
Noncommutativity and the weak cosmic censorship

Gupta, Kumar S.; Jurić, Tajron; Samsarov, Anđelo; Smolić, Ivica

Source / Izvornik: Journal of High Energy Physics, 2019, 2019

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.1007/JHEP10(2019)170

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:806296

Rights / Prava: Attribution 4.0 International / Imenovanje 4.0 međunarodna

Download date / Datum preuzimanja: 2024-11-28

Repository / Repozitorij:

Repository of the Faculty of Science - University of 
Zagreb

https://doi.org/10.1007/JHEP10(2019)170
https://urn.nsk.hr/urn:nbn:hr:217:806296
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://repozitorij.unizg.hr/islandora/object/pmf:8534
https://dabar.srce.hr/islandora/object/pmf:8534


J
H
E
P
1
0
(
2
0
1
9
)
1
7
0

Published for SISSA by Springer

Received: September 3, 2019

Accepted: September 30, 2019

Published: October 15, 2019

Noncommutativity and the weak cosmic censorship
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1 Introduction

Gravitational singularities are mainly considered in the context of general relativity, where

density becomes infinite at the center of a black hole, and within astrophysics and cosmology

as the earliest state of the universe during the Big Bang [1]. It is expected that any object

undergoing a gravitational collapse, compressed beyond its Schwarzschild radius would

form a black hole, inside which a singularity would be formed, which is covered by an event

horizon. This is in accordance with the weak cosmic censorship hypothesis [2–5], which

states that naked singularities should not appear in nature. Otherwise the causality may

break down and physics, in particular general relativity, may lose its predictive power.

There exists a strong belief that quantum theory could help with smearing out of clas-

sical singularities. This has been discussed in the context of loop quantum gravity [6–10],

string theory [11], fuzzballs [12], higher derivative gravity [13] and asymptotic safety [14].

It has also been argued that the general framework of quantum mechanics helps to address

the singularity problem [15–17]. In particular, there are examples of static spacetimes

with timelike singularities where the dynamics of a quantum test particle is completely

well behaved for all time [18]. Another problem that is closely related to the existence of

singularities is that of geodesic completeness [19]. In this context it is worthy to mention

that although the spacetime may be geodesically incomplete, the Laplacian can still be

essentially self-adjoint, giving rise to a unique evolution in time [18–27].

The 2+1 dimensional spacetime with a negative cosmological constant and the associ-

ated BTZ geometry [28, 29] provides a convenient setting to investigate various concepts
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related to singularity resolution. Here one may consider quantum backreaction effects as

a way to put singularity under control [30–32]. Indeed, it has recently been shown that

quantum backreaction can dress a naked singularity in 2+1 dimensions with a negative

cosmological constant [31, 32]. In another approach, it was found that the BTZ black

hole cannot be spun-up beyond a certain limit, confirming the weak cosmic censorship in

2+1 dimensional asymptotically AdS spacetime [33]. Since a class of counterexamples have

been identified in Einstein-Maxwell gravity that violates the cosmic censorship hypothesis,

an idea was put forth that a weak gravity conjecture [34] might fix the issue and preserve

cosmic censorship [35, 36].

In this paper we explore the role of spacetime noncommutativity within the context

of the weak cosmic censorship hypothesis. It is well known that noncommutativity is a

possible description of the spacetime structure at the Planck scale, which arises naturally

when general relativity and the quantum uncertainty principle are considered in unison [37–

39]. The idea of resolution of the spacetime singularities have already been discussed in

fuzzy manifolds [40, 41]. Here we take the κ-deformed algebra as a model of spacetime

noncommutativity [42–44], which arises in several descriptions of noncommutative black

holes [45–47] and cosmology [48]. For this purpose we employ a toy model consisting of a

naked singularity in 2+1 gravity [28, 29, 49]. We will show that probing such a spacetime

with a massless noncommutative scalar field transforms the naked singularity into BTZ

black hole. This happens when the frequency or the energy of the NC probe satisfies a

suitable condition described by the system parameters. The features of the black hole

depends on the noncommutative parameter as well as the energy scale of the probe. In

addition, this process produces a very light massive scalar field whose mass depends on

the noncommutative deformation parameter. Noncommutative geometry has been used to

describe cosmological models of early universe [50] including noncommutative inflation [51,

52]. It is plausible that the light scalar predicted by our analysis can be of relevance in

early universe cosmology within the context of quintessence [53]. It may be noted that

the question of quantum completeness of the BTZ spacetime using a noncommutative

probe was considered in [54], which suggested that noncommutativity may smear out the

singularity by allowing quantum completeness for a wider range of BTZ parameters.

The paper is organized as follows. In section 2 we summarize the basic arguments

leading to a dual picture between a system including noncommutative scalar field that

probes a classical nonrotating BTZ geometry and a system consisting of a spinning BTZ

black hole perturbed by a massive commutative scalar field [55–58]. These two systems

appear to be mathematically equivalent, with the equivalence being enforced by the param-

eter transformations expanded up to first order in deformation. In section 3, we analyze

conditions under which noncommutativity is able to dress the naked singularity. For this

we start with a naked singularity in 2+1 dimensional AdS spacetime and probe it with

a noncommutative massless scalar field. We show that for a suitable range of the probe

frequency and the system parameters, the naked singularity is dressed as a BTZ black hole.

In section 4 we study the physical properties of the dressed singularity and conclude the

paper in section 5 with some final remarks.
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2 BTZ black hole and noncommutativity

2.1 Noncommutative framework

Before describing a model on which our analysis is based, we recall the formal setting

utilized for building the model. Hence, starting with some noncommutative (NC) algebra

of coordinates x̂µ, we may consider its universal enveloping algebra, denoted by Â, which

consists of formal power series expansions in coordinates x̂µ. More precisely, introducing

an algebra A with unit element 1, and generated by commutative coordinates xµ and yet

introducing the action . : H 7→ A, one may identify the algebra A as a D-module over the

ring of polynomials in x̂µ. The action . : H 7→ A itself is defined by

xµ . 1 = xµ, pµ . 1 = 0 and xµ . f(x) = xµf(x), pµ . f(x) = i
∂f

∂xµ
. (2.1)

Here, xµ and pµ are the generators of the Heisenberg algebra H satisfying the relations,

[xµ, xν ] = [pµ, pν ] = 0, [pµ, xν ] = iηµν , (2.2)

where ηµν = diag(−,+,+). Moreover, there exists an isomorphism between the NC alge-

bra Â, generated by the noncommutative coordinates x̂µ and the commutative algebra A?,
generated by the commutative coordinates xµ, but this time with ? as the algebra multi-

plication. The star product between any two elements f(x) and g(x) in A? is defined as

f(x) ? g(x) = f̂(x̂)ĝ(x̂) . 1, (2.3)

where f̂(x̂) and ĝ(x̂) are the elements in Â that are respectively and uniquely assigned to

the elements f(x) and g(x), through the following correspondences, f̂(x̂) . 1 = f(x), and

ĝ(x̂) . 1 = g(x). These correspondences provide a basis for the isomorphism between Â
and A?.

Furthermore, we let the coordinates x̂µ satisfy the κ-Minkowski algebra [42–44]

[x̂µ, x̂ν ] = i(aµx̂ν − aν x̂µ). (2.4)

Here aµ are the components of a deformation 3-vector in Minkowski space with the metric

ηµν . We shall be concerned with the situation where the deformation vector is oriented in

a time direction, aµ = (a, 0, 0), where a is the deformation parameter, a = 1
κ , that fixes

the energy scale at which the effects of noncommutativity are expected to occur. Most

frequently it is taken to be of the order of the Planck length.

It is important to emphasize that the coordinates x̂µ admit a differential operator

representation within the enveloping algebra of H in terms of the formal power series in

xµ and pν [59–62].

2.2 NC scalar field in BTZ background and mapping to equivalent commuta-

tive model

In view of the setting just described, in [55–58] a model was proposed that is based on

the action

Ŝ =

∫
d3x
√
−g gµν (∂µφ ? ∂νφ)

=

∫
d3x
√
−g gµν

(
∂µφ̂∂ν φ̂ . 1

) (2.5)
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describing a coupling of the scalar particle to a metric of the form (in units where 8πG =

c = ~ = 1)

gµν =


M − r2

l2
0 0

0 1
r2

l2
−M

0

0 0 r2

 , (2.6)

where l is related to the cosmological constant Λ as l =
√
− 1

Λ . As the noncommutative

coordinates used in constructing the action (2.5) satisfy κ-Minkowski algebra, it is under-

stood that this action is invariant under κ-deformed Poincaré symmetry, at least at the

semi-classical level. This means that the gravity is considered to be described by the classi-

cal degrees of freedom and is not affected by the spacetime deformation, (δagµν = 0). The

matter field instead is subject to a quantum deformation and is consequently described by

a noncommutative degree of freedom. Thus, the only way the noncommutativity enters

the formalism is through a scalar field, which is treated as a noncommutative variable.

This approach therefore amounts to considering a noncommutative scalar field coupled to

a classical geometrical background produced by the spinless (J = 0) BTZ black hole with

mass M .

The presence of the κ-deformed Poincaré symmetry in the action (2.5) in a way de-

scribed above is ensured by means of implementing the following star product

f(x) ? g(x) = f(x)g(x) + iβ′
(
ηµνxµ

∂f

∂xν

)(
ηλσaλ

∂g

∂xσ

)
+ iβ(ηµνaµxν)

(
ηλσ

∂f

∂xλ
∂g

∂xσ

)
+ iβ̄

(
ηµνaµ

∂f

∂xν

)(
ηλσxλ

∂g

∂xσ

)
. (2.7)

which is compatible with κ-deformed Poincaré symmetry. Here β′, β and β̄ are the pa-

rameters determining the differential operator representation of the κ-Minkowski algebra

and the star product has been expanded up to first order in a. It should be noted that

each choice of the triplet of parameters β′, β and β̄ corresponds to a specific differential

operator representation [59] of noncommutative coordinates and also to a different choice

of the coproduct, as well as different basis of κ-Poincaré algebra. All these notions in turn

correspond to the vacuum of the theory and this should, at least in principle, be fixed

by experiment.

As shown in [55], the leading terms in the action (2.5) that are consistent with the

approximation used and are within a first order in the deformation parameter a do not

acquire the contributions from the β′ and β̄ terms in the star product (2.7). Thus the only

contributions to the action within a given approximation come from the β term and they

give rise to a field equation (Klein-Gordon equation) for a scalar field that may be written

in a generic form

(�g +O(a))φ = 0, (2.8)

where �g is a standard Klein-Gordon operator for the metric (2.6) and O(a) groups to-

gether all the remaining terms generated by the star product (2.7) and allowed by the

approximation used. After a separation of the variables, φ(r, θ, t) = R(r)e−iωteimθ,the
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equation (2.8) leads to the radial equation [55, 56]

r

(
M − r2

l2

)
∂2R

∂r2
+

(
M − 3r2

l2

)
∂R

∂r
+

(
m2

r
− ω2 r

r2

l2
−M

− aβω8r

l2

3r2

2l2
−M

r2

l2
−M

)
R = 0,

(2.9)

where ω and m are respectively the energy and the angular momentum (magnetic quantum

number) of the scalar particle. As already explained, β is the parameter determining

the differential operator representation of the κ-Minkowski algebra. Further details are

elaborated in [55–58].

Using the substitution

z = 1− Ml2

r2
, (2.10)

eq. (2.9) can be brought [55, 56] into the form

z(1− z)
d2R

dz2
+ (1− z)

dR

dz
+

(
A

z
+B +

C

1− z

)
R = 0, (2.11)

where the constants A,B and C are

A =
ω2l2

4M
+ aβω, B = −m

2

4M
, C = 3aβω. (2.12)

The equation (2.11), together with the coefficients (2.12), describes the dynamics of a

massless NC scalar field with energy ω and angular momentum m, probing a geometry

of the BTZ black hole with mass M and vanishing angular momentum (J = 0). How-

ever, as noted in [56, 57], the form of this equation is the same as the form of the radial

equation governing a commutative massive scalar field in a background of a BTZ black

hole with a modified mass and nonvanishing angular momentum [63]. Formally, there is

another coordinate transformation, given by z 7→ w = 1/z, which preserves the form of the

equation (2.11). However, the latter transformation simultaneously shifts the coordinate

position of the black hole horizon from z = 1 to w =∞, so that there is no ambiguity left in

identification of the parameters A, B and C. The modified black hole parameters obtained

in this way we label respectively by M ′ and J ′ and the equivalent black hole setting they

describe, we refer to as the dual black hole setting. The dual black hole parameters were

calculated in [57]. Specifically, within a first order of deformation a, the mass M ′ and the

angular momentum J ′ in the dual black hole setting are given as

M ′ = M

[
1− 4LNCωM

(
1

λ
− 2

l2ω2 −m2
+
l2

λ2

2σ2λ2 − σ2l2 + λ2

σ2l2 + λ2

(
1

l2ω2 −m2
− 1

λ

))]
,

J ′ = 4LNCωM
2 l

2

λσ

2σ2λ2 − σ2l2 + λ2

σ2l2 + λ2

(
1

λ
− 1

l2ω2 −m2

)
. (2.13)

The quantities λ, σ and LNC appearing in the above two relations are the abbreviations

defined as follows

λ ≡ l2ω2 +m2, (2.14)

σ ≡ 2ωm, (2.15)

LNC ≡ −aβ > 0. (2.16)

– 5 –
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One may easily see that when the noncommutative parameter a goes to zero, two situations

coincide, i.e. M ′ goes to M and J ′ vanishes, as expected. Another interesting point is that

in the dual black hole setting the scalar field acquires a mass µ′,

3LNCω =
µ′2l2

4
. (2.17)

Moreover it brings about certain back-reaction effects by affecting the geometry through

which it propagates, as being manifestly seen by the change in both the mass and the spin

of the BTZ black hole.

These features may give a spacetime noncommutativity a novel perspective in which

noncommutativity acquires two different roles, one that it might be responsible for gen-

erating a particle mass and the other that it may provide a suitable ground for some

back-reaction effects to take place. Moreover, the scalar field that we obtained is very

light and, as will be more obvious in the next section, it is a byproduct of the dressing via

duality. We note that such a very light scalar field may be relevant for quintessence or for

fuzzy dark matter scenario in early universe cosmology [53].

The above analysis implies that the equation (2.8) can be recast into the form(
�g′ − µ′2

)
φ = 0, (2.18)

describing a dynamics of the massive commutative scalar field in the metric

g′µν =


M ′ − r2

l2
− (J ′)2

4r2
0 −J ′

2

0 1
r2

l2
+ J′2

4r2
−M ′

0

−J ′

2 0 r2

 . (2.19)

The metric (2.19) corresponds to a spinning BTZ black hole with the mass M ′ and the

angular momentum J ′ and �g′ is the Klein-Gordon operator for this metric. Therefore, we

see that there exists a mathematical mapping between two physically different situations,

one describing the NC massless scalar field in the non-rotational BTZ background, and the

other describing the ordinary massive scalar field which probes a BTZ geometry with a

non-vanishing angular momentum. For further details regarding the interpretation of this

analytic mapping and a corresponding equivalence/duality between two physical settings

we refer the reader to reference [57].

As expected, the mass and the angular momentum of the dual spinning BTZ black

hole are related to its outer and inner radii, r′+ and r′−, through

M ′ =
r′2+ + r′2−

l2
, |J ′| =

2r′+r
′
−

l
. (2.20)

For the original non-rotational BTZ the actual radii are respectively given by r+ = l
√
M

and r− = 0.

3 Dressing the naked singularity

As discussed before, there is an equivalence between the system of NC scalar field probing

a commutative BTZ background (M , J = 0) and a commutative scalar field probing an

– 6 –
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effective BTZ background (M ′ = M ′(M,a), J ′ = J ′(M,a)). This effective background

captures the NC effect. In this section we consider the case where we start with a naked

sigularity (M < 0). Using the above mentioned duality, we will show that this naked

singularity will be dressed and protected by the NC corrections under certain conditions.

We start with the assumption that

M < 0, M = − |M | (3.1)

and rewrite the condition in (2.13) for the parameters of the dual effective metric (2.19) as

M ′ = M(1 +Mf), J ′ = gM2 (3.2)

where

f = −4LNCω

(
1

λ
− 2

l2ω2 −m2
+
l2

λ2

2σ2λ2 − σ2l2 + λ2

σ2l2 + λ2

(
1

l2ω2 −m2
− 1

λ

))
, (3.3)

g = 4LNCω
l2

λσ

2σ2λ2 − σ2l2 + λ2

σ2l2 + λ2

(
1

λ
− 1

l2ω2 −m2

)
. (3.4)

Now we see that even though the initial mass may be negative (M < 0), the singularities

in the effective metric (2.19) will be surrounded by horizon(s) if the conditions

M ′ > 0 and |J ′| ≤M ′l (3.5)

are fulfilled. These in turn imply the constraints given by

f >
1

|M |
and f ≥ |g|

l
+

1

|M |
. (3.6)

Note that if g 6= 0 the first constraint is automatically included within the second one, and

thus does not present any additional requirement.

In order to analyze these conditions further, we write f as

f = −4LNC ω

(
1

l2ω2 +m2
− 2

l2ω2 −m2

)
+
σ

λ
g , (3.7)

where the function g can be written as

g = −4
LNCωl

2

λσ

P

σ2l2 + λ2

(
1

l2ω2 −m2
− 1

l2ω2 +m2

)
(3.8)

with

P = (8m2ω2 + 1)ω4 l4 + 2(8m2ω2 − 1)m2ω2 l2 + (8m2ω2 + 1)m4. (3.9)

If we take P as a quadratic polynomial in l2, and note that the associated discriminant

−2(2mω)6 is nonpositive, while the leading coefficient (8m2ω2 + 1)ω4 is nonnegative, it

follows that P ≥ 0. In other words, large fraction that constitutes the central part of

the function g is nonnegative, which significantly simplifies the analysis. This allows us to

write function g as

g = − 2
LNCl

2

m

(
8m2ω2(l2ω2 +m2) + l2ω2 −m2

)2
+ 32m6ω2

(l2ω2 +m2)(8m2ω2 + 1)(4l2m2ω2 + (m2 + l2ω2)2)

×
(

1

l2ω2 −m2
− 1

l2ω2 +m2

)
. (3.10)

– 7 –



J
H
E
P
1
0
(
2
0
1
9
)
1
7
0

Here we have following subcases:

(a) g > 0 holds if either m > 0 and ω < m/l or m < 0 and ω > |m|/l;

(b) g < 0 holds if either m > 0 and ω > m/l or m < 0 and ω < |m|/l.

Now, suppose that 0 < ω < |m|/l. By the analysis above, this implies that mg > 0.

Furthermore, the first term of f in (3.7) is given by

− 4LNC ω
−(l2ω2 + 3m2)

(l2ω2 +m2)(l2ω2 −m2)
, (3.11)

and is thus negative. Also, as (lω ±m)2 ≥ 0, it follows that

2ω|m|l
l2ω2 +m2

≤ 1 . (3.12)

In conclusion, 0 < ω < |m|/l implies that f < |g|/l, so that in this case inequalities (3.6)

cannot be fulfilled and the dressing of singularity does not occur.

The opposite case, when ω > |m|/l, is pretty nontrivial to treat exactly, and one way

to extract simple conclusion is to look for the expansions in the limiting cases of the energy

ω. For example, if we look at the cases when α = lω/|m| � 1, using expansions

f =
4LNC

l|m|

(
1

α
+O(1/α3)

)
, f − g

l
=

4LNC

l|m|

(
1

α
+O(1/α3)

)
, (3.13)

we may deduce that in the following region of probe energies,

|m|
l
� ω <

4LNC|M |
l2

(3.14)

the noncommutative dressing is effective.

The above approximation is physical and well justified. Namely, at the Planck scale,

the physical processes occur at very high energies. Thus, both the frequency and the

angular momentum of the NC probe would typically be very high. Let us consider the

probes satisfying the condition

l2ω2 � m2, (3.15)

such that

f = 4
LNC

l2ω
and g = 0. (3.16)

The inequality (3.6) on f gives
l2ω

4LNC
< |M |. (3.17)

Using the eqs. (3.15) and (3.17) we find again the inequality (3.14).

A NC probe with frequency in this range will dress up a naked singularity of mass

−|M | as a black hole with the parameters

M ′ = |M |
[

4LNC|M |
l2ω

− 1

]
J ′ = 0, r+ = l

√
M ′, and r− = 0, (3.18)

whose metric would be given by (2.19). Note that the above analysis can be extended

for m = 0 as well, although in that case, the expression for g in (3.4) has to be analyzed

with care. The above analysis provides a domain in the parameter space within which the

noncommutativity dresses the naked singularity by acquiring a new horizon at r+ = l
√
M ′.

– 8 –
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4 Properties of the dressed singularity

4.1 Thermodynamical properties and entropy

In the previous section we have found a frequency range of the massive NC probe for which

the dressed singularity has parameters described by (3.18). In this section we shall discuss

the physical properties of the dressed singularity.

Let us first note that our analysis is valid only in the semi-classical limit, where the

mass |M | is typically much greater that the Planck mass and any other energy scale in

the problem. This ensures that the quantum back-reaction effects can be ignored. Under

this assumption, and for the NC probes satisfying the condition (3.14), we find that the

mass of the dressed singularity M ′ would also be much greater than the Planck mass.

Thus the dressed singularity would be described by a massive spinless BTZ black hole with

parameters given by (3.18) and it would be amenable to semi-classical analysis.

In view of these observations, the dressed singularity would satisfy all the laws of black

hole thermodynamics [64, 65]. In particular, it would have a Bekenstein-Hawking entropy

given by

S =
A

4
=
πr+

2
. (4.1)

Using (3.18) we obtain the entropy as

S =
π

2
l
√
|M |

√
4LNC|M |
l2ω

− 1. (4.2)

For any non-zero LNC, it follows from (3.14) that the entropy of the dressed singularity is

always positive.

4.2 QNM modes and connection to CFT

So far we have shown that under the influence of a NC probe, a naked singularity is dressed

up as a BTZ black hole with certain parameters. We now turn to the question as to how

an asymptotic observer can estimate the parameters of the dressed singularity. We propose

that the quasi-normal modes (QNM) [63, 66, 67] of the dressed singularity can be used for

this purpose. For the purpose of simplicity, we shall consider the scalar field QNM here,

although the analysis can be easily extended to the fermionic or vector field QNM as well.

In order to proceed, we couple a commutative massless scalar field with frequency Ω

to the dressed singularity and solve the corresponding Klein-Gordon equation with the

QNM boundary conditions. Since the dressed singularity is a BTZ black hole with mass

M ′ and angular momentum J ′, the QNM boundary conditions state that the field is purely

ingoing at the horizon and it vanishes at infinity. With these boundary conditions, the

QNM frequencies are obtained as [63]

ΩL/R = ±m
l
− 2i

(
r+ ∓ r−

l2

)
(n+ 1) = ±m

l
− 2i

√
M ′l2 ∓ |J ′| l

l2
(n+ 1), (4.3)

where m ∈ Z is the angular momentum of the scalar field and n is an integer and

L,R corresponds to the left and right moving modes respectively. An asymptotic ob-

server can measure these frequencies and thereby obtain the geometric parameters of the

dressed singularity.
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Next we discuss the dual CFT description of the dressed singularity in the context of

the QNM. Physically the QNM describe the perturbation of the metric outside the black

hole, whereas in the dual description, the perturbations of the CFT are also described by

the same QNM frequencies. These CFT’s exist at finite temperatures given by

TL/R =
r+ ∓ r−

2πl2
=

√
M ′l2 ∓ |J ′| l

2πl2
(4.4)

The AdS/CFT duality in this context is also supported by the Sullivan’s theorem [68–73]

which states that for a certain class (geometrically finite) of hyperbolic manifolds, there

is a one-to-one correspondence between the hyperbolic structure in the interior and the

conformal structure at the boundary. It has been shown that the Euclidean continuation

of the BTZ black hole satisfies all the requirements of the Sullivann’s theorem. Since the

dressed singularity has the geometric structure of a BTZ black hole, it admits an AdS/CFT

duality at the kinematical level.

By taking into account eq. (3.2) we can determine the QNM and the temperature scale

for our dressed situation as

ΩL/R = ±m
l
− 2i

√
M(1 +Mf)l2 ∓ |g|M2l

l2
(n+ 1) (4.5)

TL/R =

√
M(1 +Mf)l2 ∓ |g|M2l

2πl2
(4.6)

4.3 Naked singularity and quantum completeness

Naked singularities are “part of the spacetime” where the curvature tensor and the energy

density are ill defined due to possible accordance of infinities [74]. However, in the spirit of

weak cosmic censorship hypothesis, proposed by Penrose [2–4], one can ignore this problem

if such singularities are “hidden” behind an event horizon, since no causal signal can reach

an outside observer from the questionable region. The aforementioned reasoning is natural

in a completely classical setting, but it is already known [31, 32] that if one takes the

quantum effects into account one can indeed dress the naked singularity with an event

horizon, thus enforcing the weak cosmic censorship.

We used NC geometry as a model for describing quantum gravity effects. In the pre-

vious subsection we saw that introducing noncommutativity dresses the naked singularity

in 2+1 dimension. Namely, in 2+1 dimension the black hole solution of Einstein equation

(with the cosmological constant) is given by the BTZ metric [28, 29] which is parametrized

by its mass M and angular momentum J and if these parameters satisfy −1 < M < 0

and J = 0 we are dealing with a continuous sequence of naked singularities (point parti-

cle sources) at the origin. This singularity originates from a topological obstruction since

the Ricci curvature in that case has a term that is proportional to the Dirac δ-function

in addition to the constant curvature [75]. Furthermore it can be shown that this naked

singularity is not resolved via quantum scalar probe [49, 76], meaning that this space is

geodesically and quantum mechanically incomplete. However we have shown that by intro-

ducing the noncommutativity one can dress the naked singularity by producing an event

horizon and one can further investigate if the effective space is quantum complete.
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Namely, the spacetime is said to be quantum complete if the evolution of any state

is uniquely defined for all time. This leads one to examine the wave equations of test

fields, extract the Hamiltonian and via von Neumann’s criteria investigate its self-adjoint

properties (extensions). If the aforementioned Hamiltonian has a unique self-adjoint ex-

tension, then it will render a unique time evolution and such a system is referred to as

quantum complete (or non-singular), since the test field will not “see” the spacetime singu-

larity during its propagation (for more details and explicit examples the reader is referred

to [18–27]).

In previous works by some of the authors [54, 77] it was shown that the quantum

completeness is achieved if the following condition is fulfilled

l2r+

r2
+ − r2

−
≥ 1 (4.7)

which for Ml� J reduces to [54] √
M ≤ l (4.8)

Now, taking into account eq. (3.1) and (3.2) we rerwite M −→ M ′ = |M | (f |M | − 1) and

obtain

f ≤ l2

|M |2
+

1

|M |
(4.9)

which combined with (3.6) finally gives

1

|M |
≤ f ≤ l2

|M |2
+

1

|M |
(4.10)

Condition (4.10) gives a bound on LNC for which the naked singularity is dressed and for

which the corresponding space is quantum complete for a scalar probe.

5 Final remarks

The weak cosmic censorship hypothesis plays a fundamental role in cosmology. In this paper

we have considered a toy model of 2+1 gravity in the presence of a negative cosmological

constant which admits naked singularities. There are two aspects of the Planck scale

physics which play important role in our analysis. First aspect is that noncommutativity

generically arises at the Planck scale [38, 39]. We have considered a κ-deformed type of

noncommutativity as that is naturally associated with black hole physics [48]. It is also

expected that the physical processes occur at very high energies at the Planck scale. This

is the second feature which is relevant for our analysis.

Using a by now well established notion of noncommutative duality [55–58], we have

shown that a naked singularity in our toy model will generically be hidden under event

horizon(s), provided that the probe frequency ω does not belong to the range 0 < ω < |m|/l.
In particular, if the probe has very high energy as given in (3.14), then the resulting dressed

object is a massive spinless BTZ black hole with a single event horizon. For intermediate

energies the naked singularity is dressed as a massive spinning BTZ black hole. Only for
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very low energy probes, the singularity is not dressed. Such probes are however highly

improbable at the Planck scale where physical processes typically occur at high energies.

Thus for typical noncommutative probes, our analysis is consistent with the weak cosmic

censorship hypothesis.

The noncommutative duality clearly shows that the dressed singularity is geometri-

cally equivalent to a BTZ black hole. We can therefore immediately obtain the physical

properties of the dressed singularity. In particular, such a dressed singularity would obey

all the laws of black hole thermodynamics. In addition, when perturbed by a suitable field,

it would give rise to the usual quasi-normal modes of a BTZ black hole with the usual

holographic interpretation. Finally, we show that the spacetime of the dressed singularity

can even be quantum mechanically complete depending on the nature of the probe.

In addition to the dressed singularity, our analysis results in a very light scalar as

a byproduct of the duality transformation. Such a light scalar is of great significance

in cosmology, especially in the context of quintessence [53]. However, the details of the

cosmological implications of the light scalar resulting from our analysis is beyond the scope

of this work.

We end this paper with few remarks. First, it may be noted that a large class of

string theories contain a BTZ factor in the near-horizon geometry [78–82]. Thus, it is

plausible that our analysis holds in a much broader context as described by these string

theories. Secondly, in this paper we have not directly considered the quantum aspects of

the noncommutative probe, in particular we have not considered backreaction effects of

the test particles. It would be interesting to see what kind of physical effects would such

quantum backreactions invoke, and we plan to investigate this more in the future. Finally,

we note that the analysis carried out in this paper might be extended to 3+1 dimensional

spacetime to investigate whether noncommutativity can dress a naked singularity in this

more realistic situation and in case of a positive result, to study properties of the object

obtained in this way [83–85].
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