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Spectroscopic properties of low-lying states and cluster structures in 12C are analyzed in a beyond mean-
field framework based on global energy density functionals (EDFs). To build symmetry-conserving collective
states, axially symmetric and reflection-asymmetric solutions of the relativistic Hartree-Bogoliubov equations
are first projected onto good values of angular momentum, particle number, and parity. Configuration mixing
is implemented using the generator coordinate method formalism. It is shown that such a global microscopic
approach, based on a relativistic EDF, can account for the main spectroscopic features of 12C, including the
ground-state and linear-chain bands as well as, to a certain approximation, the excitation energy of the Hoyle
state. The calculated form factors reproduce reasonably well the available experimental values, and display an
accuracy comparable to that of dedicated microscopic cluster models.

DOI: 10.1103/PhysRevC.99.034317

I. INTRODUCTION

The formation of clusters, as transitional states between
the quantum liquid and solid phases of finite systems, is a
common feature in light atomic nuclei [1–5]. Particularly
favorable conditions for the appearance of cluster structures
are found in light self-conjugate nuclei, where various ex-
otic configurations have been predicted and some observed.
Probably one of the most prominent examples is the self-
conjugate nucleus 12C, in which axial oblate, triangular, linear
3α, and bent arm configurations are all predicted to coexist
at low excitation energies [6–13]. New reorientation-effect
measurements have very recently confirmed the pronounced
oblate deformation in the ground-band 2+

1 state of 12C [14].
First experimental evidence of triangular D3h symmetry in
12C was reported by Marín-Lambárri et al., with K = 0 and
K = 3 bands reportedly merging to form a single rotational
band built on triaxial ground state [15]. Exceptional results
on the structure of the well-known 0+

2 (Hoyle) state have
been simultaneously reported by two independent groups
[16,17], indicating that this state predominantly decays by
intermediate emission of an α particle. In parallel with ex-
perimental advances, a number of theoretical methods have
been employed to study the variety of shapes in 12C, includ-
ing the antisymmetrized molecular dynamics (AMD) model
[6], the fermionic molecular dynamics (FMD) model [7,8],
the Tohsaki-Horiuchi-Schuck-Röpke (THSR) wave function
model [9,10], configuration-mixing Skyrme calculations [11],
and the cranking relativistic mean-field theory [12]. Both the
AMD and FMD calculations predict the Hoyle state to be a
weakly interacting assembly of 8Be + α configurations [6,8],
while the THSR model describes the Hoyle state in terms of
a condensate of α particles [9]. In addition, 3α linear chain
structures were predicted to occur in higher 0+ states, even

though the stability of these configurations against bending
remains an open question [6,8,12].

The framework of relativistic energy density functionals
(EDFs) [18,19] has been extensively used in studies of cluster
structures on both the mean-field level [20–25] and, to a lesser
extent, using beyond mean-field [26,27] methods. Particu-
larly interesting results on the origins of nuclear clustering
have been reported in Ref. [22], where the appearance of
pronounced cluster structures has been linked to the under-
lying single-nucleon potential. However, in order to carry
out a quantitative analysis that can directly be compared to
experiment, it is necessary to extend the simple mean-field
picture by taking into account collective correlations related
to restoration of broken symmetries and configuration mixing.
Symmetry-conserving EDF-based methods have been used to
model a variety of structure phenomena over the entire nuclide
chart [19,28,29]. One of the major advantages of using such
an approach in studies of clusters is that it is not necessary
to a priori assume the existence of localized structures in
the model space. In fact, the EDF framework includes both
the quantum-liquid and cluster aspects of nuclear systems,
and clusterization may eventually occur as a result of the
self-consistent approach on mean-field level and/or the sub-
sequent restoration of symmetries and configuration mixing.
In addition, and this is important, the parameters of global
functionals are typically adjusted to data on medium-heavy
and heavy nuclei and the effective interaction itself does not
bear any information specific to light systems, or to cluster
states that one aims to describe.

In this work we employ the framework of symmetry-
conserving relativistic EDF to study cluster structures in
positive-parity states of 12C isotope. Axially symmetric and
reflection-asymmetric reference states are generated as solu-
tions to the relativistic Hartree-Bogoliubov (RHB) equations.
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These configurations are then projected onto good values of
angular momenta, particle number, and parity, before being
mixed using the generator coordinate method (GCM). This
paper is organized as follows. A brief outline of the theoretical
method is presented in Sec. II. In Sec. III we demonstrate
how this global model can account for the main spectroscopic
features of 12C, including the description of both the ground-
state and linear-chain bands, as well as the excitation energy
of the Hoyle state. Furthermore, the theoretical elastic and
inelastic form factors are shown to reproduce experimental
values, and exhibit an accuracy that can compete with ded-
icated microscopic cluster models. Finally, Sec. IV briefly
summarizes the main results of this work.

II. THEORETICAL FRAMEWORK

The EDF-based symmetry-conserving and configuration-
mixing approach provides a global method that can be applied
to studies of structure phenomena over the entire nuclide
chart [19,28,29]. In practical implementations this frame-
work essentially presents a two-step process. In the first step
(single-reference EDF) a number of symmetries of the nuclear
Hamiltonian are broken at the self-consistent mean-field level.
This approach provides an approximate description of nu-
clear ground states in terms of symmetry-breaking many-body
wave functions. Bulk properties of atomic nuclei (such as
binding energies, charge radii, etc.) can be analyzed at this
level. In the second step (multi-reference EDF), previously
broken symmetries of many-body states are recovered and
the resulting configurations are further mixed to construct
collective states with good quantum numbers. Going beyond
the simple mean-field picture, one is able to take into ac-
count additional collective correlations and thereby describe
a nucleus in the laboratory frame, including spectroscopic
properties. The GCM ansatz for the symmetry-conserving
collective state |�J;NZ;π

α 〉 reads [30]:
∣∣�J;NZ;π

α

〉 =
∑

qi

∑
K

f J;NZ;π
α (qi )P̂

J
MK P̂N P̂Z P̂π |�(qi )〉 , (1)

with the first summation running over a discretized set of
quadrupole and octupole deformations {qi} ≡ {β2i, β3i}. Here
we define the dimensionless deformation parameters βλ =
4πqλ0/3AR2, where qλ0 and R = r0A1/3 denote the mass mul-
tipole moment and nuclear radius, respectively. Furthermore,
P̂J

MK is the angular momentum projection operator:

P̂J
MK = 2J + 1

8π2

∫
d�DJ∗

MK (�)R̂(�), (2)

where the integral is over the three Euler angles � =
(α, β, γ ), DJ

MK is Wigner D matrix [31], and R̂ =
e−iαĴz e−iβ Ĵy e−iγ Ĵz is the rotation operator. The projection op-
erators onto neutron P̂N , and proton number P̂Z read:

P̂Nτ = 1

2π

∫ 2π

0
dϕei(N̂τ −Nτ )ϕ, τ = N, Z. (3)

N̂τ corresponds to the particle number operator and Nτ is
the desired number of nucleons in each isospin channel τ .
We note that because of symmetry the integration interval

can be reduced to [0, π ] for even-even nuclei. In addition,
projection onto good parity is performed by choosing a basis
that is closed under parity transformation, that is, by ensuring
that for each (β2, β3) state the basis always includes the
corresponding (β2,−β3) state. The parity quantum number is
then restored by the subsequent configuration mixing.

The RHB states |�(qi )〉 are obtained from deformation-
constrained self-consistent mean-field calculations using the
relativistic point-coupling functional DD-PC1 [32] in the
particle-hole channel, and a separable pairing force in
the particle-particle channel [33,34]. The RHB basis of
the present calculation comprises a wide range of both
quadrupole and octupole deformations: β2 ∈ [−1.2, 3.6] and
β3 ∈ [−3.5, 3.5], with mesh sizes �β2 = 0.4, �β2 = 0.6, and
�β3 = 0.7 in the oblate, prolate, and octupole directions,
respectively. To ensure a proper convergence, the RHB states
are expanded in a basis of the axially symmetric harmonic os-
cillator [35] with Nsh = 10 (Nsh = 11) oscillator shells for the
large (small) component of the Dirac single-nucleon spinor.
Furthermore, the axial, time-reversal, and simplex symmetry
of RHB states are imposed. In particular, axial symmetry
reduces the computational task considerably, as integrals over
the Euler angles α and γ in Eq. (2) can be carried out
analytically. Projection integrals over the gauge angle ϕ are
performed using the standard Fomenko expansion [36]. The
corresponding number of integration points in the Euler angle
β and gauge angle ϕ are Nβ = 27 and Nϕ = 9, respectively.
The weight functions f J;NZ;π

α (qi ) of Eq. (1) are determined by
solving the Hill-Wheeler-Griffin (HWG) equation [37]:∑

q j

HJ;NZ;π (qi, q j ) f J;NZ;π
α (q j )

= EJ;NZ;π
α

∑
q j

N J;NZ;π (qi, q j ) f J;NZ;π
α (q j ). (4)

The norm overlap kernel N J;NZ;π (qi, q j ) and the Hamiltonian
kernel HJ;NZ;π (qi, q j ) are given by the generic expression:

OJ;NZ;π (qi, q j ) = 2J + 1

2
δM0δK0

∫ π

0
dβ sin βdJ∗

00 (β )

× 1

N2
ϕ

Nϕ∑
lN ,lZ =1

e−iϕlN N0 e−iϕlZ Z0

× 〈�(qi )|Ôe−iβ Ĵx eiϕlN N̂ eiϕlZ Ẑ P̂π |�(q j )〉,
with Ô = 1̂, Ĥ for the norm overlap kernel and the Hamilto-
nian kernel, respectively. We note that here the Hamiltonian
kernel is calculated using the mixed density prescription [38].
The numerical solution of the HWG equation for a given an-
gular momentum and parity yields the lowest collective state
(α = 1), as well as excited states (α = 2, 3, . . .). Additionally,
one can use the weights f J;NZ;π

α (qi ) to define another set of
functions:

gJ;NZ;π
α (qi ) =

∑
q j

(N J;NZ;π )1/2(qi, q j ) f J;NZ;π
α (q j ). (5)

Since gJ;NZ;π
α (qi ) are orthonormal, they are interpreted as col-

lective wave functions of the variables qi. Furthermore, even
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though they are not observables themselves, the collective
wave functions explicitly manifest shape fluctuations in both
the quadrupole and octupole directions and can be used to cal-
culate various observables, such as spectroscopic quadrupole
moments and electromagnetic transition rates [39]. In partic-
ular, the electric spectroscopic quadrupole moment of the col-
lective state |�J;NZ;π

α 〉 can be computed from the expression

Qspec
2

(
Jπ
α

) = e

√
16π

5

(
J 2 J
J 0 −J

)

×
∑
qiq f

f J;NZ;π∗
α (q f ) 〈Jq f ||Q̂2||Jqi〉 f J;NZ;π

α (qi ).

(6)

The reduced electric multipole transition probability for
a transition between the initial |�Ji;NZ;πi

αi
〉 and final state

|�Jf ;NZ;π f
α f 〉 reads:

B
(
Eλ; Jπi

αi
→ J

π f
α f

)

= e2

2Ji + 1

∣∣∣∑
qiq f

f
Jf ;NZ;π f ∗
α f (q f ) 〈Jf q f ||Q̂λ||Jiqi〉

× f Ji;NZ;πi
αi

(qi )
∣∣∣2

. (7)

Furthermore, utilizing techniques recently developed for
Skyrme-based EDF calculations [40], collective wave func-
tions can also be used to compute elastic and inelastic form
factors for electron scattering. In the plane-wave Born ap-
proximation the longitudinal Coulomb form factor FL(q) for
a transition from the initial state |�Ji;NZ;πi

αi
〉 to the final state

|�Jf ;NZ;π f
α f 〉 reads [40]:

FL(q) =
√

4π

Z

∫ ∞

0
drr2ρ

Jf α f

Jiαi,L
(r) jL(qr), (8)

where q denotes the momentum transfer for angular momen-
tum L, jL(qr) is the spherical Bessel function of the first kind,
and ρ

Jf α f

Jiαi,L
(r) are reduced transition densities of protons. The

latter can be computed from:

ρ
Jf α f

Jiαi,L
(r) = (−1)Jf −Ji

2Jf + 1

2Ji + 1

∑
K

〈Jf 0LK|JiK〉

×
∫

d r̂ρJf JiK0
α f αi (r)Y ∗

LK (r̂), (9)

where ρ
Jf JiK0
α f αi (r) stands for the pseudo-GCM density as de-

fined in Ref. [40]. The pseudo-GCM density does not rep-
resent an observable, rather it encapsulates all the informa-
tion related to the solution of HWG equation. More details
on calculations of pseudo-GCM densities can be found in
Ref. [40]. Here we note that, to account for the spurious
center-of-mass motion, a simple correction is introduced by
folding the calculated form factors of Eq. (8) with Gcm(q) =
exp[q2b2/(4A)], where b = √

h̄/mω denotes the oscillator
length [41]. It should be emphasized that, since all quantities
are calculated in the full configuration space, there is no need
for effective charges and thus e denotes the bare proton charge.

FIG. 1. Deformation energy surfaces of 12C in the β2-β3 plane.
In addition to the self-consistent mean-field RHB binding energies
(top left panel), the angular momentum-, particle number-, and
parity-projected energy surfaces are shown for spin-parity values
Jπ = 0+, 2+, 4+. For each surface, energies are normalized with
respect to the corresponding absolute minimum. Contour lines are
separated by 2.5 MeV (dashed lines) and 0.5 MeV (dotted lines).

III. CLUSTER STRUCTURES IN 12C

A. Deformation energy maps

Our analysis of cluster structures in 12C starts with a
microscopic self-consistent mean-field RHB calculation. The
top left panel of Fig. 1 displays the deformation energy surface
in the β2-β3 plane. Although the absolute minimum of the
RHB energy surface is found for the spherical (β2 = 0, β3 =
0) configuration, we note that the surface is rather soft for
the following range of deformations: β2 ≈ [−0.6, 0.6] and
|β3| ≈ [0.0, 0.5]. To illustrate the effect of symmetry restora-
tion on the topology of the RHB energy, the other panels in
Fig. 1 show the corresponding angular momentum-, particle
number-, and parity-projected energy surfaces for spin-parity
values Jπ = 0+, 2+, 4+. Already the Jπ = 0+ energy surface
exhibits the dramatic impact of symmetry restoration. In
particular, the Jπ = 0+ surface appears significantly softer
for a wide range of deformations in comparison to the RHB
mean-field energy surface. For higher values of angular mo-
mentum the minimum on the oblate side becomes much more
pronounced, while intermediate prolate deformations become
increasingly less favored.

This trend is even more apparent in Fig. 2, where we make
a cut along the parity-conserving (β3 = 0) line of Fig. 1 and
show the energy curves as functions of the axial quadrupole
deformation β2. As noted before, the RHB energy curve is
rather flat around the spherical minimum. The only indication
of possible cluster formation is found at very large prolate
deformations, where a shoulder in the binding energy curve
occurs. In contrast, the energy curve that corresponds to the
symmetry-restored Jπ = 0+ states exhibits two nearly degen-
erate minima: the lower one at β2 ≈ −0.5, and the prolate
minimum at β2 ≈ 0.8. We note that the binding energy of
the symmetry-restored oblate minimum is rather close to the
experimental value: EB = −92.16 MeV. This is consistent
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FIG. 2. Energy curves of 12C as functions of the axial quadrupole
deformation β2 for parity-conserving (β3 = 0) configurations. In
addition to the self-consistent mean-field RHB binding energies
(squares), we display the angular momentum- and particle number-
projected curves for spin-parity values Jπ = 0+, 2+, 4+.

with the fact that the collective 0+
1 state is expected to corre-

spond to the band head of an oblate-deformed rotational band.
Furthermore, the shoulder at large quadrupole deformations
is preserved for the Jπ = 0+ projected energy curve and it is
additionally lowered by about 5 MeV. The Jπ = 2+ projected
curve preserves both the oblate minimum and the shoulder
at large quadrupole deformations, while the former Jπ = 0+
local minimum at intermediate quadrupole deformation trans-
forms into a shoulder. Finally, a barrier occurs at intermediate
prolate deformations for the Jπ = 4+ state.

The analysis of Figs. 1 and 2 illustrates how the symmetry-
restored potential energy maps already encapsulate the variety
of shapes of 12C. Nevertheless, it is only by performing
configuration mixing, that is, including collective correlations
related to both quadrupole and octupole shape fluctuations,
that one obtains a quantitative description of 12C spectro-
scopic properties.

B. Spectroscopy of collective states

In the next step, 72 symmetry-restored configurations were
mixed for each angular momentum using the GCM as de-
scribed in the previous section. RHB configurations with
binding energies much higher than energy of the equilibrium
configuration (30 MeV and higher) have been excluded from
the basis. Of course, we have verified that this choice of the
basis does not affect the calculated low-energy spectroscopic
properties. Figure 3 displays the calculated low-lying positive-
parity spectrum in comparison to the available data. The intra-
band B(E2) transition strengths and spectroscopic quadrupole
moments of collective states are also shown. The theoretical
excitation energies of the 2+

1 (4.3 MeV) and 4+
1 (13.9 MeV)

states are only slightly lower than the corresponding experi-
mental values, 4.44 MeV and 14.08 MeV, respectively [42].
In addition, their ratio E (4+

1 )/E (2+
1 ) = 3.23 is in very good

agreement with the experimental value of 3.17, pointing to
the rotational character of the ground-state band. Furthermore,
the calculated E2 transition strength from the 2+

1 state to the
ground state, B(E2; 2+

1 → 0+
1 ) = 8.0 e2fm4, reproduces the

experimental value. We also note that the theoretical spec-
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FIG. 3. The calculated low-energy positive-parity excitation
spectrum of 12C compared to the available data [43]. Intraband
B(E2) transition strengths (red color, in e2fm4) and spectroscopic
quadrupole moments (green color, in e fm2) are also shown. See text
for more details.

troscopic quadrupole moment of the 2+
1 state, Qspec(2+

1 ) =
5.0 efm2, is predicted within the error bar of the very recent
experiment: Qexp

spec(2+
1 ) = (7.1 ± 2.5) efm2 [14]. It is there-

fore interesting to point out that, in this specific instance,
our global EDF-based approach provides a level of agree-
ment with data that is comparable to state-of-the-art ab ini-
tio models [14]. Finally, the calculated B(E2; 4+

1 → 2+
1 ) =

15.5 e2fm4 agrees with the AMD prediction B(E2; 4+
1 →

2+
1 ) = 16 e2fm4 [6]. This transition has yet to be measured,

and its strength would definitely confirm the rotational char-
acter of the ground-state band.

The 4+ state calculated at ≈19 MeV is characterized by a
pronounced prolate deformation, a feature shared by the 0+

3
and 2+

3 collective states. In addition, it exhibits a very strong
E2 transition strength to the 2+

3 state. Therefore, it is assigned
to the Kπ = 0+

3 band and denoted as 4+
3 further on. Both the

very large E2 intraband transitions and the value of the ratio
[E (4+

3 ) − E (0+
3 )]/[E (2+

3 ) − E (0+
3 )] = 3.45 characterize the

rotational nature of this band. In particular, the calculated
value of B(E2; 2+

3 → 0+
3 ) = 130.6 e2fm4 is somewhat larger

than the one reported in Ref. [6], but still of the same order of
magnitude. Additionally, the huge spectroscopic quadrupole
moments of 4+

3 and 2+
3 states support the interpretation of this

band as a 3α linear chain.
In the present study the 0+

2 (Hoyle) state is calculated at
an excitation energy that is only about 800 keV above the
experimental value. However, the E2 transition strength from
the corresponding 2+

2 state is about an order of magnitude
smaller than the one obtained in the AMD [6] and THSR
[10] calculations. Even though there are currently no available
data, it is likely that our calculation actually underestimates
the true value for this transition strength. The reason is at
least twofold. First, the AMD and THSR models consistently
predict triaxial configurations as the dominant contribution
to the Hoyle state intrinsic density. These configurations are
not included in the model space of the present study, and an
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FIG. 4. Amplitudes of collective wave functions squared |g(β2, β3)|2 for the low-energy levels of 12C. Dashed contours in the β2-β3 plane
successively denote a 10% decrease starting from the largest value of the amplitude.

extended analysis that allows for additional breaking of axial
symmetry is necessary for a quantitative comparison. In ad-
dition, the asymptotic behavior of three weakly interacting α

particles is notoriously complicated to describe using the har-
monic oscillator basis [44,45]. Therefore, it remains an open
question whether self-consistent models based on harmonic
oscillator bases, even including triaxial shapes, will be able to
capture all the details of the Hoyle state density profile. Nev-
ertheless, we note that the calculated transition strength from
the 2+

1 state to the Hoyle state, B(E2; 2+
1 → 0+

2 ) = 1.7 e2fm4

compares favorably to the experimental value 2.6 ± 0.4 e2fm4

and to the AMD prediction (5.1 e2fm4) [6]. In addition, even
the transition strength from the 2+

2 state to the ground state,
B(E2; 2+

2 → 0+
1 ) = 1.3 e2fm4, is in qualitative agreement

with THSR prediction (2.0 − 2.5 e2fm4) [10], when compared
to the experimental value (0.73 ± 0.13 e2fm4).

For completeness, we note that the measured low-lying
spectrum of 12C also includes a number of negative-parity
states. Most notably, the 3−

1 state at 9.6 MeV is considered a
candidate for the Kπ = 3− band head [5], a suggestion that is
supported by, for example, AMD [6] and 3αGCM calculations
[46]. On the other hand, recent measurements suggest possible
merging of this band with the Kπ = 0+ band by forming
a single rotational band built on triaxial ground state [15].
Furthermore, in the same work, the 1−

1 state at 10.84 MeV was
interpreted as a band head of the vibrational bending mode
whose lowest-lying rotational excitations consist of nearly
degenerate parity doublets of 2± and 3± states. However, since
only the corresponding 2− excitation has been observed so far,
this state could also represent a Kπ = 1− band head [6,46]. In
any case, the imposed symmetries of the present study restrict
our access to Kπ = 0± bands only and we do not account for
any of these two states. The lowest 1− and 3− states in our

calculation are found at 13.2 and 19.6 MeV, respectively, and
a rather large quadrupole transition strength between them,
B(E2; 3−

1 → 1−
1 ) = 3.6 e2fm4, suggests they are members of

the same band.

C. Collective states in the intrinsic frame

Figure 4 displays the amplitudes of collective wave func-
tions squared |g(β2, β3)|2 for the lowest 0+ and 2+ levels of
12C. Even though they are not observables, these amplitudes
provide a measure of quadrupole and octupole shape fluc-
tuations in collective states. Moreover, they can be used to
calculate expectation values of the deformation parameters β2

and β3 for each collective state:

〈β2〉J;NZ;π
α =

∑
i

∣∣gJ;NZ;π
α (qi )

∣∣2
β2i, (10a)

〈|β3|〉J;NZ;π
α =

∑
i

∣∣gJ;NZ;π
α (qi )

∣∣2∣∣β3i

∣∣, (10b)

where in the octupole direction we have taken the absolute
value of deformation parameter since 〈β3〉J;NZ;π

α vanishes
identically for all states with good parity. The values of
〈β2〉J;NZ;π

α and 〈|β3|〉J;NZ;π
α determine the dominant mean-field

configurations in a collective state, and thereby enable the
characterization of the corresponding intrinsic density. In
Fig. 5 we plot the characteristic intrinsic nucleon densities of
the first three 0+ and 2+ states of 12C. For each state the corre-
sponding prolate and oblate deformation parameters (β2, β3),
shown in parentheses, are calculated by averaging over the
prolate and oblate configurations separately [cf. Eqs. (10a)
and (10b)]. For the average prolate or oblate (β2, β3) we plot
the corresponding intrinsic total nucleon density in the xz
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FIG. 5. Characteristic intrinsic nucleon densities of the first three 0+ and 2+ collective states in 12C. The corresponding average deformation
parameters (β2, β3), as well as the respective contributions of prolate and/or oblate configurations, are shown. The bottom panel displays states
that exhibit significant contributions from both prolate and oblate configurations, whereas the states shown in the top panel are predominantly
characterized by either prolate or oblate configurations. See text for more details.

plane. These densities are obtained by axial RHB calculations
constrained to the average (β2, β3) values. In each panel we
also include the percentage of prolate or oblate configurations
in the collective wave function.

Only the 0+
1 and 0+

2 states exhibit significant (>20%)
contributions from both prolate and oblate configurations,
while other states predominantly correspond to either prolate
or oblate shapes. In particular, the situation for the 0+

1 state
is rather similar to that observed in the symmetry-restored
Jπ = 0+ energy curve of Fig. 2, where the prolate-deformed
local minimum coexists with the oblate-deformed absolute
minimum. In fact, the maximum of the 0+

1 collective wave
function is also found at the oblate-deformed (β2, β3) =
(−0.4, 0.0) configuration. However, |g(β2, β3)|2 has non-
negligible contributions from configurations in a rather wide
range of deformations: β2 ∈ [−1.2, 1.2] and |β3| ∈ [0.0, 1.4].
Averaging over all these configurations accumulates signif-
icant contributions from prolate configurations that balance
the influence of the oblate maximum, and would ultimately
yield the nearly spherical density distribution. This clearly
does not reflect the actual physical picture of the ground
state of 12C. In contrast, the two plots in the bottom panel
of Fig. 5 reveal the complex structure of the 12C ground state.
The collective wave function of the 2+

1 state is predominantly
spread over (β2 < 0, β3) configurations and the corresponding
density distribution is oblate deformed. This could already
be predicted from the low-energy oblate configurations in the
Jπ = 2+ energy maps of Figs. 1 and 2. Moreover, the average
deformation (β2, β3) = (−0.50, 0.58) of the 4+

1 confirms the

oblate nature of the ground-state band. Note that the present
model is not suitable to investigate the role of triaxiality in
yrast states that was recently inferred experimentally [15] and
further suggested by some theoretical calculations (see, e.g.,
Ref. [13] and references cited therein).

The amplitude of the collective wave function of the 0+
2

state exhibits two maxima: one at small prolate deformations
and the other one at larger oblate deformations. The corre-
sponding density distributions are displayed in the bottom
right panel of Fig. 5. Of course, to obtain the expected
triangular distribution of the Hoyle state [13] one needs to
break axial symmetry, which has not been possible in the
present work. Finally, the Kπ = 0+

3 band originates from the
shoulder at large prolate β2 values in Figs. 1 and 2. In the
intrinsic frame of reference, a large quadrupole deformation
translates into a pronounced linear structure of the 0+

3 and 2+
3

collective states, as shown in the top right panel of Fig. 5. A
homogeneous alignment of 3α particles would be described
by a reflection-symmetric configuration in the intrinsic frame,
that is, the corresponding octupole deformation would be neg-
ligible. Even though the maxima of the 0+

3 and 2+
3 amplitudes

are indeed found at β3 = 0 [see Fig. 4], fluctuations in the
octupole direction are rather pronounced for both states. Con-
sequently, the reflection-asymmetric 8Be + α-like structure is
observed in the intrinsic frame. The formation of linear chain
structures in 12C was previously predicted by microscopic
models [6,7], but they are yet to be confirmed experimentally.
Another interesting feature of these chains is their alleged
susceptibility to bending, which would eventually lead to the
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FIG. 6. Form factors for electron scattering on 12C for the 0+
1 → 0+

1 [left panel (a)] and 0+
1 → 0+

2 [right panel (b)] transitions. The results
obtained in the present study (red triangles) are compared to available data for the elastic [47] and inelastic [48] form factors, as well as with
predictions of the AMD [6] and THSR [49] models. In addition, the insets show the corresponding charge density [left panel (a)] and the
transition charge density [right panel (b)].

formation of bent arm structures [6,7,12]. However, besides
breaking reflection symmetry, such structures also break axial
symmetry and they are therefore out of the scope of the
present study.

D. Electron-nucleus scattering form factors

Additional insight into the structure of collective states is
provided by the form factors for electron-nucleus scattering.
The formalism for computing these quantities within the
MR-EDF framework was derived only recently [40] and,
in this section, we will calculate form factors for electron
scattering on 12C for 0+

1 → 0+
1 (elastic) and 0+

1 → 0+
2 (inelas-

tic) transitions. The basic ingredients of the calculation are
the collective wave functions, whose amplitudes are shown
in Fig. 4. As noted earlier, the wave functions of 0+

1 and
0+

2 are concentrated in the segment: −1.2 � β2 � 1.2 and
0 � |β3| � 1.4. Therefore, to reduce the computational task
but without neglecting any physical content, only configu-
rations contained within that interval of the β2-β3 plane are
included in the calculation of form factors. In the left panel
of Fig. 6 we display the calculated form factors |F0(q)|2 [cf.
Eq. (8)] for elastic 0+

1 → 0+
1 scattering in comparison to the

available experimental values. In addition, the inset shows
the corresponding charge density, calculated as ρch(r) =
ρ01

01,0(r)/
√

4π , where ρ01
01,0(r) is the diagonal element of the

reduced transition density that enters into the calculation of
the form factor [cf. Eqs. (8) and (9)]. The present results
are also compared with the predictions of the AMD model,
and the THSR wave function model. AMD calculations [6]
consider single nucleons as relevant degrees of freedom, and
describe them in terms of Gaussian wave packets. On the other
hand, the THSR framework is explicitly built as an α-cluster
model, that is, the relevant degrees of freedom are α parti-
cles in a Bose-condensed state [49]. In the low momentum
transfer region (q2 < 2 fm2) all three models predict similar
results for the elastic form factor. However, with increasing
values of the momentum transfer differences between the
three curves becomes more pronounced. In particular, the

first zero of |F0(q)|2 is found at approximately q2 ≈ 3 fm2

both in the present and THSR calculations, while the AMD
model predicts this zero at a somewhat smaller value of the
momentum transfer. Details of elastic form factors can be
traced back to the properties of the corresponding charge
distribution [50,51]. The shift of the position of the first zero
towards smaller values of q2, in particular, can be attributed to
the larger spatial extension of the charge density. Furthermore,
the amplitude of the first maximum of |F0(q)|2 is related to the
surface thickness of the charge distribution. Larger values of
the surface thickness correspond to smaller amplitudes at the
first maximum, and vice versa. We note that the experimental
position and amplitude of the first maximum of |F0(q)|2
are reproduced by all three models. At very large values of
q2 the form factor calculated with the THSR model is in
best agreement with experiment, whereas results obtained in
the present study underestimate the experimental values. A
similar trend was noted in Ref. [40] for the case of 24Mg, and
in Ref. [11] for 12C, where it was argued that the spreading of
collective wave functions over many deformations generates
a large smoothing of the one-body density and thus decreases
the weights of large-momentum components of the charge
density.

Because of its short lifetime, the structure of the Hoyle
state can be probed by inelastic scattering from the ground
state. In the right panel of Fig. 6 we display the calculated
form factor for the 0+

1 → 0+
2 transition in comparison with

the available data, and predictions of the AMD and THSR
models. The present calculation reproduces the position of
the first maximum, even though the corresponding ampli-
tude is underestimated in comparison to both experiment
and theoretical results obtained with the other two models.
The position of the first zero is accurately reproduced by all
three models. In addition, our model displays good agreement
with experiment up to rather large q2 values. The inset in
the right panel of Fig. 6 shows the corresponding transition
charge density, ρtr(r) = ρ02

01,0(r)/
√

4π , where ρ02
01,0(r) is the

nondiagonal element of the reduced transition density that
enters the calculation of form factor [see Eqs. (8) and (9)].
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The result of the present analysis for ρtr(r)r4 can be directly
compared to the experimental transition charge density that
corresponds to the form factor of Fig. 6, as well as to the
predictions of the FMD model and the α-cluster model (cf
Fig. 3 of Ref. [48]). While the position of the minimum of
ρtr(r)r4 is very similar for all four curves considered, the
present calculation predicts a somewhat weaker amplitude
in comparison to both the experiment and the other models.
Furthermore, the FMD and α-cluster models overestimate the
experimental maximum value of the ρtr(r)r4 curve, located
at r ≈ 4 fm. Our calculation, on the other hand, notably
underestimates this value. This difference is then naturally
reflected in the lower value of the form factor compared to
experiment, particularly at low values of momentum trans-
fer. The inclusion of the triaxial degree of freedom, which
undeniably plays an important role in the 0+

2 state and that
could also influence the structure of the ground state, would
likely modify the calculated transition charge density and,
consequently, the corresponding form factor. Whether such
an extension of the model space actually leads to results that
are closer to experimental values, remains to be examined in
future studies.

IV. SUMMARY

The low-lying excitation spectrum and cluster structures in
12C isotope have been analyzed using a beyond mean-field
approach based on global energy density functionals. Axially
symmetric and reflection-asymmetric RHB states extending
over a wide range of quadrupole and octupole deformations
have first been projected onto good angular momentum, par-
ticle number, and parity, and subsequently configuration mix-
ing implemented using the generator coordinate method. Al-
though we have not explicitly included triaxial shapes, which
play an important role in the Kπ = 0+

2 band and whose role
in Kπ = 0+

1 and Kπ = 0+
3 bands is yet to be elucidated, the

present model successfully reproduces many spectroscopic
features of 12C. In particular, empirical properties of the
ground-state band have been accurately reproduced, includ-
ing available data on excitation energies and spectroscopic
quadrupole moments, as well as the intraband quadrupole

transition strengths. The rotational band built on the state
Kπ = 0+

3 corresponds to a strongly prolate deformed shape
characterized by a linear α-chain structure in the intrinsic
frame. Notably, the calculated 0+

2 state is located only about
800 keV above its experimental excitation energy. In addition,
both the elastic and inelastic form factors are in good agree-
ment with the experimental values for a rather wide interval
of momentum transfer. In this particular aspect, the accuracy
of the present global approach can compete with that of the
most successful microscopic cluster models.

The symmetry-conserving global method used in the
present study is based on the universal framework of energy
density functionals. In particular, starting from the functional
DD-PC1 that was exclusively adjusted to the experimental
binding energies of a set of 64 deformed nuclei in the mass
regions A ≈ 150–180 and A ≈ 230–250, and using a basis and
method that do not a priori assume the existence of cluster
structures, this model enables a consistent, parameter-free cal-
culation of collective excitation spectra and the corresponding
electric transition strengths in light nuclear systems such as
12C. Of course, such a global approach may not be able
to describe all the details of excited states configurations,
which often cannot be reproduced even by models specifically
designed and fine tuned to this mass region. The EDF-based
framework, however, especially when extended to take into
account beyond mean-field correlations related to multiple
broken symmetries and quantum fluctuations, presents one of
the most promising theoretical methods for a unified descrip-
tion of complex quantum-liquid and cluster aspects of atomic
nuclei.
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89, 031303(R) (2014).

[24] J.-P. Ebran, E. Khan, T. Nikšić, and D. Vretenar, Phys. Rev. C
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