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Abstract: This article presents the kaonic atom studies performed at the INFN National Laboratory
of Frascati (Laboratori Nazionali di Frascati dell’INFN, LNF-INFN) since the opening of this field
of research at the DAΦNE collider in early 2000. Significant achievements have been obtained by
the DAΦNE Exotic Atom Research (DEAR) and Silicon Drift Detector for Hadronic Atom Research
by Timing Applications (SIDDHARTA) experiments on kaonic hydrogen, which have required the
development of novel X-ray detectors. The 2019 installation of the new SIDDHARTA-2 experiment to
measure kaonic deuterium for the first time has been made possible by further technological advances
in X-ray detection.
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1. Introduction

An exotic atom is an atomic system where an electron is replaced by a negatively charged particle,
which could be a muon, a pion, a kaon, an antiproton, or a sigma hyperon, bound into an atomic orbit
by its electromagnetic interaction with the nucleus.

Among exotic atoms, the hadronic ones, in which the electron is replaced by a hadron, play a
unique role, since their study allows for the experimental investigation of the strong interaction
described by Quantum Chromo Dynamics (QCD). The interaction is measured at threshold since the
relative energy between the hadron forming the exotic atom and the nucleus is so small that it can be,
for any practical purpose, neglected.

Experiments measuring kaonic atoms, in particular kaonic hydrogen, performed from the
70s through the 80s [1–3] have left the scientific community with a huge problem known as
the “kaonic hydrogen puzzle”: the measured strong interaction shift of the fundamental level
with respect to the electromagnetic calculated value was positive, the resulting level more bound,
which meant an attractive-type strong interaction between the kaon and the proton. This was in
striking contradiction with the results of the analyses of low-energy scattering data, which found a
repulsive-type strong interaction.

In this paper, we describe the DAΦNE Exotic Atom Research (DEAR) [4] and Silicon Drift Detector
for Hadronic Atom Research by Timing Applications (SIDDHARTA) experiments [5] on kaonic
hydrogen at the DAΦNE collider at the INFN National Laboratory of Frascati (Laboratori Nazionali
di Frascati dell’INFN, LNF-INFN). These experiments have characterized the progress in detector
development achieved in performing precision measurements of kaonic atoms.

DEAR has contributed to solve the “kaonic hydrogen puzzle”, after the measurement of the
KpX experiment at KEK [6], disentangling the full pattern of the K-series lines of kaonic hydrogen by
employing charged-coupled devices (CCDs) that take advantage of their pixelized structure to obtain
a powerful background reduction based on topological and statistical considerations.

SIDDHARTA used large area silicon drift detectors (SDDs) with microsecond timing capabilities.
The main feature of the SDDs is the small value of the anode capacitance, enabling good resolution
in energy and time. SIDDHARTA has performed the most precise measurement in the literature on
kaonic hydrogen transitions.

In 2019, a new experiment, the SIDDHARTA-2 experiment, will be installed on DAΦNE to perform
the first measurement of kaonic deuterium. The experimental challenge of the kaonic deuterium
measurement is the yield, one order of magnitude less than kaonic hydrogen, and the even larger
width. In order to satisfy the stringent requirements of the measurement, new monolithic SDD
arrays have been developed with an improved technology, which increases the stability, optimizes the
geometrical X-ray detection efficiency, and reduces the drift time.

Section 2 describes the kaonic atom measurements performed at DAΦNE by the DEAR experiment
employing CCDs. Section 3 describes the measurements performed by the SIDDHARTA experiment
employing SDDs. Section 4 looks at the future measurement of kaonic deuterium by the SIDDHARTA-2
experiment at DAΦNE. Conclusions are drawn in Section 5.

2. Kaonic Atom Measurements at DAΦNE Employing CCDs

2.1. Charge-Coupled Devices (CCDs)

Charge-coupled device (CCD) arrays are ideal detectors for a variety of X-ray imaging and
spectroscopy applications, and in particular, in exotic atom research [7–9]. The CCD is essentially a
silicon integrated circuit of the MOS type. The device consists of an oxide-covered silicon substrate
with an array of closely spaced electrodes on top. Each electrode is equivalent to the gate of an MOS
transistor. Signal information is carried in the form of electrons. The charge is localized beneath
the electrodes with the highest applied potentials because the positive potential of an electrode
causes the underlying silicon to be depleted to a certain depth and thus have a positive potential,
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which attracts the electrons. It is therefore common to say that the electrons are being stored in a
“potential well”. “Charge coupling” is a technique to transfer a signal charge from under one electrode
to the next (Figure 1). This is achieved by also taking the voltage of the second electrode to a high
level, then reducing the voltage of the first electrode. Therefore, by sequentially pulsing the voltages
on the electrodes between high and low levels, charges can be made to pass down an array of many
electrodes with hardly any loss and very little noise.

Figure 1. Charge signal transfer from one pixel to the next. One pixel contains three electrodes.
The charges are in electrode No. 2, which has a voltage +V of 10 V. The voltage of electrode No. 3 is
set to the same level as that of No. 2. Simultaneously, the voltage of No. 2 is reduced and the charges
move to No. 3. A sequential pulsing of electrodes between two levels therefore allows a charge signal
transfer over many electrodes (pixels).

CCDs are operated in vacuum and cooled down to approximately 160 K in order to limit dark
current and therefore allow for up to several hours of exposure time. They operate in a similar
way to conventional silicon solid state detectors in that the incoming X-rays, following absorption
by photoelectric effect, are converted to electron–hole pairs where each pair requires 3.68 eV for its
creation. In contrast to the visible photon case, the number of electrons created depends on the X-ray
energy, and a good energy resolution can therefore be achieved.

The energy resolution of a CCD is given by:

∆ E FWHM(eV) = 2.355 × 3.68(N2 +
FE

3.68
)1/2, (1)

where N is the r.m.s. transfer and readout noise of the CCD, F is the Fano factor, and E is the X-ray
energy. From the formula above, the best possible energy resolution with Si CCDs can be estimated
by considering N2 very small. The result is 70 eV FWHM at 2 keV and 140 eV FWHM at 8 keV.
The characteristic parameters of CDDs are reported in Table 1.
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Table 1. Comparison of X-ray detectors for kaonic atom research.

Detector Si(Li) CCD SDD-JFET SDD-CUBE

Effective area (mm2) 200 724 3 × 100 8 × 64
Thickness (mm) 5 0.03 0.45 0.45

Energy resolution, FWHM, (eV) at 6 keV 410 150 160 140
Drift time (ns) 290 - 800 300

Experiment KpX DEAR SIDDHARTA SIDDHARTA-2
Reference [6] [4] [5] [10]

The identification of X-ray events and the determination of their energies is achieved by taking
advantage of the pixel structure, which allows the application of a selection based on topological
and statistical criteria [11]. This powerful background rejection tool is based on the fact that X-rays
in the 1–10 keV energy range interact mainly via photoelectric effect and have a high probability of
depositing all their energy in a single, or at most two, adjacent pixels, whereas the energy deposited
from background particles (charged particles, gammas, neutrons) is distributed over several pixels
(therefore called “cluster events”), which can be rejected (see Figure 2 (left)). A selected “single-pixel”
(see Figure 2 (right)), a pixel with a charge content above a selected noise threshold, that is surrounded
by eight neighbor pixels having a charge content below that threshold is considered to be an X-ray hit.

Figure 2. (left) Particle interactions and charge collection in a CCD detector; (right) example of an
X-ray signal (inside the circle) in a CCD picture exposed during a data taking run.

2.2. The DEAR Kaonic Hydrogen Measurement at DAΦNE

After the KEK result, the primary goal of the DEAR experiment at the LNF-INFN e+e− DAΦNE
collider was a precise determination of shift and broadening, due to strong interaction, of the
fundamental level of kaonic hydrogen and a complete identification of the pattern of lines of the
K-series transitions. The DEAR experiment took advantage of the clean (no contaminating particles in
the beam), low-momentum (127 MeV/c), nearly monoenergetic (∆p/p = 0.1%) beam of kaons from
the decay of φ-mesons produced by e+e− collisions in the DAΦNE collider.

A shaped degrader of Kapton foils, from 150 µm up to 1200 µm thickness was used to put kaons
at rest in the hydrogen atoms. The stopping efficiency was about 1%, with an intrinsic efficiency of
almost 100%. At KEK, the 600 MeV kaon beam was produced by the 16 GeV proton beam of the KEK
Proton Synchrotron on a thick target and then brought to rest in the hydrogen target using graphite
degrader a few tens of cm thick. Due to the production mechanism, kaons were accompanied by pions
in a ratio K/π equal to 1/90. The stopping efficiency was 0.06%, with an intrinsic efficiency of about
2% due to the broad energy distribution.

The DEAR setup consisted of three components: a kaon detector, a cryogenic target system,
and an X-ray detection system. Figure 3 shows a schematic view of the setup. The whole setup was
installed in one of the two interaction regions of DAΦNE.
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Figure 3. Schematic view of the DEAR experimental setup; only the right outer lead wall shielding
is shown.

For X-ray detection, Marconi Applied Technologies CCD55-30 chips were selected. Each CCD55-30
chip has 1152 × 1242 pixels of 22.5 × 22.5 µm2, resulting in a total effective area of 7.24 cm2 per chip.
The depletion depth is about 30 µm. The study of transport and charge integration procedures has
shown that the best results in terms of resolution and linearity can be obtained with a readout time
of about 90 s. The evaluation of the occupancy effect indicates that a total exposure (readout plus
static) of 120 s does not significantly reduce efficiency. Since the amount of data to be collected for
each readout was relatively high, a period of 2 min was chosen. During the readout, the CCDs are
exposed and since no imaging was necessary, the whole acquisition could be done in continuous
readout (no static exposure). The target cell was surrounded by 16 CCDs covering a total area of
116 cm2 and facing the cryogenic target cell. The CCD front-end electronics and controls and the data
acquisition system were specially made for this experiment.

The number of hit pixels in a cluster categorizes the event type. In the DEAR analysis [11], events
having 1 or 2 hit pixels were selected as X-ray events to increase both X-ray detection efficiency and
the signal-to-noise ratio. The typical fraction of hit pixels per frame was about 3–5% so as to have an
efficiency of hit recognition of about 98–99%. The X-ray detection efficiency as a function of energy
and the X-ray event loss due to pile-up effect were calculated by means of Monte Carlo simulations
and laboratory tests. The effect of applying charge-transfer efficiency corrections was an improvement
in the resolution from 214 eV (FWHM) to 176 eV at the Kα line of Cu (8040 eV).

An energy calibration procedure based on fluorescence lines from setup materials excitation
and the Ti and Zr foils was applied for each detector. Data from all individual detectors were then
added. The overall resolution of the sum of detectors was determined: the values range from 130 eV
(FWHM) for Ca Kα (3.6 keV) to 280 eV for Zr Kα (15.7 keV). The energy spectra consist of a continuous
background component, fluorescence lines from setup materials, and kaonic hydrogen lines.

A measurement with non-colliding beams, i.e., e+e− beams separated in the interaction region,
was performed. These data represented the so-called “no collisions background”.

Two independent analyses were performed. The two analysis methods differ essentially in the
background spectrum used. Analysis I used the bulk of no collisions data as the background spectrum.
Analysis II used as the background spectrum the sum of kaonic nitrogen data [12], taken initially
in order to optimize the kaon stopping distribution and to characterize the machine background,
and a subset (low CCDs occupancy) of no collisions data. The two analyses gave consistent results.
Figure 4 shows the kaonic hydrogen X-ray spectra for both analyses after continuous and structured
background subtraction.
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Figure 4. The DEAR kaonic hydrogen X-ray spectrum after continuous and structured background
subtraction: (a) results of analysis I; (b) results of analysis II. The fitting curves of the various kaonic
hydrogen lines are shown [4].

The resulting weighted average of the ground state shift ε1s was

ε1s = −193 ± 37(stat)± 6(syst) eV. (2)

The weighted 1s ground state width Γ1s was

Γ1s = 249 ± 111(stat)± 30(syst) eV. (3)

The DEAR results were consistent with the KEK measurement [6] to within 1σ of their respective
errors. The repulsive-type character of the K−p strong interaction was confirmed.

The uncertainty of the DEAR results was about twice smaller than that of the KpX values.
DEAR observed the full pattern of kaonic hydrogen K-lines, clearly identifying the Kα, Kβ, and Kγ

lines. The statistical significance of the summed intensities of the K-lines was 6.2 σ.

3. Kaonic Atom Measurements at DAΦNE Employing SDDs

3.1. Silicon Drift Detectors (SDDs)

The silicon drift detector, in its basic form proposed by Gatti and Rehak [13–15] in 1983, is a
fully depleted detector in which an electric field parallel to the surface, created by properly biased
contiguous field strips, drives signal charges towards a collecting anode (see Figure 5). The unique
feature of this detector is the extremely low anode capacitance, which is moreover independent of
the detector area. To take full advantage of the low output capacitance, the front-end n-channel
JFET is integrated on the detector chip close to the n+ implanted anode (Figure 5). They are located
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on the upper side of the device in the center of the p+ field rings. Thus, stray capacitances of the
various connections are minimized and a correct matching between detector and front-end electronics
capacitance can be achieved.

Figure 5. Cross section of a cylindrical silicon drift detector with integrated n-channel JFET. The gate
of the transistor is connected to the collecting anode. The radiation entrance window for the ionizing
radiation is the non-structured backside of the device.

The n-type device substrate is fully depleted by applying a negative voltage (with respect to the
collecting anode) to the p+ back contact and the p+ field strips on the opposite side (see Figure 5).
On this side, the negative bias of the p+ rings progressively increases from the ring next to the
anode to the farthest, outermost one. The maximum negative voltage of the outermost ring is
about two times the voltage of the back contact. The minimum potential energy for electrons falls
diagonally from the backside edge of the device to the readout electrode in the center of the upper side.
Each electron generated inside the depleted detector volume by the absorption of ionizing radiation
will therefore drift to the n+ readout node. The generated holes are collected by the reverse-biased p+

implanted regions.
As the device is fully depleted, the total thickness of 450 µm is sensitive to the absorption of

ionizing radiation. For X-rays, this allows for more than 90% detection efficiency at 10 keV and more
than 50% at 15 keV.

3.2. The SIDDHARTA Kaonic Hydrogen Measurement at DAΦNE

The SIDDHARTA experiment on DAΦNE at LNF-INFN [5] aimed to determine the kaonic
hydrogen 1s shift and width with a higher precision than in DEAR [4], using large area SDDs.

Figure 6 shows a schematic view of the SIDDHARTA setup, which consisted of three main
components: the kaon detector, X-ray detection system, and a cryogenic target system.

The SDDs in the SIDDHARTA experiment were developed within a European research project
devoted to this experiment. Each of the 144 SDDs used in the apparatus had an area of 1 cm2 and
a thickness of 450 µm. Three cells were packed monolithically in one unit, as shown in Figure 7.
The SDDs, operated at a temperature of ∼170 K, had an energy resolution of 183 eV (FWHM) at
8 keV and a timing resolution below 1 µs, in contrast to the CCD detectors used in DEAR which had
no timing capability. The characteristic parameters of the SDDs used by SIDDHARTA are reported
in Table 1.
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Figure 6. Schematic view of the SIDDHARTA setup [16].

Figure 7. Schematic image of the SIDDHARTA SDDs. Each cell has an active area of 1 cm2. Three cells
are packed monolithically in one unit.

A trigger condition was used which took advantage of the characteristics of the back-to-back
correlated charged kaon was production at DAΦNE, The time resolution of the SDDs allowed for
the detection of the kaonic X-rays in coincidence with the back-to-back correlated K+ K− pairs.
There are two background sources in DAΦNE: backgrounds synchronous and asynchronous to the
K+ K− production. The main source is an asynchronous background and is due to electromagnetic
showers originating from e+ e− losses by the Touschek effect [17] and the interaction of the beams
with the residual gas. The synchronous background, originating from particles produced by ϕ

decay and secondary particles produced by kaon reactions as well as the decay particles of kaons,
is small. Therefore, events related to charged-kaon production are selected only by demanding a triple
coincidence of K+, K− and X-ray signal, so that the asynchronous background is rejected.

Figure 8 shows the time difference between the coincidence signals of the kaon monitor and the
SDD events. The peak region contains the kaon-induced signals (kaonic atom X-rays) and background
(gamma-rays and charged particles from the K− interactions and K+ decays). The tail of the distribution
indicates the charge drift time in the SDDs. The time window indicated by the thick arrows was
selected as synchronous events with charged kaons. The width of the timing window, from 2.4 µs to
4.6 µs, was adjusted to maximize the signal-to-background ratio and the statistical precision of the
determined kaonic atom X-ray energy.
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Figure 8. Timing spectrum of SDDs. The spectrum refers to a dataset with a target filled with helium-3.
The peak corresponds to the time difference between the coincidence of the two scintillators of the
kaon monitor and the X-ray events in the SDDs (triple coincidence). The peak region contains the
kaon-induced signals and background. The time window indicated by arrows was selected to identify
synchronous events with charged kaons. The continuous asynchronous background was reduced by
this timing cut. From [16].

Using the coincidence between K+K− pairs and X-rays measured by SDDs, the main source of
asynchronous background was drastically reduced, eventually resulting in an improvement of the
signal-to-background ratio by more than a factor 10 with respect to the corresponding DEAR ratio of
about 1/100.

The data acquisition system was built on a PCI bus base. The differential output signal from the
readout chips was read out by ADC modules. Chip control, management of the memory and timing
information, and the event construction were processed by FPGA modules. Energy data for all of the
X-ray signals detected by the SDDs were recorded. In addition, a time difference between a trigger
signal (generated by the coincidence signals in the kaon detector) and an X-ray signal in the SDDs was
recorded using a clock with a frequency of 120 MHz whenever the coincidence signals occurred within
a time window of 6 µs. This timing difference information is included inside the SDD data, which are
used for the selection of kaon-timing events.

In the beginning of the SIDDHARTA runs, stability checks of SDD performance were examined
using the kaonic helium X-ray lines by installing a thin Ti foil and a 55Fe source inside the setup [18].
In Figure 9a, the peak position of the Mn Kα line (5.9 keV) as a function of time (about two weeks) is
plotted, where the origin of the vertical axis is taken as an average of the Mn Kα peak positions in the
whole dataset. A stability within ±2–3 eV was measured. This small instability was corrected to a
fluctuation of ±0.5 eV in the data analysis, as indicated by “with correction” in the figure. In Figure 9b,
the Mn Kα peak position against hit rates of the SDDs is plotted, where the origin of the vertical
axis is taken as an average of the peak positions, and the horizontal axis is given by an arbitrary
unit. The peak shift caused by hit rate dependency was found to be about ±2 eV, but this rate
dependency was corrected from the relation between the rate and peak shift. With this correction,
the rate dependency was corrected to be within ±0.5 eV. This stability is enough to determine the
X-ray energy of the kaonic atom X-rays within the goal of the measurements.
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Figure 9. The X-ray peak shifts of the Mn K α line (5.9 keV) as a function of time (a) and rate (b).
The origin of the horizontal axis in the figures is the average of the data. With correction of the time
dependency and rate dependency, a stability of ±0.5 eV was found [18].

In order to sum up the individual SDDs, the energy calibration of each single SDD was performed
by periodic measurements of fluorescence X-ray lines from titanium and copper foils excited by an
X-ray tube, with the e+e− beams in kaon production mode. A remote-controlled system moved the kaon
detector out and the X-ray tube in once every 4 h for these calibration measurements. The refined in-situ
calibration in gain (energy) and resolution (response shape) of the summed spectrum of all SDDs was
obtained using titanium, copper, and gold fluorescence lines excited by the uncorrelated background
without trigger and also using the kaonic carbon lines from wall stops in the triggered mode.

The use of the kaonic deuterium spectrum turned out to be essential to quantify the background
lines originating from kaons captured in elements such as carbon, nitrogen, and oxygen contained
in the setup materials, the deuterium data having no peak structures of K−d X-rays due to their low
yields and broad natural widths.

A global simultaneous fit of the hydrogen and deuterium spectra was performed. Figure 10a
shows the residuals of the measured kaonic hydrogen X-ray spectrum after subtraction of the
fitted background. K-series X-rays of kaonic hydrogen were clearly observed, while those for
kaonic deuterium were not visible [5]. Figure 10b,c shows the fit result with the fluorescence lines
from the setup materials and a continuous background. The vertical dot-dashed line in Figure 10
indicates the X-ray energy of kaonic hydrogen Kα calculated using the electromagnetic interaction
only. When comparing the measured kaonic hydrogen Kα peak with the electromagnetic value,
a repulsive-type shift (negative ε1s) of the 1s energy level resulted.
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Figure 10. The global simultaneous fit of the X-ray energy spectra of hydrogen and deuterium
data. (a) Residuals of the measured kaonic hydrogen X-ray spectrum after subtraction of the fitted
background, clearly displaying the kaonic hydrogen K-series transitions. The fit components of the
K−p transitions are also shown, where the sum of the functions is drawn for the higher transitions
(greater than Kβ). (b,c) Measured energy spectra with fit lines. Fit components of the background X-ray
lines and a continuous background are also shown. The dot-dashed vertical line indicates the e.m.
value of the kaonic hydrogen Kα energy [5].

The 1s-level shift ε1s and width Γ1s of kaonic hydrogen were determined to be

ε1s = −283 ± 36(stat)± 6(syst) eV, (4)
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Γ1s = 541 ± 89(stat)± 22(syst) eV. (5)

This is the most precise measurement of X-rays from the kaonic hydrogen atom performed so far.

4. Future Measurements on DAΦNE: Kaonic Deuterium

The kaonic deuterium X-ray measurement represents the most important experimental
information missing in the low-energy antikaon–nucleus interactions field.

The experimental challenge of the kaonic deuterium measurement is the very small kaonic
deuterium X-ray yield of one order of magnitude less than for hydrogen and the even larger width.
There are two conditions which have to be fulfilled for the kaonic deuterium measurement at DAΦNE:

• A large area X-ray detector with good energy and timing resolution and stable working
conditions. To meet the stringent requirements, new monolithic SDDs arrays have been developed.
A difference with respect to the previously used SDDs is the change in the pre-amplifier system
from a JFET structure on an SDD chip to a CMOS integrated charge-sensing amplifier (CUBE) [19].
For each SDD cell, this CUBE amplifier is placed on the ceramic carrier as close as possible to
the anode of the SDD. The anode is electrically connected to the CUBE with a bonding wire.
This makes the SDDs’ performance almost independent of the applied bias voltages and increases
their stability, even when exposed to high charged particle rates. A better drift time of 300 ns
can be achieved with the newly developed SDDs compared to the previous ones (∼800 ns) by
changing the active cell area from 100 mm2 to 64 mm2 and by further cooling to 100 K. A new
readout ASIC, named SFERA, has been developed to read out the SDDs of the SIDDHARTA-2
experiment [20]. The characteristic parameters of the SDDs used for SIDDHARTA-2 are reported
in Table 1.

• Dedicated veto systems, to improve the signal-to-background ratio by at least one order of
magnitude as compared to the kaonic hydrogen measurement performed by SIDDHARTA.
Two special veto systems are foreseen for SIDDHARTA-2, consisting of an outer barrel of
scintillator counters read by photomultipliers (PMs) and called Veto-1, and an inner ring of
plastic scintillation tiles (SciTiles) read by silicon photomultipliers (SiPMs) placed as close as
possible behind the SDDs for charged particle tracking, called Veto-2.

5. Conclusions

The experimental challenge in measuring kaonic atoms consists in the need to extract a weak
signal under the high background conditions of the accelerators delivering kaon beams. This has
required a continuous advance in X-ray detection that characterizes the era of precision measurements.

The first kaonic hydrogen X-ray measurement, which started the modern era of kaonic atoms
research, made use of Si(Li) detectors in the KpX experiment at KEK (Japan). Charge-coupled devices
(CCDs) were successfully used as X-ray detectors for the DEAR experiment at LNF-INFN. Finally,
silicon drift detectors (SDDs) were developed for the SIDDHARTA program at DAΦNE. R&D work
on SDDs continued, leading to an optimized detector for the future kaonic deuterium program at
LNF-INFN. A comparison of the main characteristics of these detectors is given in Table 1.
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