin immunoprecipitat{@hlIP)gave rise to ChiP
seq(chromatin immunoprecipitation followed by sequencing)key technology on the pathway

to our better understanding the genomic background of cancer development. ChIP
methodologes have been known for a long tini0], but have found very limited use in large
sequencing experiments and projects because of their price and a lack of practicadi large

scale. The basic principle of ChlIP is to use an antibody that recognizes a TF or histone modification

to pull down attached DNA for identifying binding locations, and has been used traditionally as a
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method for detecting selected promotor remns and histone binding sites. However, the rapid
development of NGS technologies has allowed chromatin immunoprecipitation to be followed
by sequencing of large genomic regions and even whole genomes giving rise teeGhlP
technology(Figure2). ChiPseq has since become the most common and effective method to
identify bound loci genomavide in vitro and in vivo. The importance of finding and mapping
certain DNAprotein interactions and epigenetic modifications lies in the link between DNA
protein interactions and transcriptional regulation. Genomede profiling of transcription factor
(TH)binding sites and regions with covalently modified histones has been able to aid in the search
for and even discover new cebr tissue, speciesand disease speaf genomic regions. The
RoadMapEpigenomics project focuses on analyzing and collecting-§¥#qRlata from different
human cell lines with a direct focus on delivering a collection of normal epigenomes that can be

usedfor comparison and integration into number of different studjég].

4| Page



éﬁ\
.

\% hg\\poﬁk\ff
% s &

A. Crosslink and fractionate chromatin*

13

B. ChIP: Enriched DNA binding sites*

P 4
P
C. End repair and phosphorylate
G
_
5 1
B
D. A-tailing
P5
Rd1 SP P
i | A eo—
ndex/"Rd2 SP (@ P
P7
P5 P7
Rd1 SP RA2SP /'
p——————————————————— . Index
Index /" Raz SP Rd1 5P
P7 P5
E. Ligate index adapter
P5  Rd1SP DNA Insert Index

Rd2 SP' P7 y

F. Denature and amplify to produce final product for sequencing

Figure 1. Basic workflow of a ChHeq experimen{12].

1.2.3. Currentresearchin cancer genomics

Given all aforementioned findings and technologies many researches have shifted the focus of
their research towards discovering, annotating and describing the characteristics of the cancer
genome and epigenome and using those results for bettering thend&tg and prognostic tools

available. Approaches to these problems have been numerous. Finding and identifying definitive

unique patterns of somatic mutations which distinguish certain types of cancer. Based on the
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largescale exome and genonszquencingstudies we now have the somatic mutational

patterns for many major cancer types including but not limited to:

X chronic myelogenous leukaemia (CNH_gharacterized by t(9;22) translocation
JuulvoC IV}Av « §Z ~WZ]Jo 0%Z] ZE}ufpBluprotem JvP 3§}

fusion, which is now used as a test for the dis€ld$

X melanomasgs characterizedwitz]|PZ & S « }( OEOd v 'OEO S&E ve]S]}v u

to UV danage which causes photodimerization and faulty repirg.

x almost all diagnosed pancreatic ductal adenocarcinomas having mutations in the KRAS

gene[15].

The aforementioned PCAW(@Groject aims to expand on those findings by collecting and
systematically analyzing cancer genome sequences from more than 2,600 patients across 38
cancer types, characterizing putative naonding driver events that cannot be found using data
from wholeexome sequencing or singheicleotide polymorphism arrays, creating the largest
database of known cancer mutatioss far. In addition to those cancespecific driver mutations

on which the cancer is being selected for as they are often connected with an increase in
cancerogenic potential, each individual cancer accumulatesder of magnitude larger number

of passenger mutations which researchers first presumed are randomly distributed, as cancer is
not undergoing any kind of selection involving those mutations and that they preserve sort of a
"NSE | E }E _ ()} & procegssSthe tuhor has undergonid6]. However, detailed
investigation has discovered that those passenger mutations do not accumulate at random,
rather that the profie of those passenger mutations correlates heavily with a number of different

epigenetic modification§l7,18].

When approached with the problem of treating metastatic cancer the first and foremost issue is
finding the primary tumor organ or cedf-}E]P]JvX dZ u § S §]-of-8ngin} &ad - 00
histopathology are the stroregpt determinants of its clinical behavior and therefor a clear
pathway to finding the best optimal route to cancer treatment, but i6% of cases patiestvith

a metastatic tumoro not have an obviousellof-origin[19]. Determination of the correct cell
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of origin for a metastatic cancer is a key factor in cancer treatment. There have been several
studies which have highlighted the importance ddgtermining thecorrect cell of origin For
instance,it was shown that patients with the same driver mutation, but appearing in different
cancer types (. different cell of origin) will have a different response to treatm@®]. Another

study, conducted in a mouse model of glioblastoma, showed that drug sensitivity differed
according to the celbf-origin [21]. Based on this problem a class of emerging approaches aims
to classify cancers based on somatic passenger mutation profiles alone, without the need to find
and identify all special cancer type identifying genes and regiavhich is much more
complicated and not reliably testable for all cancer types. The madbaraing models so far
have been able to accurately predict the tissue of origin given the epigenetic modifications of
many different tissues. Those models uasge genomic and epigenomic datasets in order to
accurately predict the correct tissue of origin of a given somatic passenger mutational profile
[18]. With highlightng the importance of determining correct cell of origin the questiorthef
diagnostic potential for complex machine learning algorithanises. The main issue in using
these models for diagnostics and treatment is the need for whole cancer genome s&tgenc
and assembly. Due to this it is necessary to improve on the existing methods fof-aefin

determination and to simplify their interpretation in the context of biological systems.

1.3.ResearchGoaé

Themain goal of thisesearchs to find the optimalyenomicregions to use in theredictive
models which determine the melanoma ceftorigin with high accuracy. We will be looking for
the regions on which the models trained on chromatin modification values from melanocytes
(the carect tissue of origin for melanoma) have the biggest difference in prediction accuracy
from other cell line chromatin modification values and to investigate the possible genomic
background for the behavior of the model. To achieve those goals, the igagsti will be split

into 3 different parts:

1. Using principal component analysis to identify the regions which contribute to principal

components the mosin order tofind the optimal number of regionssed for prediction.
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. Finding the optimal regions by uagj the results from land compare the models trained

on different subsets of regions.

. Analysis of known sequence features and kn@&normic elements locatedhe selected

regions.
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2. Methods

2.1.Data

The data used in the research is split into two groupsdfator variables (genomic localization

of histone modifications) and response variables (mutations profiles of melanoma cell lines).
Histone modifications used are H3K4mel, H3K4me3, H3K9me3 and H3K36me3 from 83 different
tissues/cell lines, included in EXDDE and RoadMap Epigenomics proj@&is Mutation profiles

of melanoma cell lines are obtained from Pan Cancer Analysis of Whole Genomes (PCAWG)
project andpublicly availablg¢9]. The human genome is divided into 1 megabase (Mb) regions,
excluding regions overlapping centromeres and telomeres, and regions where thoriract
uniquely mappable base pairs is lower than 0l82otal, 2128 1Mb long genomic regions were
used in the analysisThe histone modification data originating from the same cell types is
combined and the RPKM value for each of the predefined regsoalculated. The melanoma
mutation profile data is composed of 107 different patient samples, all of which are also divided
into identical regionsAll of this data has been previously processed and the data used in this

research has beeabtained fromthe research18].

Genomic coordinates ofuper-enhances data were downloaded from the human super
enhancer database (SBEd[23]. SEdb is a publicly accessible database with a goatd to
provide a large number of available resources on human sapbancers. The database was
annotated with potential functions of supe@nhances in the gene regulatiomMelanomasuper

enhancer genomic positions argcluded in the database.

In order to find the transcripts and exons located in the genomic regions of interest we used the
ANoviu]l & SUE ¢ %o [2B]PTheg padkage is used to retrieve knotsanscriptrelated
features from the UCSC Genome BioinformdB&} and BioMart31].

Melanoma driver gene data is part of larger research data which focused on finding driver point
mutation across 2,658 different genom&s non-coding regions from Pa@ancer Analysis of

Whole Genomes (PCAWG) Consortium5 of the International Cancer Genome but data from
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protein coding point mutations is also included and can be publicly access@®]aunder

AMU% %0 U VvS EC § 0 ¢ _ X

We retrieved the sequences of thteiman genome datérom UCSQ30]. s] SZ "~ ~"P v}u _
package for H33] X ~ "P v}u _ % | P @& SE] A+ §Z o0 § «5dnthé Zpu v
version we used in our research was the human genome version hgl9 (based on GRCh37.19.p13
assembly)Genome data was used tmalculate the percent o6C contenfor each of the 2128

genomic regions analyzed in this study.

2.2.Computational methods
2.2.1. R staistical package

All the analyses in this research were conducted in the R statistical environment, a freely available
software and programming environment for statistical computing and graphics. R version used

in this research is 3.6[24]. Overlaps between genomic regions and drivers, stgrdrancers

were calculated using thé ' Z v P packagg25]. Granges uses formatted genome coordinate

E vP § o0+ 38} ] Vv3](C }A o %X ' vVv}u }1}JE ]Jvs & vP e & ~
regions or genes in the chromosome given in the formateofchrX;1-100](this means that the

e0 § "Pv ]Jeo0o} § }vs8zZ y ZE}u}e}uUP Vv 8§ ES* §3Z (]J&E

and ends at the 100base of the chromosome).

2.2.2. Principal component analysis

Principal component analysis (PCA) is a classical tool toe¢ldeciimension of multi variate and

high dimensional data, as often seen in gene expression analysis. PCA is often used in those cases
to visualize the similarities between the biological samples, and to filter noise. The basic principle

of PCA is it thaprojects highly dimensional data into a new space spanned by the principal
components (PC) calculation is of which is based on the variance in the data, trying to use as little
possible number of new PCs to explain as much variance as possible wittaiheutaber of PCs

being equal to NL (number of dimensions in the datdl). All calculated principal components

are uncorrelated and orthogonal. The PCs can successfully extract most of the relevant
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information in the data[26]. In this research the PCA method will be implemented via the
N( S}D]v[Z] package in R. The package is specifically designed fordimggmsional
biological data and is easily manipulated. Main result of PCA which will be used are contributions
of different dimensbn (or regions in this case) which describe how much of the resulting variance
explained by PCs is attributed to certain dimensions (regions) in order to give a guided way to
identify the most informative regionsContributions of variables to the prin@pcomponents

are giverby the formula:

R=MNe ~

Usrr

Where cosis equal to the squared coordinates of the variable which are calculated by the PCA

algorithm. Total cosvalue is equal to the sum of cogluesof all variables in the component.

2.2.3. Random Foresegression

Random Forest regression is a Aearametric machine learning method developed in early
Ti1i[* AZ] Z pe » ve u 0 * }( *Ju%oo0 ]*]}v SCE + 8} %SuE ulE
and reduceghe chance of overfitting to training data when compared to simple decision trees.
The basic principle of the method is to draw a random training set of size n, with replacement,
which, when averaged out, on the many trees the algorithm draws ends up sppately 2/3 of

the whole data. The remaining 1/3 of the data (often referred to asaitlhag data) is used to
compute the mean squared prediction error of the tree. To calculate the prediction for a given
observation the algorithm takes the average oégictions over all trees for all outf-bag data.

The resulting diversity of trees can capture more complex feature patterns than a single decision
tree and reduces the chance of overfitting to training data. In this way, the random forest

improves predidive accuracy28].

Here Random Forest algorithm is ilement A] ~@& vP & _ %28l The gackdge is
designed for high dimensional biological data. We are using forests with 500 trees to predict the
mutation densities in the previously constructed 1 Mb regions of melanoma patients. The

individual patientsamples were divided into ten nesverlapping sets and the total number of
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mutations in each region was used for model predictions using tenfold -swd&kation.

Prediction accuracy of each model was measured as rooted mean squared error:

/5" L §N:T®§Q)095X-I-U*g§®.§<

Crossvalidated prediction accuracies were calculated by the following procedure:
1. Divide the patient data into training set data (9/10) and test set data (1/10)

2. Determine the regions on which the random forest algorithm beltrained (i.e. selected

200 regions)

3. Train the model using the predictors of test set data for regions determined in 2.

4. Use the model to predict the mutation density profiles for ALL regions in the test data

given the predictor values of ALL regioranirthe test set data.

5. Calculate the test MS&f the model by comparing the fitted values and the real values of

mutation profile densities.

6. Repeat the procedure 10 times, each time using different sets of training and test data

(selected patients mutatioprofiles)

7. Take the average of the MSE values across the -walgfation data sets and use that

metric as a measure of the model accuracy.

This way of calculation of crossalidated MSE has some drawbacks, i.e. the smaller the training

set number of diffeent regions the MSE will be higher, as the similarities between patients in

genomic regions are greater than similarities betweenrhéation profiles of different genomic

regions (regional profiles are independent of one another, whilst different sasnpkeve

correlated mutational density profiles in the same genomic regions). Nonetheless this approach

gives a glimpse on how the model will behave when tasked to classify unknown data (i.e. if we

select 200 regions for training and then use the full s1#8 regions for testingyhich is a far

more valuable metric for diagnostic purposes.
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2.3.Statistical tests
2.3.1. Pearson Produd¥loment Correlation

The Pearson produehoment correlation coefficient is a measure of the strength of a linear
association betweetwo variables and is denoted by r. The formula for the correlation is

A:TF I ¢;:UF | ;
¥YA:TFIT;8A:UF 1U:®

NL

Where mxand my are the means of x and y variables.

The formally used measure for prediction accuracy,iwhich is used and displayed ¢the

graphs used in this research

2.3.2. Wilcoxon ranked sum test

Wilcoxon ranked sum test is a standard Amarametric statistical test used when the
distributions of the tested data are not known or does not have a defined expression. The
implementation ofthe test | carried out in base R programming package under the function call
Avilcox.test. v A pe 13 3§} u -valdE of & ob%ervation. The null hypothesis is that
the distributions of x and y do not differ by a definitive location shift, arelgvalue calculated

is the probability of seeing that outcome, or to better put it to test whether set of observations

x and a set of observations y, where x and y are two independent samples, come from the same

distribution and what is the probability seeing those observations if they do.

2.3.3. Fisher exact sum test

&l*Zz E A § epu § 35U }E &Jisa sHEfisticdl s§nific@bice EsiiISdd in the analysis of
contingency tabledJnlike most statistical tests, Fisher's exact test does noausathematical function

that estimates the probability of a value of a test statistic; instead, you calculate the probability of getting
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the observed data, and all data sets with more extreme deviations, under the null hypothesis that the
proportions are he sameunder a hypergeometric distribution. The tdstimplementedin R under the
ofishertest() X dZ & -posS }( SZ &/pdue G pbsérvaryy e cobdingency table under the

presumption that all of the proportions are conserved.
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3. Results

3.1. Principal component analysis results

The first part of the research was to perform and exploratory analysis of the datasets by using
principal component analysis on the both predictor and the response variables. The layout of
original datasets &d to be transposed in order for PCA to explore the variance between the

regions and not between different predictors/patients. The results of the PCA for both the
predictor and response variableseincluded in Figurg.
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Figure 3. Scree and contributin plots of analyzed data setg-igure3.A is the scree plot of
response variable PCA. On the Y axis is the percentage of total variance explained by the principal
component, and on the X axis are principal components ordered by their relative percentage.
Figure3.B is also a scree plot but of predictor variable PCA. Figi@eand3.D represent relative

contributions of genomic regions to the variance explained by fits¢ largest principal
component from A and B respectively.
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From the scree plots we can see that most of the response variable can be explained by only 2
PCs, with up 87% of the variation in the mutation profile data explained in only one dimension
and the rest of the PCs contributing only a fraction of that to tiverall variance explained
percentage. In the case of predictor variables, the variance in regions has to be explained in a
bigger number of PCs with 3 different PCs totaling the percentage variance explained of ~90 %.
The contribution of individual regie to variance in PCs in the case of response variables Figure
3.C differs only very slightly between the ones that contribute most and the ones that contribute
the least with maximal difference <10% of the mean value for the individual contributioree In t
case of predictor variables (FiguB®) the difference is much more pronounced with a large drop

in contributions throughout the different regions of the genome.
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Figure4. PCA biplots of the predictor and response variablegure4.A is a standardPC1/PC2
loading vector biplot for PCA of response variables, with values on the X and Y axis corresponding
to the value of the loading vector with different colors representing different relative
contributions to the % of variance explained. Fighig isthe PC1/PC2 loading vector biplot for

PCA of predictor variables, colored with regard to different relative contributions. Note that the
contributions in this case are much more diverse as can be presumed from3ywikere the

slope is much more pronaced when compared to FiguBeC
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PCA biplots in both cases show that there no particular clustering of data in those dimensions
with a highly pronounced ellipsoid shape in both cases. The conservation of the ellipsoid shape
can be presumed as some fundamal property of the data, such as interconnectedness of all
epigenetic variations and the relative bounds of the data and low variance regions in both the
predictors and the response variables. The investigation of causes for this ellipsoid shape is

beyond the scope of this research
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Figure5. Position vs. position deplot of ordered PCA contributiong.he figure represents is a
dot-plot of contribution ordered regions of response and predictor PCA results. Each dot
represents a positional match e.g. region chrl.11 region is 100. in predictor contribution ordering

and 600 in response variable orderirgtke dot is placed on the (100,600) place on the graph

We then explored the relationship between the ordering of regions using the results of PCA of
either predictor or response variableBrom Figureb. we can see that there are no particular
regions wihch have any kind of clustering, rather that the positioning is pretty uniformly and

randomly distributed throughout the graph. e orderings were relatedwe would expect to
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see particular clusters or diagonal elements existing on the graph. Havitlgsters or diagonal
elements in this case is a favorable option because it means that there are no-spgioific
biases between predictor and response variables which could mean possible biases in model

training and testing.

3.2.Identifying the optimategions for model training

Next part of the exploratory analysis was finding out how does the prediction accuracy behave
in accordance to the number of regions used in modelling ohtimaber of mutations inspecific
regions ofmelanomagenomes with the goal being finding the optimal number of different
genomic regions with which to begin the search for the best ones, and the result of the search

are included in Figuré.
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Figure6. Dependence of sample sizes used for model training on NR&gions used for model
training and predictions are randomly sampled via the generic sample() function. The 2 lines

below represent both melanocyte cell lines and are clearly separated from the rest of the cell
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samples. Grouped lines above are randomip@ad are 20 different cedif-origin. Here used in

the calculation is a size increase step of 10, meaning that number of regions sampled increased
by 10 in each calculation, which resulted in afdld increase in speed, but the resulting MSE
values becam more unstable. It can be seen thatalues after the initial drop begin to stabilize

around 200 regions being used.

From the plot it is visible that the behavior of the prediction accuracy vs. total number of regions
is predictable. We can see that tihelative predictive power is lower when the total number of
genomic regions is lower. When the number of regions reaches2200the predictive power
stabilizes and begins to linearly drop off, in the case of correct cell of origin being used for model
training while the drop is less pronounced in other cell lines used. Using that number of regions
in ordered search is therefore favored as any differences between models using the correct cell

of-origin is maximized when using ~200 regions.

After finding theproposed optimal number of regions to start our search for the best regions
the next step was starting the ordered search based on ordering from F&Grand Figur8.D.
Using a sliding window of a size 200 as established from Feguséth a sidestep of 10 regions,
meaning that for each step of calculation the window is moved 10 regions down the ordered list,

with 10-fold cross validated MSE the results from Figlirerere obtained.
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Figure7. Optimal number ofselected windows moved over orded positions.Figure7.A are
response variable PCA contribution ordered regions; FiguBeare predictor variable PCA
contribution ordered regions. OraXis is the MSE for a window which starts at thexis marked

tick and continues for next 200 reg®from the ordering. Bottom 2 lines on both graphs are 2
samples from melanocyte cell lines used for model training, above lines are 30 randomly sampled

cell samples from other tissues.

Using response variable ordering results in a more divergent grapthvialas bigger differences
between individual regions, while using predictor variable ordering results in a graph which is
more uniform, with less pronounced differences between different regions, as well as a smaller
total difference between melanocyte dnother tissue samples. To quantify the difference
between melanocyte and the other cell samples and to identify the regions with the biggest
predictive power we calculated the difference between the average MSE values of the

melanocyte cell samples anddlaverage MSE values of the other cell samples.
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Figure8. Average difference between melanocyte contribution ordered MSEs and other cell
lines MSEs using the same ordered contribution ordered lisigure 6.A represents the
calculated differences as explained above for response variable PCA contribution orderings;
Figure 6.B represents the calculated differences for predictor variables PCA contribution ordering.
Y-axis represents the values of thelaulated differences and-axis representing the relative

positioning in the respective orderings.

As can be seen from the Figl8&\, for the response variable orderings the differences are more
pronounced with a pronounced peak in the beginning, altHotlge mean calculated differences

are approximately the same (for FigueA the mean is 220.7@&ndfor Fgure 8.B the mean is
219.06). Those regions which fall within the pronounced peak of the window which starts at the
70" region of the ordering (meang it includes regions from 7870, zscore of the values
obtained under the presumption of normal distribution is equal to 2.6705 which translates to a
p-value = 0.00265) are those regions we hoped to identify, regions which enable us the biggest
predictive power, or the biggest separation in model accuracy between the correatfemigin

and all the rest. The next step of the research is confirming that those regions separate between
correct celof-origin equally effective as models which includegathomic regiondn the rest of

the research we have used the results from response variable contribution orderings because the
predictor variable contribution orderings provided no statistically significant differéRe®.01)

between different regions.
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3.3. Exploring the predictive quality of the selected regions

Figure 9. Prediction accuracies for models trained on the selected regions across different tissue
samples.Figure9.A represents relative MSE of models trained on full set of genomic regions with

each bar representing different tissue sample. Figui represents relative MSE of models
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trained on regions selected in FigB&. On the yaxis are different tissue sangd ordered by
their size. Both figures have Wilcox rank sum test calculatealyes of the difference between
melanocyte cell samples tested versus all other tissue samples. All MSE scorefolarerb8s

validated.

From Figure. we can clearly concledthat models trained on selected regions, albeit having a

larger total MSE than those trained on full data, can be used to differentiate the correct tissue of
origin given the mutation profile of melanoma cancer cell with accuracy which is almost identica

to full genomic region, since we have significd®t(.01) difference of the melanocyte MSE using

the Wilcox ranked tests. To further explore goodness of fit of the models, graphs of real vs. fitted
values were constructed for both melanocyte cell liresl the seconéest tissue in both full

& P]}v u} o v o0 § & P]}ve u} o ~"We} ¢ Due o U ~"Z S o
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Figure 10. Real (observed) vs. fitted value plots of selected region trained modelsetécted
tissue samples. R values are calculated as Pearson correlations coefficients squared and
displayed for each sample individually measured between observed and fitted values, with higher

R meaning better fitted values. The line represents a generalized linear modelHit ttata.
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As shown above he models trained on selected regions and correct-aktrigin samples are
more accurate and correlate much better to observed data in comparison to sduestdissue
model fitted values. Biggest errors (or misclassificatiarg) focused on regions with higher
mutation densities and from there stems the better accuracy of correcodedtigin as for Figure

9.A and Figur®.B the spread is in those regions is much lower and the values are closer to the
diagonal. In contrasill tissues are fairly accurate when it comes to predicting lower mutation

density values.

3.4. Exploring the genomic backgrouoidselected regions

The rext step of the researctwas to try and identify the underlying reasons for such
observations, the reasowhy those selected regions give us better prediction accuracy when
compared to the rest. For this it is crucial to first check the distribution of the mutation densities

in those regions and compare them to the rest general distribution of the mutatiorsitdes

across all regions. The reason for this is to determinet@Gntent of the selected regions
because of the known bias of sequencing to produce high read values in GC high regions of the

genome.
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Figure 11. Distributions of mutations densities @ C content in selected regiorfigurell.A
represents the relative density plot of selected regions aggregated sample mutations (yellow) and
all regions aggregated sample mutations (purple). Above displayed is the Wilcoxon rank sum test
p-value for diference in distribution means. Figut&.B represents the relative densities of all
regions GC content in % (purple) and selected regions (yellow). Also, result of the Wilcoxon rank
sum test is displayed on the graph. GC content was calculated from UGSfehgthe data using
overlaps with genomic regions used, adding the total number of GC base pairs and dividing with

total number of base pairs.

From the Figurd1.A depicted results we conclude that there is a statistic&liifqgoxon rank sum

test pvalue<0.01)significantdifference between the mutation density distribution in selected
regions when compared to all genomic regions mutation density distribution. From HigBe

we can conclude that there %0 statistically significant differenc@Vilcoxonrank sum test p
value=0.81petween the GC content of the selected regions and GC content of the full genomic
regions usedThis showthat the higher mutation density value obtained from mutation profiles
does not stem from the known sequencing GC contaas and as such does not need to be

corrected for.
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Figure 12. Calculation of the representation of intraregional genomic elements and super
enhancers Figurel2.A is the result of overlapping selected and all genomic regions with known
genomic annota J}v }( IV}IAv El}ve v SE ve E]%Se (E}u h * k35 ]v A]
package. Yaxis values are percentages of Mb regions covered in known transcript/exon
annotation calculated as:

AAéQéOéQU@&@@&C@éﬁ(ﬁQJ&;&eUS”
CeadO@@lUgaaad®uUpaé '

%_

Figure12.B is the result of overlapping selected and total regions versus database of known
melanoma linked super enhancers from the aforementioned SE@iués is the mean number

of superenhancers per Mb resulting from the overlap.

Exon content in both groups of selected regions is very close to the general exon content in all
regions taken into consideration and in accordance with general experimental data which
suggest that around 2% tfe genome is made up of exons. Real difference is seen in both cases
when examining relative percentage of transcribed regions. When examining the comparison
between all regions and selected regions percentages of transcribed total sequence there is a 7%

increase in transcription in the selected regions. There is no significant difference in super

26| Page



enhancer densities between selected regions and all regions, with 79 super enhancers found in
selected regions vs 662 super enhancers found in all used genregions out of total 882 super

enhancers found by previous researchers.

Table 1 Overlaps between know protein coding drivers Hralselected genomic regions. Fisher
exact test pvalue = 0.6124.

OVERLAPS PROT  DOES NOT OVERLAPTHRE

CODING DRIVE CODING DRIVE
REGIONS IN SELECTED 0 200
REGIONS
REGIONS NOT IN SEIHG 9 1919
REGIONS

Table 2. Overlaps between neprotein driver genes and selected genomic regions. Fisher exact
test pvalue = 0.8652.

OVERLARSONPROTEIM DOES NOT OVERLAP N
CODING DRIVE PROTEIN CODING DRI

REGIONS IN SELECTED 9 191
REGIONS
REGIONS NOT IN SEIHY 96 1832
REGIONS
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Table 3 Combined overlaps for protein and ramotein coding melanoma driver genes in the
selected regiong=isher exact test-palue = 0.7415

DRIVEF

OVERLAHSTHERROTEIM OVERLAPS NEITHHEROTEI!
ORNONPROTEIEODINC

NOR NOMPROTEIRODINC
DRIVEF

REGIONS IN SELECTED
REGIONS
REGIONS NOT IN SEIHG
REGIONS

106

191

1822

The overlap Fisher exact test resu{ff&ble 1., Table 2. and Table Baply that there is no

statistically significant difference between the presence of identified protein andpmotein

coding driver mutations in the selected regions we useith@research.

28| Page



4. Discussion

The results of PCA on both the response and predictor variable showed that there are potentials
to reduce the number of regions used in the models to predict the cbwellof origin. Both the
response and predictor variables can have a large percentage of their variance explained by a
relatively few number PCs. PC biplots showed that there were no definitive clustering patterns
of the data in the main PCs analyzedhieh is useful for downstream analysis as there were no
biases toward certain clusters of regions or outliers which could interfere with the predictive
power of the models. Contributions of regions to the response vari8il&showeda less
pronounced oveaill difference, meaninthat all regions contribute relatively uniformly to the PC.
Contributions of the regions to the predictor variable PCA showed more promise because the
difference between the most and least contributing regions was lavge¥n compaed to the

response variable differences

We have also shown that there is little connection between the contribution orderings of the two
PCAs, which means that there are no clusters of regions which contribute to both the predictor
and response variables relative variances equally. This fimgisgmportant as it showed us that

the two contributionbased orderings are mutually independent so if potentially more
informative regions for model training were to be discovered we had to search both of orderings
separately. Finding the optimal numbefrregions was an important step forward as it was shown
that the melanocyte samplesonverge to a linear drop in prediction accuracy based on the
number ofregionsused relatively fastAlso, it was shown that even a low number of regions
were enough tosuccessfully separate the correct eeflorigin and there was a low absolute
difference in prediction accuracy between the two melanocyte samples we had in our data sets.

Although models of prediction of cedf-origin based on various features of cangenomes and

normal cells were developed previough83435|, to our knowledge this is the first study which

7

uses epigenomic data of normal cells to perform unbiased selection of genomic regions needed

for successful cebf-origin predigion.
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Although PCA results of predictor variables showed more promise in the beginning of the
research, relative differences of melanocyte sample MSEs to other tissue sample MSEs across the
ordered contributions were uniform with no particular regions whishowed statistically
(P<0.01) larger difference from the mean prediction accuracy of all windows. On the other hand,
response variable PCA result based orderings of the regions have managed to produce
statistically significant (P<0.01) difference frommetmean of the differences under presumed

normal distribution.

The selected regions have managed to separate the melanocyte samples from other tissues with
relative ease. More fascinating was the fact that the selected regions separate the tissue samples
with accuracy almost identical to full genomic regions models meaning that even 10% of the

whole genome can be used to successfully determine the correct cell of origin.
Investigation into the genomic background of the results provided mixed results.

On ore hand we managed to show that there was no-&@tent bias which is commonly
associated with NGS experimenturthermore the selected regioshad a significantly larger
proportion ofregions with a high amount of passengeutations. This result pointso the fact

that regions with a high number of mutatiorsse more informative formodel training than
regions with a lower number of mutation$his is in agreement with previous studies which
showed that the prediction power of such models depends onribmber of mutations in a
region. We have also shown that the selected regions also ladvigher percentagef their
regions transcribedvhen compared to all regiond his is not surprising, considering that gene
expression was previously shown to be related to mutational de and shows thathe
influence of transcriptional rate of the selected regions on prediction accuracy should be

investigated further.

On the other hangdinvestigation into known melanoma supenhancers and cancer drivers
providedlittle results that could explain ouirdings.We found that there were no differences
between super enhancer densities in selected regions when compared to the rest of the regions
used. Adding to that we also found that there were no differences between the presences of

protein and norprotein coding driver mutations in the selected regions when compared to the
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rest of the regions used. An explanation for this potentially lies in the fact that we were using
passenger mutations, which are independent mutations to driver and sepkancer mutabns

and are shaped by epigenetic regulati@.
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5. Conclusion

In conclusionthis research has been successful in its goal of finding the most informative segion
to be used in melanomaeltof origin prediction. We have identified regions which comprise of
only 10% of the genomic regions used in previous studies which can successfully identify the
melanoma cetbf-origin with a degree of accuracy comparable t@ér datasets previously used.
Although failing to find the connection between passenger and driver mutations in melanoma
this finding successfully opens the question of the diagnostic potential for complex machine
learning models in metastatic melanomalleaf-origin detection. The focusf duture studieson

this should be identifying the most informative regions of other malignant diseases which show
the same potential in order to create a comprehensive guide for metastatieofzeligin

discovery acrossltiple cancer types.
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