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We predict a mechanism of spontaneous stabilization of a uniaxial density wave in a two-dimensional metal
with an isotropic Fermi surface in the presence of external magnetic field. The topological transformation of a
closed Fermi surface into an open one decreases the electron band energy due to delocalization of electrons
initially localized by magnetic field, additionally affected by the magnetic breakdown effect. The driving
mechanism of such reconstruction is a periodic potential due to the self-consistently formed electron density
wave. It is accompanied with quantum oscillations periodic in inverse magnetic field, similar to the standard de
Haas-van Alphen effect, due to Landau-level filling. The phase transition appears as a quantum one at T = 0,
provided the relevant coupling constant is above the critical one. This critical value rapidly decreases, and finally
saturates toward zero on the scale of tens of Tesla. Thus, a strong enough magnetic field can induce the density
wave in the system in which it was absent in zero field.

DOI: 10.1103/PhysRevB.100.115108

I. INTRODUCTION

The instability of low-dimensional conductors with the
spontaneous arising of a periodic modulation of the crystal,
usually called the density wave (DW) [1], remains the focus
of attention since its early prediction by Peierls [2] almost 90
years ago. In one-dimensional (1D) conductors, the crystal
modulation opens a gap in the electron band at the initial
Fermi energy, decreasing the electron band energy. The new
DW ordering is stabilized whenever this energy decrease over-
whelms the competing increase of the crystal energy caused
by the accompanying lattice modulation.

The DW instability also arises in the special class of
two-dimensional (2D) systems, often also called quasi-one-
dimensional (quasi-1D) systems, with a highly anisotropic,
mainly open Fermi surface (FS), such that the parts of its con-
tour can be (almost) perfectly mapped, i.e., nested, onto each
other. DWs of this type have been intensively investigated and
widely observed in the series of different materials possessing
such band dispersions [1,3].

However, DWs have not only been observed in conductors
with highly anisotropic FSs, but also in many 2D conductors
with closed FSs for which the nesting condition as specified
above is far from being fulfilled. Particularly significant in
this respect are high-temperature superconducting cuprates
with conducting CuO2 layers [4], as well as hexagonal
(semi)metallic layers appearing in graphene-based interca-
lates, like in, e.g., CaC6 [5]. Despite intensive investigations
of these and similar materials, the origin of the observed
structural instability is still a controversial topic.

In our recent paper [6], we proposed a mechanism of
the DW ordering based on the topological reconstruction
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of the highly symmetric, initially closed FS. As shown in
Fig. 1(a), the DW has a wave vector Q/h̄ that brings the
initial FS into the so-called touching range generated at the
edge of the Brillouin zone established by the DW periodic
modulation in the system. By lifting the energy degeneracy
and opening the gap in that region, the band topology changes:
two parabolic initial bands now form the lower band with the
saddle point and the upper band with a parabolic minimum
at the touching point [6]. The new FS then becomes open as
shown in Fig. 1(b), while the total band energy is decreased.
In principle, this decrease may stem from two contributions:
lowering of the new Fermi energy with respect to the original
one and the change in the DOS due to the redistribution of
filled states from higher toward lower energies. It appears that
in the particular analyzed case [6], and for the optimal DW
wave vector, there is only the contribution that comes from
the redistribution of states, while the Fermi energy shows no
change.

Let us now focus on the role that the external magnetic
field may have in the DW ordering and the accompany-
ing band reconstruction. Namely, as has been observed in
various 2D conductors—in particular, in high-temperature
cuprates [7–9]—it appears that DWs also spontaneously
arise under a strong enough external magnetic field. These
magnetic-field-induced DWs have been most often associated
to the Landau quantization of orbits in relatively small pockets
in the anisotropic bands [10–12]. Within this framework,
particularly interesting is the role of magnetic breakdown
(MB) due to the tunneling of electrons through the narrow
barriers in the reciprocal space, quite often present in the
band spectra under question [13,14]. In fact, in a few earlier
papers [15,16], we pointed out that the electron delocaliza-
tion due to such tunneling could itself have the decisive
role in the stabilization of the so-called MB-induced density
waves.
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FIG. 1. (a) The reciprocal space for the isotropic 2D band with
the Fermi momentum pF0 and the DW which introduces the 1D
reciprocal lattice with the wave number Q/h̄ close to 2pF0/h̄. (b) Two
open lines representing the reconstructed FS due to the finite am-
plitude of the DW in the presence of finite magnetic field directed
perpendicularly to the plane (px, py ), enabling finite MB probability
amplitudes t and r.

Our prediction was based on the analysis of 2D conductors
with open FSs (as is the case of e.g., some compounds from
the family of Bechgaard salts) in the presence of strong exter-
nal magnetic fields [17]. The physical mechanism causing this
phase transition is specific with respect to those of the stan-
dard Peierls transition in quasi-1D conductors. Namely, under
a strong magnetic field, electrons of the 2D conductor with the
open FS move in opposite directions along two trajectories
defined by the equation ε(p) = εF , where ε(p) defines the
band dispersion, εF is Fermi energy, and space inversion is as-
sumed. As suggested in Refs. [15,16], the periodic modulation
of electronic charge caused by the DW transforms the open
FS into a periodic chain of the overlapping above-mentioned
trajectories with lifted band degeneracy in the crossing points
of two initially open subbands. As a result, after the band
reconstruction, electrons move in the presence of magnetic
field along a 1D chain of trajectories with periodically located
scatterers—small areas around the crossing points at which
the MB [18,19], the quantum tunneling between the neigh-
boring trajectories, takes place. In other words, within the
reconstructed FS, electrons under magnetic field move along
a 1D periodic set of quantum barriers and hence the system is
mapped onto the 1D metal with the “crystal” period of the
order of the Larmor radius RH = cpF /eH , where H is the
magnetic field, pF is the value of the longitudinal Fermi wave
vector averaged over the reciprocal space, e is the electron
charge, and c is the velocity of light. The emerging electron
spectrum will thus be a set of alternating narrow energy bands
and energy gaps. The transition of Peierls type in such a
system takes place provided the initial Fermi energy is inside
one of the gaps in the new spectrum.

Evidently, since the above physical considerations and
results of the cited papers have the quasi-2D band dispersions
with open FSs as the starting point, they cannot be straight-
forwardly transposed to highly isotropic 2D conductors with
closed FSs. Still, as stated above, the band reconstruction due
to a finite DW introduces here as well as the 1D periodic set
of barriers, and the quantum tunneling in the finite magnetic
field is again unavoidable. In the present paper, we consider
the latter situation. Extending the treatment initiated in our
previous paper [6], we show that in such situation one can
stabilize the DW under a strong magnetic field as well. Even
more, we show that under magnetic field the DW order is
additionally strengthened and appears at lower values of the
critical coupling constant.

The underlying physical reason for this stabilization is as
follows. As already mentioned, the DW causes a topological
band reconstruction under which the initially closed 2D FS
[Fig. 1(a)] is transformed into an open one [Fig. 1(b)]. Let us
now impose the perpendicular magnetic field and consider its
effects within the semiclassical reasoning. Without the band
reconstruction, electrons would move along initially closed
FSs, with the discrete spectrum consisting of degenerate Lan-
dau levels and with an increase of the band energy on average.
However, having the reconstruction, the semiclassical motion
along open trajectories delocalizes band states and decreases
their energy. This delocalization itself would therefore act
toward an additional stabilization of the DW, besides that
realized due to the band reconstruction in the absence of
magnetic field.

However, the picture of electron dynamics is not completed
by this. As seen in Fig. 1(b), two open trajectories are close to
each other in the touching range of the reconstructed band,
enabling in this range the MB, i.e., the tunneling of electrons
from one open trajectory to another. The finite tunneling is
characterized by two probability amplitudes for an electron,
t , to pass through the barrier and continue the motion along
the same open trajectory, and r to get reflected back and
start to move in the opposite direction along the second
trajectory, with t2 + r2 = 1. The MB due to the finiteness of r
partially relocalizes the effective electron states and increases
the corresponding band energy, thus acting against the DW
stabilization.

Aiming to make the quantitative analysis of these two
opposite tendencies, we formulate the appropriate mean-field
approach and undertake the detailed calculation of the band
spectrum and of the corresponding total energy of ground
state in the presence of external magnetic field. By this, we
arrive at the conditions for the stabilization of the DW and
reconstructed band in the magnetic field. In particular, we
determine the range of the effective strength of electron-
phonon coupling (or of the coupling to some other effective
or real boson field), under which the DW ordering takes place
in the given magnetic field.

In Sec. II, we start with the electron-phonon Hamiltonian in
the presence of finite magnetic field, and introduce the mean-
field approximation relevant for the stabilization of DW and
band reconstruction. The impact of the magnetic field on the
band reconstruction, which includes the semiclassical treat-
ment of uniaxial electron trajectories and the MB in the ranges
of topological change of the initial 2D band, is treated in
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Sec. III. In Sec. IV, we calculate the total band energy, while
in Sec. V the minimization of the total DW condensation
energy leads us to the determination of the optimal amplitude,
the wave number of the DW order, and their dependence on
the magnetic field and the electron-phonon coupling constant.
Section VI contains concluding remarks.

II. HAMILTONIAN AND MEAN-FIELD APPROXIMATION

For the sake of simplicity, we consider a 2D conductor with
the electron band which initially has a parabolic dispersion
ε0(kx, ky) = (k2

x + k2
y )/2m, where k = (kx, ky) is the electron

momentum and m is the effective electron mass. Taking the
Hamiltonian, describing the coupled electron-phonon system
in the momentum representation, and making the Peierls
substitution with the momentum operator k̂ replaced by the
operator k̂ − (e/c)A, where A is the vector potential, one gets

H = 1

2m

∑
k

a†
k

[
k2

x +
(

ky + i
eh̄H

c

∂

∂kx

)2
]

ak

+
∑

q

h̄ω(q)b†
qbq + 1√

A
g
∑
k,q

a†
k+qak(b†

−q + bq). (1)

Here we use the Landau gauge for which the vector potential
is given by A = (0, Hx, 0). a†

k and ak are the creation and
annihilation operators for electron states with momentum
k = (kx, ky) and energy ε0(k), while b†

q, bq are corresponding
operators for phonon states with momentum q = (qx, qy) and
energy h̄ω(q). The electron-phonon coupling constant g is
assumed to be independent of q. A is the area of 2D crystal.

Let us now make the first approximation in the treatment
of the Hamiltonian Eq. (1). We replace the phonon field by its
mean-field value,

g(bq + b†
−q) → g(〈bq〉 + 〈b†

−q〉) = δq,Q

√
A�ei�, (2)

where the order parameter �ei� is the nonvanishing expecta-
tion value of the macroscopically occupied DW phonon mode.

The values of the order parameter amplitude � and the
modulus of the DW momentum Q ≡ |Q| will be determined
later by the minimization of the total energy of the system.
Note that the direction of the wave vector is arbitrary. This
degeneracy follows from the assumed spatial isotropy of the
band dispersion ε0(k), as well as of the phonon spectrum
and of the electron-phonon coupling. �, the phase of the
order parameter, is also arbitrary. The phase degeneracy is
present as long as one does not take into account any possible
pinning mechanisms, e.g., the commensurability of the DW
and the crystal lattice or the effects of various irregularities
(like impurities, crystal edges, etc.).

After the mean-field step Eq. (2), the Hamiltonian Eq. (1)
reduces to

H = 1

2m

∑
k

a†
k

[
k2

x +
(

ky + i
eh̄H

c

∂

∂kx

)2
]

ak

+
∑

k

[�ei�a†
k+Qak + �e−i�a†

k−Qak] + Ah̄ωQ

2g2
�2,

(3)

where ωQ ≡ ω(q = Q). The comprehensive analysis of this
Hamiltonian,i.e., of the band reconstruction due to the DW
order, in the case of vanishing magnetic field (H = 0) is given
in Ref. [6]. For finite magnetic fields, it is more convenient
to diagonalize the Hamiltonian by using the coordinate repre-
sentation of the electron field:

	̂(r) =
∑

k

ak exp{ikr/h̄}. (4)

The Hamiltonian Eq. (3) then reads

H = 1

2m

∫
	̂†(r)

{
− h̄2 ∂2

∂x2
+

(
− ih̄

∂

∂y
− eHx

c

)2

+ 2� cos(Qr/h̄ + �)

}
	̂(r) + Ah̄ωQ

2g2
�2. (5)

In the next section, we show how in the presence of both finite
DW modulation and finite magnetic field, topological recon-
struction of the FS takes place, changing electron dynamics
into one of a peculiar MB type.

III. ELECTRON DYNAMICS UNDER MAGNETIC
BREAKDOWN CONDITIONS

In this section, we assume strong magnetic fields, charac-
terized by the regime ω0 � ωH � εF /h̄, where ω0 is the elec-
tron relaxation frequency and ωH = eH/mc is the cyclotron
frequency. As one sees from Eq. (5), the electron states are
the solutions of the effective one-electron Hamiltonian

Hb = 1

2m

{
− h̄2 ∂2

∂x2
+

(
− ih̄

∂

∂y
− eHx

c

)2}
+ V (x), (6)

where V (x) is the potential associated to the uniaxial DW
charge modulation in the x direction:

V (x) = 2� cos(Qx/h̄). (7)

Here the free phase of the DW order parameter is chosen to be
� = 0.

In the momentum representation, far from small regions
were the MB takes place (below we define these regions more
precisely), the dynamics of electrons is semiclassical. For
further consideration, it is convenient to use, as in Ref. [6],
the new origin in the momentum space coinciding with the
touching point due to the finite DW, with corresponding elec-
tron momentum components px = kx + Q/2, py = ky, and
the first Brillouin zone defined by −Q/2 � px � Q/2 (see
Fig. 1 in which these coordinates are already used). Then the
Hamiltonian Eq. (6) can be replaced by the Lifshitz-Onsager
equation [20,21],

ε

(
px ± Q/2, Py0 − iσ

d

d px

)
G(px, Py0) = εG(px, Py0),

ε(px ± Q/2, py ) = ε, (8)

for wave functions G(px, py), where ε(px ± Q/2, py) is the
band dispersion law of the initial system in the absence of
magnetic field (H = 0), with its center px = py = 0 in the
origin of the coordinate system. Here Py0 is the conserved
y component of the generalized momentum, σ = h̄2/l2

c =
eh̄H/c is the magnetic area in the momentum space, and lc =
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√
h̄c/eH is the magnetic length. The second line in Eqs. (8)

is the energy conservation law that defines the semiclassical
electron trajectories in the momentum space shown in Fig. 1.

The solution of Eqs. (8) must satisfy the periodic boundary
condition G(px, Py0) = G(px + Q, Py0), where the DW wave
number Q here appears as the period of the chain in the px

direction.
The semiclassical solution of Eqs. (8) reads

G(J )
l = C(J )

l√|vl |
exp

{
− i

σ

∫ px

0

(
p(l,J )

y (p′
x ) − Py0

)
d p′

x

}
, (9)

where vl = ∂ε/∂ py at py = p(l )
y (px ) with indices l = 1, 2 de-

noting lower and upper trajectories. Indices J = I, II denote
semiclassical region, inside which the integration over p′

x is
taken, that is, the left (I ) and right (II ) sides of the reciprocal
space with respect to the MB region,i.e., to the origin defined
by px = 0, as shown in Fig. 1(b). The dependence p(l )

y (px ) is
determined by the equality ε(px, py) = ε in Eqs. (8).

These semiclassical considerations fail in narrow regions
of the p-space in which semiclassical trajectories closely
approach each other. Then one has to take into account the
MB-quantum tunneling between the neighboring trajecto-
ries [18,19]. Dynamics of electrons in these MB regions of
p-space is governed by the set of two equations [22,23][

ε

(
px + Q/2, Py0 − iσ

d

d px

)
− ε

]
G1 + �G2 = 0,[

ε

(
px − Q/2, Py0 − iσ

d

d px

)
− ε

]
G2 + �G1 = 0, (10)

where � is the amplitude of the DW order parameter in-
troduced in Eq. (3). Note that at H = 0, the zeros of the
determinant of this system of equations give the dispersion
law of the reconstructed bands:

ε±(px, py)

= 1

2

[
ε

(
px + Q

2
, py

)
+ ε

(
px − Q

2
, py

)

±
√(

ε

(
px + Q

2
, py

)
− ε

(
px − Q

2
, py

))2

+ 4�2

]
. (11)

To find the solution for finite magnetic fields, we note
that px, py � pF (pF is the Fermi momentum) in the
region of the MB, and hence the dispersion functions
ε(px ± Q/2, Py0 − iσ d

d px
) in the above set of equations may

be expanded in both their arguments. Equations (10) can then
be solved inside the MB region without using the semiclassi-
cal approximation. For magnetic fields h̄ωH � εF , the region
in which the solution of this expanded set is valid overlaps
with the regions in which the semiclassical solutions Eq. (9)
are valid. Matching two sets of solutions, and taking into
account the above-mentioned periodic boundary condition,
one finally gets the wave functions and the dispersion equation
for electrons under MB conditions.

As shown in our previous papers, in both cases of the
initially open [16] and closed [24] FSs, the dependence of
the tunneling probability t2 for MB between neighboring
semiclassical trajectories on the DW order parameter �, the

magnetic field H , and the Fermi energy εF is qualitatively
different for two ranges of values of the DW momentum Q.

If Q is small, so the overlapping of the initial closed orbits
is large, both velocities in the above-mentioned expansion
are large (|vx(0, 0)|, |vy(0, 0)| ∼ vF , where vF = pF /m is the
Fermi velocity) and the tunneling probability is given by the
conventional Blount formula [22,23,25],

t2
B = 1 − exp

{
− �2

h̄ωH m
∣∣v(0)

x v
(0)
y

∣∣
}

, (12)

where v(0)
x and v(0)

y are the velocities at the crossing points of
the initial FSs.

If Q is close to 2pF , the initial FSs nearly touch each other,
one of the above-mentioned velocities is close to zero (that is
the electron system is close to the Lifshitz 2 1

2 transition[26]),
and the tunneling probability is given by [16,24,27,28]

t2 = 1 − exp

{
− |A|2�2

(h̄ωH )4/3(εF )2/3

}
,

A(ε; Q) = 22/3πAi

[
22/3 εQ − ε

(h̄ωH )2/3(εF )1/3

]
, (13)

where Ai(x) is the Airy function and εQ = (Q/2)2/2m.
As shown in Refs. [16,24,27,28], the solution of Eqs. (10)

for the case of our interest Q ≈ 2pF can be presented by the
integral

G1,2(px ) ∝
∫ ∞

−∞
g1,2(ξ ) exp

{
px

(
2mv(0)

x

)1/3

σ 2/3

}
dξ, (14)

in which g1,2(ξ ) is a smooth function with the characteristic
interval of variation δξ ∼ 1. The wave functions G1,2(px ) are
of semiclassical character at pF  |px|  σ 2/3/(2mv(0)

x )1/3.
Therefore, the regions in which the matching can be done is
near |p(match)

x | = σ 2/3/(2mv(0)
x )1/3. If |p(match)

x | � �/vF [see
Eq. (11)], one may neglect the size of the MB region in com-
parison to all characteristic parameters of the reconstructed
spectrum. Accepting this inequality and matching the wave
functions with the usage of Eqs. (13) and the periodic bound-
ary condition, one finds the dispersion equation of electrons.
Using this dispersion equation, one finally finds the density of
states (DOS) [24]

ν(ε) = 2S′

(2π h̄)2

| sin(S/2σ )|�[t2 − cos2(S/2σ )]√
t2 − cos2(S/2σ )

. (15)

Here S′ ≡ dS(ε)/dε and S(ε) is the area of the periodic chain
inside one of its periods [see Fig. 1(b)]. As one can see
from Eq. (15), the spectrum consists of Landau bands, of the
width ∼t2h̄ωH , centered around the discrete Landau levels
En = h̄ωH (n + 1/2), and gaps of the width ∼(1 − t2)h̄ωH

between them. Note that from Eqs. (13), it follows that the
characteristic scale for the cyclotron frequency ωH appears
to be (�/εF )3/2εF , so the whole range of the strengths of
magnetic field, including the asymptotic regimes of weak and
strong magnetic fields, is physically relevant and attainable. In
particular, in the limit H → ∞, the MB probability t2 → 0,
electrons move along closed orbits and, according to Eq. (15),
ν(ε) goes to the conventional DOS of the electrons on closed
orbits under quantizing magnetic field. In the opposite limit of
extremely weak magnetic fields, the MB probability t2 → 1,
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electrons under the magnetic field move along open trajecto-
ries [see Fig. 1(b)] and ν(ε) goes to DOS of electrons in the
absence of magnetic field.

The result Eq. (15) for ν(ε) is of central importance for the
considerations that follow. In particular, in the next section we
calculate the electron density,

n(εF ,�, Q) =
∫ εF

0
ν(ε)dε, (16)

and the electron band energy,

Eb(εF ,�, Q) =
∫ εF

0
εν(ε)dε, (17)

at temperature T = 0.

IV. BAND ENERGY

Using Eq. (15), along with the change of integration vari-
able in Eqs. (16) and (17) from ε to ϕ,

S(ε)

2σ
= ϕ, (18)

one finds the electron density and the band energy as follows:

n(εF ) = 4σ

(2π h̄)2

∫ S(εF )
2σ

0

| sin ϕ|�(t2(ϕ) − cos2 ϕ)√
t2(ϕ) − cos2 ϕ

dϕ, (19)

Eb = 4σ

(2π h̄)2

∫ S(εF )
2σ

0

ε(ϕ)| sin ϕ|�(t2(ϕ) − cos2 ϕ)√
t2(ϕ) − cos2 ϕ

dϕ, (20)

with ε(ϕ) being the solution of Eq. (18).
In Eqs. (19) and (20), εF is the Fermi energy of the

reconstructed system under magnetic field H , which is linked
to the Fermi energy ε̄F of the same system at H = 0 by the
condition of conservation of the electron number:

n(εF ) = S(ε̄F )

(2π h̄)2
. (21)

On the other hand, ε̄F is determined by the Fermi energy εF0

of the initial, unreconstructed system at H = 0 through the
condition of conservation of the number of electrons at H = 0,

S(ε̄F , Q) = S0(εF0), (22)

where S0(εF0) = π p2
F0 is the area of the initially closed FS

[see Fig. 1(a)].
Carrying out the integration in Eq. (19) and taking into

account the condition Eq. (22), one arrives at the equation that
defines the new Fermi energy of the reconstructed system in
magnetic field (for details, see Appendix A),

cos (πδnF ) = t cos (πδnF0). (23)

Here δnF and δnF0 are the fractional parts of the ratios

S(εF )

2πσ
= NF + δnF ,

S0(εF0)

2πσ
= NF + δnF0, (24)

respectively, while NF is the integer. Here and below we define
0 � δnF , δnF0 < 1, and hence εF0 coincides with a discrete
Landau level if δnF0 = 1/2 and it is the middle between them
if δnF0 = 0 (the same is valid for εF ).

Note that at extremely large magnetic fields, one has t →
0, with electrons moving along closed orbits. In this limit,
δnF = 1/2 at any value of δnF0, that is, the Fermi energy of
free electrons under magnetic field always coincides with one
of the Landau levels at any value of the filling factor.

With Eq. (19) and the condition Eq. (23) taken into ac-
count, the expression Eq. (20) for the band energy per unit
area reduces (details of the calculation are given in Ap-
pendix B) to the following convenient form:

Eb = E (H=0)
b + E (H )

b . (25)

The first term on the right-hand side of Eq. (25) is the band
energy of the reconstructed system in the absence of magnetic
field [6],

E (H=0)
b (Q,�) = 4

(2π h̄)2m

∫ Q
2

0
d px

∫ p(F )
y

0
d py

×
[

Q

2

2

+ p2
y + p2

x −
√

(Qpx )2 + (2m�)2

]
,

(26)

where

p(F )
y =

{
2mεF − Q

2

2

− p2
x +

√
(Qpx )2 + (2m�)2

} 1
2

. (27)

Detailed analysis of this energy and conditions of the stabi-
lization of the DW at H = 0 are presented in Ref. [6].

The second term in Eq. (25) is the electron “magnetic” en-
ergy, including the contribution of the MB that takes place in
small regions in the vicinity of points of the closest approach
of the two open trajectories:

E (H )
b = ν0

(h̄ωH )2

2

{
− δn2

F0 + 2

π2

∫ 1

cos(πδnF0 )

arccos(tζ )√
1 − ζ 2

dζ

}
.

(28)

Here ν0 = 4πm/(2π h̄)2 is the band DOS of the unrecon-
structed system at H = 0.

When the magnetic field is rather small, one has t ≈ 1 [see
Eqs. (13)],i.e., the MB is absent, and electrons move along
open trajectories. As follows from Eqs. (23) and (25), the
electron “magnetic” energy then tends to zero. Therefore, one
has

Eb = E (H=0)
b (Q,�), (29)

that is, the band energy and the Fermi energy [see Eq. (22)]
are the same as in the absence of magnetic field.

In the other limiting case of a strong magnetic field, MB is
strong (t → 0), so the electrons move along closed orbits and,
according to Eqs. (23) and (25), one has δnF = 1

2 and

Eb = E (H=0)
b (Q,�) + ν0

(h̄ωH )2

2
δnF0(1 − δnF0). (30)

On the other hand, taking � = 0 in Eq. (25) one finds
the band energy of the initial, unreconstructed system in the
absence of the DW as follows: δnF = 1

2 and

E (�=0)
b = 1

2
ν0ε

2
F0

{
1 +

(
h̄ωH

εF0

)2

δnF0(1 − δnF0)

}
. (31)
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FIG. 2. De Haas-van Alphen type of oscillations of the magnetic
energy gain [given by the second term in Eq. (32)], with respect
to the inverse magnetic field �−1

H ≡ εF0/h̄ωH . The dotted curve is
the envelope showing the maximal magnetic energy gain obtained
for δnF0 = 1/2. The inset shows the experimentally relevant interval
30T � H � 50T , for the choice of parameters �/εF0 = 0.01, and
such value of Q that maximizes t2 in Eqs. (13).

Here 1
2ν0ε

2
F0 is the initial band energy in the absence of

the DW and of magnetic field. Therefore, in this limit, in both
cases of reconstructed and unreconstructed systems [Eqs. (30)
and (31)], the Fermi energy, εF , at H �= 0 coincides with one
of the discrete Landau levels independently of the value of the
Fermi energy εF0 at H = 0, while the band energy of electrons
localized by the magnetic field (Landau electrons) is always
greater than or equal to the band energy at H = 0.

Subtracting the initial band energy Eq. (31) from Eq. (25),
one finds the decrease of the total band energy per unit area as
follows:

�Eb = �E (H=0)
b (Q,�) + ν0

(h̄ωH )2

2

×
{

− δnF0 + 2

π2

∫ 1

cos(πδnF0 )

arccos(tζ )√
1 − ζ 2

dζ

}
. (32)

The first term on the right-hand side of Eq. (32) is the
energy gain of the reconstructed system with the DW in the
absence of magnetic field, H = 0. Its Fermi energy ε̄F is
determined by Eq. (22). This energy was derived and analyzed
in detail in our previous paper [6], in which it was proved that
the DW energy is optimal if ε̄F = εF0. The second term is
the electron magnetic energy gain which is responsible for the
de Haas-van Alphen oscillations modified by MB [29]. This
magnetic energy as a function of the magnetic field is shown
in Fig. 2.

V. STABILITY OF THE DW ORDER

Besides the band energy Eq. (32), the complete condensa-
tion energy EDW also includes the contribution from the peri-
odic lattice deformation, given by the corresponding mean-
field term in the Hamiltonian Eq. (3). For further analysis,
more precisely for the minimization of EDW with respect to the
DW momentum Q and the order parameter �, it is convenient

to introduce dimensionless quantities,

q ≡ Q

2pF0
, δ ≡ �

εF0
,

�H ≡ h̄ωH

εF0
, λ ≡ m

π h̄2

g2

2h̄ωQ
, (33)

for the DW wave vector, DW order parameter, magnetic field,
and coupling constant, respectively. λ is, like g, assumed
to be Q-independent,i.e., we do not take into account the
presumably smooth dependence of ωQ on Q in the narrow
range of values of Q related to the touching instability from
Fig. 1. Written in terms of quantities Eqs. (33), the total
condensation energy EDW, scaled by the bare band energy
E0 = 1

2ν0ε
2
F0 introduced after Eq. (31), reads

EDW(�H , q, δ)

E0
= Ẽ0

DW + ẼH
DW, (34)

where the dimensionless (scaled) partial condensation energy
terms in expression Eq. (34) are

Ẽ0
DW(q, δ)

=1 − 16

3π

∫ q

0

(
1 − q2 − x2 +

√
(2qx)2 + δ2

) 3
2

dx + δ2

λ
,

ẼH
DW(�H , q, δ)

=�2
H

{
− δnF0 + 2

π2

∫ 1

cos(πδnF0 )

arccos(|t |ζ )√
1 − ζ 2

dζ

}
, (35)

where the last term in the first expression is due to the lattice
deformation.

Let us by qm denote the optimal value of the DW wave
number for which the condensation energy Eq. (34) has the
minimum. To simplify its determination, we note at first
that both q-dependent condensation energy contributions in
Eqs. (35) have their minima at the wave numbers in the
range Q ∼ 2pF . Let us denote these minima by q0

m and qH
m ,

respectively. The former is explicitly given by [6]

q0
m = 1 − δ

2
+ δ3/2

2
√

2π
. (36)

As for the latter, the minimization of ẼH
DW gives

qH
m =

√
1 + 2−2/3xm�

2/3
H , (37)

where xm = −1.01879 is the value that maximizes the Airy
function in Eqs. (13), thus providing the equilibrium value of
the tunneling probability:

t2
m = 1 − exp

{
− 24/3π2Ai2(xm)

δ2

�
4/3
H

}

= 1 − exp

{
− 7.14

δ2

�
4/3
H

}
. (38)

Let us now approximate the expressions for Ẽ0
DW and ẼH

DW
by the respective quadratic expansions around q0

m and qH
m ,

Ẽ0,H
DW (q) ≈ Ẽ0,H

DW

(
q = q0,H

m

) + 1
2α0,H

(
q − q0,H

m

)2
, (39)
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with corresponding minimal energies

Ẽ0
DW

(
q0

m

) =
(

1

λ
− 1

λ
(H=0)
c

)
δ2 + 1

π
δ3, (40)

ẼH
DW

(
qH

m

) = �2
H

{
−δnF0 + 2

π2

∫ 1

cos(πδnF0 )

arccos(tmζ )√
1 − ζ 2

dζ

}
,

(41)

and expansion coefficients

α0 = 16

π

(
1 −

√
2 + π√

2

)
δ

1
2 , (42)

αH = 2
2
3 32xmAi2(xm)

δ2

�
2/3
H

1 − t2
m

t2
m

ln

√
1 − tm
1 + tm

. (43)

The DW condensation energy in the absence of magnetic field,
taken at its optimal wave vector, is given by Eq. (40) and
has been elaborated in detail in Ref. [6]. There λ(H=0)

c = (1 +
2/π )−1 ≈ 0.61 is the critical value of the coupling constant
for the DW stabilization at H = 0. Analogously, ẼH

DW(qH
m )

in Eq. (41) is the magnetic energy taken at its own optimal
wave vector qH

m . The coefficient αH in Eq. (43) is provided
taking only the envelope of magnetic energy oscillations
into account, i.e., taking δnF0 = 1/2 (see Fig. 2). The same
manner will be used in the presentation of further results.

After inserting the expansions Eq. (39) into the expression
Eq. (34), and the minimization of the latter with respect to q,
one finally gets the optimal condensation energy,

EDW

E0
= Ẽ0

DW

(
q0

m

) + ẼH
DW

(
qH

m

) + 1

2

α0αH

α0 + αH

(
q0

m − qH
m

)2
,

(44)

and the optimal DW wave vector,

qm = α0q0
m + αH qH

m

α0 + αH
. (45)

The dependance of the DW condensation energy Eq. (44)
on the order parameter and magnetic field for q = qm is shown
in Fig. 3(a). It is evident that by increasing the magnetic field,
the minimum of EDW is lowered. This shows that magnetic
field additionally strengthens stabilization of the DW.

The results of the numerical calculation of the dependence
of the DW wave number qm and of the DW amplitude δ

on magnetic field for a given value of the coupling constant
λ are shown in Figs. 3(b) and 3(c). qm shows a very weak
dependence on magnetic field of the order of only few per-
cent, while the order parameter increases approximately three
times within the same range of variation of magnetic field,
corresponding to the span of a hundred Tesla.

The above results lead us to the phase diagram shown
in Fig. 4(a). As already pointed out in the previous pa-
per [6], in the absence of magnetic field the phase transition
resulting in the DW and reconstructed electron band has the
characteristics of the quantum phase transition, which takes
place only providing λ > λ(H=0)

c .
The present analysis indicates that, regarding this tran-

sition, a finite external magnetic field strengthens the DW
ordering. First, as shown in Fig. 3(a), it lowers the total energy
of the DW state. Second, Fig. 3(c) shows that the magnitude of

FIG. 3. (a) The dependance of the DW condensation energy
Eq. (34) on the order parameter δ and the magnetic field �H , taken
at the optimal value of wave vector qm and for λ = 0.613. The
dependence of (b) optimal DW wave vector qm, and of (c) optimal
DW order parameter δm, on �H , for the same value of λ.

the order parameter δ increases as H increases. Furthermore,
by switching the external magnetic field, one introduces a
qualitative change into the DW phase diagram. Namely, as
Fig. 4(a) shows, the domain of values of parameters �H

and λ for which the DW is stable extends toward lower and
lower values of the coupling constant λ as �H increases.
Only, below the critical curve λc(�H ), the ordering is sup-
pressed, i.e., the order parameter δ vanishes within the range

FIG. 4. Phase diagram: (a) The DW is present in the shaded
domain of the (�H , λ) plane, with the curve λc(�H ) representing
the critical value of the coupling constant below which the DW order
parameter vanishes. The dashed line at λ = λH=0

c is the critical line
below which the DW order is possible only in finite magnetic field.
(b) DW order parameter δm vs λ for a series of values of �H .
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of numerical imprecision. We see that such effective critical
coupling λc(�H ) saturates to zero at a finite value of H ,
roughly estimated to be of the order of a few dozen Tesla. In
other words, there is a range of values of the coupling constant
in which the DW order and the band reconstruction, although
not possible at H = 0, can be induced by applying the external
magnetic field. In Fig. 4(b), we show the equilibrium value of
the DW order parameter δm vs λ for a series of different values
of magnetic field �H .

VI. CONCLUSION

The results presented above show that a strong enough ex-
ternal magnetic field strengthens the tendency of an isotropic
2D electron band toward the band reconstruction, associated
with the formation of uniaxial DW that breaks the trans-
lational symmetry of the system. The band reconstruction
under magnetic field is the result of two opposing tendencies.
From one side, in the magnetic field, open 1D trajectories
are additionally energetically favored with respect to the
closed Landau quantized orbits in the initial unreconstructed
2D band. From the other side, the closeness of oppositely
directed open trajectories from Fig. 1 inevitably provokes a
MB between them. Finite tunneling probability between these
trajectories causes a partial relocalization of band states and
thus acts against the DW stability.

In the above analysis, we use the well-established semi-
classical approach of electron dynamics in the magnetic field,
together with the full quantum mechanical treatment of the
MB. The obtained band spectrum consists of an alternating
sequence of narrow energy subbands and energy subgaps [19],
each subband being located around a Landau discrete level.

The knowledge of the associated DOS Eq. (15) opened the
way toward the calculation of the total condensation energy at
zero temperature, given by Eq. (34). The important outcome
of this calculation is the additivity of the band energy gain. It
has two contributions, one due to the bare H = 0 band recon-
struction, and another due to the above-mentioned effects of
finite magnetic field. The former comes from redistribution of
the DOS toward lower energies in the reconstructed band [6].
The latter comes, as already stated above, from the delocaliza-
tion of initially Landau-localized electrons, modified by the
MB. It is accompanied by quantum oscillations periodic in
1/H , similar to the standard de Haas-van Alphen effect, due
to Landau-level filling (see Fig. 2).

The next important element which facilitates the further
minimization of the condensation energy Eq. (34) is the
closeness of values of optimal wave numbers which minimize
these two contributions. Both are close to 2pF /h̄ (see Fig. 1),
differing only by a few percent. The final optimal DW wave
number, minimizing the total condensation energy, is an ad-
equate mean of these two, given by Eq. (45) and shown in
Fig. 3.

The central result of the whole analysis is the phase
diagram shown in Fig. 4, from which one concludes that
the external magnetic field strengthens the DW quantum
phase transition with respect to that stabilized at H = 0. One
measure of this strengthening is the increase of the order
parameter by approximately three times along the span of
magnetic field up to a hundred Tesla. Simultaneously, the

optimal wave number decreases only by a few percent in
the same domain, the reasons for this weak variation being
already pointed out above. Finally, the critical value of the
coupling constant λ, beyond which quantum phase transition
takes place, decreases by increasing H , and quickly saturates
toward zero at the field domain of a few dozen Tesla. The
external magnetic field thus opens possibility for DW and
band reconstruction to appear in materials in which they are
not present in zero field.
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APPENDIX A: CALCULATIONS OF THE
ELECTRON NUMBER

As S(εF )/2σ = εF /h̄ωH  1, it is convenient to rewrite
the upper integration limit of the first integral in Eq. (19) in
the form π (NF + δnF ) (where NF and 0 � δnF < 1 are the
integer and fractional parts of S(εF )/2σ , respectively, and
present the integral as a sum of integrals over two intervals,
(lπ, (l + 1)π ) and (0 � l � NF − 1). After the change of
variables ϕ − lπ → ϕ, one finds

n = 4σ

(2π h̄)2

NF −1∑
l=0

∫ π

0

| sin ϕ|�(
t2
l − cos2 ϕ

)√
t2
l − cos2 ϕ

dϕ

+
∫ πδnF

0

| sin ϕ|�(t2 − cos2 ϕ)√
t2 − cos2 ϕ

dϕ, (A1)

where tl = t (ϕ + lπ ) and t = t (ϕ + (NF − 1)π ) ≈ t (εF ).
As one sees from Eqs. (12) and (13), the characteristic

variation interval of t (ϕ) is δϕ ∼ (εF /h̄ωH )1/3π  π , and
hence tl and t may be considered as constants inside each
interval of the integrations with high accuracy. Under the latter
condition, the integrals under the sum in Eq. (A1) are table
integrals equal to π , and hence the electron density reads

n =
[
πNF +

∫ 1

cos πδnF
t

�(1 − ξ 2)√
1 − ξ 2

dξ

]
. (A2)

While writing the above equation, we changed the variable in
the last integral in Eq. (A1): cos ϕ = tξ .

Inserting this result into the electron number conservation
law given by Eqs. (21) and (22), one gets the equation that
couples the Fermi energy of the metal with DW and the initial
Fermi energy εF0 at H = 0:

πδnF0 =
∫ 1

cos πδnF
t

�(1 − ξ 2)√
1 − ξ 2

dξ . (A3)

Here δnF0 is the fractional part of S(εF0)/2σ . As δnF < 1 by
definition, the only solution of this equation is Eq. (23) of the
main text.
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APPENDIX B: CALCULATIONS OF THE BAND ENERGY

After presenting the integral in Eq. (20) as a sum of
integrals over intervals (lπ, (l + 1)π ) and (0 � l � NF − 1),
and changing the variables ϕ − lπ → ϕ in the same way as in
Appendix A, the band energy reads

E (H )
b = E (1)

b + E (2)
b , (B1)

where

E (1)
b = 4σ

(2π h̄)2

∫ πδnF

0
ε(πNF + ϕ)B[ϕ; t (εF )]dϕ (B2)

and

E (2)
b = 4σ

(2π h̄)2

∫ π

0
dϕ

NF −1∑
l=0

ε(π l + ϕ)B[φ; t (ε(lπ + ϕ))].

(B3)

Here

B[ϕ; t (ε(ϕ))] = | sin ϕ|�[t[ε(ϕ)]2 − cos2 ϕ]√
t[ε(ϕ)]2 − cos2 ϕ

. (B4)

1. Calculations of the integral in Eq. (B2)

The dependence of energy on ϕ in Eq. (B2) is determined
by the equation

S(ε)

2σ
= πNF + ϕ. (B5)

As the integration here goes in the vicinity of the Fermi energy
in the range �h̄ωH , it is convenient to expand the area here as
S(ε) ≈ S(ε̄F ) + δεS′(ε̄F ), where δε = ε − ε̄F .

According to Ref. [6]:

S(ε) = 4
∫ Q/2

0

√
2mε − Q

2

2

− p2
x +

√
(Qpx )2 + (2m�)2.

(B6)

Taking the derivative with respect to ε and changing variables
px = pF ξ , one finds

S(ε) = S(εF ) + 4mδε

∫ 1

0

dξ√
δ − q2 − ξ 2 +

√
4ξ 2 + δ2

,

(B7)

where δ = �/εF and q in the last term is taken equal to q =
pF (1 − δ/2), which presents the optimal DW vector in the
lowest approximation in δ, h̄ωH/εF � 1.

Changing variables ζ 2 = 4ξ 2 + δ2 and performing integra-
tion, one finds the needed expansion as follows:

S(ε) = S(ε̄F ) + 2πm(ε − ε̄F ). (B8)

Rewriting Eq. (B5) as S((ε) = 2σ [π (NF + δn̄F ) −
πδn̄F + ϕ] = S(ε̄F ) + 2σ (ϕ − πδn̄F ) with the usage of
Eq. (B6), one finds

ε(ϕ + πNF ) = ε̄F + σ

πm
(ϕ − πδn̄F ), (B9)

where δn̄F is the fractional part of the ratio

S(ε̄F )

2πσ
= NF + δn̄F , (B10)

while NF is integer. Note that according to Eq. (22), one has
δn̄F = δnF0.

Inserting the above equation into Eq. (B2), and performing
the integration with respect to ϕ, one finds

E (1)
b = σ

(2π h̄)2

{
πε̄F δn̄F

+ σ

πm

[ ∫ 1

cos (πδn̄F )

arccos (tζ )√
1 − ζ 2

dζ − (πδn̄F )2

]}
.

(B11)

2. Calculations of E (2)
b

The sum in Eq. (B3),

A =
NF −1∑
l=0

ε(π l + ϕ)B[ϕ; t (ε(lπ + ϕ))], (B12)

may be presented as follows:

A = 1

π

∞∑
k=−∞

∫ (NF −1/2)π

−π/2
dx exp{i2kx − 2|k|η}

× ε(x + ϕ)B[ϕ; t (ε(x + ϕ))]. (B13)

While writing this equation, we used the equality

∞∑
l=−∞

δ[x − lπ ] = 1

π

∞∑
k=−∞

exp{i2kx − 2|k|η}, (B14)

where η → 0.
Changing the integration variables,

S(ε)

2σ
= x + ϕ, (B15)

one finds

A = 1

2πσ

∫ ε2

ε1

εS′(ε)B[ϕ; t (ε)]dε +
∞∑

k=1

exp{−2kη}

×
∫ ε2

ε1

εS′(ε)B[ϕ; t (ε)]
(
ei2k( S(ε)

2σ
−ϕ) + c.c.

)
, (B16)

where ε1,2 are defined by the equations

S(ε1)

2σ
= −π

2
+ ϕ,

S(ε2)

2σ
=

(
NF − 1

2

)
π + ϕ. (B17)

The main contributions to the integrals under the summa-
tion on the right-hand side of the above equation come from
the ends of integration interval ε1 and ε2 because S/2σ  1,
and the exponents there are fast oscillating functions, while
S′ �= 0 (hence there is no saddle point). Expanding the func-
tions in the integrand in the vicinity of the ending points ε1,2

and carrying out the integration, one finds that the integral
under the summation sign is equal to zero at any k �= 0, and
hence the first term on the right-hand side of Eq. (B16) only
remains. Inserting it into Eq. (B3), one finds the first term on
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the right-hand side of the band energy as follows:

E (2)
b = 2

(2π h̄)2π

∫ π

0
dϕ

∫ ε2

ε1

dεεS′(ε)B[ϕ; t (ε)]. (B18)

Further on, changing variables in the integral with respect
to the energy

S(ε)

2σ
= ϕ1 + ϕ − π

2
, (B19)

one finds

E (2)
b = 4σ

(2π h̄)2π

∫ π

0
dϕ

∫ πNF

0
dϕ1ε

(
ϕ1 + ϕ − π

2

)
× B[ϕ; t (ε(ϕ1 + ϕ − π/2))]. (B20)

As the integration with respect to ϕ is inside the interval
(0, π ), one may expand the area [as was done in Eqs. (B6)

and (B9)], and find

ε

(
ϕ1 + ϕ − π

2

)
= ε(ϕ1) + 2σ

m

(
ϕ − π

2

)
. (B21)

Inserting this expansion in the above integral and performing
integration with respect to ϕ, after simple but rather lengthy
calculations, one finds

E (2)
b =

∫ ε̄F

0
εν(ε)dε + 4σ

(2π h̄)2

×
{

− πε̄F δnF0 + h̄ωH

2π
(πδnF0)2

}
. (B22)

While writing the above equation, we used the equality δn̄F =
δnF0 [see Eq. (B10) and the text below it].

Inserting Eqs. (B11) and (B22) in Eq. (B1), one obtains the
band energy of the system with DW under magnetic fields,
Eq. (25) of the main text.
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