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Background: Magnetic dipole (M1) excitation is the leading mode of nuclear excitation by the magnetic field,
which couples unnatural-parity states. Since the M1 excitation occurs mainly in open-shell nuclei, the nuclear
pairing effect is expected to play a role. Considering the M1 operator form, it can provide the information on the
spin-related properties, including the spin component of dinucleon correlations.
Purpose: We investigate the M1 excitation of the systems with two valence nucleons above the closed-shell
core. The corresponding version of the M1 sum rule, which can be used to validate theoretical and experimental
approaches, is also discussed.
Methods: Three-body model, which consists of a rigid spherical core and two valence nucleons, is employed.
Interactions for its two-body subsystems are phenomenologically determined so as to reproduce the two-body
and three-body energies. The M1 operator up to the one-body-operator level is utilized to compute the M1
transitions between the 0+ ground state and 1+ excited states.
Results: The three-body-model calculations for 18O, 18Ne, and 42Ca nuclei demonstrate a significant effect of the
pairing correlation on the low-lying M1 transitions. The introduced M1 sum rule can be utilized as a benchmark
for model calculations of these systems. The total sum of the M1 transition strength is shown to be relative with
the coupled spin of valence nucleons in the open shell.
Conclusions: The M1 excitation can be a suitable tool to investigate the pairing correlation in medium. Further
studies of M1 transitions are on demand to validate and optimize the pairing models.

DOI: 10.1103/PhysRevC.100.024308

I. INTRODUCTION

Electromagnetic excitations in finite nuclei are fundamen-
tal in nuclear physics and astrophysics. They provide valu-
able probe of the nuclear structure and dynamics and play
a decisive role in the processes in stellar environments. In
particular, magnetic dipole (M1) transitions have invoked
various interests and discussions in recent studies [1–4].
The M1 excitation mode is relevant to a diversity of nu-
clear properties, including unnatural-parity states, spin-orbit
splitting, tensor force effect, etc. Several collective nuclear
phenomena, including scissors mode in deformed nuclei, can
be activated by the M1 excitation [5–14]. In addition, the
correspondence between the M1 and the zeroth component
of Gamow-Teller modes was discussed [10,15,16]: The M1
excitation can be utilized to optimize theoretical methods to
predict the Gamow-Teller resonance distribution, which plays
an essential role in neutrino-nucleus scattering.

Within a shell-model picture, the M1 transition couples
spin-orbit partner orbits. Thus, this process is measurable
mainly in open-shell nuclei, where the transition from the
lower to higher partner orbit is available [5–7,17–23]. In such
systems, nuclear pairing correlation can play an essential role
[24–27]. However, compared with the electric dipole (E1) and
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quadrupole (E2) modes [28–34], the knowledge on the pairing
effect on magnetic modes, as well as on unnatural-parity
states, is rather limited [10–12,20].

In studies of nuclear modes of excitation, the sum rules
associated to the transition strength and energy-weighted sum
rules, represent an essential tool for the analyses of the
excitations, not only as benchmark tests of the theoretical
frameworks involved, but also to inspect the completeness
of the experimental data [35–50]. Over the past decades, the
analyses of the sum rules have been mandatory to validate the-
oretical approaches to describe various modes of excitation.
In particular, the Fermi sum rule and Gamow-Teller sum rules
are well established for the isospin-flip and spin-flip isospin-
flip charge-exchange resonances, respectively [39,40,51]. The
sum rules for electric multipole modes have also been estab-
lished and very useful in studies of giant monopole, dipole,
and quadrupole resonances [35–37]. Recently, the general
formulas have been derived for non-energy-weighted and
energy-weighted sum rules of electric and weak transitions
within a shell model occupation-space framework [38]. How-
ever, so far, the general version of sum rule was not established
for the M1 excitation [48–50]. It represents an open problem
of relevance for complete understanding of magnetic transi-
tions.

In this work, we explore the properties of M1 excita-
tions with a strong pairing, by employing the three-body
model. This model is applicable to nuclei composed of the
closed-shell core and two valence nucleons. In this model
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assumption, the sum rule of M1 transition is also introduced.
Its implementation for the purpose of the present study may
provide a standard to benchmark the theoretical investigation
to some nuclei, where the three-body picture can be a good
approximation.

It is worthwhile to mention so-called dineutron and dipro-
ton correlations, which can be relevant to our interest. Several
theoretical studies have predicted that, under the effect of
the pairing correlation in medium, the valence two-nucleon
subsystem may have a spin singlet (S12 = 0) and/or spatially
localized structure [28,52–58]. However, considering its mea-
surability, there remain some problems to clarify this intrinsic
structure [59–61]. As expected from the form of the M1
transition operator, it may provide a suitable way to probe the
coupled spin of nucleons, S12, which should reflect the pairing
effect inside nuclei.

Our theoretical formalism, as well as numerical methods,
are described in Sec. II. Then, Sec. III is devoted to present our
results and discussion. Finally, the summary and conclusion
of this work are given in Sec. IV. The CGS-Gauss system of
units is used in this article.

II. THREE-BODY MODEL

We employ the three-body model, which was developed
in Refs. [28,54–58,62–65]. Namely, the system consists of a
rigid-core nucleus and two valence nucleons with the follow-
ing assumptions.

Core nucleus is spherical, i.e., with the shell closure
and Jπ = 0+. Nucleons in the core are not active for
excitation.
Two valence nucleons are of the same kind, namely, pro-
tons or neutrons. They feel the mean field VC generated
by the core nucleus.

Thus, the three-body Hamiltonian reads

H = hC (1) + hC (2) + vNN (r1, r2) + xrec, (1)

hC (i) = p2
i

2μi
+ VC (ri ), (2)

xrec = p1 · p2

mC
(recoilterm), (3)

where i = 1 (2) indicates the first (second) valence nucleon.
The single-particle (SP) Hamiltonian hC contains the mass pa-
rameters, μi = mN mC/(mN + mC ), mN = 939.565 (938.272)
MeV/c2 for neutrons (protons), and mC of the core nucleus.
Note that the recoil term also exists after the center-of-mass
motion is subtracted. The SP potential VC and the pairing
potential vNN are determined in the next section.

The SP state, ψnl jm(r) = Rnl j (r)Yl jm(θ, φ), is solved to
satisfy

hC (i)ψnili jimi (ri ) = eiψnili jimi (ri ). (4)

We employ the SP states up to the h11/2 channel. To take into
account the Pauli principle, we exclude the states occupied
by the core. Continuum states are discretized within a box,
Rbox = 30 fm. The cutoff energy, Ecut = 30 MeV, is also
employed to truncate the model space. We checked that this

truncation indeed provides a sufficient convergence for results
in the following sections.

For diagonalization of the total Hamiltonian, we employ
the antisymmetrized two-particle (TP) states for basis. That
is, �̃

(J,M )
k1k2

(r1, r2) ≡ Â�
(J,M )
k1k2

(r1, r2), where

�
(J,M )
k1k2

(r1, r2)

≡
∑
m1m2

C (J,M ) j1 j2
m1m2

ψn1l1 j1m1 (r1)ψn2l2 j2m2 (r2). (5)

Here we take the short-hand label, ki ≡ {nili ji}.
The M1 operator, which operates only on the two valence

nucleons, reads

Q̂ν = q̂ν (1) + q̂ν (2), (6)

where

q̂ν=0 = μN

√
3

4π
(gl l̂0 + gsŝ0),

q̂ν=±1 = (∓)μN

√
3

4π
(gl l̂± + gsŝ±). (7)

Notice that l̂0 = l̂z, l̂± = (l̂x ± il̂y)/
√

2, and similarly for
the spin operators. As well known, g factors are given as
gl = 1 (0), and gs = 5.586 (−3.826) for the proton (neutron)
[35,36]. In the following, we omit the nuclear magneton μN

and the factor
√

3/4π , except when needed.
In this work, we discuss up to the one-body-operator level

of the M1 excitation, whereas the meson-exchange-current
effect is not included. In some ab initio calculations, it was
shown that this effect indeed can contribute in addition to
the M1 transition of the one-body-operator level [66–68]. For
treatment of this effect, one needs to consider the relevant
multibody terms. This is, however, technically demanding,
and beyond the scope of this work. We notify that evaluation
of this meson-exchange-current effect is awaiting for the
future progress.

A. M1 sum rule

The sum-rule value (SRV) of M1 transitions is determined
as

SM1 ≡
∑

f

(|〈 f | Q̂0 | i〉|2 + |〈 f | Q̂+ | i〉|2 + |〈 f | Q̂− | i〉|2),

(8)

where |i〉 and | f 〉 indicate the initial and final states, re-
spectively. Within the three-body model, because only two
nucleons are available to excite, this can be reduced to

SM1 = 〈i | (gl L̂12 + gsŜ12)2 | i〉
= (

g2
l − glgs

)〈
L̂2

12

〉(i) + (
g2

s − gl gs
)〈

Ŝ2
12

〉(i) + gl gs〈Ĵ2〉(i),

(9)

where Ĵ = L̂12 + Ŝ12, L̂12 = l̂(1) + l̂(2), and Ŝ12 = ŝ(1) +
ŝ(2). Namely, the SRV contains the information on the
coupled spins of the valence nucleons at the initial state.
Considering the simplification of this M1 sum rule, there are
two cases, which can be especially worth mentioning.
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For two neutrons with gl = 0, SRV is simply determined
from the initial spin-triplet component, N (i)

S12=1:

SM1(2n) = g2
s

〈
Ŝ2

12

〉(i)
= g2

s

∑
S12=0,1

S12(S12 + 1)N (i)
S12

= 2g2
sN

(i)
S12=1. (10)

Notice that this spin-triplet component itself stands inde-
pendently of the final-state properties.
When two protons or neutrons are coupled to Ji = 0 at
the initial state |i〉, Eq. (9) can be remarkably simplified.
In this case, in terms of the LS-coupling scheme, the al-
lowed components include (L12, S12) = (1, 1) and (0,0),
only. Thus,

SM1(Ji = 0) = 2(gl − gs)2N (i)
(L12=1,S12=1), (11)

where we have utilized that the first component,
N (i)

(L12=1,S12=1), can be identical to N (i)
L12=1 as well as N (i)

S12=1.

Notice that, in both cases, the M1 SRV is enhanced (sup-
pressed) when the S12 = 1 (S12 = 0) component is dominant.
Therefore, the maximum limit of SRV is 2(gl − gs)2 when
N (i)

S12=1 = 100%.

B. No-pairing SRV

It is worthwhile to mention the SRV in one special case,
where the nondiagonal terms in the Hamiltonian can be ne-
glected: H → HNP = hC (1) + hC (2). In this case, the SRV
can be analytically obtained. Because of the diagonal Hamil-
tonian, the initial state with the total angular momentum Ji

should be solved as the single set of coupled SP states. That
is,

|i〉 = [|l1 j1〉 ⊗ |l2 j2〉](Ji ), (12)

where lk and jk indicate the angle-quantum numbers of the kth
valence nucleon. Thus, Eq. (9) is represented as

SM1,NP = (
g2

l − glgs
)∑

L12

L12(L12 + 1)N (l1 j1,l2 j2;Ji )
L12

+ (
g2

s − glgs
)
2N (l1 j1,l2 j2;Ji )

S12=1 + glgsJi(Ji + 1),

(13)

where N (l1 j1,l2 j2;Ji )
X indicates the contribution of the X compo-

nent in this initial state. The analytic derivation of N (l1 j1,l2 j2;Ji )
X

for an arbitrary set of (l1, j1, l2, j2, Ji ) can be found in, e.g.,
textbook [69]. This no-pairing, analytic SRV can provide a
solid standard to benchmark one’s theoretical model, as well
as its computational implementation.

III. NUMERICAL RESULT

A. 18O nucleus

For numerical calculation, first we focus on the 18O nu-
cleus. Its core, 16O, is suitable to the rigid-core assumption:
The lowest 1+ level of 16O locates at 13.6 MeV [70], which is
sufficiently higher than the energy region we consider in the
following. Thus, the core excitation by the M1 can be well

TABLE I. Single-neutron energies for 17O (in MeV). For the
resonant d3/2 level, its energy and width � are obtained by evaluating
the scattering phase shift.

This work Expt. [70] Type

e(1d5/2) −4.143 −4.143 Bound
e(2s1/2) −3.275 −3.272 Bound
er (d3/2) +0.902 +0.941 Resonance

(� = 0.102) (� = 0.096)

separated from that of the two valence neutrons, allowing us
to use the three-body model.

1. No-pairing case

For simplicity, we first neglect the nondiagonal terms,
vNN and xrec, in Eq. (1), thus we deal with the no-pairing
Hamiltonian, HNP = hC (1) + hC (2).

In the first step, we need to constrain the core-neutron
potential VC for the SP states by considering the core-neutron
subsystem 17O. For this purpose, we employ the Woods-
Saxon (WS) potential:

VC (r) = V0 f (r) + Uls(l · s)
1

r

df

dr
, f (r) = 1

1 + e(r−R0 )/a0
,

(14)

where R0 = r0A1/3
C , AC = 16, r0 = 1.25 fm, a0 = 0.65 fm,

V0 = −53.2 MeV, and Uls = 22.1 MeV fm2. These param-
eters reproduce well the empirical SP energies of 17O, as
shown in Table I. Note that, because of the Pauli principle, we
exclude from our basis 1s1/2, 1p3/2, and 1p1/2 states, which
are occupied by the core.

In the following, we move to the core plus two-neutron
system 18O. In the no-pairing case, the GS can be trivially
solved as

�GS(r1, r2) = Â[
ψ1d5/2 (r1) ⊗ ψ1d5/2 (r2)

](Ji=0)
, (15)

which satisfies HNP |�GS〉 = EGS |�GS〉 with EGS =
2e(1d5/2). Notice that, from Table I, this GS energy is
2e(1d5/2) = −8.286 MeV, which is higher than the empirical
two-neutron binding energy, B2n = −12.188 MeV, of 18O
[70]. This discrepancy is, of course, from the no-pairing
assumption.

We now compute the M1 excitation from the 0+ ground
state (GS). For 1+ excited states, we solve all the TP states
coupled to 1+: HNP | f (1+)〉 = E f | f (1+)〉.

In Fig. 1, we plot the M1 transition strength:

BM1(Eγ ) =
∑

ν=0,±1

|〈 f (1+) | Q̂ν | �GS(0+)〉|2, (16)

where Eγ = E f − EGS. Note that, because the system is spher-
ical, ν = 0 and ±1 yield the same result. The figure also
shows the continuous distribution obtained by smearing the
discrete strength with a Cauchy-Lorenz profile, whose full
width at half maximum (FWHM) is 1.0 MeV.
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FIG. 1. Discrete M1 transition strength for 18O. Note that Eγ =
Ef − EGS. The continuous distribution is also plotted by smearing
the discrete strength with a Cauchy-Lorenz profile, whose full width
at half maximum (FWHM) is 1.0 MeV.

In Fig. 1, the highest transition strength without pairing
locates at Eγ

∼= 4.6 MeV, which coincides well with the gap
energy between the SP states 1d5/2 and 1d3/2. Thus, the
transition 1d5/2 −→ 1d3/2 plays a major role in this case.

The numerical SRV can be obtained from the sum of
discrete M1 transition strength, resulting in

SM1,cal. =
∑
Eγ

BM1(Eγ ) ∼= 0.799g2
s . (17)

On the other side, the corresponding analytic SRV for the
S12 = 1 component reads from Eq. (13),

SM1,NP = 2g2
sN

(d5/2,d5/2;J=0)
S12=1 ,

where the spin-triplet component N
(d5/2,d5/2;J=0)
S12=1 = 2/5 exactly

[69], i.e., the analytic SRV equals 4/5g2
s = 0.8g2

s . Thus, our
numerical SRV is consistent to the analytic one. Notice also
that, in Fig. 1, the highest strength has 0.69g2

s , which exhausts
about 87% of the total SRV. This again means a major
component comes from 1d5/2 −→ 1d3/2 transition.

TABLE II. Properties of the ground and 1+-excited states of 18O
obtained with the three-body-model calculation. Note that EGS =
−12.188 MeV in the experimental data [70], with respect to the
two-neutron-separation threshold. The sum-rule values denoted by
SRV are determined as 2g2

sNS12=1, and shown in comparison to
the calculated values SM1,cal., which are obtained by integrating the
BM1(Eγ ) distribution.

DDC (full) Minnesota No pair

EGS −12.019 MeV −12.013 MeV −8.286 MeV
〈vNN 〉 −4.337 MeV −4.022 MeV 0 MeV
〈xrec〉 −0.177 MeV −0.404 MeV 0 MeV
Nd5/2⊗d5/2 89.9% 94.9% 100%
NS12=1 19.7% 34.9% 40%

(numerical) (numerical) (analytic)
SRV 0.394g2

s 0.698g2
s 0.8g2

s

E (1)
f −5.329 MeV −7.286 MeV −3.729 MeV

SM1,cal. 0.393g2
s 0.696g2

s 0.799g2
s

2. Pairing case

In the following, the nondiagonal terms of Hamilto-
nian, vNN and xrec, are also taken into account in the
analysis of 18O. For the pairing interaction, we employ a
density-dependent contact (DDC) potential, similarly as in
Refs. [28,55,57,63,64]. That is,

vNN (r1, r2) = w(|R12|) · δ(r1 − r2),

w(r) = w0[1 − f (r)], (18)

where R12 = (r1 + r2)/2. The f (r) is the same WS profile
given in Eq. (14), and it schematically describes the den-
sity dependence of the effective pairing interaction. Its bare
strength is determined consistently from the neutron-neutron
scattering length in vacuum, av = −18.5 fm, within the cutoff
energy [63,64]. That is,

w0 = 4π2h̄2av

mn(π − 2avkcut )
[MeV fm3], (19)

where kcut = √
mnEcut/h̄.

The two-neutron GS is solved by diagonalizing the three-
body Hamiltonian via the antisymmetrized TP basis coupled
to 0+. As a result, the GS energy for 18O is obtained, EGS =
−12.019 MeV, which is in fair agreement with the experimen-
tal value, −12.188 MeV [70]. On the other side, the 1+ excited
states, which satisfy H | f (1+)〉 = E f | f (1+)〉, are solved by
diagonalizing the same Hamiltonian, but via the 1+ TP basis.

In Table II, properties of the 0+ ground state and the
lowest 1+ state are summarized. One can read that the pairing
correlation leads to the deeper binding of two neutrons. Fur-
thermore, the GS cannot be pure (d5/2)2 state, but it includes
other components. As a result, the GS spin-triplet (S12 = 1)
component is remarkably suppressed from the no-pairing
case, similarly to the dineutron and diproton correlations
[28,57]. Note that this component is evaluated by numerically
integrating the initial-state density, |�GS(r1, r2)|2, but after the
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spin-triplet projection. That is,

NS12=1 =
∫

dr1

∫
dr2

∣∣P̂S12=1�GS(r1, r2)
∣∣2

. (20)

Notice also that the total density is normalized as∫
dr1

∫
dr2|�GS(r1, r2)|2 = NS12=0 + NS12=1 = 1.

In Fig. 1, the M1 transition strength with the DDC pair-
ing interaction is presented for 18O. In comparison to the
no-pairing case, a significant suppression of the transition
strength is obtained. In Table II, the lowest 1+ energy E (1)

f is
also displayed. Its change between the DDC and no-pairing
cases is smaller than the corresponding change in the GS
energy. Namely, compared with the GS energy, the excitation
energies of 1+ states are less sensitive on the DDC pairing
interaction. Thus, the main M1 peak is shifted to the higher-
energy region at Eγ

∼= 6.7 MeV.
To check the pairing effect more systematically, we re-

peat the same calculation but changing the absolute strength
of the DDC-pairing interaction: vNN −→ f vNN , where f =
0.25, 0.50, and 0.75 are employed. From the result shown
in Fig. 1, one can clearly see that the M1 transition strength
decreases with the increase of the pairing interaction. This
is consistent to that the DDC-pairing attraction enhances the
spin-singlet component, which is not active for M1 excitation
(for more details see the discussion in the following subsec-
tion). Also, because the energy level of the ground (excited)
state is sensitive (insensitive) to the DDC interaction, the
transition energy Eγ increases when the attraction strength is
enhanced.

The numerical sum-rule value can be obtained by inte-
grating the strength distribution in Fig. 1. The result in the
full-DDC case is

SM1,cal. =
∑
Eγ

BM1(Eγ ) ∼= 0.393g2
s . (21)

This value is, as expected from Eq. (10), consistent with
the initial S12 = 1 component, SM1(2n) = 2g2

sNS12=1, where
NS12=1 = 0.197 as evaluated by Eq. (20). Corresponding to the
reduced M1 transition strength, the SRV is also suppressed by
the DDC pairing correlation.

From the experimental side, there is no evidence of the
low-lying 1+ state in 18O around 4–8 MeV, as predicted in
Fig. 1. One possible reason is that our theoretical model does
not quantitatively reproduce the 1+ excited states. Especially,
the 1+ excitation energies may be sensitive to the pairing
interaction model, which was, however, not optimized specif-
ically to this unnatural-parity transition case. One should
mention that, from the experimental point of view, the M1
excitation of 18O may be rather minor and behind the present
measurability, because the number of valence neutrons is only
two. This is in contrast to some nuclei [5–7,17–23], where
10–20 valence nucleons can contribute to the M1 transition,
and make its response sufficiently strong. For 18O with the
minor M1 excitation, the selective detection of 1+ states is
possibly demanding. One should consider, e.g., the dominance
of the E1 mode, and the competition with the E2 mode. To
extract the pure information on the M1 process from existing
data, further efforts may be necessary. We leave these issues
for the future study.

3. Pairing-model dependence

In the following we explore in more details the pairing-
model dependence of the M1 excitations. For this purpose,
the DDC pairing interaction is replaced to the Minnesota
interaction [71], which was utilized in the similar three-body-
model calculations [72–75]. That is,

UMIN(r1, r2) = vr exp

(−d2

2q2

)

+ vs exp

( −d2

2κ2
s q2

)
P̂S12=0 + vt

( −d2

2κ2
t q2

)
P̂S12=1,

(22)

where d ≡ |r1 − r2|, vr = 200 MeV, vs = −91.85 MeV, vt =
−178 MeV, q = 0.5799 fm, κs = 1.788, and κt = 1.525, as
given in the original paper [71]. Here we also assume u = 1
for Eq. (9) in Ref. [71]. The first term indicates a repulsive
core, whereas the second (third) term describes the attractive
force in the spin-singlet (triplet) channel. For the present cal-
culation of 18O, however, we need to use the 3% enhancement,
f = 1.03, to reproduce the two-neutron separation energy:

vNN (r1, r2) = f · UMIN(r1, r2). (23)

Note also that the core-neutron WS potential and the cutoff
parameters are common to the previous case.

Before going to the result, we describe a comparison be-
tween the matrix elements of the DDC and Minnesota interac-
tions. For our basis, antisymmetrized TP states, {|�̃k1k2 (JP )〉}
coupled to the spin-parity JP = 0+ and 1+, are employed.
This can be decomposed into the spin-singlet and triplet parts:∣∣�̃k1k2 (JP )

〉 = α
(0)
k1k2

∣∣�̃k1k2 (JP, S12 = 0)
〉

+α
(1)
k1k2

∣∣�̃k1k2 (JP, S12 = 1)
〉
. (24)

Thus, the matrix element of the pairing interaction can also be
decomposed as〈

�̃k′
1k′

2
(JP )

∣∣vNN

∣∣�̃k1k2 (JP )
〉

= α
(0)∗
k′

1k′
2
α

(0)
k1k2

〈vNN 〉(JP,S12=0)k′
1k′

2k1k2

+α
(1)∗
k′

1k′
2
α

(1)
k1k2

〈vNN 〉(JP,S12=1)k′
1k′

2k1k2
. (25)

For the zero-range DDC pairing, vNN ∝ δ(r2 − r1), only the
S12 = 0 (S12 = 1) term survives for JP = 0+ (1+) [76]. There-
fore, the zero-range attraction enhances only the S12 = 0
(S12 = 1) component in the JP = 0+ (1+) state. On the other
side, if vNN has a finite range, both terms may become nonzero
for JP = 0+ and 1+.

In Table II, our results with the Minnesota neutron-neutron
interaction are summarized. First, one can find that the spin-
triplet component, NS12=1, in the GS is slightly changed from
the no-pairing case, but not as much as in the DDC-pairing
case. In coincidence, the numerical SRV, SM1,cal., has a larger
value when compared with the DDC-pairing case. This differ-
ence between the two pairing models is understood by their
ranges. Because the Minnesota model has a finite range, for
the 0+ GS, it can contribute both in the S12 = 0 and S12 = 1
channels, whereas the zero-range DDC model only enhances
the S12 = 0 component.
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FIG. 2. Same as Fig. 1, but for 18Ne. Note that Eγ = Ef − EGS.

Similarly to the GS result, the 1+ excitation of 18O depends
on the choice of the pairing model: The lowest 1+ energy,
E (1)

f , shows a remarkable difference between the DDC and
Minnesota cases. This is again a result of the finite range of the
Minnesota interaction. With a finite range, its matrix element
for the 1+ TP states can be larger than in the case of the zero-
range DDC pairing.

In Fig. 1, the M1-transition strength by the Minnesota
pairing is displayed, in comparison to the DDC pairing and
no-pairing case. The result for the Minnesota pairing seems
rather similar to that of the no-pairing case, in contrast to
the DDC-pairing case. The transition energy, Eγ = E f − EGS,
is only slightly changed from the no-pairing result, because
both the GS and excited energies are shifted by the Minnesota
interaction. The BM1 value is slightly decreased, consistently
to that the S12 = 1 component in the GS is reduced by the
Minnesota pairing.

Consequently, although the pairing models are equivalently
fitted to reproduce the standard GS energy, it does not guaran-
tee the same prediction for the M1 excitation. It suggests that
the M1 excitation data can be good reference observables to
optimize the existing pairing models. Further developments
to observe the minor, low-lying M1 excitation are now on
demand from this point of view.

B. Mirror nucleus 18Ne

Next we investigate the M1 excitations of the mirror nu-
cleus 18Ne as the 16O core plus two valence protons with
the Coulomb repulsion. Some parameters in the three-body
model are revised to take the mass mp, different g factors, and
Coulomb repulsion into account. For the Coulomb repulsion,
the same procedure as in Refs. [34,57] is utilized. That is,
for the core-proton subsystem, we additionally employ the
Coulomb potential of an uniformly charged sphere. Also, for
the proton-proton interaction, the factor f = 1.085 is used
for the DDC pairing to reproduce the empirical two-proton-
separation energy. Namely, vpp = f vNN + e2/|r2 − r1|, com-
bined with the Coulomb repulsion. Other parameters are kept
unchanged from the 18O case.

TABLE III. Same as Table II, but for 18Ne. Note that EGS =
−4.523 MeV in the experimental data [70], with respect to the
two-proton-separation threshold.

DDC Minnesota No pair.

EGS −4.527 MeV −4.524 MeV −1.154 MeV
〈vpp〉 −4.015 MeV −3.683 MeV 0 MeV
〈xrec〉 −0.127 MeV −0.352 MeV 0 MeV
Nd5/2⊗d5/2 88.5% 93.5% 100%
NS12=1 18.9% 33.0% 40%

(numerical) (numerical) (analytic)
SRV 0.378(gl − gs )2 0.66(gl − gs )2 0.8(gl − gs )2

SM1,cal. 0.376(gl − gs )2 0.656(gl − gs )2 0.799(gl − gs )2

Our results are summarized in Fig. 2 and Table III. Indeed,
one can observe a similar behavior of the M1 transition
strength, i.e., it is suppressed when the DDC pairing corre-
lation exists. This conclusion coincides with the reduction of
the spin-triplet component in the GS by the zero-range DDC
pairing, as shown in Table III.

Next we move to the Minnesota-pairing case: vpp =
f UMIN + e2/|r2 − r1|, where f = 1.148 to reproduce the two-
proton-separation energy. Its results are also displayed in
Fig. 2 and Table III. From the comparison, one can observe
the similar tendency as in the 18O case. Namely, the reduction
of the S12 = 1 component in the GS is smaller than that by the
DDC pairing. In coincidence, the BM1 distribution shows only
slightly different shape than the no-pairing result.

The numerical SRVs in the DDC, Minnesota, and no-
pairing cases are obtained as SM1,cal. = 0.402(gl − gs)2,
0.656(gl − gs)2, and 0.799(gl − gs)2, respectively. Thus, the
typical reduction factor between the pairing and no-pairing
SRVs is similar in the isobaric analog systems, 18O and 18Ne.
We also note that the no-pairing SRV is consistent to the
analytic solution, 4(gl − gs)2/5.

Comparing with the 18O result, 18Ne shows a widely
fragmented shape of the M1 strength. This is because the 1+
state is not stable, but a resonance in the 18Ne case. The typ-
ical (resonance) energy Er (1+) can be estimated from the
mean transition energy Eγ and the GS energy. From Figs. 1
and 2 and Tables II and III, that is estimated, in, e.g., the
full-DDC pairing case, as Er (1+) ∼= +3.2 (−5.3) MeV for
18Ne (18O). This energy difference is naturally understood
by the Coulomb repulsive force both in the core-proton and
proton-proton subsystems. Consequently, as a product of the
Coulomb repulsion, the M1-excited state of 18Ne may be
unbound for the proton emission, and its M1 distribution
becomes fragmented, originating from the nonzero width of
the resonance state.

C. p f -shell nucleus 42Ca

In the last two cases, we investigated the M1 excitation of
the nucleon pair from the sd shell. In the following, we move
toward the p f -shell system, namely, 42Ca with the 40Ca core.
For the 40Ca nucleus, which is doubly shell closed, there was
no 1+ state measured in the low-lying region [70]. Thus, 40Ca
is suitable to our rigid-core assumption.
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TABLE IV. Same as Table II, but for 42Ca. Note that EGS =
−19.843 MeV in the experimental data [70], with respect to the
two-neutron-separation threshold.

DDC Minnesota No pair.

EGS −19.232 MeV −19.843 MeV −16.795 MeV
〈vNN 〉 −2.999 MeV −3.221 MeV 0 MeV
〈xrec〉 −0.005 MeV −0.012 MeV 0 MeV
NS12=1 17.6% 50.6% 42.9%

(numerical) (numerical) (analytic)
SRV 0.352g2

s 1.012g2
s 0.858g2

s

E (1)
f −15.389 MeV −18.253 MeV −14.299 MeV

SM1,cal. 0.352g2
s 1.011g2

s 0.857g2
s

For numerical computation, we change some parameters as
AC = 40, V0 = −55.7 MeV, and Uls = 10.8 MeV fm2. Other
parameters in VC, vNN , and cutoff parameters remain the same
as in the 18O case. This setting fairly reproduces the single-
neutron energies of 1 f7/2 and 1 f5/2 in 41Ca [70]. Because of
the Pauli principle, we exclude the SP states up to 1d3/2, which
are occupied by the core.

The GS properties of 42Ca are summarized in Table IV.
Its GS energy obtained with the DDC or Minnesota-pairing
interaction is in a fair agreement with the empirical value,
−19.843 MeV [70]. In the Minnesota case, the enhancement
factor f = 1.12 is needed to reproduce the GS energy: vNN =
f UMIN.

In Fig. 3, the M1 transition strength for 42Ca is shown for
all the cases. First, comparing the DDC and no-pairing cases,
one can find qualitatively the same conclusion as in the sd-
shell nuclei: The DDC pairing suppresses the strength of M1
transitions. The SRV with the pairing is obtained as SM1,cal. =
0.352g2

s . This result is, as expected from Eq. (10), consistent
to the SM1(2n) = 2g2

sNS12=1, where NS12=1 = 0.176 as shown
in Table IV. Similarly to the sd-shell case, the M1 SRV is
shown to be linked with the coupled spin, which reflects the
zero-range pairing effect.

In 42Ca, the Minnesota pairing provides a significant
change from the other two cases. First the S12 = 1 component
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FIG. 3. Same as Fig. 1, but for 42Ca. Note that Eγ = Ef − EGS.

in the GS is enhanced from the no-pairing result. This en-
hancement then leads to the increase of the BM1 and SM1,cal.

values, which can be consistent to our sum-rule formulation.
The 1+-excitation energy is remarkably decreased, and thus,
the transition energy Eγ locates at the lowest value among the
three cases. These effects are understood from the finite range
of the Minnesota force, similarly as explained in the 18O case.
In this 42Ca case, however, the difference between the DDC
and Minnesota models gets more significant, because of the
p f shell. This model dependence exists even when the DDC
and Minnesota models are both fitted to the same GS energy.

IV. SUMMARY

We have investigated M1 excitations in the systems with
two-valence nucleons in the framework of the three-body
model. First we have introduced the model independent M1
sum rule, that is applicable to nuclei with two protons or
neutrons above the core with the shell closure. We showed
that the total sum of M1 transition strength can be linked
directly to the spin-triplet component of the two valence
nucleons in the shell. We also performed the three-body
model calculations of M1 transition strength with the DDC
and Minnesota-pairing interactions for 18O, 18Ne, and 42Ca.
Model calculations accurately reproduced the proposed M1
sum rule values.

It is shown that the M1 excitation can be sensitive to the
choice of pairing model. The BM1 and its SRV is enhanced
or suppressed depending on the spin-triplet component in the
GS, which depends on the pairing model. The same conclu-
sion can apply both in the sd and p f -shell nuclei. From these
results, we expect that the M1 excitation is a promising probe
to investigate the spin structure of valence nucleons, and/or to
optimize the existing models for the pairing correlation.

One should notice that the meson-exchange-current effect
on the M1 transition was not taken into account in this
work. This effect can provide additional components of the
M1-excitation strength [66–68], which may enhance the M1
SRV. For evaluation of this effect, we need to expand our
model calculation to take the two-body and/or more-body
components into account. To evaluate this effect, especially
for the nuclides which have been discussed within the present
three-body model, is one remaining task for future.

From the experimental side, additional studies are neces-
sary to extract the spin information from the M1 excitation
data, in particular for the systems with two-valence nucleons
above the closed-shell core, where the introduced M1 sum rule
could be validated. The main problem is the contribution from
other, electric modes, which lead to the hindrance against
the M1 strength. A close collaboration between theory and
experiment may be necessary to resolve this issue.
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